
	
	

Preliminary.	Please	do	not	cite	or	circulate.	
	
	
	
	

Artificial	Intelligence	and	the		
Modern	Productivity	Paradox:	

A	Clash	of	Expectations	and	Statistics∗	
	
	
	

Erik	Brynjolfsson,	MIT	Sloan	School	of	Management	and	NBER	
Daniel	Rock,	MIT	Sloan	School	of	Management	

Chad	Syverson,	University	of	Chicago	Booth	School	of	Business	and	NBER	
	
	

September	2017	
	
	
Abstract.	We	live	in	an	age	of	paradox.	Systems	using	artificial	intelligence	match	or	
surpass	human	level	performance	in	more	and	more	domains,	leveraging	rapid	advances	in	
other	technologies	and	driving	soaring	stock	prices.	Yet	measured	productivity	growth	has	
fallen	in	half	over	the	past	decade,	and	real	income	has	stagnated	since	the	late	1990s	for	a	
majority	of	Americans.	We	describe	four	potential	explanations	for	this	clash	of	
expectations	and	statistics:	false	hopes,	mismeasurement,	redistribution,	and	
implementation	lags.	While	a	case	can	be	made	for	each	explanation,	we	argue	that	lags	are	
likely	to	be	the	biggest	reason	for	paradox.	The	most	impressive	capabilities	of	AI,	
particularly	those	based	on	machine	learning,	have	not	yet	diffused	widely.	More	
importantly,	like	other	general	purpose	technologies,	their	full	effects	won’t	be	realized	
until	waves	of	complementary	innovations	are	developed	and	implemented.	The	
adjustment	costs,	organizational	changes	and	new	skills	needed	to	for	successful	AI	can	be	
modeled	as	a	kind	of	intangible	capital.	A	portion	of	the	value	of	this	intangible	capital	is	
already	reflected	in	the	market	value	of	firms.	However,	most	national	statistics	will	fail	to	
capture	the	full	benefits	of	the	new	technologies	and	some	may	even	have	the	wrong	sign.
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	 The	discussion	around	the	recent	patterns	in	aggregate	productivity	growth	

highlights	a	seeming	contradiction.	On	the	one	hand,	there	are	astonishing	examples	of	

potentially	transformative	new	technologies	that	could	greatly	increase	productivity	and	

economic	welfare	(see	e.g.	Brynjolfsson	and	McAfee,	2014).	There	are	some	early	concrete	

signs	of	these	technologies’	promise,	the	recent	leaps	in	artificial	intelligence	(AI)	

performance	being	the	most	prominent	example.	However,	at	the	same	time,	measured	

productivity	growth	over	the	past	decade	has	slowed	significantly.	This	deceleration	is	

large,	cutting	productivity	growth	by	half	or	more	of	its	level	in	the	decade	preceding	the	

slowdown.	It	is	also	widespread,	having	occurred	throughout	the	OECD	and,	more	recently,	

among	many	large	emerging	economies	as	well	(Syverson	2017).1	

We	thus	appear	to	be	facing	a	redux	of	the	Solow	(1987)	Paradox:	we	see	

transformative	new	technologies	everywhere	but	in	the	productivity	statistics.	

In	this	paper,	we	review	the	evidence	and	explanations	for	the	modern	productivity	

paradox	and	propose	a	resolution.	Namely,	that	there	is	no	inherent	inconsistency	between	

forward-looking	technological	optimism	and	backward-looking	disappointment.	Both	can	

simultaneously	exist.	Indeed,	there	are	good	conceptual	reasons	to	expect	them	to	

simultaneously	exist	when	the	economy	undergoes	the	kind	of	restructuring	associated	

with	transformative	technologies.	In	this	paper	we	argue	and	present	some	evidence	that	

the	economy	is	in	such	a	period	now.	

	

Sources	of	Technological	Optimism		

Paul	Polman,	Unilever’s	CEO,	recently	claimed	that	“The	speed	of	innovation	has	

never	been	faster.”	Similarly,	Bill	Gates,	Microsoft’s	co-founder	observes	that	“Innovation	is	

moving	at	a	scarily	fast	pace.”	Vinod	Khosla	of	Khosla	Ventures	sees	“the	beginnings	of...	[a]	

rapid	acceleration	in	the	next	10,	15,	20	years”.		Eric	Schmidt,	Executive	Chairman	of	

Alphabet	Inc.,	believes	“we’re	entering…	the	age	of	abundance	[and]	during	the	age	of	

abundance,	we’re	going	to	see	a	new	age…	the	age	of	intelligence”.	Ray	Kurzweil	famously	

predicts	that	The	Singularity,	when	AI	surpasses	humans,	will	occur	sometime	around	

																																								 																					
1	A	parallel	yet	more	pessimistically	oriented	debate	about	potential	technological	progress	is	the	active	
discussion	about	robots	taking	jobs	from	more	and	more	workers	(e.g.,	Brynjolfsson	and	McAfee,	2011;	
Acemoglu	and	Restrepo,	2017;	Bessen,	2017;	Autor	and	Salomons,	2017).	
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2045.2	Assertions	like	these	especially	are	common	among	technology	leaders	and	venture	

capitalists.		

In	part,	these	reflect	the	continuing	progress	of	IT	in	many	areas,	from	core	

technology	advances	like	further	doublings	of	basic	computer	power	(but	from	ever	larger	

bases)	to	successful	investment	in	the	essential	complementary	innovations	like	cloud	

infrastructure,	and	new	service-based	business	models.	But	the	bigger	source	of	optimism	

is	the	wave	of	recent	improvements	in	AI,	especially	machine	learning.	Machine	learning	

represents	a	fundamental	change	from	the	first	wave	of	computerization.	Historically,	most	

computer	programs	succeeded	by	meticulously	codifying	human	knowledge,	step-by-step,	

mapping	inputs	to	outputs	as	prescribed.		In	contrast,	machine	learning	systems	figure	out	

the	relevant	mapping	on	their	own,	typically	by	being	fed	very	large	data	sets	of	examples.		

Using	these	methods,	machines	have	made	impressive	gains	in	perception	and	cognition,	

two	essential	skills	for	most	types	of	human	work.	For	instance,	error	rates	in	labeling	the	

content	of	photos	on	ImageNet,	a	dataset	of	over	10	million	images,	have	fallen	from	over	

30%	in	2010	to	less	than	5%	in	2016	and	most	recently	as	low	as	2.2%	with	SE-ResNet152	

in	the	ILSVRC2017	competition	(see	Figure	1).3	Error	rates	in	voice	recognition	on	the	

Switchboard	speech	recording	corpus,	often	used	to	measure	progress	in	speech	

recognition,	have	improved	from	8.5%	to	5.5%	over	the	past	year	(Saon	et	al.	2017).	The	

five	percent	threshold	is	important,	because	that	is	roughly	the	performance	of	humans	at	

each	of	these	tasks	on	the	same	test	data.		

While	not	at	professional	human	performance	yet,	Facebook’s	AI	Research	team	

recently	improved	upon	the	best	machine	language	translation	algorithms	available	using	

convolutional	neural	net	sequence	prediction	techniques	(Gehring	et	al.	2017).	Deep	

learning	techniques	have	also	been	combined	with	reinforcement	learning,	a	powerful	set	

																																								 																					
2	http://www.khoslaventures.com/fireside-chat-with-google-co-founders-larry-page-and-sergey-brin	

https://en.wikipedia.org/wiki/Predictions_made_by_Ray_Kurzweil#2045:_The_Singularity	

https://www.theguardian.com/small-business-network/2017/jun/22/alphabets-eric-schmidt-google-
artificial-intelligence-viva-technology-mckinsey	

3	http://image-net.org/challenges/LSVRC/2017/results.		ImageNet	includes	labels	for	each	image,	originally	
provided	by	humans.	For	instance,	there	are	339,000	labeled	as	flowers,	1,001,000	as	food,	188,000	as	fruit,	137K	
as	fungus,	etc.	
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of	techniques	used	to	generate	control	and	action	systems	whereby	autonomous	agents	are	

trained	to	take	actions	given	an	environment	state	to	maximize	future	rewards.	Though	

nascent,	advances	in	this	field	are	impressive.	In	addition	to	their	victories	in	the	game	of	

Go,	Google	DeepMind	has	achieved	superhuman	performance	in	many	Atari	games	

(Fortunato	et	al.	2017).	

These	are	notable	technological	milestones.	But	they	can	also	change	the	economic	

landscape,	creating	new	opportunities	for	business	value	creation	and	cost	reduction.	For	

example,	a	system	using	deep	neural	networks	was	tested	against	21	board	certified	

dermatologists	and	matched	their	performance	in	diagnosing	skin	cancer	(Esteva	et	al.	

2017).	The	neural	networks	at	Facebook	are	used	for	over	4.5	billion	translations	each	

day.4	

	

Figure	1.	AI	vs.	Human	Image	Recognition	Error	Rates	

	

	
	An	increasing	number	of	companies	have	responded	to	these	opportunities.	Google	

now	describes	its	focus	as	“AI	first”,	while	Microsoft’s	CEO	Satya	Nadella	says	AI	is	the	
																																								 																					
4	https://code.facebook.com/posts/289921871474277/transitioning-entirely-to-neural-machine-
translation/]			
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“ultimate	breakthrough”	in	technology.		Their	optimism	about	AI	is	not	just	cheap	talk.	

