“Changing Business Dynamism and Productivity: Shocks vs. Responsiveness”

by Decker, Haltiwanger, Jarmin and Miranda

Discussion by Matthias Kehrig

Duke University

NBER Summer Institute: CRIW
July 18, 2017
What this paper is about

In this paper, the authors ...

- document the decline of business dynamism (job reallocation) both economy-wide and at the sectoral level,
What this paper is about

In this paper, the authors ...

- document the decline of business dynamism (job reallocation) both economy-wide and at the sectoral level,
- link that reallocation decline to employment dynamics and cross-establishment TFPR dispersion,
What this paper is about

In this paper, the authors ...

- document the decline of business dynamism (job reallocation) both economy-wide and at the sectoral level,
- link that reallocation decline to employment dynamics and cross-establishment TFPR dispersion,
- illustrate how a model with more severe labor market frictions can explain this set of facts,
What this paper is about

In this paper, the authors ...

- document the decline of business dynamism (job reallocation) both economy-wide and at the sectoral level,
- link that reallocation decline to employment dynamics and cross-establishment TFPR dispersion,
- illustrate how a model with more severe labor market frictions can explain this set of facts,
- conclude that declining reallocation and rising TFP dispersion lower aggregate productivity growth.
Why care?

Declining job reallocation is ...

1. a good thing if there is match quality is high ⇒ less need for reallocation
2. a bad thing if something increasingly prevents job reallocation ⇒ match quality, allocative efficiency decline

Declining (increasing) TFPR dispersion suggests view 1. (view 2.) empirically TFPR dispersion rises ⇒ declining dynamism is a problem

This paper: Labor adjustment costs will lower productivity growth via...
▶ less between-firm reallocation
▶ slower within-firm productivity growth (lower firm-worker match quality)
Why care?

Declining job reallocation is ...

1. a good thing if there is match quality is high

⇒ less need for reallocation
Why care?

Declining job reallocation is ...

1. a good thing if there is match quality is high
 ⇒ less need for reallocation

2. a bad thing if something increasingly prevents job reallocation
 ⇒ match quality, allocative efficiency decline
Why care?

Declining job reallocation is ...

1. a good thing if there is match quality is high
 ⇒ less need for reallocation

2. a bad thing if something increasingly prevents job reallocation
 ⇒ match quality, allocative efficiency decline

• declining (increasing) TFPR dispersion suggests view 1. (view 2.)
Why care?

Declining job reallocation is ...

1. a good thing if there is match quality is high
 ⇒ less need for reallocation
2. a bad thing if something increasingly prevents job reallocation
 ⇒ match quality, allocative efficiency decline

- declining (increasing) TFPR dispersion suggests view 1. (view 2.)
- empirically TFPR dispersion rises ⇒ declining dynamism is a problem
Why care?

Declining job reallocation is ...

1. a good thing if there is match quality is high
 ⇒ less need for reallocation

2. a bad thing if something increasingly prevents job reallocation
 ⇒ match quality, allocative efficiency decline

- declining (increasing) TFPR dispersion suggests view 1. (view 2.)
- empirically TFPR dispersion rises ⇒ declining dynamism is a problem

This paper: Labor adjustment costs will lower productivity growth via...

▶ less between-firm reallocation
▶ slower within-firm productivity growth (lower firm-worker match quality)
Comments in general

Paper contributes along some important dimensions. The authors ...

... link between business dynamism and productivity dynamics; can say what is shock what is response,
Comments in general

Paper contributes along some important dimensions. The authors ...

... link between business dynamism and productivity dynamics; can say what is shock what is response,

... show that startups/age dynamics are not the main factor,
Comments in general

Paper contributes along some important dimensions. The authors ...

... link between business dynamism and productivity dynamics; can say what is shock what is response,

... show that startups/age dynamics are not the main factor,

... extend analysis beyond manufacturing ⇒ valuable for profession,
Comments in general

Paper contributes along some important dimensions. The authors...

