"Changing Business Dynamism and Productivity: Shocks vs. Responsiveness"

by Decker, Haltiwanger, Jarmin and Miranda

Discussion by Matthias Kehrig

Duke University

NBER Summer Institute: CRIW July 18, 2017

In this paper, the authors ...

• document the decline of business dynamism (job reallocation) both economy-wide and at the sectoral level,

In this paper, the authors ...

- document the decline of business dynamism (job reallocation) both economy-wide and at the sectoral level,
- link that reallocation decline to employment dynamics and cross-establishment TFPR dispersion,

In this paper, the authors ...

- document the decline of business dynamism (job reallocation) both economy-wide and at the sectoral level,
- link that reallocation decline to employment dynamics and cross-establishment TFPR dispersion,
- illustrate how a model with more severe labor market frictions can explain this set of facts,

In this paper, the authors ...

- document the decline of business dynamism (job reallocation) both economy-wide and at the sectoral level,
- link that reallocation decline to employment dynamics and cross-establishment TFPR dispersion,
- illustrate how a model with more severe labor market frictions can explain this set of facts,
- conclude that declining reallocation and rising TFP dispersion lower aggregate productivity growth.

- 1_{\cdot} a good thing if there is match quality is high
 - \Rightarrow less need for reallocation

- 1. a good thing if there is match quality is high \Rightarrow less need for reallocation
- 2. a bad thing if something increasingly prevents job reallocation \Rightarrow match quality, allocative efficiency decline

- 1. a good thing if there is match quality is high \Rightarrow less need for reallocation
- 2. a bad thing if something increasingly prevents job reallocation \Rightarrow match quality, allocative efficiency decline
 - declining (increasing) TFPR dispersion suggests view 1. (view 2.)

- 1. a good thing if there is match quality is high \Rightarrow less need for reallocation
- 2. a bad thing if something increasingly prevents job reallocation \Rightarrow match quality, allocative efficiency decline
 - declining (increasing) TFPR dispersion suggests view 1. (view 2.)
 - empirically TFPR dispersion rises \Rightarrow declining dynamism is a problem

- 1. a good thing if there is match quality is high \Rightarrow less need for reallocation
- 2. a bad thing if something increasingly prevents job reallocation \Rightarrow match quality, allocative efficiency decline
 - declining (increasing) TFPR dispersion suggests view 1. (view 2.)
 - empirically TFPR dispersion rises \Rightarrow declining dynamism is a problem
 - This paper: Labor adjustment costs will lower productivity growth via...
 - less between-firm reallocation
 - slower within-firm productivity growth (lower firm-worker match quality)

Paper contributes along some important dimensions. The authors \ldots

... link between business dynamism and productivity dynamics; can say what is shock what is response,

Paper contributes along some important dimensions. The authors \ldots

- ... link between business dynamism and productivity dynamics; can say what is shock what is response,
- ... show that startups/age dynamics are not the main factor,

Paper contributes along some important dimensions. The authors \ldots

- ... link between business dynamism and productivity dynamics; can say what is shock what is response,
- ... show that startups/age dynamics are not the main factor,
- ... extend analysis beyond manufacturing \Rightarrow valuable for profession,

Paper contributes along some important dimensions. The authors ...

- ... link between business dynamism and productivity dynamics; can say what is shock what is response,
- ... show that startups/age dynamics are not the main factor,
- ... extend analysis beyond manufacturing \Rightarrow valuable for profession,
- ... look at declining dynamism in both labor and capital.

The hiring responsiveness declined

Estimate $n_{it} = c + f(tfpshock_{it}) + controls_{it} + \varepsilon_{it}$

The hiring responsiveness declined

Estimate $n_{it} = c + f(tfpshock_{it}) + controls_{it} + \varepsilon_{it}$

Table 5: Asymmetry across Time and Size

	(I)	(IIIa)	(IIIb)
	Std. Dev.	Empl. grow	th diff. $(in \%)$
	of TFP	betw. mean	and firm at
Sample	Innovation	-1 StDev	+1 StDev
All	0.179	-1.1	0.6

from Ilut et al., NBER WP No. 20473, 2014

The hiring responsiveness declined

Estimate $n_{it} = c + f(tfpshock_{it}) + controls_{it} + \varepsilon_{it}$

	(I)	(IIIa)	(IIIb)
	Std. Dev.	Empl. grow	th diff. $(in \%)$
	of TFP	betw. mean	and firm at
Sample	Innovation	-1 StDev	+1 StDev
All	0.179	-1.1	0.6
1972-75	0.171	-1.4	1.2
1976-80	0.158	-1.1	0.8
1981 - 85	0.169	 -1.9	0.7
1986 - 90	0.174	-1.0	0.4
1991-95	0.170	-0.9	0.4
1996-00	0.186	-0.5	0.3
2001-05	0.196	-0.4	0.0
2006-09	0.216	-0.0	0.4