They	are	making	heavy	investments	in	AI,	as	are	Apple,	Facebook,	and	Amazon.		As	of	

September	2017,	these	companies	comprise	the	five	most	valuable	companies	in	the	world.	

Meanwhile	the	tech-heavy	Nasdaq	composite	stock	index	more	than	doubled	between	

2012	and	2017.	According	to	CBInsights,	global	investment	in	private	companies	focused	

on	AI	has	grown	even	faster,	increasing	from	$589	million	in	2012	to	over	$5	billion	in	

2016.5		

	

The	Disappointing	Recent	Reality	

While	the	technologies	discussed	above	hold	great	potential,	there	is	little	sign	that	

they	have	yet	affected	aggregate	productivity	statistics.	Labor	productivity	growth	rates	in	

a	broad	swath	of	developed	economies	fell	in	the	mid-2000s	and	have	stayed	low	since	

then.	For	example,	aggregate	labor	productivity	growth	in	the	U.S.	averaged	only	1.3%	per	

year	from	2005	to	2016,	less	than	half	of	the	2.8%	annual	growth	rate	sustained	over	1995	

to	2004.	Fully	28	of	29	other	countries	for	which	the	OECD	has	compiled	productivity	

growth	data	saw	similar	decelerations.	The	unweighted	average	annual	labor	productivity	

growth	rates	across	these	countries	was	2.3%	from	1995	to	2004	but	only	1.1%	over	2005	

to	2015.6	What’s	more,	real	median	income	has	stagnated	since	the	late	1990s	and	non-

economic	measures	of	well-being,	like	life	expectancy,	have	fallen	for	some	groups	(Case	

and	Deaton,	2017)	

Figure	2	replicates	the	Conference	Board’s	analysis	of	its	country-level	Total	

Economy	Database	(Conference	Board,	2016).	It	plots	highly	smoothed	annual	productivity	

growth	rate	series	for	the	U.S.,	other	mature	economies	(which	combined	match	much	of	

the	OECD	sample	referred	to	above),	emerging	and	developing	economies,	and	the	world	

overall.	The	aforementioned	slowdowns	in	the	U.S.	and	other	mature	economies	are	clear	

in	the	figure.	The	figure	also	reveals	that	the	productivity	growth	acceleration	in	emerging	

																																								 																					
5	And	the	number	of	deals	increased	from	160	to	658.	See	https://www.cbinsights.com/research/artificial-
intelligence-startup-funding/	
6	These	slowdowns	are	statistically	significant.	For	the	U.S.,	where	the	slowdown	is	measured	using	quarterly	
data,	equality	of	the	two	periods’	growth	rates	is	rejected	with	a	t-statistic	of	2.9.	The	OECD	numbers	come	
from	annual	data	across	the	30	countries.	Here,	the	null	hypothesis	of	equality	is	rejected	with	a	t-statistic	of	
7.2.	
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and	developing	economies	during	the	2000s	ended	around	the	time	of	the	Great	Recession,	

causing	a	recent	decline	in	productivity	growth	rates	in	these	countries	too.	

These	slowdowns	do	not	appear	to	simply	reflect	effects	of	the	Great	Recession.	In	

the	OECD	data,	28	of	the	30	countries	still	exhibit	productivity	decelerations	if	2008-09	

growth	rates	are	excluded	from	the	totals.	Cette,	Fernald,	and	Mojon	(2016),	using	other	

data,	also	find	substantial	evidence	that	the	slowdowns	began	before	the	Great	Recession.	

	
Figure 2. Smoothed Average Annual Labor Productivity Growth (Percent) by Region 

 
 

Both	capital	deepening	and	total	factor	productivity	(TFP)	growth	lead	to	labor	

productivity	growth,	and	both	seem	to	be	playing	a	role	in	the	slowdown	(e.g.,	Fernald	

2014	and	OECD	2015).	Disappointing	technological	progress	can	be	tied	to	each	of	these	

components.	TFP	directly	reflects	such	progress.	Capital	deepening	is	indirectly	influenced	

by	technological	change	because	firms’	investment	decisions	respond	to	improvements	in	

current	or	expected	capital	quality.	

These	facts	have	been	read	by	some	as	reasons	for	pessimism	about	the	ability	of	

new	technologies	like	AI	to	greatly	affect	productivity	and	income.	Gordon	(2015)	argues	

that	productivity	growth	has	been	in	long-run	decline,	with	the	IT-driven	acceleration	of	

1995	to	2004	being	a	one-off	aberration.	While	not	claiming	technological	progress	will	be	

nil	in	the	coming	decades,	Gordon	essentially	argues	that	we	have	been	experiencing	the	
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new,	low-growth	normal	and	should	expect	to	continue	to	do	so	going	forward.	Cowen	

(2011)	similarly	offers	multiple	reasons	why	innovation	may	be	slow	at	least	for	the	

foreseeable	future.	Bloom	et	al.	(2017)	document	that	in	many	fields	of	technological	

progress,	research	productivity	has	been	falling,	while	Nordhaus	(2015)	finds	that	the	

hypothesis	of	a	speed	up	of	technology-driven	growth	fails	a	variety	of	tests.	

This	pessimistic	view	of	future	technological	progress	has	entered	into	long-range	

policy	planning.	The	Congressional	Budget	Office,	for	instance,	reduced	its	10-year	forecast	

for	average	U.S.	annual	labor	productivity	growth	from	1.8	percent	in	2016	(CBO	2016)	to	

1.5	percent	in	2017	(CBO	2017).	While	perhaps	modest	on	its	surface,	that	drop	implies	

U.S.	GDP	will	be	considerably	smaller	10	years	from	now	than	it	would	in	the	more	

optimistic	scenario—a	difference	of	equivalent	size	to	almost	$600	billion	in	2017.	

	
Potential	Explanations	for	the	Paradox	

There	are	four	principal	candidate	explanations	for	the	confluence	of	technological	

optimism	and	poor	productivity	performance	that	the	world	finds	itself	in:	1)	false	hopes,	

2)	mismeasurement,	3)	concentrated	distribution	and	rent	dissipation,	4)	implementation	

and	restructuring	lags.7	

	

False	hopes	

The	simplest	possibility	is	that	the	optimism	about	potential	technologies	is	

misplaced	and	unfounded.	Perhaps	technologies	won’t	be	as	transformative	as	many	

expect,	and	while	they	might	have	modest	and	noteworthy	effects	on	specific	sectors,	their	

aggregate	impact	will	be	small.	In	this	case,	the	paradox	will	be	resolved	in	the	future	as	

realized	productivity	growth	never	escapes	its	current	doldrums,	ultimately	forcing	the	

optimists	to	mark	their	beliefs	to	market.	

History	and	some	current	examples	offer	a	quantum	of	credence	to	this	possibility.	

Certainly	one	can	point	to	many	technologies	that	did	live	up	to	initially	optimistic	

expectations.	Nuclear	power	never	became	too	cheap	to	meter,	and	fusion	energy	has	been	

20	years	away	for	60	years.	Mars	may	still	beckon,	but	it’s	been	over	40	years	since	Eugene	

																																								 																					
7	To	some	extent,	these	explanations	parallel	the	explanations	for	the	Solow	Paradox	(Brynjolfsson,	1993).	
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Cernan	was	the	last	person	to	walk	on	the	moon.	Flying	cars	never	got	off	the	ground8	and	

passenger	jets	no	longer	fly	at	supersonic	speeds.	Even	AI,	perhaps	the	most	promising	

technology	of	our	era,	is	well	behind	Marvin	Minsky’s	1967	prediction	that	“Within	a	

generation	the	problem	of	creating	‘artificial	intelligence’	will	be	substantially	solved”.	

On	the	other	hand,	there	remains	a	compelling	case	for	optimism.	As	we	outline	

below,	it	is	not	difficult	to	construct	back-of-the-envelope	scenarios	where	even	a	modest	

number	of	currently	existing	technologies	could	combine	to	substantially	raise	productivity	

growth	and	societal	welfare.	Indeed,	knowledgeable	investors	and	researchers	are	betting	

their	money	and	time	on	exactly	such	outcomes.	Thus,	while	we	recognize	the	potential	for	

over-optimism—and	the	experience	with	early	predictions	for	AI	makes	an	especially	

relevant	reminder	for	us	to	be	somewhat	circumspect	in	this	essay—we	judge	that	it	would	

be	highly	preliminary	to	dismiss	optimism	at	this	point.	

	

Mismeasurement	

Another	potential	explanation	for	the	paradox	is	output	and	productivity	

mismeasurement.	In	this	case,	it	is	the	pessimistic	reading	of	the	empirical	past,	not	the	

optimism	about	the	future,	that	is	mistaken.	Indeed,	this	explanation	implies	that	the	

productivity	benefits	of	the	new	wave	of	technologies	are	already	being	enjoyed.	It	is	just	

that	economic	statistics	are	not	up	to	the	task	of	accurately	measuring	these	benefits,	

making	the	slowdown	of	the	past	decade	illusory.	This	“mismeasurement	hypothesis”	has	

been	forwarded	in	several	works	(e.g.,	Mokyr	2014;	Alloway,	2015;	Feldstein	2015;	Hatzius	

and	Dawsey	2015;	Smith	2015).	