... link between business dynamism and productivity dynamics; can say what is shock what is response,

... show that startups/age dynamics are not the main factor,

... extend analysis beyond manufacturing \Rightarrow valuable for profession,

... look at declining dynamism in both labor and capital.
The hiring responsiveness declined

Estimate $n_{it} = c + f(tfpshock_{it}) + controls_{it} + \varepsilon_{it}$

from Ilut et al., NBER WP No. 20473, 2014
The hiring responsiveness declined

\[\text{Estimate } n_{it} = c + f(tfp\text{shock}_{it}) + \text{controls}_{it} + \varepsilon_{it} \]

Table 5: Asymmetry across Time and Size

<table>
<thead>
<tr>
<th>Sample</th>
<th>Innovation</th>
<th>(I) Std. Dev. of TFP</th>
<th>(IIIa) Empl. growth diff. (in %) betw. mean and firm at...</th>
<th>(IIIb) -1 StDev +1 StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.179</td>
<td></td>
<td></td>
<td>-1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
</tbody>
</table>

from Ilut et al., NBER WP No. 20473, 2014
The hiring responsiveness declined

Estimate \(n_{it} = c + f(tfpshock_{it}) + controls_{it} + \varepsilon_{it} \)

Table 5: Asymmetry across Time and Size

<table>
<thead>
<tr>
<th>Sample</th>
<th>Innovation</th>
<th>(I) Std. Dev. of TFP</th>
<th>(IIa) Empl. growth diff. (in %) betw. mean and firm at ...</th>
<th>(IIIa)</th>
<th>(IIIb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td>0.179</td>
<td></td>
<td>−1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>1972-75</td>
<td></td>
<td>0.171</td>
<td></td>
<td>−1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>1976-80</td>
<td></td>
<td>0.158</td>
<td></td>
<td>−1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>1981-85</td>
<td></td>
<td>0.169</td>
<td></td>
<td>−1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>1986-90</td>
<td></td>
<td>0.174</td>
<td></td>
<td>−1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>1991-95</td>
<td></td>
<td>0.170</td>
<td></td>
<td>−0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>1996-00</td>
<td></td>
<td>0.186</td>
<td></td>
<td>−0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>2001-05</td>
<td></td>
<td>0.196</td>
<td></td>
<td>−0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>2006-09</td>
<td></td>
<td>0.216</td>
<td></td>
<td>−0.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

From Ilut et al., NBER WP No. 20473, 2014
The authors ...

- confirm this result,
The authors ...

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
The authors ...

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
- extend this to non-manufacturing data.
The authors ...

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
- extend this to non-manufacturing data.

Comment about those results:

Empirical magnitude of change in exit responsiveness looks small

Regression coefficient of mature non-tech establishments:
- 1981: +0.144
- 2010: +0.125

Suggestions

- do separately for positive/negative TFP shocks and get stronger results? I think JC and JD don’t decline symmetrically, do they?
- does it matter for aggregate employment?

⇒ Do employment-weighted regression

- Why not regress employment growth on output growth; labor productivity contains employment...
The authors ...

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
- extend this to non-manufacturing data.

Comment about those results:

- empirical magnitude of change in exit responsiveness looks small
 Regression coefficient of mature non-tech establishments:

 1981: +0.144 2010: +0.125
The authors...

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
- extend this to non-manufacturing data.

Comment about those results:

- empirical magnitude of change in exit responsiveness looks small
 Regression coefficient of mature non-tech establishments:
 1981: +0.144 2010: +0.125

Suggestions

- do separately for positive/negative TFP shocks and get stronger results? I think JC and JD don not decline symmetrically, do they?
- does it matter for aggregate employment?
 ⇒ Do employment-weighted regression
The authors ...

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
- extend this to non-manufacturing data.

Comment about those results:

- empirical magnitude of change in exit responsiveness looks small
 Regression coefficient of mature non-tech establishments:
 1981: +0.144 2010: +0.125

Suggestions

- do separately for positive/negative TFP shocks and get stronger results? I think JC and JD don not decline symmetrically, do they?
- does it matter for aggregate employment?
 ⇒ Do employment-weighted regression
- Why not regress employment growth on output growth; labor productivity contains employment...
Broaden theoretical scope

Inform profession what labor market frictions matter most:

- fixed and convex adjustment costs
 \[\Rightarrow \text{can you match employment spikes given shock process?} \]
 \[\Rightarrow \text{Is the employment growth rate distribution unchanged? Do just fewer establishments experience similarly sized employment growth?} \]
 Or did the covariance between size and JC/JD become smaller?