Table 5: Asymmetry across Time and Size

from Ilut et al., NBER WP No. 20473, 2014

Matthias Kehrig (Duke)

• confirm this result,

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
- extend this to non-manufacturing data.

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
- extend this to non-manufacturing data.

Comment about those results:

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
- extend this to non-manufacturing data.

Comment about those results:

 empirical magnitude of change in exit responsiveness looks small Regression coefficient of mature non-tech establishments: 1981: +0.144 2010: +0.125

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
- extend this to non-manufacturing data.

Comment about those results:

- empirical magnitude of change in exit responsiveness looks small Regression coefficient of mature non-tech establishments: 1981: +0.144 2010: +0.125
- Suggestions
 - do separately for positive/negative TFP shocks and get stronger results? I think JC and JD don not decline symmetrically, do they?
 - does it matter for aggregate employment?
 - \Rightarrow Do employment-weighted regression

- confirm this result,
- extend this to show a declining responsiveness of exit to TFP,
- extend this to non-manufacturing data.

Comment about those results:

- empirical magnitude of change in exit responsiveness looks small Regression coefficient of mature non-tech establishments: 1981: +0.144 2010: +0.125
- Suggestions
 - do separately for positive/negative TFP shocks and get stronger results? I think JC and JD don not decline symmetrically, do they?
 - ► does it matter for aggregate employment? ⇒ Do employment-weighted regression
 - Why not regress employment growth on output growth; labor productivity contains employment...

Inform profession what labor market frictions matter most:

- fixed and convex adjustment costs
 - \Rightarrow can you match employment spikes given shock process?

 \Rightarrow Is the employment growth rate distribution unchanged? Do just fewer establishments experience similarly sized employment growth? Or did the covariance between size and JC/JD become smaller? Difference between g_{et} and X_{et}/X_t distributions.

Inform profession what labor market frictions matter most:

- fixed and convex adjustment costs
 - \Rightarrow can you match employment spikes given shock process?
 - \Rightarrow Is the employment growth rate distribution unchanged? Do just fewer establishments experience similarly sized employment growth? Or did the covariance between size and JC/JD become smaller? Difference between g_{et} and X_{et}/X_t distributions.
- credit constraints hamper worker reallocation (Donangelo, JF, 2014)
 ⇒ JR decline stronger in small establishments in privately held firms?

Inform profession what labor market frictions matter most:

- fixed and convex adjustment costs
 - \Rightarrow can you match employment spikes given shock process?
 - \Rightarrow Is the employment growth rate distribution unchanged? Do just fewer establishments experience similarly sized employment growth? Or did the covariance between size and JC/JD become smaller? Difference between g_{et} and X_{et}/X_t distributions.
- credit constraints hamper worker reallocation (Donangelo, JF, 2014)
 ⇒ JR decline stronger in small establishments in privately held firms?
- different types of labor

 \Rightarrow adjustment costs; search & matching frictions stronger for non-production labor?

Inform profession what labor market frictions matter most:

- fixed and convex adjustment costs
 - \Rightarrow can you match employment spikes given shock process?
 - \Rightarrow Is the employment growth rate distribution unchanged? Do just fewer establishments experience similarly sized employment growth? Or did the covariance between size and JC/JD become smaller? Difference between g_{et} and X_{et}/X_t distributions.
- credit constraints hamper worker reallocation (Donangelo, JF, 2014)
 ⇒ JR decline stronger in small establishments in privately held firms?
- different types of labor

 \Rightarrow adjustment costs; search & matching frictions stronger for non-production labor?

models of learning and ambiguity aversion in hiring
 ⇒ responsiveness decline stronger in high-volatility industries?