There	is	a	prima	facie	case	for	the	mismeasurement	hypothesis.	Many	new	

technologies,	like	smartphones,	online	social	networks,	and	downloadable	media,	involve	

time-intensive	consumption	with	little	monetary	cost.	They	might	deliver	substantial	utility	

even	if	they	account	for	a	small	share	of	GDP	due	to	their	low	relative	price.	Guvenen,	

Mataloni,	Rassier,	and	Ruhl	(2017)	also	show	how	growing	offshore	profit	shifting	can	be	

another	source	of	mismeasurement.		

																																								 																					
8	At	least	not	yet:	https://kittyhawk.aero/about/.	
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However,	a	set	of	recent	studies	have	shown	there	is	good	reason	to	think	that	

mismeasurement	is	not	the	entire,	or	even	a	substantial,	explanation	for	the	slowdown.	

Cardarelli	and	Lusinyan	(2015);	Byrne,	Fernald,	and	Reinsdorf	(2016);	Nakamura	and	

Soloveichik	(2015);	and	Syverson	(2017),	each	using	different	methodologies	and	data,	

present	evidence	that	mismeasurement	is	not	the	primary	explanation	for	the	productivity	

slowdown.	After	all,	while	there	is	convincing	evidence	that	many	of	the	benefits	of	today’s	

technologies	are	not	reflected	in	GDP	and	therefore	productivity	statistics,	the	same	was	

undoubtedly	true	in	earlier	eras	as	well.	

	

Concentrated	Distribution	and	Rent	Dissipation	

A	third	possibility	is	that	the	gains	of	the	new	technologies	are	already	attainable,	

but	through	a	combination	of	concentrated	distribution	of	those	gains	and	dissipative	

efforts	to	attain	or	preserve	them	(assuming	the	technologies	are	at	least	partially	

rivalrous),	their	effect	on	average	productivity	growth	is	modest	overall,	and	is	virtually	nil	

for	the	median	worker.	For	instance,	two	of	the	most	profitable	uses	of	AI	to	date	have	been	

for	targeting	and	pricing	online	ads,	and	for	automated	trading	of	financial	instruments,	

both	applications	with	many	zero-sum	aspects.	

One	version	of	story	asserts	that	the	benefits	of	the	new	technologies	are	being	

enjoyed	by	a	relatively	small	fraction	of	the	economy,	but	the	technologies’	narrowly	

scoped	and	rivalrous	nature	creates	wasteful	“gold	rush”-type	activities.	Both	those	seeking	

to	be	one	of	the	few	beneficiaries,	as	well	as	those	who	have	attained	some	gains	and	seek	

to	block	access	to	others,	engage	in	these	dissipative	efforts,	destroying	many	of	the	

benefits	of	the	new	technologies.9	

	 Recent	research	offers	some	indirect	support	for	elements	of	this	story.	Productivity	

differences	between	frontier	firms	and	average	firms	in	the	same	industry	have	been	

increasing	in	recent	years	(Andrews,	Criscuolo,	and	Gal,	2016;	Furman	and	Orszag,	2015).	

Differences	in	profit	margins	between	the	top	and	bottom	performers	in	most	industries	

have	also	grown	(McAfee	and	Brynjolfsson,	2009).	A	smaller	number	of	superstar	firms	are	

gaining	market	share	(Autor	et	al,	2017,	Brynjolfsson	et	al.	2008)	while	workers’	earnings	
																																								 																					
9	Stiglitz (2014) offers a different mechanism where technological progress with concentrated benefits in the 
presence of restructuring costs can lead to increased inequality and even, in the short run, economic downturns.	
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are	increasingly	tied	to	firm-level	productivity	differences	(Song,	Price,	Guvenen,	Bloom,	

and	von	Wachter	2015).	There	are	concerns	that	industry	concentration	is	leading	to	

substantial	aggregate	welfare	losses	due	to	the	distortions	of	market	power	(e.g.,	De	

Loecker	and	Eeckhout,	2017;	Gutiérrez	and	Philippon,	2017).	Furthermore,	growing	

inequality	can	lead	to	stagnating	median	incomes	and	associated	socio-economic	costs,	

even	when	total	income	continues	to	grow.		

While	this	evidence	is	important,	it	is	not	dispositive.	The	aggregate	effects	of	

industry	concentration	are	still	under	debate,	and	the	mere	fact	that	a	technology’s	gains	

aren’t	evenly	distributed	is	no	guarantee	that	resources	will	be	dissipated	in	trying	to	

capture	them—especially	that	there	would	be	enough	waste	to	erase	noticeable	aggregate	

benefits.	

	 	

Implementation	and	Restructuring	Lags	

Each	of	these	three	possibilities,	especially	the	first	two,	relies	on	explaining	away	

the	discordance	between	high	hopes	and	disappointing	statistical	realities.	One	of	the	two	

elements	is	somehow	“wrong”.	In	the	misplaced	optimism	story,	the	expectations	for	

technology	are	off	base.	In	the	mismeasurement	explanation,	the	tools	we	use	to	gauge	

empirical	reality	aren’t	up	to	the	task	of	accurately	doing	so.	And	in	the	concentrated	

distribution	stories,	the	private	gains	for	the	few	may	be	very	real,	but	they	don’t	translate	

into	broader	gains	for	the	many.	

But	there	is	a	fourth	explanation	that	allows	both	halves	of	the	seeming	paradox	to	

be	correct.	It	asserts	that	there	really	is	good	reason	to	be	optimistic	about	the	future	

productivity	growth	potential	of	new	technologies,	while	at	the	same	time	recognizing	that	

recent	productivity	growth	has	been	low.	The	core	of	this	story	is	that	it	takes	a	

considerable	time—often	more	than	is	commonly	appreciated—to	be	able	to	sufficiently	

harness	new	technologies.	Ironically,	this	is	especially	true	for	those	technologies	

important	enough	to	ultimately	have	an	important	effect	on	aggregate	statistics	and	

welfare.	That	is,	those	with	such	broad	potential	application	that	they	qualify	as	general	

purpose	technologies	(GPTs).	Indeed,	the	more	profound	and	far-reaching	the	potential	

restructuring,	the	longer	the	time	lag	between	the	initial	invention	of	a	technology	and	its	

full	impact	on	the	economy	and	society.	



10	
	

This	explanation	implies	there	will	be	a	period	where	the	technologies	are	

developed	enough	that	one	can	imagine	their	potentially	transformative	effects	even	

though	they	have	had	no	discernable	effect	on	recent	productivity	growth.	It	isn’t	until	the	

necessary	build-up	and	implementation	time	has	passed	that	the	promise	of	the	technology	

actually	blossoms	in	the	aggregate	data.	

There	are	two	main	sources	of	the	delay	between	recognition	of	a	new	technology’s	

potential	and	its	measureable	effects.	One	is	that	it	takes	time	to	build	the	stock	of	the	new	

technology	to	a	size	sufficient	enough	to	have	an	aggregate	effect.	The	other	is	that	

complementary	investments	are	necessary	to	obtain	the	full	benefit	of	the	new	technology,	

and	it	takes	time	to	discover	what	these	complements	are	and	to	implement	them.	While	

the	fundamental	importance	of	the	core	invention	and	its	potential	for	society	might	be	

clearly	recognizable	at	the	outset,	the	myriad	necessary	co-inventions,	obstacles	and	

adjustments	needed	along	the	way	await	discovery	over	time,	and	the	required	path	may	

be	lengthy	and	arduous.	Never	mistake	a	clear	view	for	a	short	distance.	

This	explanation	resolves	the	paradox	by	acknowledging	that	its	two	seemingly	

contradictory	parts	are	not	actually	in	conflict.	Rather,	they	are	in	some	sense	both	natural	

manifestations	of	the	same	underlying	phenomenon	of	building	and	implementing	a	new	

technology.	

While	each	of	the	first	three	explanations	for	the	paradox	might	have	a	part	in	

describing	its	source,	they	also	face	serious	questions	in	their	ability	to	describe	key	parts	

of	the	data.	We	find	the	fourth,	the	implementation	and	restructuring	lags	story,	the	most	

compelling	in	light	of	the	evidence	we	discuss	below.	Thus	it	is	the	focus	of	our	explorations	

in	the	remainder	of	this	paper.	

	

The	Argument	in	Favor	of	the	Implementation	and	Restructuring	Lags	Explanation	

Implicit	or	explicit	in	the	pessimistic	view	of	the	future	is	that	the	recent	slowdown	

in	productivity	growth	portends	slower	productivity	growth	in	the	future.	We	begin	by	

establishing	one	of	the	most	basic	elements	of	the	story:	that	slow	productivity	growth	

today	does	not	rule	out	faster	productivity	growth	in	the	future.		In	fact,	the	evidence	is	

clear	that	it	is	barely	predictive	at	all.	
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Total	factor	productivity	growth	is	the	component	of	overall	output	growth	that	

cannot	be	explained	by	accounting	for	changes	in	observable	labor	and	capital	inputs.	It	has	

been	called	a	“measure	of	our	ignorance”	(Abramovitz,	1956).	It	is	a	residual,	so	an	

econometrician	should	not	be	surprised	if	it	is	not	very	predictable	from	past	levels.	Labor	

productivity	is	a	similar	measure,	but	instead	of	accounting	for	capital	accumulation	simply	

divides	total	output	by	the	labor	hours	used	to	produce	that	output.	