Difference between \(g_{et} \) and \(X_{et}/X_t \) distributions.

\[\text{credit constraints hamper worker reallocation (Donangelo, JF, 2014)} \]
\[\Rightarrow \text{JR decline stronger in small establishments in privately held firms?} \]
\[\Rightarrow \text{different types of labor \- adjustment costs; search \& matching frictions stronger for non-production labor?} \]
\[\Rightarrow \text{models of learning and ambiguity aversion in hiring} \]
\[\Rightarrow \text{responsiveness decline stronger in high-volatility industries?} \]
\[\Rightarrow \text{policy distortions} \]
\[\Rightarrow \text{responsiveness decline weaker in right-to-work states?} \]
Broaden theoretical scope

Inform profession what labor market frictions matter most:

- fixed and convex adjustment costs
 ⇒ can you match employment spikes given shock process?
 ⇒ Is the employment growth rate distribution unchanged? Do just fewer establishments experience similarly sized employment growth? Or did the covariance between size and JC/JD become smaller?
 Difference between g_{et} and X_{et}/X_t distributions.

- credit constraints hamper worker reallocation (Donangelo, JF, 2014)
 ⇒ JR decline stronger in small establishments in privately held firms?
Broaden theoretical scope

Inform profession what labor market frictions matter most:

- fixed and convex adjustment costs
 ⇒ can you match employment spikes given shock process?
 ⇒ Is the employment growth rate distribution unchanged? Do just fewer establishments experience similarly sized employment growth? Or did the covariance between size and JC/JD become smaller?
 Difference between g_{et} and X_{et}/X_t distributions.

- credit constraints hamper worker reallocation (Donangelo, JF, 2014)
 ⇒ JR decline stronger in small establishments in privately held firms?

- different types of labor
 ⇒ adjustment costs; search & matching frictions stronger for non-production labor?
Broaden theoretical scope

Inform profession what labor market frictions matter most:

- fixed and convex adjustment costs
 ⇒ can you match employment spikes given shock process?
 ⇒ Is the employment growth rate distribution unchanged? Do just fewer establishments experience similarly sized employment growth? Or did the covariance between size and JC/JD become smaller?
 Difference between g_{et} and X_{et}/X_t distributions.

- credit constraints hamper worker reallocation (Donangelo, JF, 2014)
 ⇒ JR decline stronger in small establishments in privately held firms?

- different types of labor
 ⇒ adjustment costs; search & matching frictions stronger for non-production labor?

- models of learning and ambiguity aversion in hiring
 ⇒ responsiveness decline stronger in high-volatility industries?
Broaden theoretical scope

Inform profession what labor market frictions matter most:

- fixed and convex adjustment costs
 - can you match employment spikes given shock process?
 - Is the employment growth rate distribution unchanged? Do just fewer establishments experience similarly sized employment growth?
 - Or did the covariance between size and JC/JD become smaller?
 - Difference between g_{et} and X_{et}/X_t distributions.

- credit constraints hamper worker reallocation (Donangelo, JF, 2014)
 - JR decline stronger in small establishments in privately held firms?

- different types of labor
 - adjustment costs; search & matching frictions stronger for non-production labor?

- models of learning and ambiguity aversion in hiring
 - responsiveness decline stronger in high-volatility industries?

- policy distortions
 - responsiveness decline weaker in right-to-work states?
Further possibilities

Modeling and quantitative suggestions:

How much can each portion of the model – adjustment costs, frictions, shock processes – explain individually? Do they interact in quantitatively relevant ways?

Fixed and convex adjustment costs throw a spoke in the wheel of the efficiency of labor allocation; but these are all proportional, so there is no rank reversal in the allocation of labor ⇒ limited aggregate effects.

Does net hiring become less sensitive to TFPR shocks because of rank reversal?

I.e., did just the responsiveness of net hiring decline (weakly detrimental) the correlation of TFPR and net hiring decline (strongly detrimental)?
Further possibilities

Modeling and quantitative suggestions:

- How much can each portion of the model – adjustment costs, frictions, shock processes – explain individually? Do they interact in quantitatively relevant ways?

Fixed and convex adjustment costs throw a spoke in the wheel of the efficiency of labor allocation; but these are all proportional, so there is limited aggregate effects.

Does net hiring become less sensitive to TFPR shocks because of rank reversal?

I.e., did just the responsiveness of net hiring decline (weakly detrimental) the correlation of TFPR and net hiring decline (strongly detrimental)?

