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Abstract	
We expand the data infrastructure available to build evidence on public and private investments in 
science and R&D and utilize it to examine the links between startup performance and new 
measures of workforce human capital.  We apply machine-learning techniques to a rich new source 
of longitudinally-linked data to characterize the research-experienced workforce of new 
businesses.  Startups with a more research-experienced workforce are more likely to survive and 
grow. 
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Introduction	
 
There is a growing body of evidence documenting the decline in business dynamism over the 
past 30 years (Decker et al. 2014) characterized by a decline in both the formation and the 
success rate of new firms (Hathaway and Litan 2014). The reasons for the decline are not fully 
understood (Decker et al. 2016a), but the decline has important implications for resource 
allocation and productivity growth, especially in high-tech sectors (Decker et al. 2016b; Decker 
et al. 2017). Young entrepreneurial businesses are important for introducing and diffusing 
innovations in the economy and several authors have shown indirect linkages between formal 
investments in research and innovation and entrepreneurship and economic growth (Bania, 
Eberts, and Fogarty 1993; Hausman 2012; Lowe and Gonzalez-Brambila 2007). 
 
Our point of departure for this study is the finding that the high-tech and information sectors 
exhibit different patterns of declining dynamism.  Whereas most sectors exhibit a persistent 
secular decline, the high-tech and information sectors showed increases in dynamism during the 
tech boom of the 1990s followed by declining dynamism after 2000.  Importantly, this pattern 
closely mimics that of productivity growth for the sector (Fernald 2014). Given the importance 
investments in science and R&D for driving innovation and growth in this sector, it is natural to 
ask whether changes in their scale, scope or impact can help explain trends in dynamism and 
productivity. 
 
In this paper, we utilize a new and evolving data infrastructure that integrates detailed 
administrative data from research universities (Lane et al. 2015) with Census Bureau firm and 
worker data to begin to more directly investigate how university investments in science and 
research flow into the economy and impact entrepreneurship, productivity and growth.  We 
construct new measures of human capital to investigate the contribution of worker experience 
with research to entrepreneurial success and dynamism.  
 
We incorporate new worker-level measures of R&D human capital, including research training, 
of the workforce at both startups and young firms to directly examine the connection between an 
R&D trained workforce and new business success. We do not directly observe all these attributes 
for the entire universe of workers.  Thus, we utilize machine-learning to scale our sample and 
generate estimates of the workforce with research experience.  As such, an important 
contribution of the paper is demonstrating this new pilot approach to scaling and augmenting 
existing data collected at a local or regional level or for a subsample of firms and workers. 
Achieving these measurement objectives with survey data is not practical on both cost and 
respondent-burden dimensions 
 
Our results suggest that a one-worker increase in the number of research-experienced employees 
in a startup firm’s workforce increases its probability of survival to the next period by 1.9%, and 
increases the likelihood of it becoming a high-growth successful startup by 2.8%. Workers with 
experience in research increase the likelihood of startup success (defined as being 5-years old 
with ten or more employees) by 1.7%, over and above workers who have been employed by 
universities, high-tech or R&D-performing firms.  
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These results are consistent with the view that there is a relationship between workforce 
experience and business startup and survival. Further work using these data will be necessary to 
examine temporal dynamics. It will be particularly interesting to understand whether changes in 
the fluidity of this type of workforce, changing patterns of firm-to-firm job flows, or changes in 
the nature of research funding can be tied to the decline in business dynamism and changes in the 
distribution of employment growth rates.  

Background	
 
Decker et al. (2016b) review several studies that attempt to explain declining firm and labor 
market dynamism.  Karahan, Pugsley, and Sahin (2015) find that changing demographics can 
explain declining startup rates, but Hyatt and Spletzer (2013) suggest that demographics play a 
limited role in explaining declining labor market dynamics.  Changes in the industrial 
composition of the economy over time should have increased business dynamism as the share of 
activity accounted from by low volatility sectors like manufacturing was eclipsed by high 
volatility sectors such as services and retail (Decker et al. 2014).  Finally, Goldschlag and 
Tabarrok (2014) find no evidence that increased federal regulations play any role in explaining 
trends in business dynamism, but Davis and Haltiwanger (2014) find labor market regulations 
have measurable impact of labor market fluidity.   
 
The finding that trends in declining dynamism differ across sectors offers perhaps the best hope 
for pinning down causal factors (Decker et al. 2016c).  The shift of retail from mom and pop 
stores to large national chains was the story over 1980s and 1990s.  This is part of a long run 
trend that has been productivity enhancing.  During the 1990s, businesses in the high-tech sector 
grew more dynamic with important implications of overall productivity growth.  Since 2000, 
however, the high-tech sector exhibited large declines in measures of dynamism corresponding 
with weaker overall productivity growth. 
 
Some have offered that slowing scientific discovery and innovation account for the slowdown in 
productivity growth (Bloom et al. 2016; Gordon 2016) or that ideas are not diffusing as 
efficiently as before and that the productivity gap between frontier firms and the rest of the 
economy is growing (Andrews, Criscuolo, and Gal 2015).  From the viewpoint of models of firm 
dynamics (H. A. Hopenhayn 1992; H. Hopenhayn and Rogerson 1993) this should imply that the 
productivity shocks firms face have declined in magnitude and/or persistence.  Decker et al. 
(2017) find that this is not the case but that firms’ responsiveness to such shocks has decreased in 
a pattern that closely mimics patterns of dynamism and productivity growth.  Relatedly, recent 
work by Gutiérrez and Philippon (2016) document a downward trend in business investment 
they ascribe mostly to decreased competition and risk averse institutional investors. 
 
The finding that firms have become less responsive to productivity shocks suggests the presence 
of frictions.  The pattern of increasing then decreasing dynamism in high-tech and the increasing 
dominance of frontier firms is suggestive that many firms in the economy are unable to identify 
and/or act on profitable opportunities arising from science and innovation.  There is a literature 
that suggests that firm and economic growth can be significantly affected by workers specialized 
in R&D (Acemoglu et al. 2013; Jones 2002) that may be relevant especially for understanding 
the evolution of dynamism and productivity growth in the high-tech sector.  
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New linked data sets offer the potential to analyze the role of workers’ and entrepreneurs’ 
specialized training and experience.  Particularly useful in this context is economy-wide linked 
employer-employee data, such as the LEHD data (Abowd, Haltiwanger, and Lane 2004).   Such 
data have been used in the past to generate different measures of worker experience at different 
types of businesses (Golan, Lane, and McEntarfer 2007).   Barth et al., for example, show that 
there are returns to experience at R&D performing firms (Barth, Davis, and Freeman 2016); 
Abowd et al. also use linked data to compute person specific measures of human capital (Abowd 
et al. 2005).   
 
More direct measures of research human capital are now available, which include specific 
information on whether workers are trained in scientific research.   The new longitudinally 
linked data on the research trained workforce - the UMETRICS data, (J. Lane et al. 2014)  - have 
been used in other contexts and do suggest that research trained workers are more likely to work 
at firms with characteristics closely linked to productivity (Zolas et al. 2015). 
 
Finally,  there’s an extensive related literature that links regional economic development clusters 
with the presence of active research universities (Glaeser, Kerr, and Ponzetto 2010; Hausman 
2012; Kantor and Whalley 2013, 2014). The findings are consistent with the notion that an 
important source of knowledge transfer is the flows of research-experienced workers from one 
firm to another (Fleming, Charles King, and Juda 2007; Marx, Singh, and Fleming 2015). 

Approach,	Data	and	Measurement	
 
Our framework posits that startup outcomes (Y) such as the survival and subsequent success of a 
startup f at time t is driven by capital (K) and technology (A), quantity and quality of labor 
measures (L) such as human capital, and external factors (X) such as macroeconomic conditions 
and industry factors. Functionally, we can think of outcomes being written as: 
 

௙ܻ௧ ൌ ݂൫ܣ௙௧, ,௙௧ܭ ,௙௧ܮ ௙ܺ௧൯ 
 
For firm f at time t. We construct measures for each of these components using existing Census 
microdata on linked employee-employer data, longitudinal firm-level data, as well as existing 
surveys which indicate whether or not the firm is or was an R&D performing firm. We 
supplement this data with new data from UMETRICS, which identifies all workers who were 
paid on research grants for 14 universities that account for approximately 15% of federally 
funded research. Our primary focus is constructing components for the measure ܮ௙௧, which 
consists of the attributes of the startup workforce at time t=0.  

Identifying	Startups	and	Startup	Outcomes	
We create a Startup Firm History File (2005-2014) based on a panel database of age zero 
establishment attributes. The primary frame for the data is the Longitudinal Business Database 
(LBD), supplemented with additional information from the Census Bureau’s Business Register, 
upon which the LBD is based.  We utilize this file to identify startups by yearly cohort. Once the 
startups have been identified, we supplement the data with geocodes (state and county-level 

(1) 
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FIPS, along with Census Tract information if available) and EINs taken from the Business 
Register. These variables are used to subsequently characterize the workforce associated with 
each startup gathered from LEHD (Longitudinal Employee-Household Dynamics) and W2 
records. The full file contains data on employment, payroll, industry, geography, firm-type and 
birth/date of the firm. 
 
Figure 1 below provides a graphical summary of the number of startups each year, including the 
share that fail in the subsequent years. 
 

 
Figure 1: Number of Startups and their Death Rates first 5 years4 

 
Figure 1 shows the counts of startups, as well as exits in each subsequent year, for the data 
sample.   It also shows how many “successful” startups there are (defining success as surviving 
to year 5 and having more than 10 employees). Consistent with earlier findings, the number of 
startups declined by more than 25% from 2005 and 2013.  More than 30% of startups fail before 
Year 2 and more than 50% of startups fail before Year 5. The rate of success for startups is 
approximately 8% each year, meaning that more than 90% of all startups in any year either die or 
fail to hire more than 10 employees within 5 years. 

Characterizing	the	Startup	Workforce	
 
To characterize the workforce associated with each startup we create a Startup Worker History 
File (2005-2014) derived from worker level data on jobs.  Universe data on jobs come from 
administrative records.  Each paid job for each worker from 2005-2014 is reported at the 
Employer Identification Number (EIN) level via IRS form W2 and state-level Unemployment 

                                                 
4 Source: Business Dynamic Statistics and Startup Firm History File.  
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Insurance wage records.  The latter underlie the core LEHD infrastructure (Abowd, Haltiwanger, 
and Lane 2004) and are necessary to identify the establishment for the bulk of multi-unit firms 
(Abowd et al. 2009).   The combined data includes more than 2.6 billion person-EIN-year 
observations (approximately 1.83 billion match across the W2 and LEHD/UI universes, 550 
million are found only in the W2 records and 320 million are only found in LEHD). We then 
enhance this data with the LEHD Individual Characteristics File (ICF), which includes 
demographic data on persons including sex, age, race and place of birth.5  We are able to link 48 
million of the 2.6 billion person-EIN-year observations to startups in their birth year, giving us 
an average of nearly 4.5 million person-startup observations each year.6  
 
We derive the human capital characteristics for each individual worker in the startup workforce 
at each time t from his or her work history in the previous three years. We create separate flags 
for whether the individual worked for (i) an R&D performing firm, (ii) a firm in a high-tech 
industry, (iii) a national research university and (iv) a national research university and paid on a 
research grant.  The individual level data are then aggregated to create human capital 
composition measures for each startup for each year.  The first three of these human capital 
measures are derived from a combination of different sources of internal Census Bureau data.   
The last is derived from new UMETRICS data combined with machine-learning methods as 
described below.  
 