Figure	3	and	Figure	4	plot,	respectively,	U.S.	productivity	indices	since	1948	and	

productivity	growth	by	decade.	The	data	include	average	labor	productivity	(LP),	average	

total	factor	productivity	(TFP)	and	Fernald’s	(2014)	utilization-adjusted	TFP	(TFPua).	

	
Figure	3.	U.S.	TFP	and	Labor	Productivity	Indices,	1948-2016	(1990	=	100)	

	
	

Figure	4.	U.S.	TFP	and	Labor	Productivity	Growth	(%)	by	Decade	
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Productivity	has	consistently	grown	in	the	post-war	era,	albeit	at	different	rates	at	

different	times.	Despite	the	consistent	growth,	however,	past	productivity	growth	rates	

have	historically	been	poor	predictors	of	future	productivity	growth.	In	other	words,	the	

productivity	growth	of	the	past	decade	tells	us	little	about	productivity	growth	in	for	the	

coming	decade.	Looking	only	at	productivity	data,	it	would	have	been	hard	to	predict	the	

decrease	in	productivity	growth	at	the	end	of	the	1960s	or	foresee	the	beneficial	impact	of	

IT	in	the	1990s.	

As	it	turns	out,	while	there	is	some	correlation	in	productivity	growth	rates	over	

short	intervals,	the	correlation	between	adjacent	ten-year	periods	is	not	statistically	

significant.	We	present	below	the	results	from	a	regression	of	different	measures	of	

average	productivity	growth	on	the	previous	period’s	average	productivity	growth	for	10-

year	intervals	as	well	as	scatterplots	of	productivity	for	each	10	year	against	the	

productivity	in	the	subsequent	period.	The	data	are	sourced	from	the	Fernald	(2014)	TFP	

and	utilization-adjusted	TFP	series	and	span	from	1948	to	2016	(annually).10	The	R2	of	

these	regressions	is	low	in	all	cases.	The	correlation	coefficients	in	the	following	table	

																																								 																					
10	Available: http://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

1950s	 1960s	 1970s	 1980s	 1990s	 2000s	 2010s	

Avg.	LP	

Avg.	TFP	

Avg.	TFPua	



13	
	

represent	the	correlation	in	productivity	growth	series	for	a	given	ten-year	period	and	the	

subsequent	ten-year	period.	

Correlation	Coefficients		
(1st	vs.	2nd	10-year	Period)	

	Labor	Productivity	 0.09	
TFP	 0.15	
TFP	(util.	adj.)	 0.17	

	

Regression	results	for	Labor	Productivity,	TFP,	and	utilization-adjusted	TFP	are	

included	below.	For	Labor	Productivity,	the	R2	is	0.009.	While	the	intercept	is	significantly	

different	from	zero	(productivity	is	positive,	on	average),	the	coefficient	on	the	previous	

period	is	not	significant.	For	TFP	the	R2	is	0.023,	and	again	the	coefficient	on	the	previous	

period	is	not	statistically	significant.	Utilization-adjusted	TFP	is	slightly	higher,	but	still	

small	and	statistically	insignificant.		
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The	old	adage	that	“past	performance	is	not	predictive	of	future	results”	applies	well	

to	trying	to	predict	productivity	growth	in	the	years	to	come,	especially	in	periods	of	a	

decade	or	longer.	Historical	stagnation	does	not	justify	forward-looking	pessimism.	

	

A	Technology-Driven	Case	for	Productivity	Optimism	

Simply	extrapolating	recent	productivity	growth	rates	forward	is	not	a	good	way	to	

estimate	the	next	decade’s	productivity	growth.	Does	that	imply	we	have	no	hope	at	all	of	

predicting	productivity	growth?	We	don’t	think	so.	

Instead	relying	only	on	past	productivity	statistics,	we	can	consider	the	

technological	and	innovation	environment	we	expect	to	see	in	the	near	future.	In	particular,	

we	need	to	study	and	understand	the	specific	technologies	that	actually	exist,	and	make	an	

assessment	of	their	potential.	

One	does	not	have	to	dig	too	deeply	into	the	pool	of	existing	technologies	or	assume	

incredibly	large	benefits	from	any	one	of	them	to	make	a	case	that	existing	but	still	nascent	

technologies	can	potentially	combine	to	create	noticeable	accelerations	in	aggregate	

productivity	growth.	We	begin	by	looking	at	a	few	specific	examples.	We	will	then	make	the	

case	that	AI	is	a	GPT,	with	broader	implications.	

First,	let’s	consider	the	productivity	potential	of	autonomous	vehicles.	According	to	

the	US	Bureau	of	Labor	Statistics,	in	2016	there	were	3.5	million	people	working	in	private	

industry	as	“motor	vehicle	operators”	of	one	sort	or	another	(this	includes	truck	drivers,	

taxi	drivers,	bus	drivers,	and	other	similar	occupations).	Suppose	autonomous	vehicles	

were	to	reduce,	over	some	period,	the	number	of	drivers	necessary	to	do	the	current	

workload	to	1.5	million.	We	do	not	think	this	is	a	far-fetched	scenario	given	the	potential	of	

the	technology.	Total	nonfarm	private	employment	in	mid-2016	was	122	million.	

Therefore,	autonomous	vehicles	would	reduce	the	number	of	workers	necessary	to	achieve	

the	same	output	to	120	million.	This	would	result	in	aggregate	labor	productivity	

(calculated	using	the	standard	BLS	nonfarm	private	series)	increasing	by	1.7	percent	(=	

122/120).	Supposing	this	transition	occurred	over	10	years,	this	single	technology	would	

provide	a	direct	boost	of	0.17	percent	to	annual	productivity	growth	over	that	decade.	

This	is	significant,	and	it	doesn’t	include	many	potential	productivity	gains	from	

complementary	changes	that	could	accompany	the	diffusion	of	autonomous	vehicles.	For	
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instance,	self-driving	cars	are	a	natural	complement	to	transportation-as-a-service	rather	

than	individual	car	ownership.	The	typical	car	is	currently	parked	95%	of	the	time,	making	

it	readily	available	for	its	owner	or	primary	user	(Morris,	2016).	However,	in	locations	with	

sufficient	density,	a	self-driving	car	could	be	summoned	on	demand.	This	would	make	it	

possible	for	cars	to	provide	useful	transportation	services	for	a	larger	fraction	of	the	time,	

reducing	capital	costs	per	passenger-mile,	even	after	accounting	for	increased	wear-and-

tear.	Thus,	in	addition	to	the	obvious	improvements	in	labor	productivity	from	replacing	

drivers,	capital	productivity	would	also	be	significantly	improved.		

	 A	second	example	is	call	centers.	As	of	2015,	there	were	about	2.2	million	people	

working	in	over	6,800	call	centers	in	the	United	States	and	hundreds	of	thousands	more	

work	as	home-based	call	center	agents	or	in	smaller	sites.11	Improved	voice-recognition	

systems	coupled	with	intelligence	question-answering	tools	like	IBM’s	Watson	might	

plausibly	be	able	to	handle	60-70%	or	more	of	the	calls,	especially	since,	in	accordance	

with	the	Pareto	principle,	a	large	fraction	of	call	volume	is	due	to	variants	on	a	small	

number	of	basic	queries.	If	AI	reduced	the	number	workers	by	60%,	it	would	increase	US	

labor	productivity	by	1%,	perhaps	again	spread	over	10	years.	Again,	this	would	likely	spur	

complementary	innovations,	from	shopping	recommendation	and	travel	services,	to	legal	

advice,	consulting,	and	real-time	personal	coaching.	

Beyond	labor	savings,	advances	in	AI	have	the	potential	to	boost	total	factor	

productivity.	In	particular,	energy	efficiency	and	materials	usage	could	be	improved	in	

many	large-scale	industrial	plants.	For	instance,	a	team	from	Google	DeepMind	recently	

trained	an	ensemble	of	neural	networks	to	optimize	power	consumption	in	a	data	center.	

By	carefully	tracking	the	data	already	collected	from	thousands	of	sensors	tracking	

temperatures,	electricity	usage,	pump	speeds,	the	system	learned	how	to	make	

adjustments	in	the	operating	parameters.	As	a	result,	they	were	able	to	reduce	the	amount	

of	energy	used	for	cooling	by	40%	compared	to	the	levels	achieved	by	human	experts.	The	

algorithm	was	a	general-purpose	framework	designed	to	account	complex	dynamics,	so	it	

is	easy	to	see	how	such	a	system	could	be	applied	to	other	data	centers	at	Google,	or	indeed	

																																								 																					
11	https://info.siteselectiongroup.com/blog/how-big-is-the-us-call-center-industry-compared-to-india-and-
philippines	
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around	the	world.	Overall,	data	center	electricity	costs	in	the	US	are	about	$6	billion	per	

year,	including	about	$2	billion	just	for	cooling.12		

What’s	more,	similar	applications	of	machine	learning	could	be	implemented	in	a	

variety	of	the	commercial	and	industrial	activities.	For	instance,	manufacturing	accounts	

for	about	$2.18	trillion	of	value-added	each	year.	Manufacturing	companies	like	GE	are	

already	using	AI	to	forecast	product	demand,	future	customer	maintenance	needs,	and	

analyze	performance	data	coming	from	sensors	on	their	capital	equipment.	Recent	work	on	

training	deep	neural	network	models	to	perceive	objects	and	achieve	sensorimotor	control	

at	the	same	time	have	yielded	robots	that	can	perform	a	variety	of	hand-eye	coordination	

tasks	(e.g.	unscrewing	bottle	caps	and	hanging	coat	hangers)	(Levine	et	al.	2016).	Liu	et	al.	