Inform profession what labor market frictions matter most:

- fixed and convex adjustment costs
 - \Rightarrow can you match employment spikes given shock process?
 - \Rightarrow Is the employment growth rate distribution unchanged? Do just fewer establishments experience similarly sized employment growth? Or did the covariance between size and JC/JD become smaller? Difference between g_{et} and X_{et}/X_t distributions.
- credit constraints hamper worker reallocation (Donangelo, JF, 2014)
 ⇒ JR decline stronger in small establishments in privately held firms?
- different types of labor

 \Rightarrow adjustment costs; search & matching frictions stronger for non-production labor?

- models of learning and ambiguity aversion in hiring
 ⇒ responsiveness decline stronger in high-volatility industries?
- policy distortions
 - \Rightarrow responsiveness decline weaker in right-to-work states?

Modeling and quantitative suggestions:

• How much can each portion of the model – adjustment costs, frictions, shock processes – explain individually? Do they interact in quantitatively relevant ways?

- How much can each portion of the model adjustment costs, frictions, shock processes – explain individually? Do they interact in quantitatively relevant ways?
- Fixed and convex adjustment costs throw a spoke in the wheel of the efficiency of labor allocation; but these are all proportional, so there is no rank reversal in the allocation of labor ⇒ limited aggregate effects. Does net hiring become less sensitive to TFPR shocks because of rank reversal?

- How much can each portion of the model adjustment costs, frictions, shock processes – explain individually? Do they interact in quantitatively relevant ways?
- Fixed and convex adjustment costs throw a spoke in the wheel of the efficiency of labor allocation; but these are all proportional, so there is no rank reversal in the allocation of labor ⇒ limited aggregate effects. Does net hiring become less sensitive to TFPR shocks because of rank reversal?
- I.e., did just the *responsiveness* of net hiring decline (weakly detrimental) the *correlation* of TFPR and net hiring decline (strongly detrimental)?

- How much can each portion of the model adjustment costs, frictions, shock processes – explain individually? Do they interact in quantitatively relevant ways?
- Fixed and convex adjustment costs throw a spoke in the wheel of the efficiency of labor allocation; but these are all proportional, so there is no rank reversal in the allocation of labor ⇒ limited aggregate effects. Does net hiring become less sensitive to TFPR shocks because of rank reversal?
- I.e., did just the *responsiveness* of net hiring decline (weakly detrimental) the *correlation* of TFPR and net hiring decline (strongly detrimental)?

• Investment response (Table 3) great, look also at joint dynamics?

	Labor		
Capital	expand	shrink	
expand	growth	labor saving investment	
shrink	???	getting small	

 \Rightarrow learn something about joint dynamics and joint adjustment costs

• Investment response (Table 3) great, look also at joint dynamics?

	Labor		
Capital	expand	shrink	
expand	growth	labor saving investment	
shrink	???	getting small	

 \Rightarrow learn something about joint dynamics and joint adjustment costs

 TFP calculated assuming no frictions (and CRS); if frictions become more severe over time, is it appropriate to infer shocks from a frictionless production function approach? ⇒ Cannot conclude that it's all responsiveness

• Investment response (Table 3) great, look also at joint dynamics?

	Labor		
Capital	expand	shrink	
expand	growth	labor saving investment	
shrink	???	getting small	

 \Rightarrow learn something about joint dynamics and joint adjustment costs

- TFP calculated assuming no frictions (and CRS); if frictions become more severe over time, is it appropriate to infer shocks from a frictionless production function approach? ⇒ Cannot conclude that it's all responsiveness
- Does receiving a productivity shock entail a different production function? Think of a putty-clay technology with less workers. Or labor-saving technical change (Did the EOS become larger?)

• Investment response (Table 3) great, look also at joint dynamics?

	Labor		
Capital	expand	shrink	
expand	growth	labor saving investment	
shrink	???	getting small	

 \Rightarrow learn something about joint dynamics and joint adjustment costs

- TFP calculated assuming no frictions (and CRS); if frictions become more severe over time, is it appropriate to infer shocks from a frictionless production function approach? ⇒ Cannot conclude that it's all responsiveness
- Does receiving a productivity shock entail a different production function? Think of a putty-clay technology with less workers. Or labor-saving technical change (Did the EOS become larger?)
- Did frictions become tighter or did shocks become more dispersed which filter through the same friction and mean less efficiency?