The R&D measure is created from adding firm-identifiers based on the Business Innovation and 
Research and Development Survey (BRDIS) and Survey of Industrial Research and 
Development (SIRD)7. A firm is classified as an R&D firm if it has positive R&D expenditures 
during the year the employee was affiliated with the firm. The high-tech industries classification 
is derived from work by Hecker ( Hecker 2005; Goldschlag and Miranda 2016), which is based 
on the relative concentration of STEM workers. The university measure is derived from data 
from IPEDS and the Carnegie Institute which provide a frame of universities in the United 
States. We also merge in national university research outlays collected by National Center for 
Science and Engineering Statistics at the National Science Foundation and keep the top 130 
universities that comprise of 90% of total federally funded R&D research.  
 
The identification of individuals working on research grants can be derived from UMETRICS 
data (Lane et al. 2015), which includes 14 universities accounting for 15% of federally funded 
research.  The UMETRICS data are universe data from the personnel and financial records of 
universities.  Although four files are provided by the university, the key file of interest in this 
project is the employee file. Briefly, for each funded research project, both federal and 
nonfederal, the file contains all payroll charges for all pay periods (identified by period start date 
and period end date) with links to both the federal award id (unique award number) and the 
internal university identification number (recipient account number). In addition to first name 
and last name, and date of birth, the data include the employee’s internal de-identified employee 

                                                 
5 A detailed discussion on the matching process and match rates is provided in the appendix. 
6 This figure differs from the reported Business Dynamics Statistics (BDS), which calculate employment at startups 
at a specific point in time (March 12). Our figures are higher, reflecting employee-employer transitions (i.e. workers 
who work briefly for a startup and then move to a different job). The 48 million observations represent 37.8 million 
unique individuals. 
7 We use the SIRD to identify R&D firms between 2005-2007 and BRDIS for 2008-2014 
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number, and the job title (which we mapped into broad occupational categories). Each university 
provided data as far back as they had reliable records (see Appendix for more details).  We 
extend the measure to all universities and back to 2005 using machine-learning approaches; that 
is discussed in the next section. 
 

Machine‐learning	and	Identifying	Workers	funded	from	research	grants	
The current UMETRICS frame consists of 14 large research universities, with several 
concentrated in the Midwest.  Although some have provided data from the early 2000s, the bulk 
provide data for the latter years of our sample. The current UMETRICS frame consists of 
140,000 research trained individuals that can be linked to Census data and used to create a 
training dataset for machine-learning purposes.    
 
The training dataset consists of the employment and earnings records of all 14 UMETRICS 
universities in the period in which they provide data.  By combining the UMETRICS and W2 
data, we can identify all 140,000 who were employed on research grants in those time periods as 
well as 1.4 million who are not. The out-of-sample set includes 6.8 million individuals paid by 
the top 130 research universities in our time frame. Importantly, the out-of-sample set includes 
years for some UMETRICS institutions outside of those provided by the universities.  
 
The link to Census data enables us to create a rich set of attributes that can be used to train the 
machine-learning models. We are able to capture each employee’s earnings history before, 
during and after the employee’s time at the university. In addition, we capture other attributes 
such as the dominant employer characteristics (includes size, payroll, average earnings, industry, 
location and other-job earnings), in-state and out-of-state earnings, industry earnings, geographic 
variation (across all 50-states), university characteristics (collected from IPEDS, Carnegie 
Institute, NSF and NIH, which include average SAT scores, enrollment levels, public/private 
indicators), along with yearly variations and before/after/during (for the period t-2 until t+2 for 
the individual entering and exiting the university) across all variables. All of this is supplemented 
with demographic data collected from the Individual Characteristics File (ICF).  In total, we have 
over 1,500 person-EIN level features to train the machine-learning algorithms. 
  
The success of our machine-learning methods hinges on the extent to which there are measurable 
differences between research trained and non-research trained individuals. Table 1 below 
highlights some key differences between employees working on research grants and those not. 
 
 
 
 
 
 
 
 
 
 
 
 



8 
 

 

Table 1: Comparison of demographic and earnings characteristics 
 Research Trained Not Research trained 
Proportion Female 50.5 54.1 
Proportion White 73.2 77.2 
Proportion Hispanic 4.3 4.9 
Proportion Black 5.7 9.3 
Proportion Asian 14.1 6.2 
Proportion Foreign-Born 21.8 11.4 
Year of Birth 1977.7 1975.6 
Proportion in Professional/Scientific Services 18.4 14.3 
Professional/Scientific Earnings, t+1 42,500 33,700 

Source: W2 and UMETRICS data.  
Note: Each of these are significantly different at p<0.001.  
 

Research trained individuals tend to be disproportionately male, Asian, foreign-born and younger 
relative to non-research trained employees (employees at the same institution but not affiliated 
with research grants). Research trained individuals are also more likely to be employed in 
Professional and Scientific services subsequent to leaving the university and have an earnings 
premium that is 30% higher in Professional and Scientific services in the year immediately 
following their exit from the university.  
 
The quality of our classification methods also depends on the extent to which our UMETRICS 
universities are broadly representative of the 130 out-of-sample research universities. Table 2 
compares the national university sample with the UMETRICS sample. The majority of 
universities included in the sample are large, public universities with medical schools attached to 
them. The UMETRICS sample is slightly larger on average and expends more on R&D. There 
are approximately 6.8 million Out-of-Sample individuals employed at these universities between 
2005 and 2014. 
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Table 2: Comparison of university characteristics 
 130 Universities UMETRICS Sample8 
Mean R&D Expenditure ($000), 2014 424,600 661,700 
Mean Non-R&D Expenditures ($000), 2014 20,400 35,800 
Mean # of NIH Awards, 2014 270 440 
Mean Annual Enrollment 30,800 43,400 
Mean Amount of NIH Awards ($000), 2014 112,500 180,900 
Mean Undergraduate Enrollment, 2014 19,800 27,700 
Mean Bachelor Degrees Awarded, 2014 4,700 6,900 
Mean Graduate Enrollment, 2014 7,900 11,800 
Mean Master Degrees Awarded, 2014 1,900 3,100 
Mean Doctoral Degrees Awarded, 2014 700 1,100 
Mean Total Degrees Awarded, 2014 7,300 11,100 
Mean Faculty Number, 2014 1,400 2,200 
% Private 28.5 30.8 
% Land Grant 40 61.5 
% with Medical School 69.2 84.6 
Mean SAT Combined, 2014 1,140 1,190 
Source: IPEDS and the Carnegie Institute.  

 
The objective of our machine-learning approach is to classify individuals in the out-of-sample set 
as to whether or not they participated in (were paid by) grant funded research. Our methodology 
proceeds as follows. First, we execute several feature selection models. Second, we estimate a 
series of supervised learning classification models with different parameterizations. Third, we 
perform a number of cross validation exercises to assess the sensitivity and robustness of the in-
sample predictions. Finally, we use our preferred specification to predict which of the 6.8 million 
out-of-sample individuals participated in grant-funded research.  
 
We perform a series of feature selection exercises to reduce the number of attributes considered 
by each learning model. Feature selection can provide a number of benefits including avoiding 
over-fitting, reducing computational burden, and improving prediction quality by filtering low 
value added features and/or selecting a subset of the most valuable featured based on prediction 
quality (Guyon and Elisseeff 2003). We explore several univariate feature selection 
methodologies including k-best chi squared and univariate k-best by decision tree precision. We 
also use mean decreased impurity in a multivariate random forest model (Kohavi and John 
1997). Finally, we develop some hand-curated feature sets based on iterative implementation and 
testing. Each of the resulting feature subsets are used to train the classification models. 
 
For each of the k-best methods we select the top 50 features.9 The k-best chi squared method 
estimates the chi-square test statistic between each feature and class (research training status) and 
selects the top k features based on those estimates. This method measures the dependence 
between each feature and class removing those that are most likely to be independent of research 
training status and therefore less useful for classification. The k-best decision tree method 
                                                 
8Ohio State University, Penn State, Purdue, Michigan State, New York University and the Universities of Arizona,  
Illinois (Champaign-Urbana), Iowa, Michigan, Missouri, Wisconsin. 
9 In the future, we plan to experiment with the 100 and 200 best by each method.  
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estimates a decision tree classifier for each feature and class individually and evaluates the 
quality of in-sample predictions based on that single feature. Intuitively, features that have less 
predictive value will produce lower quality predictions when used in a univariate classification 
model. Features are ranked according to the mean stratified three-fold cross-validated precision 
score from fitting the decision tree classification model for each feature-class combination. 
Precision, discussed in more detail below, captures the probability that a randomly selected 
positive predicted research training status is true. For our purposes, precision is the most relevant 
measure since we are most interested in measuring economic outcomes associated with 
positively classified individuals in the out-of-sample set.  
 
Multivariate feature selection methods improve upon univariate methods by incorporating the 
complex interactions that can occur between features in supervised learning classification 
models. We calculate the k-best features by mean decreased impurity (Gini importance) in a 
random forest classifier (Breiman et al. 1984). The Gini importance measure is derived from the 
Gini index used to split the data at each node, which captures the level of impurity/inequality 
among samples assigned to a node based on the split from its parent node (Zhang and Ma 2012).  
 
We estimate several classification models including logistic regression, decision tree, and 
random forest. The first classification model we estimate is a logistic regression classifier, a 
classic supervised learning method for binary classifications problems (Fan et al. 2008; James et 
al. 2013). This model serves as a baseline from which we compare the performance of the tree-
based methods. The second classification model we estimate is the decision tree model (Breiman 
et al. 1984). Finally, we estimate a series of random forest models with different 
parameterizations (Breiman 2001). We explore a series of evaluation metrics for in-sample 
predictions resulting from different parameterizations of the random forest classifier. 
 
To evaluate our predictions, we calculate several quality measures including accuracy, precision, 
and recall. We also use the share of false positives and false negatives to guide model selection 
and parameter tuning. Accuracy captures how often the model is correct with respect to both 
positive and negative classifications. This measure will tend to be less useful for our purposes 
since we are most concerned about correctly identifying positives (those that participated in grant 
funded research). Accuracy is defined in the following way.  
 

ܻܥܣܴܷܥܥܣ ൌ
݌ݐ ൅ ݊ݐ

݌ݐ ൅ ݊ݐ ൅ ݌݂ ൅ ݂݊
 

 
Where tp, tn, fp, and fn are true positives, true negatives, false positives, and false negatives 
respectively.  Precision can be thought of as the probability that a randomly selected person 
predicted to have participated in grant funded research actually did. Recall, on the other hand, 
captures the probability that a randomly selected grant funded researcher was correctly 
classified. Since we are primarily interested in the quality of positive classifications, in the 
discussion that follows precision will be our primary measure of quality. 
 