(2017)	trained	robots	to	perform	a	number	of	household	chores,	like	sweeping	and	

pouring	almonds	into	a	pan,	using	a	technique	called	imitation	learning.13	In	this	approach,	

the	robot	learns	to	perform	a	task	using	a	raw	video	demonstration	of	what	it	needs	to	do.	

These	techniques	will	surely	be	important	for	automating	manufacturing	processes	in	the	

future.	The	results	suggest	that	artificial	intelligence	may	soon	improve	productivity	in	

household	production	tasks	as	well,	which	in	2010	were	worth	as	much	as	$2.5	trillion	in	

nonmarket	value-added	(Bridgman	et	al.	2012).		

While	these	examples	are	each	suggestive	of	non-trivial	productivity	gains,	they	are	

only	a	fraction	of	the	set	of	applications	for	AI	and	machine	learning	that	have	been	

identified	so	far.	James	Manyika	and	his	colleagues	analyzed	2000	tasks	and	estimated	that	

about	45%	of	the	activities	that	people	are	paid	to	perform	in	the	US	economy	could	be	

automated	using	existing	levels	of	AI	and	other	technologies.	They	stress	that	the	pace	of	

automation	will	depend	on	factors	other	than	technical	feasibility,	including	the	costs	of	

automation,	regulatory	barriers	and	social	acceptance.	

	

Artificial	Intelligence	is	a	General	Purpose	Technology	

Important	as	specific	applications	of	AI	may	be,	we	argue	that	the	more	important	

economics	effects	of	AI,	machine	learning,	and	associated	new	technologies	stem	from	the	

																																								 																					
12	According to personal communication, August 24, 2017 with Jon Koomey, Arman Shehabi and Sarah Smith of 
Lawrence Berkeley Lab.	
13	Videos of these efforts available here: https://sites.google.com/site/imitationfromobservation/	
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fact	that	they	embody	the	characteristics	of	general	purpose	technologies	(GPTs).	

Bresnahan	and	Trajtenberg	(1996)	argue	that	a	GPT	should	be	pervasive,	able	to	be	

improved	upon	over	time,	and	be	able	to	spawn	complementary	innovations.	

The	steam	engine,	electricity,	the	internal	combustion	engine,	and	computers	are	

each	examples	of	important	general	purpose	technologies.	Each	of	them	not	only	increased	

productivity	directly,	but	also	by	spurring	important	complementary	innovations.	For	

instance,	the	steam	engine	not	only	helped	pump	water	from	coal	mines,	its	most	important	

initial	application,	but	also	spurred	the	invention	more	effective	factory	machinery	and	

new	forms	of	transportation	like	steamships	and	railroads.	In	turn,	these	co-inventions	

helped	give	rise	to	innovations	in	supply	chains	and	mass	marketing,	to	new	organizations	

with	hundreds	of	thousands	of	employees,	and	even	to	seemingly	unrelated	innovations	

like	standard	time,	which	was	needed	to	manage	railroad	schedules.		

AI,	and	in	particular	machine	learning,	certainly	has	the	potential	to	be	pervasive,	to	

be	improved	upon	over	time,	and	to	spawn	complementary	innovations,	making	it	a	

candidate	for	an	important	GPT.		

As	noted	by	Agrawal,	Gans,	and	Goldfarb	(2017),	the	current	generation	of	machine	

learning	systems	is	particularly	suited	for	augmenting	or	automating	tasks	that	involve	at	

least	some	prediction	aspect,	broadly	defined.	These	cover	a	broad	range	of	tasks,	

occupations	and	industries,	from	driving	a	car	(predicting	the	right	way	to	turn	the	steering	

wheel)	and	diagnosing	a	disease	(predicting	its	cause)	to	recommending	a	product	

(predicting	what	the	customer	will	like)	and	writing	a	song	(predicting	which	note	

sequence	will	be	most	popular).	The	core	capabilities	of	perception	and	cognition	

addressed	by	current	systems	are	pervasive,	if	not	indispensable,	for	many	tasks	done	by	

humans.	

Machine	learning	systems	are	also	designed	to	improve	over	time.	Indeed,	what	sets	

them	apart	from	earlier	technologies	is	that	they	are	designed	to	improve	themselves	over	

time.	Instead	of	requiring	an	inventor	or	developer	to	consciously	codify,	or	code,	each	step	

of	a	process	to	be	automated,	a	machine	learning	algorithm	can	discover	on	its	own	a	

function	that	connects	a	set	of	inputs	X	to	a	set	of	outputs	Y	as	long	as	its	given	a	sufficiently	

large	set	of	labeled	examples	mapping	some	of	the	inputs	to	outputs	(Brynjolfsson	and	

Mitchell,	2017).	The	improvements	reflect	not	only	the	discovery	of	new	algorithms	and	
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techniques,	particularly	for	deep	neural	networks,	but	also	their	synergies	with	vastly	more	

powerful	computer	hardware	and	the	availability	of	much	larger	digital	datasets	that	can	

be	used	to	train	the	systems	(Brynjolfsson	and	McAfee,	2017).	More	and	more	digital	data	

is	collected	as	byproduct	of	digitizing	operations,	customer	interactions,	communications	

and	other	aspects	of	our	lives,	providing	fodder	for	more	and	better	machine	learning	

applications.14	

Most	importantly,	machine	learning	systems	spur	a	variety	of	complementary	

innovations.	For	instance,	machine	learning	has	transformed	the	abilities	of	machines	to	

perform	a	number	of	basic	types	of	perception	and	these	make	possible	a	broader	set	of	

applications.	Consider	machine	vision—the	ability	to	see	and	recognize	objects,	to	label	

them	in	photos,	and	to	interpret	video	streams.	As	error	rates	in	identifying	pedestrians	

improve	from	one	per	30	frames	to	about	one	per	30	million	frames,	self-driving	cars	

become	increasingly	feasible	(Brynjolfsson	and	McAfee,	2017).		

Improved	vision	also	makes	a	variety	of	factory	automation	tasks	practical,	as	well	

as	improved	medical	diagnoses.	Gill	Pratt	has	made	an	analogy	to	the	development	of	

vision	in	animals	500	million	years	ago,	which	helped	ignite	the	Cambrian	explosion	and	a	

burst	of	new	species	on	earth.	(Pratt,	2015).	He	also	pointed	out	that	machines	have	a	new	

capability	that	no	biological	species	has:	the	ability	to	share	knowledge	and	skills	almost	

instantaneously	with	others.	Specifically,	the	rise	of	cloud	computing	has	made	it	

significantly	easier	to	scale	up	new	ideas	at	much	lower	cost	than	before.	This	is	an	

especially	important	development	for	advancing	the	economic	impact	of	machine	learning	

because	it	enables	cloud	robotics—the	sharing	of	knowledge	among	robots.	Once	a	new	

skill	is	learned	by	a	machine	in	one	location,	it	can	be	replicated	to	other	machines	via	

digital	networks.	Data	as	well	as	skills	can	be	shared,	increasing	the	amount	of	data	that	

any	given	machine	learner	can	use.		

This	in	turn	increases	the	rate	of	improvement.	For	instance,	self-driving	cars	that	

encounter	an	unusual	situation	can	upload	that	information	with	a	shared	platform	where	

enough	examples	can	be	aggregated	to	infer	a	pattern.	Only	one	self-driving	vehicle	needs	

to	experience	an	anomaly	for	many	vehicles	to	learn	from	it.	Waymo,	a	subsidiary	of	
																																								 																					
14	For	example,	through	enterprise	resource	planning	systems	in	factories,	internet	commerce,	mobile	
phones,	and	the	“Internet	of	Things.”	
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Google,	has	cars	driving	25,000	“real”	autonomous	and	about	19	million	simulated	miles	

each	week.15	All	of	the	Waymo	cars	learn	from	the	joint	experience	of	the	others.	Similarly,	

a	robot	struggling	with	a	task	can	benefit	from	sharing	data	and	learnings	with	other	robots	

that	use	a	compatible	knowledge-representation	framework.16	

When	one	thinks	of	AI	as	a	GPT,	the	implications	for	output	and	welfare	gains	are	

much	larger	than	in	our	earlier	analysis.	For	example,	self-driving	cars	could	substantially	

transform	many	non-transport	industries.	Retail	could	shift	much	further	toward	home	

delivery	on	demand,	creating	consumer	welfare	gains	and	further	freeing	up	valuable	high-

density	land	now	used	for	parking.	Traffic	and	safety	could	be	optimized,	and	insurance	

risks	could	fall.	With	over	30,000	deaths	due	to	automobile	crashes	in	the	US	each	year,	and	

nearly	a	million	worldwide,	there	is	an	opportunity	to	save	many	lives.17	

	

Why	Future	Technological	Progress	Is	Consistent	with	Low	Current	Productivity	

Growth	

Having	made	a	case	for	technological	optimism,	we	now	turn	to	explaining	why	it	is	

not	inconsistent	with—and	in	fact	may	even	be	naturally	related	to—low	current	

productivity	growth.	

Like	other	GPTs,	AI	has	the	potential	to	be	an	important	driver	of	productivity.	