Matthias Kehrig (Duke) Disc. of “Changing Business Dynamism” NBER SI: CRIW
Further possibilities

Modeling and quantitative suggestions:

- How much can each portion of the model – adjustment costs, frictions, shock processes – explain individually? Do they interact in quantitatively relevant ways?
- Fixed and convex adjustment costs throw a spoke in the wheel of the efficiency of labor allocation; but these are all proportional, so there is no rank reversal in the allocation of labor ⇒ limited aggregate effects. Does net hiring become less sensitive to TFPR shocks because of *rank reversal*?
Further possibilities

Modeling and quantitative suggestions:

- How much can each portion of the model -- adjustment costs, frictions, shock processes -- explain individually? Do they interact in quantitatively relevant ways?
- Fixed and convex adjustment costs throw a spoke in the wheel of the efficiency of labor allocation; but these are all proportional, so there is no rank reversal in the allocation of labor \Rightarrow limited aggregate effects. Does net hiring become less sensitive to TFPR shocks because of rank reversal?
- I.e., did just the responsiveness of net hiring decline (weakly detrimental) the correlation of TFPR and net hiring decline (strongly detrimental)?
Further possibilities

Modeling and quantitative suggestions:

- How much can each portion of the model – adjustment costs, frictions, shock processes – explain individually? Do they interact in quantitatively relevant ways?
- Fixed and convex adjustment costs throw a spoke in the wheel of the efficiency of labor allocation; but these are all proportional, so there is no rank reversal in the allocation of labor ⇒ limited aggregate effects. Does net hiring become less sensitive to TFPR shocks because of rank reversal?
- I.e., did just the responsiveness of net hiring decline (weakly detrimental) the correlation of TFPR and net hiring decline (strongly detrimental)?
Other comments

- **Investment response (Table 3) great, look also at joint dynamics?**

<table>
<thead>
<tr>
<th>Capital</th>
<th>expand</th>
<th>shrink</th>
</tr>
</thead>
<tbody>
<tr>
<td>expand</td>
<td>growth</td>
<td>labor saving investment</td>
</tr>
<tr>
<td>shrink</td>
<td>???</td>
<td>getting small</td>
</tr>
</tbody>
</table>

⇒ learn something about joint dynamics and joint adjustment costs
Other comments

- Investment response (Table 3) great, look also at joint dynamics?

<table>
<thead>
<tr>
<th>Capital</th>
<th>expand</th>
<th>shrink</th>
</tr>
</thead>
<tbody>
<tr>
<td>expand</td>
<td>growth</td>
<td>labor saving investment</td>
</tr>
<tr>
<td>shrink</td>
<td>???</td>
<td>getting small</td>
</tr>
</tbody>
</table>

⇒ learn something about joint dynamics and joint adjustment costs

- TFP calculated assuming no frictions (and CRS); if frictions become more severe over time, is it appropriate to infer shocks from a frictionless production function approach? ⇒ Cannot conclude that it’s all responsiveness
Other comments

- Investment response (Table 3) great, look also at joint dynamics?

<table>
<thead>
<tr>
<th>Capital</th>
<th>Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>expand</td>
<td>shrink</td>
</tr>
<tr>
<td>expand</td>
<td>growth</td>
</tr>
<tr>
<td>shrink</td>
<td>???</td>
</tr>
<tr>
<td></td>
<td>getting small</td>
</tr>
</tbody>
</table>

⇒ learn something about joint dynamics and joint adjustment costs

- TFP calculated assuming no frictions (and CRS); if frictions become more severe over time, is it appropriate to infer shocks from a frictionless production function approach? ⇒ Cannot conclude that it’s all responsiveness

- Does receiving a productivity shock entail a different production function? Think of a putty-clay technology with less workers. Or labor-saving technical change (Did the EOS become larger?)
Other comments

- Investment response (Table 3) great, look also at joint dynamics?

<table>
<thead>
<tr>
<th>Capital</th>
<th>Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>expand</td>
<td>shrink</td>
</tr>
<tr>
<td>expand</td>
<td>growth</td>
</tr>
<tr>
<td>shrink</td>
<td>???</td>
</tr>
</tbody>
</table>

⇒ learn something about joint dynamics and joint adjustment costs

- TFP calculated assuming no frictions (and CRS); if frictions become more severe over time, is it appropriate to infer shocks from a frictionless production function approach? ⇒ Cannot conclude that it’s all responsiveness

- Does receiving a productivity shock entail a different production function? Think of a putty-clay technology with less workers. Or labor-saving technical change (Did the EOS become larger?)

- Did frictions become tighter or did shocks become more dispersed which filter through the same friction and mean less efficiency?