 
 

(2) 
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ܱܰܫܵܫܥܧܴܲ ൌ
݌ݐ

݌ݐ ൅ ݌݂
 

 

ܮܮܣܥܧܴ ൌ
݌ݐ

݌ݐ ൅ ݂݊
 

 
The accuracy, precision, and recall measures estimated by training and predicting using the 
entire training set will suffer from over-fitting. To avoid this issue, and obtain a more accurate 
measure of model quality, we perform several cross validation exercises. First, we execute a 
stratified K-fold cross validation strategy. Second, we perform “Leave-One-Out” cross validation 
at the university level. 
 
Using stratified K-fold cross validation, we segment the data into 10 folds stratified in such a 
way that each sample contains approximately the same relative frequency of observations within 
each class (research trained (1s) and non-research trained (0s)). We then cycle through each fold, 
training the classification algorithm using the K-1 samples and test on the Kth. For the “Leave-
One-Out’ cross validation we iterate over the UMETRICS universities leaving one out, training 
the model using the remaining universities and predict on the excluded university. This allows us 
to simulate the addition of a new university to the UMETRICS data.  
 
Table 3 shows the in-sample evaluation metrics for the logistic regression and decision tree 
classification models using several feature selection sets. 
 
Table 3: Logistic Regression and Decision Tree Classification Results 
 Logistic Regression Decision Tree 
Feature Set Chi-

Squared  
Decision 

Tree  
Impurity Chi-

Squared 
Decision 

Tree  
Impurity 

In-Sample Accuracy 88.405  88.431 88.422 99.984 97.847 99.996
In-Sample Precision 32.090 30.000 33.566 99.991 99.254 99.995
In-Sample Recall 0.274 0.064 0.170 99.872 81.987 99.970
Mean 10-Fold 
Precision 30.034 36.656 36.852 28.158 27.386 31.542
Source: UMETRICS, W2, LEHD, LBD, ICF and BR. 

 
The results in Table 3 show that while accuracy is relatively high with the logistic regression 
classifier, it generally fails to predict research trained individuals with precision of roughly 31 
across the different feature sets. Moreover, the recall for the logistic regression model is very 
poor. The decision tree results for all three feature sets, on the other hand, appear very promising 
with nearly perfect accuracy and precision. However, in the stratified 10-fold validation we see 
that while the logistic regression model retains its precision scores of roughly 30 in the cross 
validation, the decision tree model performs significantly worse in cross validation. This 
suggests that the decision tree tends to over-fit the training sample. Table 4 shows the results 
from the random forest classifier across the feature sets. 
 
 
 

(3) 
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Table 4: Random Forest Classification Results 
 Random Forest 
Feature Set Chi-

Squared 
Decision 

Tree  
Impurity Hand-

Curated 
Estimators 50 50 50 50
Maximum Depth 50 50 50 50

In-Sample Accuracy 99.703 97.277 99.950 99.924
In-Sample Precision 99.990 98.971 99.991 99.981
In-Sample Recall 97.443 77.248 99.580 99.365
Mean 10-Fold Precision 99.849 70.816 99.806 62.222

Mean University-Fold 
Precision 86.873 86.661 86.710
Source: UMETRICS, W2, LEHD, LBD, ICF and BR. 
Note: Fewer than 50 estimators and lower maximum depth results in significant loss of 
precision and accuracy while additional estimators and depth yield little additional quality 
improvements and entail significant additional computational resources. The hand-curated set 
includes demographic variables and demeaned earnings for individuals during their time at 
the university. 

 
The results in Table 4 suggest that the random forest classifier, by aggregating many different 
decision trees, avoids some of the over-fitting issues in the decision tree results. The accuracy, 
precision, and recall across the different features sets are high, with exception of the recall score 
for the univariate decision tree feature set, which drops from over 97 to about 77. This pattern is 
also evident in Table 3, where we see the univariate decision tree produces lower recall scores 
for both the logistic regression and decision tree classifiers. We also show in Table 4 the results 
using a hand-curated set of features, which includes demographic variables and demeaned 
earnings. We create this hand curated set by iteratively experimenting with different 
combinations of features to balance the quality of in-sample predictions with the number of out-
of-sample positive predictions. 
 
Applying our preferred classification model, the random forest estimator with the hand-curated 
feature set, to the out-of-sample set identifiers an additional 188,000 individuals who are likely 
to be research trained. Table 5 below compares the out-of-sample results with the in-sample and 
individuals not likely to be research-trained. 
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Table 5: Comparison of Economic and Demographic Characteristics  
 Research Trained Not research 

trained In Sample Out of Sample 
Proportion Female 50.5 47.8 54.1 
Proportion White 73.2 67.6 77.2 
Proportion Hispanic 4.3 7.1 4.9 
Proportion Black 5.7 5.6 9.3 
Proportion Asian 14.1 16.2 6.2 
Proportion Foreign-Born 21.8 25.6 11.4 
Year of Birth 1977.7 1976.2 1975.6 
Proportion in Professional/Scientific 
Services 

18.4 18.4 14.3 

Professional/Scientific Earnings, t+1 42,500 41,250 33,700 
Note: Each of the differences listed in this table are statistically significantly different at p<0.001. 
 
The out-of-sample prediction of research training compares favorably with the known in-sample 
group of research trained individuals. There are a couple of notable differences however. The 
out-of-sample is significantly more likely to be male, Hispanic and foreign-born than the in-
sample.  
 
Our combined data consists of a national sample of Startups and their outcomes between the 
years 2005 and 2014, as well as a national sample of all workers affiliated with these startups, 
along with 4- main designations of human capital attributes assigned to each worker. The next 
section explores some basic summary tables and findings for these different types of workers and 
their potential impact on startups.  

Basic	Facts	
This section establishes some basic facts on the human capital composition of the startups by 
year, as well as startup outcomes. We begin by outlining the data construction for the human 
capital element of the Startup Firm History File.  
 
We start with the Startup Worker History File which consists of an individual protected 
identification key (PIK), their affiliated EIN, Earnings and Year for all individuals affiliated with 
startups at time t=0. We then affix human capital identifiers to their work history using the 
BRDIS/SIRD (which identifies R&D performing firms), High-Tech firm classification (from 
Hecker (2005) and Goldschlag and Miranda (2016)), University identifiers (from the 130 top 
research institutions whose EINs are collected by IPEDS and the Carnegie Institute) and our 
“research-experienced” measure compiled in the previous section. We then classify individuals 
into these four categories based on whether or not they worked at one of these institution types in 
the 3-years prior to them working at the startup at time t=0. We also merge in demographic 
information from the Individual Characteristics File (ICF) by PIK. We then sum up the totals of 
each of the human capital categories by startup EIN at time t=0 and merge these onto the Startup 
Firm History File.  
 
The Startup Firm History File contains all non-farm private business that sprung into existence 
beginning in 2005 and charts their employment history through 2014 (or until firm death). The 
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file contains industry codes, employment, revenue and payroll. Using the industry classification, 
we can identify high-tech firms and “industrial” firms.10 We then classify a number of different 
outcome measures, such as survival, success and high-growth success (classified as either 1/0 for 
each startup). A depiction of the file construction is below in Figure 2. 

                                                 
10 We classify “industrial” firms as startups with potentially greater value-added to the economy than basic service 
industries. These include manufacturing startups (starting two-digit NAICS 31-33), Information (starting two-digit 
NAICS 51), Finance and Insurance (starting two-digit NAICS 52), Professional, Scientific and Technical Services 
(starting two-digit NAICS 54) and Health Care and Social Assistance (starting two-digit NAICS 62).  
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Figure 2: Data Construction for Human Capital Measures of Startups 
 

 
R&D 
Firm 

High-
Tech University 

Research 
Experience Female

Foreign 
Born 

Startup 
Count 

1.6M 900,000 400,000 35,000 2.8M 1.7M 

Employee 
Count 

8.1M 3.0M 950,000 50,000 22.5M 8.4M 

 
Startup 
Count 

Survive to 
Next Period 

Successful 
Startups 

High-
Growth 

All 5.3M 3.4M 170,000 29,000 

At least 1 R&D Firm Employee 1.6M 1.36M 120,000 20,000 

At least 1 High-Tech Employee 900,000 780,000 75,000 12,000 

At least 1 University Employee 400,000 360,000 41,000 6,300 

At least 1 Research-Experience Employee 35,000 32,000 5,400 700 

Startup Worker History File 
690.4M Total PIK-EIN-Year Observations 
48.3M Observations for Startups at time t=0 

R&D Firm (BRDIS/SIRD) 
420,000 EIN-Year observations 
74,000 EINs 

Link by EIN-Year 

High-Tech Industry 
(Hecker) 
61 NAICS six-digit industries 

Link by NAICS 

University (IPUMS/Carnegie) 
130 EINs 

Link by EIN 

Research Experienced 
140,000 actual UMETRICS 
190,000 predicted (ML) UMETRICS 

Link by PIK-EIN-Year 

ICF 
Demographics for 
260M individuals 

Link by PIK 

Step 1: Identify person and firm types in three years prior to startup 

Step 2: Collapse and tabulate human capital totals by startup EIN  

Step 3: Merge with Startup Firm History File and classify startup types and outcomes at time t=0 

Startup EIN 
5.3M Startup Observations 
48.3M Employees 

Startup Firm History File 
5.3M Startup Observations 
31.9M Startup-Year Observations

Startup EIN 
5.3M Startup Observations 
48.3M Employees 

Link by EIN
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As Figure 1 showed, the majority of Startups fail within 5-years and more than 90% of Startups 
either die or hire fewer than 10 employees within the first 5-years of existence. We also pay 
special attention to high growth startups and “industrial” startups (defined as being a startup 
engaged in either manufacturing, information technology, finance, professional/scientific 
services and health care. Figure 3 shows the size distribution for all startups, along with their 
average earnings distribution at time t=0. 
 
 
 
 
 
 
 
 
 
 

	
 
 
 

Figure 3: Startup Size and Earnings Distribution at time t=0 
 
 

The vast majority of startups are extremely small in their first year as 75% of all startups have 
fewer than 5 employees at time t=0, with more than 50% of startups having 2 or fewer 
employees. Fewer than 5% of Startups hire more than 20 employees in the initial period. This is 
consistent across all startup types as well. Most startups pay relatively small earnings, with 
startups in High-tech industries typically offering the highest earnings.11 These two findings, 
combined with the high-rate of failure suggest that startups face significant capital constraints. 
The small size also highlights the importance of human capital in the initial period. 

Human	capital	composition	
 
Table 6 below provides the total number of startup employees, along with the proportion of 
employees that have R&D-experience, high-tech experience, University experience and research 
grant experience12 within the 3-years prior to joining the startup.  
 
 
 
 

                                                 
11 The earnings measures do not capture full-year or full-quarter earnings.  
12 Note that about 25,000 of the research-experienced individuals working in startups are directly identified through 
UMETRICS data.  The balance are derived from the machine-learning algorithm 
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Table 6: Startup Employment Composition13 
Year Total ever 

employed at 
startup 

R&D-
experience 

High-tech 
Experience 

University 
Experience 

Research-
experienced 

2006 6.82M 0.09 
2007 6.47M 0.09 
2008 5.74M 0.09 
2009 4.7M 19.3 11.1 2.6 0.09 
2010 4.56M 20.3 12 2.2 0.10 
2011 4.37M 21.2 13.7 2.4 0.10 
2012 4.53M 21.1 13.4 2.6 0.09 
2013 4.4M 22.2 14.2 2.7 0.09 

Source: Startup Worker History and Startup Firm History Files.  