However,	as	Jovanovic	and	Rousseau	(2005)	point	out	(with	additional	reference	to	David’s	

(1991)	historical	example),	“a	GPT	does	not	deliver	productivity	gains	immediately	upon	

arrival.”	(p.	1184).	The	technology	can	be	present	and	developed	enough	to	allow	some	

notion	of	its	transformative	effects	even	though	it	is	not	affecting	current	productivity	

levels	in	any	noticeable	way.	This	is	precisely	the	state	that	we	argue	the	economy	may	be	

in	now.	

We	discussed	above	that	a	GPT	can	at	one	moment	both	be	present	and	yet	not	

affect	current	productivity	growth	if	there	is	a	need	to	build	a	sufficiently	large	stock	of	the	
																																								 																					
15 http://ben-evans.com/benedictevans/2017/8/20/winner-takes-all 
16 Rethink Robotics is developing exactly such a platform. 
17 These latter two consequences of autonomous vehicles, while certainly reflecting welfare improvements, would 
need to be capitalized in prices of goods or services to be measured in standard GDP and productivity measures. We 
will discuss AI-related measurement issues in greater depth below. Of course it is worth remembering autonomous 
vehicles also hold the potential to create new economic costs if, say, the congestion from lower marginal costs of 
operating a vehicle is not counteracted by sufficiently large improvements in traffic management technology or 
certain infrastructure investments.	
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new	capital	or	if	complementary	types	of	capital,	both	tangible	and	intangible,	need	to	be	

identified,	produced,	and	put	in	place	to	fully	harness	the	GPT’s	productivity	benefits.	

The	time	necessary	to	build	a	sufficient	capital	stock	can	be	extensive.	For	example,	

it	wasn’t	until	the	late	1980s,	more	than	25	years	after	the	invention	of	the	integrated	

circuit,	that	the	computer	capital	stock	reached	its	long-run	plateau	at	about	5	percent	(at	

historical	cost)	of	total	nonresidential	equipment	capital.	It	was	only	half	that	level	10	years	

prior.	Thus,	when	Solow	pointed	out	his	now	eponymous	paradox,	the	computers	were	

finally	just	then	getting	to	the	point	where	they	really	could	be	seen	everywhere.	

David	(1991)	points	out	a	similar	phenomenon	in	the	diffusion	of	electrification.	At	

least	half	of	U.S.	manufacturing	establishments	remained	unelectrified	until	1919,	about	30	

years	after	the	shift	to	polyphase	alternating	current	began.	Initially	adoption	was	driven	

by	simple	cost	savings.	The	biggest	benefits	came	later,	when	managers	began	to	

fundamentally	re-organize	work	by	replacing	the	centralized	power	source	and	giving	

every	individual	machine	its	own	electric	motor.	This	created	much	more	flexibility	in	the	

location	of	equipment	and	made	possible	effective	assembly	lines	materials	flow.		

This	approach	to	organizing	factories	is	obvious	in	retrospect,	yet	it	took	as	much	as	

30	years	for	it	to	become	widely	adopted.	Why?	As	noted	by	Henderson	(1993;	2006),	it	is	

exactly	because	incumbents	are	designed	around	the	current	ways	of	doing	things	and	so	

proficient	at	them	that	they	are	blind	to	or	unable	to	absorb	the	new	approaches	and	get	

trapped	in	the	status	quo—they	suffer	the	“curse	of	knowledge.”18	

Similarly,	Brynjolfsson	and	Smith	(1999)	document	the	difficulties	incumbent	

retailers	had	adapting	their	business	processes	to	take	full	advantage	of	the	internet	and	

electronic	commerce	relative	to	born-digital	companies	like	Amazon.	The	potential	of	

ecommerce	to	revolutionize	retailing	was	widely	recognized,	and	even	hyped	in	the	late	

1990s,	but	actual	share	of	retail	commerce	was	trivial,	0.2%	of	all	retail	sales	in	1999.	Only	

in	2017,	after	two	decades	of	widely	predicted	yet	time-consuming	change	in	the	industry,	

																																								 																					
18	Atkeson	and	Kehoe	(2007)	note	manufacturers’	reluctance	to	abandon	their	large	knowledge	stock	at	the	
beginning	of	the	transition	to	electric	power	to	adopt	what	was,	initially,	only	a	marginally	superior	
technology.	David	and	Wright	(2006)	are	more	specific,	focusing	on	the	“the	need	for	organizational	and	
above	all	for	conceptual	changes	in	the	ways	tasks	and	products	are	defined	and	structured”	(p.	147,	
emphasis	in	original).	
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are	companies	like	Amazon	are	having	a	first-order	effect	on	more	traditional	retailers’	

sales	and	stock	market	valuations.	

	 Another	source	of	the	time	gap	between	a	technology’s	emergence	and	its	measured	

productivity	effects	is	the	need	for	complementary	capital	to	be	installed	(and	often,	first	

invented).	This	includes	both	tangible	and	intangible	investments.	The	timeline	necessary	

to	acquire	and	install	these	complements	is	typically	more	extensive	as	the	time-to-build	

considerations	just	discussed.	

Consider	changing	a	specific	production	process	to	benefit	large	investments	in	IT.	

Brynjolfsson	and	Hitt	(2003)	examined	firm	level	data	and	found	that	while	small	

productivity	benefits	were	associated	with	IT	investments	when	one-year	differences	were	

considered,	the	benefits	grew	substantially	as	longer	differences	were	examined,	peaking	

after	about	seven	years.	They	attributed	this	pattern	to	the	need	for	complementary	

changes	in	business	processes.	For	instance,	when	implementing	large	enterprise	planning	

systems,	firms	almost	always	spend	several	times	more	on	business	process	redesign	and	

training	than	on	the	direct	costs	of	hardware	and	software.	These	can	be	thought	of	as	

investments	in	organizational	and	human	capital,	and	they	often	take	years	to	implement.		

At	the	firm	level,	additional	complementary	investments	are	required	beyond	those	

at	the	process	level	to	fully	harness	new	technologies.	The	organizational	structure	of	the	

company	often	needs	to	be	rebuilt.	Hiring	and	other	HR	practices	often	need	considerable	

adjustment	to	match	the	firm’s	human	capital	to	the	new	structure	of	production.	In	fact,	

Bresnahan,	Brynjolfsson,	and	Hitt	(2002)	find	evidence	of	three-way	complementarities	

between	IT,	human	capital,	and	organizational	changes	in	the	investment	decisions	and	

productivity	levels.	Furthermore,	Brynjolfsson,	Hitt,	and	Yang	(2002)	show	each	dollar	of	

IT	capital	stock	is	correlated	with	about	$10	of	market	value.	They	interpret	this	as	

evidence	of	substantial	IT-related	intangible	assets	and	show	that	firms	that	combine	IT	

investments	with	a	specific	set	of	organizational	practices	are	not	just	more	productive,	

they	also	have	disproportionately	higher	market	values	than	firms	that	invest	in	only	one	

or	the	other.	This	pattern	in	the	data	is	consistent	with	a	long	stream	of	research	on	the	

importance	of	organizational	and	even	cultural	change	when	making	IT	investments	and	

technology	investments	more	generally	(e.g.	Aral	et	al	2012;	Brynjolfsson	and	Hitt,	2000;	

Orlikowski,	1996;	Henderson,	2006).	
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But	such	changes	take	real	time	and	resources,	contributing	to	organizational	

inertia.	Firms	are	more	complex	systems	than	individual	production	lines,	and	this	greater	

complexity	requires	a	more	extensive	web	of	complementary	assets	to	allow	the	GPT	to	

fully	transform	the	system.	Transforming	firms	often	must	reevaluate	and	reconfigure	not	

only	their	internal	processes,	but	often	their	supply	and	distribution	chains	as	well.	

There	is	no	assurance	that	the	adjustments	will	be	successful.	Indeed,	there	is	

evidence	that	the	modal	transformation	of	GPT-level	magnitude	fails.	Alon,	Berger,	Dent,	

and	Pugsley	(2017)	find	that	cohorts	of	firms	over	five	years	old	contribute	little	to	

aggregate	productivity	growth	on	net—that	is,	among	established	firms,	there	is	one	firm	

becoming	less	productive	for	each	firm	that	increases	its	productivity.	It	is	hard	to	teach	the	

proverbial	old	dog	new	tricks.	Moreover,	the	old	dogs	(companies)	often	have	internal	

incentives	to	not	learn	them	(Arrow,	1962;	Holmes,	Levine,	and	Schmitz	2012).	In	some	

ways,	technology	advances	in	industry	one	company	death	at	a	time.	

Transforming	industries	and	sectors	requires	still	more	adjustment	and	

reconfiguration.	As	noted	above,	retail	offers	a	vivid	example.	Despite	being	one	of	the	

biggest	innovations	to	come	out	of	the	1990s	dot-com	boom,	the	largest	change	in	retail	in	

the	two	decades	that	followed	was	not	e-commerce	but	instead	the	expansion	of	

warehouse	stores	and	supercenters	(Hortaçsu	and	Syverson,	2015).	It	is	only	very	recently	

that	e-commerce	has	become	a	force	for	general	retailers	to	reckon	with.	Why	did	it	take	so	

long?	Many	complementary	investments	were	required.	An	entire	distribution	

infrastructure	had	to	be	built.	Customers	had	to	be	“retrained.”	None	of	this	could	happen	

quickly.	Ecommerce	may	have	been	readily	foreseeable	once	the	Internet	began	to	reach	

most	homes,	but	has	taken	over	20	years	for	ecommerce	sales	to	rise	to	its	current	share	of	

9	percent	of	total	retail	sales.	