Approximately one in five workers in a startup has experience in an R&D performing firm and 
one in ten has experience in a High-tech firm.   About 3% of the startup workforce is affiliated 
with a university in the 3-years prior to the startup, and roughly 5% of the university affiliated 
workforce has worked on a research grant. Table 7 shows the human capital composition by 
startup type. 
 
Table 7: Human-Capital Composition by Startup Type  

Former High-
Tech 

Employees 

Former R&D 
Employees 

Former University 
Employees 

All Startups 10% 17% 2% 

High-tech Startups 94% 26% 4% 

Industrial Startups 16% 20% 3% 

Source: Startup Worker History and Startup Firm History Files. 

 
The table makes it clear that High-tech startups are nearly entirely composed of High-tech 
employees and have much greater proportions of workers who were previously at R&D 
performing firms.  They also have twice as many former university employees as other startups.  
Similarly, industrial startups have higher proportions of employees with experience at High-tech 
and R&D performing firms, as well as more employees with university experience. 
 

Startup	Outcomes	and	workforce	characteristics	
 
This section provides some initial descriptive results about the link between workforce 
experience and startup outcomes.  
 
The outcome variables of interest are measured as follows:  

1. Survival to period t+1,  
                                                 
13 Since we focus on the prior three years work experience, the table is left-censored 
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2. Success (defined as having survived for at least 5-years and employ 10+ employees at 
time t+5),  

3. High Growth (defined as having survived for at least 5-years, employ 10+ employees at 
time t+5 and be in top ten percentile of employment growth among your cohort 
(conditional on employing 5+ employees at time t=0)),  

4.  Employment Growth to t+1 (conditional on having at least 5+ employees at time t=0),  
5.  Employment Growth to t+5 (conditional on having at least 5+ employees at time t=0).  

 
We standardize our descriptive analysis by defining a startup’s workforce as “intensive” in one 
of our human capital dimensions if it employs more of a certain type of worker than the median 
startup within a size group. This means that for all startups of size ten or more employees at time 
t=0 for example, we compare the outcomes of startups that employ disproportionately more 
R&D workers to startups that employ disproportionately less R&D workers. The results for 
survival outcomes are reported below in Figure 4. 
 
 

	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Survival by Human capital intensity 
 
Figure 4 is consistent with the view that startups with higher proportions of high human capital 
employees are more likely to survive. The slope rises for very small startups and then quickly 
flattens out, indicating that the probability of survival to the next period does not change once a 
startup is larger than five employees at time t=0. We see a clear separation in the survival 
probabilities of startups that hire University employees and research trained (UMETRICS) 
employees intensely. There is minor separation in the survival probabilities for High-tech 
startups and almost no difference in the survival probabilities between employees with and 
without experience in R&D performing firms.  
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Figure 5 shows the results of a similar analysis using a measure of whether the startup was 
successful (defined as having 10+ employees and surviving for 5+ years). 

	

	

	

	

	

	

 

Figure 5: Startup Success and Human Capital Intensity 
 
The figures are all upward sloping, indicating that the likelihood of being defined as a success 
rises as the initial size of the startup increases.There are minor differences in the probability of 
startup success for those startups that hire R&D employees intensively, as well as startups that 
hire High-tech employees intensively. Interestingly, there is almost no difference in the success 
outcomes for startups that hire university employees intensively. However, there is a substantial 
difference in the success outcomes for startups that hire research-trained (UMETRICS) 
employees.  
 
Finally, Figure 6 shows the results of a similar exercise that compares the outcomes for whether 
a startup is a high growth startup (defined as having 10+ employees and being in the top 10% of 
the employment growth rate distribution within their startup year cohort). 
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Figure 6: High-Growth Success and Human Capital Intensity 

 
Here, the figures are all showing a downward sloping line, indicating that the likelihood of being 
considered a high-growth successful startup declines as the initial size of the startup increases. 
This is likely due to construction as the potential for higher rates of growth increases for firms 
that initially start out as smaller. The shape of the trend is less important than the separation that 
exists between intensity measures. There are clear differences in the probability of high growth 
success across all designations of human capital.   The results are consistent with those shown in 
Figures 3 and 4, but do display more dispersion.  This may be due to the fact that these high 
growth firms make up fewer than 1% of the total number of startups, creating more volatility and 
disclosure restrictions for the subset of firms that hire more than 20 employees in the initial 
period. 

Analytical	Results	
The basic framework was provided in Equation (1). We assume that the functional form of 
Equation (1) is a linear combination of exponential functions, allowing us to use a log-linear 
estimation and calculate multiple outcome measures for each startup (survival, “success”, “high-
growth success” and employment growth) both one and five years after the birth of the firm. We 
regress these outcomes against the startup’s workforce and other characteristics in the year of 
firm birth (t=0). 
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Our main empirical specification is as follows 
 

௙ܻ ൌ ߙ	 ൅	ߚଵ ln ܴܣܧ ௙ܰ଴ ൅	෍ߜ௞ܵܧܼܫ௞௙଴

ଽ

௞ୀଵ

൅	ߚଶ ln ௙଴തതതതതതതതܧܩܣ ൅	ߚଷ ln ௙଴ܧܮܣܯܧܨ

൅	ߚସ ln ܩܫܧܴܱܨ ௙ܰ଴ ൅		ߚହ ln ௙଴ܦܴ ൅	ߚ଺ lnܪ ௙ܶ଴ ൅ ଻ߚ lnܷܰܫ௙଴
൅	଼ߚ ln ௙଴݁ܿ݊݁݅ݎ݁݌ݔܧ	݄ܿݎܽ݁ݏܴ݁ ൅  ߝ	

 
The key measures of interest are the workforce human capital measures – the number of workers 
who have worked in R&D performing firms, High-tech firms, universities – as well as the 
number who have direct research experience. Since the Census Bureau does not have direct 
measures of technology, we control for industry, detailed geography and year using fixed effects.  
We also include mean earnings of the workforce as well as firm employment size categories. 
External macroeconomic conditions are proxied by zip code-year fixed effects and industry fixed 
effects. We interact demographics with each of the R&D worker types to identify potential non-
linearities of being a certain type of worker (e.g. female University worker).14 Due to the fact 
that majority of human capital measures will be zero, rather, than using a log transformation, we 
instead transform each of the coefficients to an inverse hyperbolic sine in order to minimize the 
selection biases from dropping startups with zeros in the human capital categories, so that for 
each variable, we have: 
 

lnሺݔሻ → logሺݔ ൅ ሺݔଶ ൅ 1ሻ
ଵ
ଶൗ  

 
The first specification separates all of the human capital designations in order to separately 
describe the relationship between each type of human capital and startup outcomes before 
applying control factors. We assess outcome measures relating to whether or not the startup 
becomes a “success” or whether it can be classified as a “high-growth” startup. The second 
specification will identify how the human capital variables impact startup growth-rates.   
 
Figure 7 reports the coefficient estimates of the standalone human capital designations by firm-
size for two separate outcomes: survival and success. The results show that the standalone 
human capital coefficients decline as the firm gets bigger, highlighting that there may be 
diminishing marginal returns to the employment of each additional type of worker. The returns 
to each type of worker declines very rapidly for the survival outcome, with a more modest and 
steady decline in the success rates.  
 
 
 
 
 
 
 
 

                                                 
14 Note that these interaction terms are the result of multiplying continuous counts of employees falling into each 
group and that any given employee may belong to any number of designated groups.  
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Figure 7: Coefficient Values of Standalone Human Capital Measures by Firm Size 
 

 
Table 8 provides the key results associated with the full regression (tables that include all control 
variables can be found in the Appendix). Briefly, all measures of workforce R&D-experience are 
positively and significantly related with startup success and growth, with former R&D and high-
tech employees having a negative effect on first year survival.  The coefficient for research 
experience is additive with the university coefficient as all research-experienced employees are 
also former university employees. A one-unit increase in this worker-type leads to approximately 
1.86 percentage point increase in the survival rate to year t+1, a 2.7 percentage point increase in 
the probability of becoming a successful startup and a 1.67 percentage point increase in 
becoming a high-growth. Considering that the probability of becoming a successful startup is 
6.6%, the benefit of adding one additional worker with research experience increases the 
likelihood of becoming a successful startup by more than 40%. The probability of becoming a 
high-growth (employment-based) successful startup is 1.2%, so that the benefit of adding an 
additional research-experienced worker more than doubles.  
 
In terms of becoming a high growth (revenue-based) startup, having prior experience at an R&D 
firm, high-tech firm or university has a positive and significant impact. Having direct research 
experience has a positive impact, but is weakly significant. As a proxy for productivity, we look 
at the probability of becoming a high growth startup based on growth to revenue per employee. 
We see that the human capital elements have either a weakly positive or significantly negative 
effect on the likelihood of a startup being one of the fastest growers based on revenue per 
employee growth. Finally, to summarize, hiring each type of R&D worker has a positive effect 
and the interaction variables are also positive and significant. (see Appendix for details). 
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Table 8: OLS on All Startup Outcomes, 2005-2014 

Outcome Variable 
Survival, 

year 1 
Success, 
year 5 

High Growth 
(Employment-
based), year 5 

High Growth:  
(Revenue-

based), year 5 

High Growth: 
(Revenue per 
Employee-

based), year 5 
ln  ***௙଴ -0.00200*** 0.0260*** 0.0107*** 0.00256*** -0.00258ܦܴ

(0.000372) (0.000472) (0.000222) (0.000283) (0.000279) 

lnܪ ௙ܶ଴ -0.00893*** 0.0198*** 0.00790*** 0.00600*** -0.00117** 
 

(0.000486) (0.000616) (0.000289) (0.000369) (0.000364) 

ln  ௙଴ 0.00433*** 0.0220*** 0.00866*** 0.00274*** 0.000258ܫܷܰ
 

(0.000803) (0.00111) (0.000521) (0.000666) (0.000656) 

ln  ௙଴ 0.0143*** 0.00578 0.00809*** 0.00306 0.000259݁ܿ݊݁݅ݎ݁݌ݔ݁	݄ܿݎܽ݁ݏ݁ݎ
 

(0.00299) (0.00367) (0.00172) (0.00220) (0.00217) 

Zip Code-Year FE Yes Yes Yes Yes Yes 

Industry FE Yes Yes Yes Yes Yes 

Observations 3,730,000 3,730,000 3,730,000 3,730,000 3,730,000 

R-squared 0.079 0.193 0.049 0.018 0.014 

Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001; controls included for size and average 
earnings, proportion of workforce that is female, foreign born, and interactions of female, foreign born with research 
experience.  Full results in the appendix 
 
Table 9 looks at the impact of the same coefficients on the growth rates for employment, revenue 
and revenue per employee.  
 
Table 9: OLS on All Startup Growth Rates, 2005-2014 

Outcome Variable 
Employment Growth, 

t+1 
Revenue Growth, 

t+1 
Revenue per Employee 

Growth, t+1 
ln  ***௙଴ 0.151*** -0.0147*** -0.107ܦܴ
 (0.00117) (0.00139) (0.00157) 

lnܪ ௙ܶ଴ 0.0483*** 0.00636*** -0.0501*** 
 (0.00145) (0.00177) (0.00201) 

ln  ***௙଴ 0.0517*** 0.0232*** -0.0347ܫܷܰ
 (0.00219) (0.00307) (0.00348) 

ln  ௙଴ 0.0177* 0.00109 -0.0131݁ܿ݊݁݅ݎ݁݌ݔ݁	݄ܿݎܽ݁ݏ݁ݎ
 (0.00739) (0.0110) (0.0124) 

Zip Code-Year FE Yes Yes Yes 
Industry FE Yes Yes Yes 

Observations 3,730,000 3,730,000 3,730,000 

R-squared 0.079 0.193 0.049 

Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001; controls included for size and average  
earnings, proportion of workforce that is female, foreign born, and interactions of female, foreign born with  
research experience.  Full results in the appendix 
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Table 9 highlights the Davis, Haltiwanger and Schuh (DHS) (2006) growth rates on 
employment, revenue and revenue per employee in the following year.15 On the employment 
growth rate, we find that each human capital component has a positive and significant effect on 
employment growth in year t+1. For revenue growth, we find that startups hiring former high-
tech workers and university workers experience higher revenue growth rates. However, the 
growth rate in revenue fails to keep pace with the growth rate in employment, leading to lower 
revenue per employee growth. This is suggestive that these startups are converting revenue gains 
into additional employees.  
 
Tables 10 and 11 report the results for two different categories of startups - industrial startups 
and high-tech startups. The results in Table 10 are substantively unchanged but there are a few 
noticeable differences, namely that the research-experienced coefficients are mostly insignificant 
with the exception of being classified as a high growth startup (either employment or revenue-
based). Three of human capital measures have a negative impact on survival to year 2, but all 
have positive and significant impacts on whether the startup is successful and/or classified as a 
high-growth (either employment or revenue-based). The impact of these human capital measures 
on our proxy for productivity growth is less significant and/or negative. The interpretation of the 
coefficients suggests that hiring one additional research-experienced employee increases the 
probability of becoming a high-growth success by 3.0 percentage points. This represents an 
increase of around 250% over the mean (1.6%). The impact of human capital on the growth rates 
to employment and revenue for industrial startups follows a similar pattern to the growth rates 
for all startups in terms of signs and significance, with only minor differences in the magnitudes. 
 
 
Table 10: OLS on Industrial Startup Outcomes, 2005-2014 

Outcome Variable 
Survival, year 

1 
Success, 
year 5 

High Growth 
(Employment-
based), year 5 

High Growth:  
(Revenue-

based), year 5 

High Growth: 
(Revenue per 
Employee-

based), year 5 
ln  ***௙଴ -0.0183*** 0.0273*** 0.0151*** 0.00544*** -0.00218ܦܴ
 

(0.000700) (0.00105) (0.000541) (0.000725) (0.000640) 

lnܪ ௙ܶ଴ -0.0128*** 0.0343*** 0.00914*** 0.00863*** -0.00336*** 

(0.000700) (0.00100) (0.000515) (0.000691) (0.000610) 

ln  ௙଴ -0.00408*** 0.0289*** 0.0123*** 0.00730*** 0.000931ܫܷܰ

(0.00124) (0.00208) (0.00107) (0.00143) (0.00127) 

ln  ௙଴ 0.00604 0.00578 0.0177*** 0.0127* 0.00596݁ܿ݊݁݅ݎ݁݌ݔ݁	݄ܿݎܽݏ݁ݎ

(0.00474) (0.00738) (0.00379) (0.00508) (0.00448) 

Zip Code-Year FE Yes Yes Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes 

Observations 1,134,000 1,134,000 1,134,000 1,134,000 1,134,000 

R-squared 0.069 0.213 0.079 0.306 0.203 

Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001; controls included for size and average 
earnings, proportion of workforce that is female, foreign born, and interactions of female, foreign born with research 
experience.  Full results in the appendix 

                                                 
15 The growth rate formula is given by: ܪܹܱܴܶܩ௜௧ାଵ ൌ 2	 ൈ	ቀ

ௌூ௓ா೔೟శభି	ௌூ௓ா೔೟
ௌூ௓ா೔೟శభା	ௌூ௓ா೔೟

ቁ  
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Turning now to high-tech startups in Table 11, we find that  the impact of hiring former 
university and research-experienced workers is mostly insignificant, while the impact of hiring 
high-tech employees at year 0 has significant and positive effects on success, high-growth 
success and employment growth.  
 
Table 11: OLS on High-tech Startup Outcomes, 2005-2014 

Outcome Variable 
Survival, 

year 1 
Success, 
year 5 

High Growth 
(Employment-
based), year 5 

High Growth:  
(Revenue-

based), year 5 

High Growth: 
(Revenue per 
Employee-

based), year 5 
ln  *௙଴ -0.00704*** 0.0308*** 0.0173*** 0.0103*** -0.00333ܦܴ
 

(0.00165) (0.00241) (0.00127) (0.00205) (0.00165) 

lnܪ ௙ܶ଴ -0.0342*** 0.0679*** 0.0114*** 0.00949*** -0.00674*** 

(0.00165) (0.00221) (0.00116) (0.00188) (0.00151) 

ln  ௙଴ 0.00627* 0.00959* 0.00440 0.000488 0.00453ܫܷܰ

(0.00271) (0.00438) (0.00230) (0.00372) (0.00299) 

ln  ௙଴ 0.00984 0.0185 0.0201** 0.0313* 0.0127݁ܿ݊݁݅ݎ݁݌ݔ݁	݄ܿݎܽ݁ݏ݁ݎ

(0.00968) (0.0145) (0.00764) (0.0124) (0.00994) 

Zip Code-Year FE Yes Yes Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes 

Observations 148,000 148,000 148,000 148,000 148,000 

R-squared 0.112 0.193 0.133 0.536 0.429 

Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001; controls included for size and average 
earnings, proportion of workforce that is female, foreign born, and interactions of female, foreign born with research 
experience.  Full results in the appendix 
 
 
In addition to these tables, we have estimated the same specification over different size groups of 
startups and find that the results are robust and do not differ greatly. To summarize our empirical 
findings, we find mostly positive and significant associations between R&D-experience 
(categorized as either having been employed by an R&D performing firm, a high-tech firm, a 
research university and/or having direct research experience) and startup performance. Startups 
that hire employees with these human capital measures are more likely to survive, be considered 
successful and grow faster.  

Summary	
This paper leverages new data about workforce human capital that can be used to provide more 
insights into the survival and employment growth of new businesses.    These results are 
consistent with the view that there is a relationship between workforce experience and business 
startup and survival.   Further work using these data will be necessary to examine temporal 
dynamics.  It will be particularly interesting to understand whether changes in the fluidity of this 
type of workforce, or changes in the nature of research funding, can be tied to the decline in 
business dynamism.  
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Appendix	I	–	Data	Construction	
 

IA	Startup	Firm	and	Startup	Worker	History	File	Data	Construction	
 
This section describes the construction of a panel data set containing the full firm and worker 
history of all employees affiliated with startups. We start by first describing the construction of 
the startup firm history file before delving into the details on the construction of the worker 
history file. 
 
IA.1	Startup	Firm	History	File,	2005‐2014	
 
The Startup Firm History File is based entirely off the Longitudinal Business Database (LBD) 
(see Jarmin and Miranda 2002 for details on construction), a longitudinally linked establishment-
level dataset that allows users to identify firm (and establishment) births and deaths. The 
database contains the universe of private non-farm businesses in the United States beginning 
from 1976 until 2014 and contains variables such as employment, industry (NAICS or SIC), 
country-level geographic identifiers, payroll, legal form of organization and more.  
 
Our human capital measures will be derived from two databases housed at Census that include 
W2’s (beginning from 2005 to 2014) and LEHD (variation in start dates by state, but widespread 
coverage begins around 2000). Because our main individual-level measures will begin in 2005, 
we limit the startup cohorts to start from 2005 and later. Our Startup Firm History File simply 
keeps firms whose birth dates (first appearance in the LBD) occurs from 2005 and afterwards. 
Table A1 highlights our starting frame and our full startup frame. 
 

Year LBD Firm Count
New Firms by Year 

Cohort Firms Born After 2005
2005 6,359,000 648,000 648,000
2006 6,350,000 673,000 1,132,000
2007 6,365,000 654,000 1,523,000
2008 6,265,000 584,000 1,788,000
2009 6,090,000 490,000 1,924,000
2010 6,042,000 470,000 2,083,000
2011 5,999,000 489,000 2,254,000
2012 6,051,000 531,000 2,477,000
2013 6,103,000 746,000 2,922,000
Total 55,624,000 5,285,000 16,751,000

 
 
 
 
 
 
 
 



 
IA.2	Startup	Worker	History	File,	2005‐2014	
 
Our analysis focuses on the human capital composition of the startups at their inception (birth 
year) to assess how this composition can predict future outcomes. Using the Startup Firm History 
File and linked employer-employee data, we can easily identify the workers for startups at time 
t=0.  We will then track their prior and post-startup earnings history and experience. Our final 
dataset will be organized by PIK-EIN-Year and contain earnings history data, along with EIN-
level characteristics such as size, payroll, industry and geography. 
 
Our construction starts with the W2 as the frame of the database. We use the W2 and not the 
LEHD due to coverage issues associated with the LEHD, including missing state-years, missing 
university work-history for work-study, missing self-employed and misreporting by firms to state 
UI. There is also the issue of reporting results under the LEHD program. 
 
We supplement the W2 with unmatched LEHD observations (i.e. observations captured in 
LEHD, but not in W2) and with LEHD geocodes in order to generate better match rates to the 
establishments, but our earnings history will be primarily derived from W2.  
 

1. Combine all of the years of the W2 into one master file organized by PIK-EIN-Year. 
Keep the “wages_tip” variable for your earnings and drop the “fica_wage” variable as the 
“wages_tip” appears to be more comprehensive and complete. Master W2 file is sorted 
by PIK-EIN-Year and contains 2,281M observations from 2005 until 2014. 

 
2. Combine the Employee History File (EHF) and Employer Characteristics File (ECF) into 

one master file so that the EHF file is organized by PIK-EIN-Geocode-Year.  
a. To do this, we first start with annualized data of the full EHF file that is organized 

by PIK-SEIN-SEIN UNIT (first implicate). We construct annual measures of 
earnings by combining the quarterly data (organized as e101, e102, etc…) in the 
raw file. The annualized EHF file is organized by PIK-SEIN-SEINUNIT-Year-
Earnings. It contains 2,105M observations starting from 2005 until 2014.  

b. Create annualized ECF file. The annualized ECF file contains SEIN-SEINUNIT-
Year-EIN-Geocode. The data is originally organized by quarter in the raw files, so 
to construct the annualized version, I only keep the five variables specified above 
and drop ALL DUPLICATES of these 5 variables. Data is organized by SEIN-
SEINUNIT-Year-EIN-Geocode with 98.8M  observations starting from 2005 
until 2014. 

c. Combine ECF and EHF file into one file organized as PIK-EIN-Geocode-Year-
Earnings. I first sort the two components by SEIN-SEINUNIT-Year. Once 
merged, I drop the SEIN and SEINUNIT variables and just leave the PIK-EIN-
Geocode-Year-Earnings combined file. I drop all of the observations with missing 
PIK or missing Earnings. By EHF counts, we get very high match rates (~97% 
overall), but by ECF counts, we only get a match rate of 83%.  