	

Viewing	Today’s	Paradox	through	Previous	General	Purpose	Technologies	

We	have	indicated	in	the	discussion	above	that	we	see	parallels	between	the	current	

paradox	and	those	that	have	happened	in	the	past.	It	is	closely	related	to	the	Solow	paradox	

era	circa	1990,	certainly,	but	it	is	also	tied	closely	to	the	experience	during	the	diffusion	of	
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portable	power	(we	prefer	this	to	“electrification”	so	as	to	also	reflect	the	parallel	growth	

and	transformative	effects	of	the	internal	combustion	engine).	

Comparing	the	productivity	growth	patterns	of	the	two	eras	is	instructive.		

Figure	5	is	an	updated	version	of	an	analysis	from	Syverson	(2013).	It	overlays	U.S.	

labor	productivity	since	1970	with	that	from	1890	to	1940,	the	period	after	portable	power	

technologies	had	been	invented	and	were	starting	to	be	placed	into	production.	(The	

historical	series	values	are	from	Kendrick	1961.)	The	modern	series	timeline	is	indexed	to	

a	value	of	100	in	1995	and	is	labeled	on	the	upper	horizontal	axis.	The	portable	power	era	

index	has	a	value	of	100	in	1915,	and	its	years	are	shown	on	the	lower	horizontal	axis.	

Labor	productivity	during	the	portable	power	era	shared	remarkably	common	

patterns	with	current	series.	In	both	eras,	there	was	an	initial	period	of	roughly	a	quarter	

century	of	relatively	slow	productivity	growth.	Then	both	eras	saw	decade-long	

accelerations	in	productivity	growth,	spanning	1915	to	1924	in	the	portable	power	era	and	

1995-2004	more	recently.	

The	late-1990s	acceleration	was	the	(at	least	partial)	resolution	of	the	Solow	

Paradox.	We	imagine	the	late	1910s	acceleration	could	have	similarly	answered	some	

economist’s	query	in	1910	as	to	why	one	sees	electric	motors	and	internal	combustion	

engines	everywhere	but	in	the	productivity	statistics.19	

	

Figure	5.	Labor	Productivity	Growth	in	the	Portable	Power	and	IT	Eras	

																																								 																					
19	We	aren’t	aware	of	anyone	who	actually	said	this,	and	of	course	today’s	system	of	national	economic	
statistics	did	not	exist	at	that	time,	but	we	find	the	scenario	amusing,	instructive,	and	in	some	ways	plausible.	
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Very	interestingly,	and	quite	relevant	to	the	current	situation,	the	productivity	

growth	slowdown	we	have	experienced	after	2004	also	has	a	parallel	in	the	historical	data,	

a	slowdown	from	1924	to	1932.	As	can	be	seen	in	the	figure,	and	instructive	to	the	point	of	

whether	a	new	wave	of	AI	and	associated	technologies	(or	if	one	prefers,	a	second	wave	of	

IT-based	technology)	could	re-accelerate	productivity	growth,	labor	productivity	growth	at	

the	end	of	the	portable	power	era	rose	again,	averaging	2.7	percent	per	year	between	1933	

and	1940.	

Of	course	this	past	breakout	growth	is	no	guarantee	that	productivity	must	speed	up	

again	today.	However,	it	does	raise	two	relevant	points.	First,	it	is	another	example	of	a	

period	of	sluggish	productivity	growth	followed	by	an	acceleration.	Second,	it	demonstrates	

that	productivity	growth	driven	by	a	core	GPT	can	arrive	in	multiple	waves.	

	
Expected	Productivity	Effects	of	an	AI-Driven	Acceleration	

To	understand	the	likely	productivity	effects	of	AI,	it	is	useful	to	think	of	AI	is	a	type	

of	capital,	specifically	a	type	of	intangible	capital.		It	can	be	accumulated	through	
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investment;	it	is	a	durable	factor	of	production;	and	it	can	depreciate.		Treating	AI	as	a	type	

of	capital	clarifies	how	its	development	and	installation	as	a	productive	factor	will	affect	

productivity.	

As	with	any	capital	deepening,	increasing	AI	will	raise	labor	productivity.	This	

would	be	true	regardless	of	how	well	AI	capital	is	measured	(which	we	might	expect	it	

won’t	be	for	several	reasons	discussed	below)	though	there	may	be	lags.	

AI’s	effects	on	total	factor	productivity	(TFP)	are	more	complex	and	the	impact	will	

depend	on	its	measurement.	If	AI	(and	its	output	elasticity)	were	to	be	measured	perfectly	

and	included	in	the	both	the	input	bundle	in	the	denominator	of	TFP	and	the	output	bundle	

in	the	numerator,	then	measured	TFP	will	accurately	reflect	true	TFP.	In	this	case,	AI	is	

treated	just	like	any	other	measurable	capital	input.	Its	effect	on	output	will	be	properly	

accounted	for	and	“removed”	by	the	TFP	input	measure,	leading	to	no	change	in	TFP.	This	

isn’t	to	say	that	there	wouldn’t	be	productive	benefits	from	diffusion	of	AI;	it	is	just	that	it	

would	be	valued	like	any	other	type	of	capital	input.	

There	are	reasons	why	economists	and	national	statistical	agencies	might	face	

measurement	problems	when	dealing	with	AI.	Some	are	instances	of	more	general	capital	

measurement	issues,	but	others	are	likely	to	be	idiosyncratic	to	AI.	We	discuss	this	next.	

	

Measuring	AI	Capital	

Regardless	of	the	effects	of	AI	and	AI-related	technologies	on	actual	output	and	

productivity,	it	is	clear	from	the	productivity	outlook	above	that	the	ways	AI’s	effects	will	

be	measured	are	dependent	on	how	well	countries’	statistics	programs	measure	AI	capital.	

The	primary	difficulty	in	AI	capital	measurement	is,	as	mentioned	above,	that	it	will	

largely	be	intangible.	This	will	present	itself	as	a	problem	for	both	AI	capital	itself	as	well	as	

its	outputs.	This	potential	issue	is	exacerbated	by	the	likelihood	that	AI	will	primarily	be	

used	as	an	input	in	making	other	capital,	including	new	types	of	software,	human	and	

organizational	capital,	rather	than	final	consumption	goods.	Human	capital	per	worker	is	

rising	throughout	the	world,	compounding	the	measurement	issue	(Jones	and	Romer,	

2010).	Moreover,	this	other	capital	will,	like	AI	itself,	be	mostly	intangible.	

Effective	use	of	AI	requires	developing	datasets,	building	firm-specific	human	

capital,	and	implementing	new	business	processes.	These	all	require	substantial	capital	
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outlays	and	maintenance.	The	tangible	counterparts	to	these	intangible	expenditures,	

including	purchases	of	computing	resources,	servers,	and	real	estate,	are	easily	measured	

in	the	standard	neo-classical	growth	accounting	model	(Solow,	1957).	On	the	other	hand,	

the	value	of	capital	goods	production	for	complementary	intangible	investments	is	difficult	

to	quantify.	Both	tangible	and	intangible	capital	stocks	generate	a	capital	service	flow	yield	

that	accrues	over	time.	Realizing	these	yields	requires	more	than	simply	renting	capital	

stock	as	well.	After	purchasing	capital	assets,	firms	incur	additional	adjustment	costs	(e.g.	

business	process	redesigns	and	installation	costs).	These	adjustment	costs	make	capital	

less	flexible	than	frictionless	rental	markets	would	imply.	Much	of	the	market	value	of	AI	

capital	in	specific	and	IT	capital	more	generally	may	be	derived	from	the	capitalized	short-

term	quasi-rents	earned	by	firms	that	have	already	reorganized	to	extract	service	flows	

from	new	investment.	

Yet	while	the	stock	of	tangible	AI	assets	is	booked	on	corporate	balance	sheets,	

expenditures	on	the	intangible	complements	and	adjustment	costs	to	AI	investment	largely	

are	not.	Without	including	the	production	of	intangible	AI	capital,	the	usual	growth	

accounting	decompositions	of	changes	in	value	added	can	misattribute	AI	intangible	capital	

deepening	to	growth	in	TFP.	As	discussed	in	Hall	(2000)	and	Yang	and	Brynjolfsson	(2001)	

this	constitutes	an	omission	of	a	potentially	important	component	of	capital	goods	

production	in	the	calculation	of	final	output.	Estimates	of	TFP	will	therefore	be	inaccurate,	

though	possibly	in	either	direction.	Nevertheless,	in	the	case	that	claims	on	the	assets	of	the	

firm	are	publicly	traded,	the	financial	market	will	properly	value	the	firm	as	the	present	

value	of	its	risk-adjusted	discounted	cash	flows.	