 
 
 
Match Rate Statistics for Combined ECF-EHF file: 

Year 
EHF 

Observations 
Match EHF 

Observations

EHF 
Match 
Rate 

ECF 
Observations

Matched ECF 
Observations 

ECF 
Match 
Rate 

2005 216.6M 209.4M 96.7% 9.5M 7.9M 83.2% 
2006 222M 214.7M 96.7% 9.7M 8.1M 83.3% 
2007 223.1M 216M 96.8% 9.8M 8.2M 83.2% 
2008 214.2M 207.5M 96.9% 10M 8.2M 82.6% 
2009 192.8M 186.9M 96.9% 9.9M 8.1M 82.3% 
2010 197.3M 191.7M 97.1% 9.8M 8.2M 84.1% 
2011 201.9M 196.6M 97.3% 9.9M 8.3M 84.3% 
2012 207.1M 202.2M 97.7% 10M 8.4M 84.2% 
2013 213M 208.7M 98.0% 10M 8.5M 85.2% 
2014 217.7M 216.4M 99.4% 10.2M 8.7M 84.9% 
Overall 2105.7M 2050.1M 97.4% 98.8M 82.6M 83.6% 

 
We can see that the EHF match rate is consistently high and above 95%, while the ECF match 
rate is in the low 80%  
 

3. I then merge the Combined EHF-ECF File (2,050M observations) to the master W2 file 
constructed in Step 1 (2,281M observations). To do this, I match each dataset by PIK-
EIN-Year. The unmatched data on each side of the file are kept in the master file. The 
combined file contains PIK-EIN-Geocode-Year-W2 Earn-LEHD Earn. 

 
Employee-Match Rate Reporting Statistics: 

Year 
W2 

Observations 
Match W2 

Observations 

W2 
Match 
Rate 

EHF-ECF 
Observations 

Matched EHF-
ECF 

Observations 
EHF-ECF 

Match Rate 
2005 237.9M 187.2M 78.70% 209.4M 187.2M 89.40% 
2006 243.1M 191.8M 78.90% 214.7M 191.8M 89.30% 
2007 244M 193.4M 79.20% 216M 193.4M 89.50% 
2008 235.2M 186.2M 79.20% 207.5M 186.2M 89.70% 
2009 214.3M 168.2M 78.50% 186.9M 168.2M 90.00% 
2010 208.7M 168.2M 80.60% 191.7M 168.2M 87.80% 
2011 212.7M 173.4M 81.50% 196.6M 173.4M 88.20% 
2012 223.6M 178.5M 79.80% 202.2M 178.5M 88.30% 
2013 229.2M 189.1M 82.50% 208.7M 189.1M 90.60% 
2014 232.3M 192M 82.70% 216.4M 192M 88.70% 
Overal
l 2280.9M 1828M 

80.10% 
2050.2M 1828M 

89.16% 

 



The match rate is around 80% for the W2, meaning that LEHD is missing approximately 20% of 
W2 observations. Meanwhile, the match rate on the LEHD side is around 90%, meaning that 
approximately 10% of W2 observations are not found in LEHD. The next table combines and 
merges the matched and unmatched pairs to generate a complete universe of PIK-EIN-Year 
combinations.  
 
 
Combined W2-EHF-ECF File Observations 

Year 

Combined 
EHF-ECF-

W2 
Observations 

W2 
Observations 

Additional 
Observation

s from 
LEHD 

EHF-ECF 
Observations 

Additional 
Observations 

from W2 
2005 271.8M 237.9M 33.9M 209.4M 62.4M 
2006 278M 243.1M 34.9M 214.7M 63.3M 
2007 278.6M 244M 34.6M 216M 62.6M 
2008 267.9M 235.2M 32.8M 207.5M 60.4M 
2009 242.9M 214.3M 28.6M 186.9M 56M 
2010 241.8M 208.7M 33M 191.7M 50.1M 
2011 245.4M 212.7M 32.7M 196.6M 48.8M 
2012 256.5M 223.6M 32.9M 202.2M 54.2M 
2013 257.9M 229.2M 28.7M 208.7M 49.1M 
2014 262.9M 232.3M 30.6M 216.4M 46.5M 
Overall 2603.7M 2280.9M 322.8M 2050.2M 553.5M 

 
The full universe of employee-employer matches that we will be checking whether they worked 
for startups consists of more than 2,604M observations, of which 1,828M are found in both the 
W2 and LEHD, 323M are found only in the LEHD and not W2 and 554M are found only in the 
W2 but not LEHD.  
 

4. The database here consists of PIK-EIN-Year-Earnings-Geocode. The next step involves 
matching the full database to a set of establishment variables. In order to do this, we first 
need to construct a panel database of establishment attributes. Thankfully, a database is 
already in existence that contains this! We start with the Longitudinal Business Database 
(LBD) as our frame, compiled from 2005 until 2014. This database contains an 
establishment identifier (LBDNUM), FirmID, Industry code, Employment and Payroll. It 
also contains data on the entry and exit date of each firm, which we will use to identify 
startups. 
 
Missing from the LBD, is the EIN code for each establishment and geographic identifier. 
We fill this gap in the data by merging in the Business Register, which contains both of 
these items.  

 
Our matching algorithm then links the combined W2/LEHD file to the BR/LBD file by the 
following criteria (sorted from best to worst). 
 



1. EIN & 11-digit GEOCODE & YEAR -  
2. EIN & 11-digit GEOCODE 
3. EIN & 5-digit GEOCODE & YEAR 
4. EIN & 5-digit GEOCODE 
5. EIN & 2-digit GEOCODE & YEAR 
6. EIN & 2-digit GEOCODE 
7. EIN & YEAR 
8. EIN 
 
Once completed, we have establishment information linked to each of the employees, which will 
allow us to assign industry descriptors such as whether or not the employee was linked to a high-
tech firm. This completes the construction of the Startup Worker History File. The next section 
outlines the construction of the dataset used in the machine-learning exercise.  



IB	Machine	Learning	Training	Data	Construction	
 
The objective of this exercise is to classify individuals paid by top research universities as to 
whether or not they are likely to have participated in grant funded research. Our strategy is to 
leverage the information found in the UMETRICS data to train a supervised machine learning 
model. We leverage a number of data sources to create a rich set of features to predict research 
status, including individual demographic characteristics, individual employment history, and 
university and firm characteristics.  
 
The at-risk set includes all individuals observed in the W2 data paid by a corresponding university 
EIN between 2005 and 2014. The university EINS are derived from multiple sources including 
IPEDS (source of the primary frame), NSF and NIH federal research outlays, and IRS non-profit 
directory. Our training data includes 14 UMETRICS institutions for which we observe both 
individuals that have participated in grant funded research (UMETRICS data) and those who have 
not (defined as those linked to the universities in the W2 during the same period but not found in 
the UMETRICS data).  
 
Our methodology proceeds in the following steps. First, we create a training set that will be used 
to inform the classification models. Second, we create the target set (test set or out-of-sample set) 
on which the classification model will predict whether individuals participated in grant funded 
research. Third, we gather a rich set of person and institution level features (attributes or 
characteristics) that will be used to separate individuals in the classification models. Fourth, we 
perform a series of feature selection exercises to avoid over-fitting, reduce computational burden, 
and improve prediction quality. Fifth, we estimate several classification models including logistic 
regression, decision tree, and random forest. Finally, we execute a number of cross validation 
exercises to test the quality and robustness of the model predictions.1  
 
IB.1	Training	Data	Construction	
 
To build the training set we integrate UMETRICS and W2 data. We use UMETRICS data to 
classify all individuals associated with UMETRICS institutions in the W2 data as to whether they 
participated in grant funded research (true positives) and those who have not (true negatives).2 The 
training set is derived from the November 2016 vintage of the UMETRICS data, which includes 
16 institutions. These institutions alone account for about 20% of federally funded university 
research spending in 2014. We exclude Stony Brook, and University of Hawaii due to data quality 
issues3. These issues include problems with the employee ID taken from IRIS where running 
zeroes are dropped and we have lower PIK rates than in other schools (case for Hawaii). Other 
issues include the fact that the EIN code for some of these schools are not broken out for each 
satellite school in the university system, meaning that the number of zeroes is extraordinarily high 

                                                            
1 All feature selection and learning algorithms are drawn from Scikit Learn Python libraries (Scikit-learn 2011).  
2 The period for which these true positives and true negatives are known is dependent on the institution. These true 
values are defined in years of overlap between the UMETRICS data and the W2 from 2005-2014.   
3 Hawaii’s EIN code only marginally shows up in the W2s. We need to allocate the proper EIN code, which will 
require further iterations. Stony Brook, on the other hand has a glut of observations due to all of the satellites being 
listed under the same EIN code. Therefore, it is impossible to be certain whether an individual affiliated with a 
SUNY school is actually a UM=1 or UM=0.  



as a proportion of UMETRIC employees. The key dilemma faced in this section is that we want 
to ensure that the zeroes (e.g. unmatched employees of UMETRIC universities) are actually 
zeroes, otherwise they will contaminate our training data set. 
 
To draw out our target set, we use the EIN codes affiliated with the UMETRIC institutions and 
merge them directly with the W2 data to identify all of the individuals affiliated with the 
UMETRIC institutions. We then take those individuals and match them again to the W2 data to 
draw out their earnings history, prior to being affiliated with the UMETRIC institution and after. 
This gives us a panel data set of PIK-EIN-Year-Earnings for all individuals affiliated with 
UMETRIC institutions. 
 
We then take the EIN data and merge them to Census business data by going through a 9-step 
merging process. We first match the PIK-EIN-Year combinations to the LEHD data, which 
contains some geographic attributes associated with PIK-EIN-Year combinations, specifically, an 
11-digit geocode identifier. The 11-digit identifier is found on approximately 78% of observations 
and is used to specifically identify the establishment of the PIK-EIN, in order to generate industry 
and geographic characteristics of the firm that we can compare against. Once we have the 
Geocodes, we implement the following match program to the LBD and BR/SSEL. The LBD 
contains the establishment-level data we are interested in, namely employment, payroll, industry 
(6-digit NAICS), a 5-digit GEOCODE (State and FIPS), LFO and more. We supplement the LBD 
with the BR/SSEL, which contains EIN code and an 11-digit GEOCODE (in many instances).  
 
For the initial matching program, we start with: 6.8M observations of employees who at one point 
had been affiliated with a university and their full work history. We perform the matching to 
include all establishment and firm-level characteristics associated with the employment history of 
the individual. 
 
1. EIN & 11-digit GEOCODE & YEAR -  
2. EIN & 11-digit GEOCODE 
3. EIN & 5-digit GEOCODE & YEAR 
4. EIN & 5-digit GEOCODE 
5. EIN & 2-digit GEOCODE & YEAR 
6. EIN & 2-digit GEOCODE 
7. EIN & YEAR 
8. EIN 
 
The matched dataset contains the same number of PIK-EIN-Year observations as the initial frame, 
along with other variables collected from the LBD and BR. These include: EMP, PAY, AGE, 
NAICS, GEOCODE, ZIP.  
 
The next task involves converting the long file with the associated variables and generating a bunch 
of new variables that look at the Pre/Post earnings history of the individual (from when they 
entered and exited the university). We do this in a number of ways. We first take the first year and 
last year that the individual entered and exited the university. We then can generate variables on 
the 2-digit industry code that the individual worked in (before, after and during), the state (in 
state/out-state, all 50 states) the individual worked in before, after and during, the characteristics 



of the dominant employer (before, after and during) which would include size, payroll, average 
earnings, industry, location, and additional earnings information such as earnings from other jobs 
and so forth. We do this for the period t-2 until t+2 for the individual entering and exiting the 
university. We also separate out the variables by year. The final result is a PIK-UniversityEIN 
level training database that contains more than 1,300+ unique variables to compare against.  
 
Once the Census side of the training database is complete, we incorporate a number of university-
level characteristics gathered from the Carnegie Institute, including enrollment size, average SAT 
score, indicators for whether or not the university has a medical school, whether it is public/private 
institution, land grant university and more and assign them to each Individual-UniversityEIN 
combination. We also include total federal outlays from the NSF by university (collected from 
NCSES4) and total federal outlays from NIH by university and number of NIH awards. These are 
collected for the time period from 2005 until 2014. We also include UMETRICS information such 
as the years the individual is listed on a grant into the database. This is a manually created dataset 
combining university data from multiple sources and arranged across multiple EIN classifications 
for different universities.  
 
Finally, we merge in the Individual Characteristics File from the Decennial into the final dataset. 
The final training database contains nearly 1,400 variables including demographic data from the 
ICF, employment history data from the Census and university data collected from NSF, NIH and 
UMETRICS. There are approximately 1.5M individuals classified as known UMETRICS, with 
approximately 140,000 of them classified as UMETRICS=1 and the remainder being unclassified. 
This gives us a very robust training data set to compare pre/post and during university outcomes. 
 
Training Data Issues: For approximately 30,000 UMETRIC individuals, the university EIN listed 
on UMETRICS differ from the university EIN listed on the W2’s. We believe that this may due to 
the individual being listed on the grant, but affiliated with a different university (as is common on 
grants). In this case, we identified that individual as being part of the W2 university and drop them 
from the Training Data. 
 
IB.2	Construction	of	Out‐Of‐Sample	Data	
 
The construction of the Out-Of-Sample Data on which the Machine Learning from the Training 
Data is applied towards, is similar to the construction of the Training Data in that we first 
identify the individuals affiliated with a set of universities, gather their work histories and 
generate the 1,400+ characteristics we tested against. In this case, the documentation will focus 
on the set of universities that we identify. 
 
Our frame begins with Carnegie Institute Ph.D. granting research institutions, of which there 
exists approximately 230 institutions. These are all 4-year universities that have graduate and 
Ph.D. programs, with some possessing medical schools, some public, some private, etc… The 
important thing is that the institution contains undergraduates, graduate students and post-docs, 
along with faculty. We exclude liberal art colleges, medical schools only (no undergraduate) and 
other non-Ph.D. granting institutions. From the list of 230, we then rank them by R&D funds 
gathered from the NSF. We rank them according to the 2014 total R&D allocation and sum up 
                                                            
4 NSF data is compiled from https://ncsesdata.nsf.gov/profiles/site?method=rankingBySource&ds=herd 



the totals across all universities. We then only keep the top 90% of institutions by research funds, 
meaning that we only keep the largest R&D universities that contribute up to 90% of total 
University R&D outlays. The remaining universities are dropped. This gives us a set of 130 
research universities. The cutoff R&D expenditure value was approximately $100,000,000. Out 
of the $65 Billion spent by Universities in 2014, our set of universities spent approximately 
$52.5Billion (equivalent to 80%) and our universities contribute nearly 90% of NIH spending 
and provide wide coverage. Below are some summary statistics of the universities in our sample: 
 
University Summary Statistics, 130 Universities. 
 130 Universities UMETRIC Sample5 
Mean R&D Expenditure ($000), 2014 424,600 661,700 
Mean Non-R&D Expenditures ($000), 2014 20,400 35,800 
Mean # of NIH Awards, 2014 270 440 
Mean Annual Enrollment 30,800 43,400 
Mean Amount of NIH Awards ($000), 2014 112,500 180,900 
Mean Undergraduate Enrollment, 2014 19,800 27,700 
Mean Bachelor Degrees Awarded, 2014 4,700 6,900 
Mean Graduate Enrollment, 2014 7,900 11,800 
Mean Master Degrees Awarded, 2014 1,900 3,100 
Mean Doctoral Degrees Awarded, 2014 700 1,100 
Mean Total Degrees Awarded, 2014 7,300 11,100 
Mean Faculty Number, 2014 1,400 2,200 
% Private 28.5 30.8 
% Land Grant 40 61.5 
% with Medical School 69.2 84.6 
Mean SAT Combined, 2014 1,140 1,190 

 
As we can see, the majority of universities included in the sample are large, public universities 
with medical schools attached to them. The UMETRIC sample is slightly larger on average and 
expends more on R&D.  
 
Once we apply these universities to the construction, we end up with approximately 7.3M Out-
of-Sample individuals affiliated with universities between 2005 and 2014. 
 
Given the approximate 10% UMETRIC rate for the In-Sample Training data (143,000 out of 
1.5M), and given that average school in the UMETRIC sample spends more on R&D, we expect 
that the total Out-of-Sample Imputed UMETRIC size to be between 400,000 to 600,000. 
  
 
 
 
  

                                                            
5 Excludes SUNY and University of Hawaii and University of Kansas, which did not make the list of Top 130 
Research Universities 



Appendix	II:	Full	Regression	Results	
 
The tables below give the full regression results for the specification listed earlier. Tables 9, 10 
and 11 include regressions by Size category.  
 
Table 8A Full Results – OLS on All Startup Outcomes 

Outcome Variable Survival, t+1 Success, t+5 

High-Growth 
(Employment) 
Success, t+5 

High-Growth 
(Revenue) 

Success, t+5 

High-Growth 
(Revenue per 
Employee) 

Success, t+5 
ln ܴܣܧ ௙ܰ଴ 0.0764*** 0.0267*** 0.00541*** 0.00472*** 0.00337*** 
 (0.000176) (0.000215) (0.000101) (0.000129) (0.000127) 
ln  ***തതതതതത௙଴ -0.00389*** -0.0187*** 0.000352 -0.0119*** -0.00211ܧܩܣ
 (0.000658) (0.000782) (0.000367) (0.000469) (0.000462) 
 Yes Yes Yes Yes Yes ܵܧܫܯܯܷܦ	ܧܼܫܵ
ln  ***௙଴ 0.0117*** 0.0370*** 0.00763*** -0.00184*** -0.00376ܧܮܣܯܧܨ
 (0.000238) (0.000278) (0.000131) (0.000167) (0.000165) 
ln ܩܫܧܴܱܨ ௙ܰ଴ 0.00939*** 0.0179*** 0.00568*** 0.00202*** 0.000792*** 
 (0.000256) (0.000300) (0.000141) (0.000180) (0.000177) 
ln  ***௙଴ -0.00200*** 0.0260*** 0.0107*** 0.00256*** -0.00258ܦܴ
 (0.000372) (0.000472) (0.000222) (0.000283) (0.000279) 
ln ܦܴ ൈ  ௙଴ 0.00680*** -0.0143*** -0.00329*** -0.000359 0.000139ܧܮܣܯܧܨ
 (0.000469) (0.000601) (0.000282) (0.000360) (0.000355) 
ln ܦܴ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.00307*** -0.0124*** 0.000645 -0.00220*** -0.000283 
 (0.000578) (0.000749) (0.000352) (0.000449) (0.000443) 
lnܪ ௙ܶ଴ -0.00893*** 0.0198*** 0.00790*** 0.00600*** -0.00117** 
 (0.000486) (0.000616) (0.000289) (0.000369) (0.000364) 
lnܶܪ ൈ  *௙଴ 0.00232*** -0.0142*** -0.00105** -0.00215*** 0.00116ܧܮܣܯܧܨ
 (0.000658) (0.000847) (0.000398) (0.000508) (0.000501) 
lnܶܪ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.00823*** -0.00277** 0.00272*** 0.00152** -0.000597 
 (0.000710) (0.000884) (0.000415) (0.000530) (0.000523) 
ln  ௙଴ 0.00433*** 0.0220*** 0.00866*** 0.00274*** 0.000258ܫܷܰ
 (0.000803) (0.00111) (0.000521) (0.000666) (0.000656) 
ln ܫܷܰ ൈ  ௙଴ 0.00829*** 0.00420** 0.000811 0.000441 -0.00103ܧܮܣܯܧܨ
 (0.000988) (0.00137) (0.000642) (0.000819) (0.000808) 
ln ܫܷܰ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.00837*** -0.00543** 0.00451*** 0.00273* 0.00245* 
 (0.00133) (0.00183) (0.000860) (0.00110) (0.00108) 
ln  ௙଴ 0.0143*** 0.00578 0.00809*** 0.00306 0.000259ܥܫܴܶܧܯܷ
 (0.00299) (0.00367) (0.00172) (0.00220) (0.00217) 
ln ܥܫܴܶܧܯܷ ൈ  ௙଴ -0.00223 -0.00353 -0.00996*** -0.00370 0.0000737ܧܮܣܯܧܨ
 (0.00381) (0.00464) (0.00218) (0.00278) (0.00274) 
ln ܥܫܴܶܧܯܷ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.0189*** 0.000354 0.00700* 0.00605 -0.00195 
 (0.00524) (0.00663) (0.00311) (0.00397) (0.00392) 
Zip Code-Year FE Yes Yes Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes 
Constant 0.284*** -0.297*** -0.0963*** -0.000259 -0.00160 
 (0.0380) (0.0733) (0.0281) (0.0359) (0.0354) 
Observations 3,730,000 3,730,000 3,730,000 3,730,000 3,730,000 
R-squared 0.079 0.193 0.049 0.018 0.014 

Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001; 
 
 



Table 9A Full Results – OLS on All Startup Growth Rates 

Outcome Variable 
Employment 
Growth, t+1 

Revenue 
Growth, t+1 

Revenue per 
Employee 

Growth, t+1 
ln ܴܣܧ ௙ܰ଴ 0.154*** 0.0260*** 0.0316*** 
 (0.000879) (0.000700) (0.000805) 
ln  ***തതതതതത௙଴ -0.0969*** -0.0167*** 0.0370ܧܩܣ
 (0.00338) (0.00243) (0.00277) 
 Yes Yes Yes ܵܧܫܯܯܷܦ	ܧܼܫܵ
ln  ***௙଴ 0.234*** 0.00375*** -0.0869ܧܮܣܯܧܨ
 (0.000937) (0.000854) (0.000971) 
ln ܩܫܧܴܱܨ ௙ܰ଴ 0.0606*** 0.00951*** -0.0292*** 
 (0.000786) (0.000902) (0.00102) 
ln  ***௙଴ 0.151*** -0.0147*** -0.107ܦܴ
 (0.00117) (0.00139) (0.00157) 
ln ܦܴ ൈ  ***௙଴ -0.102*** -0.00694*** 0.0305ܧܮܣܯܧܨ
 (0.00134) (0.00175) (0.00198) 
ln ܦܴ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.0419*** 0.00759*** 0.0319*** 
 (0.00151) (0.00214) (0.00242) 
lnܪ ௙ܶ଴ 0.0483*** 0.00636*** -0.0501*** 
 (0.00145) (0.00177) (0.00201) 
lnܶܪ ൈ  ***௙଴ -0.0352*** 0.00189 0.0292ܧܮܣܯܧܨ
 (0.00183) (0.00242) (0.00274) 
lnܶܪ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.0121*** -0.00432 -0.000118 
 (0.00195) (0.00251) (0.00284) 
ln  ***௙଴ 0.0517*** 0.0232*** -0.0347ܫܷܰ
 (0.00219) (0.00307) (0.00348) 
ln ܫܷܰ ൈ  ***௙଴ -0.0336*** -0.00339 0.0175ܧܮܣܯܧܨ
 (0.00260) (0.00376) (0.00425) 
ln ܫܷܰ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.0247*** -0.00550 0.00991 
 (0.00341) (0.00491) (0.00555) 
ln  ௙଴ 0.0177* 0.00109 -0.0131ܥܫܴܶܧܯܷ
 (0.00739) (0.0110) (0.0124) 
ln ܥܫܴܶܧܯܷ ൈ  ௙଴ -0.0162 -0.00328 0.0128ܧܮܣܯܧܨ
 (0.00926) (0.0139) (0.0157) 
ln ܥܫܴܶܧܯܷ ൈ ܩܫܧܴܱܨ ௙ܰ଴ 0.0182 0.0272 0.0231 
 (0.0133) (0.0192) (0.0216) 
Zip Code-Year FE Yes Yes Yes 
Industry FE Yes Yes Yes 
Constant -2.771*** -0.536 -0.914 
 (0.0149) (0.485) (9332.2) 
Observations 723105 1472946 1436529 
R-squared 0.201 0.027 0.057 

Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001; 
 
 
 
 
 
 
 
 



Table 10A: Full Results of OLS on Industrial Startup Outcomes, 2005-2014 

Outcome Variable Survival, t+1 Success, t+5 

High-Growth 
(Employment) 
Success, t+5 

High-Growth 
(Revenue) 

Success, t+5 

High-Growth 
(Revenue per 
Employee) 

Success, t+5 

Sample 
Industrial 
Startups 

Industrial 
Startups 

Industrial 
Startups 

Industrial 
Startups 

Industrial 
Startups 

ln ܴܣܧ ௙ܰ଴ 0.0546*** 0.0229*** 0.00387*** 0.00338*** 0.00206*** 

 (0.000265) (0.000381) (0.000195) (0.000262) (0.000231) 
ln  ***തതതതതത௙଴ 0.00233* -0.0137*** 0.00552*** -0.0183*** -0.00391ܧܩܣ

 (0.00110) (0.00154) (0.000791) (0.00106) (0.000936) 
 Yes Yes Yes Yes Yes ܵܧܫܯܯܷܦ	ܧܼܫܵ
ln  ***௙଴ 0.00623*** 0.0524*** 0.00914*** -0.00397*** -0.00796ܧܮܣܯܧܨ

 (0.000405) (0.000557) (0.000286) (0.000383) (0.000338) 
ln ܩܫܧܴܱܨ ௙ܰ଴ 0.00310*** 0.0172*** 0.00837*** 0.00444*** 0.000843* 

 (0.000476) (0.000654) (0.000336) (0.000450) (0.000397) 
ln  ***௙଴ -0.0183*** 0.0273*** 0.0151*** 0.00544*** -0.00218ܦܴ

 (0.000700) (0.00105) (0.000541) (0.000725) (0.000640) 
ln ܦܴ ൈ  ௙଴ 0.0162*** -0.0148*** -0.00113 -0.00146 0.000143ܧܮܣܯܧܨ

 (0.000838) (0.00128) (0.000654) (0.000878) (0.000775) 
ln ܦܴ ൈ ܩܫܧܴܱܨ ௙ܰ଴ 0.000894 -0.0186*** 0.00547*** -0.00188 0.00104 

 (0.000984) (0.00151) (0.000776) (0.00104) (0.000919) 
lnܪ ௙ܶ଴ -0.0128*** 0.0343*** 0.00914*** 0.00863*** -0.00336*** 

 (0.000700) (0.00100) (0.000515) (0.000691) (0.000610) 
lnܶܪ ൈ  ***௙଴ 0.00720*** -0.0387*** -0.00371*** -0.00281** 0.00570ܧܮܣܯܧܨ

 (0.000947) (0.00139) (0.000711) (0.000953) (0.000841) 
lnܶܪ ൈ ܩܫܧܴܱܨ ௙ܰ଴ 0.000230 -0.000839 -0.000794 -0.000658 -0.00123 

 (0.000926) (0.00131) (0.000670) (0.000899) (0.000793) 
ln  ௙଴ -0.00408*** 0.0289*** 0.0123*** 0.00730*** 0.000931ܫܷܰ

 (0.00124) (0.00208) (0.00107) (0.00143) (0.00127) 
ln ܫܷܰ ൈ  ௙଴ 0.0125*** 0.000674 0.00190 -0.00227 -0.000243ܧܮܣܯܧܨ

 (0.00150) (0.00252) (0.00129) (0.00173) (0.00153) 
ln ܫܷܰ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.00178 0.000760 0.00548*** 0.00144 0.00211 

 (0.00183) (0.00304) (0.00156) (0.00209) (0.00184) 
ln  ௙଴ 0.00604 0.00578 0.0177*** 0.0127* 0.00596ܥܫܴܶܧܯܷ

 (0.00474) (0.00738) (0.00379) (0.00508) (0.00448) 
ln ܥܫܴܶܧܯܷ ൈ  ௙଴ 0.000158 0.0121 -0.0141** -0.00996 -0.00654ܧܮܣܯܧܨ

 (0.00598) (0.00918) (0.00471) (0.00631) (0.00557) 
ln ܥܫܴܶܧܯܷ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.00394 -0.00706 -0.00460 0.00307 0.00175 

 (0.00692) (0.0110) (0.00564) (0.00757) (0.00668) 
Zip Code-Year FE Yes Yes Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes 
Constant 0.532*** 0.498*** -0.141* 0.0284 0.0231 

 (0.116) (0.117) (0.0602) (0.0807) (0.0713) 
Observations 1013341 517087 516902 516928 516928 
R-squared 0.069 0.213 0.079 0.024 0.019 

Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001 
 
 
 
 
 
 
 



 
Table 11A: Full Results of OLS on High-Tech Startup Outcomes, 2005-2014 

Outcome Variable Survival, t+1 Success, t+5 

High-Growth 
(Employment) 
Success, t+5 

High-Growth 
(Revenue) 

Success, t+5 

High-Growth 
(Revenue per 
Employee) 

Success, t+5 

Sample 
High-Tech 

Startups 
High-Tech 

Startups 
High-Tech 

Startups 
High-Tech 

Startups 
High-Tech 

Startups 
ln ܴܣܧ ௙ܰ଴ 0.0555*** 0.0245*** 0.00617*** 0.00592*** 0.000307 

 (0.000784) (0.00109) (0.000573) (0.000926) (0.000745) 
ln  തതതതതത௙଴ -0.00637* -0.0280*** -0.00166 -0.0295*** -0.00274ܧܩܣ

 (0.00319) (0.00435) (0.00229) (0.00369) (0.00297) 
 Yes Yes Yes Yes Yes ܵܧܫܯܯܷܦ	ܧܼܫܵ
ln  *௙଴ -0.00799 0.0890*** 0.0179*** 0.00887 -0.0105ܧܮܣܯܧܨ

 (0.00445) (0.00634) (0.00333) (0.00539) (0.00434) 
ln ܩܫܧܴܱܨ ௙ܰ଴ 0.0143* 0.0667*** 0.00817 0.0152* 0.00800 

 (0.00597) (0.00857) (0.00451) (0.00728) (0.00586) 
ln  *௙଴ -0.00704*** 0.0308*** 0.0173*** 0.0103*** -0.00333ܦܴ

 (0.00165) (0.00241) (0.00127) (0.00205) (0.00165) 
ln ܦܴ ൈ  ௙଴ -0.00749** -0.0167*** -0.000627 -0.00233 -0.000377ܧܮܣܯܧܨ

 (0.00238) (0.00354) (0.00186) (0.00301) (0.00242) 
ln ܦܴ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.00687** -0.0171*** 0.00443* -0.00477 0.00326 

 (0.00243) (0.00357) (0.00188) (0.00304) (0.00244) 
lnܪ ௙ܶ଴ -0.0342*** 0.0679*** 0.0114*** 0.00949*** -0.00674*** 

 (0.00165) (0.00221) (0.00116) (0.00188) (0.00151) 
lnܶܪ ൈ  *௙଴ 0.0281*** -0.0889*** -0.0180*** -0.0148** 0.0101ܧܮܣܯܧܨ

 (0.00465) (0.00659) (0.00347) (0.00560) (0.00451) 
lnܶܪ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.00558 -0.0483*** -0.00138 -0.00948 -0.00773 

 (0.00604) (0.00865) (0.00455) (0.00735) (0.00592) 
lnܷܰܫ௙଴ 0.00627* 0.00959* 0.00440 0.000488 0.00453 

 (0.00271) (0.00438) (0.00230) (0.00372) (0.00299) 
lnܷܰܫ ൈ  ௙଴ 0.00246 -0.0133* -0.000512 0.00161 -0.000307ܧܮܣܯܧܨ

 (0.00398) (0.00640) (0.00337) (0.00544) (0.00438) 
lnܷܰܫ ൈ ܩܫܧܴܱܨ ௙ܰ଴ 0.00331 0.0269*** 0.0237*** 0.00445 -0.00715 

 (0.00416) (0.00648) (0.00340) (0.00550) (0.00443) 
lnܷܥܫܴܶܧܯ ௙ܵ଴ 0.00984 0.0185 0.0201** 0.0313* 0.0127 

 (0.00968) (0.0145) (0.00764) (0.0124) (0.00994) 
lnܷܵܥܫܴܶܧܯ ൈ  ௙଴ 0.0275 0.00251 -0.0268* -0.0358 -0.00263ܧܮܣܯܧܨ

 (0.0157) (0.0237) (0.0124) (0.0201) (0.0162) 
lnܷܵܥܫܴܶܧܯ ൈ ܩܫܧܴܱܨ ௙ܰ଴ -0.0233 -0.0362 -0.0144 -0.0218 -0.00148 

 (0.0143) (0.0215) (0.0113) (0.0183) (0.0147) 
Zip Code-Year FE Yes Yes Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes 
Constant 0.498* 0.471 -0.0864 0.0276 0.0418 

 (0.251) (0.257) (0.134) (0.218) (0.176) 
Observations 129256 69521 69505 69510 69510 
R-squared 0.112 0.193 0.133 0.067 0.057 

Robust Standard Errors in Parentheses. *p<0.05, **p<0.01, ***p<0.001 
 
 

 