We	can	combine	q-theory	of	investment	with	the	neoclassical	growth	accounting	

framework	to	improve	estimates	of	TFP.	In	particular,	we	show	in	the	appendix	that	in	the	

case	that	the	shadow	price	of	AI	investment	is	close	to	the	purchase	price	of	investment,	

there	is	no	missing	growth	in	output.	But	if	the	intangible	AI	capital	stock	is	growing	faster	

than	the	accumulation	of	ordinary	capital,	then	TFP	growth	will	be	underestimated.	The	

intuition	for	this	result	is	that	in	any	given	period	t,	the	output	of	(unmeasured)	AI	capital	

stock	in	period	t+1	is	a	function	the	input	(unmeasured)	existing	AI	capital	stock	in	period	

t.	When	AI	stock	is	growing	rapidly,	the	unmeasured	outputs	will	be	greater	than	the	

unmeasured	inputs.	(Of	course,	in	steady	state	there	is	no	longer	a	mismeasurement	



28	
	

problem	as	further	investment	serves	precisely	to	replenish	depreciated	capital.	In	this	

case,	the	unmeasured	inputs	and	outputs	cancel	out.)	Furthermore,	suppose	the	relevant	

costs	needed	to	create	intangible	assets,	in	terms	of	labor	and	other	resources,	are	

measured,	but	the	resulting	increases	in	intangible	assets	are	not	measured	as	

contributions	to	output.	In	this	case,	not	only	will	total	GDP	be	undercounted	but	so	will	

productivity,	which	uses	GDP	as	its	numerator.	Thus	periods	of	rapid	intangible	capital	

accumulation	may	be	associated	with	lower	measured	productivity	growth,	even	if	true	

productivity	is	increasing.	

These	problems	may	be	particularly	stark	for	AI	capital,	as	its	accumulation	will	

almost	surely	outstrip	the	pace	of	ordinary	capital	accumulation	in	the	short-run.	AI	capital	

is	a	new	category	of	capital—new	in	economic	statistics,	certainly,	but	we	would	argue	

practically	so	as	well.	While	the	concept	of	AI	is	decades	old,	very	little	actual	AI	capital	was	

accumulated	in	prior	decades.	Thus	the	current	stock	is	close	to	zero.		

This	also	means	that	capital	quantity	indexes	that	are	computed	from	within-type	

capital	growth	might	have	problems	benchmarking	size	and	effect	of	AI	early	on.	National	

statistics	agencies	do	not	really	focus	on	measuring	capital	types	that	aren’t	already	

ubiquitous.	New	capital	categories	will	tend	to	either	be	rolled	into	existing	types,	possibly	

with	lower	inferred	marginal	products	(leading	to	an	understatement	of	the	productive	

effect	of	the	new	capital),	or	missed	altogether.	This	problem	is	akin	to	the	new	goods	

problem	in	price	indexes.	

A	related	issue	is—once	AI	is	measured	separately—how	closely	its	units	of	

measurement	will	capture	AI’s	marginal	product	relative	to	other	capital	stock.	That	is,	if	a	

dollar	of	AI	stock	has	a	marginal	product	that	is	10	percent	higher	than	the	modal	unit	of	

non-AI	capital	in	the	economy,	will	the	quantity	indexes	of	AI	reflect	this?	This	requires	

measured	relative	prices	of	AI	and	non-AI	capital	to	capture	differences	in	marginal	

product.	Measuring	levels	right	is	less	important	than	having	proportional	differences	

(whether	intertemporally	or	in	the	cross	section)	correct.	What	is	needed	in	the	end	is	that	

a	unit	of	AI	capital	twice	as	productive	as	another	should	be	twice	as	large	in	the	capital	

stock.	

It	is	worth	noting	that	these	are	all	classic	problems	in	capital	measurement	and	not	

new	to	AI.	Perhaps	these	problems	will	be	systematically	worse	for	AI,	but	this	is	not	
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obvious	ex	ante.	What	it	does	mean	is	that	economists	and	national	statistical	agencies	at	

least	have	experience	in,	if	not	quite	a	full	solution	for,	dealing	with	these	sorts	of	

limitations.	

Some	measurement	issues	are	likely	to	be	specifically	prevalent	for	AI.	One	is	the	

likelihood	that	a	substantial	part	of	the	value	of	AI	output	will	be	firm-specific.	Imagine	a	

program	that	figures	out	individual	consumers’	price	elasticities	and	matches	pricing	to	

these	elasticities.	This	has	different	value	to	different	companies	depending	on	their	

customer	bases,	and	knowledge	may	not	be	transferrable	across	firms.	The	value	also	

depends	on	companies’	abilities	to	implement	price	discrimination.	Such	limits	could	come	

from	characteristics	of	company’s	market,	like	resale	opportunities,	which	are	not	always	

under	firms’	control,	or	from	the	existence	in	the	firm	of	complementary	implementation	

assets	and/or	abilities.	Likewise,	each	firm	will	likely	have	a	different	skill	mix	that	it	seeks	

in	its	employees,	unique	needs	in	its	production	process	and	a	particular	set	of	supply	

constraints.	As	noted	by	Brynjolfsson	and	McAfee	(2017),	firm-specific	data	sets	and	

applications	of	those	data	can	differentiate	the	machine	learning	capabilities	of	one	firm	

from	another.	

	

Conclusion	

In	2017,	there	are	plenty	of	both	optimists	and	pessimists	about	technology	and	

growth.	The	optimists	tend	to	be	technologists	and	venture	capitalists,	and	many	are	

clustered	in	technology	hubs.	The	pessimists	tend	to	be	economists,	sociologists,	

statisticians	and	government	officials.	Many	of	them	are	clustered	in	major	state	and	

national	capitals.	There	is	much	less	interaction	between	the	two	groups	than	within	them,	

and	it	often	seems	as	though	they	are	talking	past	each	other.	In	this	paper,	we	argue	that	in	

an	important	a	sense,	they	are.	

When	we	talk	with	the	optimists,	we	are	convinced	that	the	recent	breakthroughs	in	

AI	and	machine	learning	are	real	and	significant.	We	also	would	argue	that	they	form	the	

core	of	a	new,	economically-important	GPT.	When	we	speak	with	the	pessimists,	we	are	

convinced	that	productivity	growth	has	slowed	down	recently	and	what	gains	there	have	

been	are	unevenly	distributed,	leaving	many	people	with	stagnating	incomes,	declining	

metrics	of	health	and	well-being,	and	good	cause	for	concern.	People	are	uncertain	about	
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the	future,	and	many	of	the	industrial	titans	that	once	dominated	the	employment	and	

market	value	leaderboard	have	fallen	on	harder	times.	

These	two	stories	are	not	contradictory.	In	fact,	any	many	ways,	they	are	consistent	

and	symptomatic	of	an	economy	in	transition.	Our	analysis	suggests	that	while	the	recent	

past	has	been	difficult,	it	is	not	destiny.	Although	it	is	always	dangerous	to	make	

predictions,	and	we	are	humble	about	our	ability	to	foretell	the	future,	our	reading	of	the	

evidence	does	provide	some	cause	for	optimism.	The	breakthroughs	of	AI	technologies	

already	demonstrated	are	not	yet	affecting	much	of	the	economy,	but	they	portend	bigger	

effects	as	they	diffuse.	More	importantly,	they	will	enable	complementary	innovations	that	

will	multiply	their	impact.	Entrepreneurs,	managers	and	end-users	will	find	powerful	new	

applications	for	machines	that	can	now	learn	how	to	recognize	objects,	understand	human	

language,	speak,	make	accurate	predictions,	solve	problems,	and	interact	with	the	world	

with	increasing	dexterity	and	mobility.	

Further	advances	in	the	core	technologies	of	machine	learning	are	likely	to	yield	

large	benefits.	However,	our	perspective	suggests	that	an	underrated	area	of	research	is	

understanding	better	the	complements	to	the	new	ML	technologies,	not	only	in	areas	of	

human	capital	and	skills,	but	also	new	processes	and	business	models.	The	intangible	

assets	associated	with	the	last	wave	of	computerization	were	about	ten	times	as	large	as	

the	direct	investments	in	computer	hardware	itself.		We	think	it	is	plausible	that	ML-

associated	intangibles	can	be	of	a	comparable	or	greater	magnitude.	Given	the	big	changes	

in	coordination	and	production	possibilities	made	possible	by	ML,	the	ways	that	we	

organized	work	and	education	in	the	past	are	unlikely	to	remain	optimal	in	the	future.		

Relatedly,	we	need	to	update	our	measurement	toolkits.	As	AI	and	its	complements	

more	rapidly	add	to	our	(intangible)	capital	stock,	the	traditional	metrics	like	GDP	and	

productivity	can	be	increasingly	misleading.		Successful	companies	don’t	need	large	

investments	in	factories	or	even	computer	hardware,	but	they	do	have	intangible	assets	

that	are	costly	to	replicate.	The	large	market	values	associated	with	companies	developing	

and/or	implementing	AI	suggest	that	investors	believe	there	is	real	value	in	those	

companies.	What’s	more,	the	effects	on	living	standards	may	be	even	larger	than	the	

benefits	that	investors	hope	to	capture,	though	it’s	also	possible,	even	likely,	that	many	

people	will	not	share	in	those	benefits.	Economists	are	well	positioned	to	contribute	to	a	
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research	agenda	of	documenting	and	understanding	the	often-intangible	changes	

associated	with	AI	and	its	broader	economic	implications.	

Realizing	the	benefits	of	AI	is	far	from	automatic.	It	will	require	effort	and	

entrepreneurship	to	develop	the	needed	complements,	and	adaptability	at	the	individual,	

organizational,	and	societal	levels	to	undertake	the	associated	restructuring.	Theory	

predicts	that	the	winners	will	be	those	with	the	lowest	adjustment	costs	and	the	as	many	of	

the	right	complements	in	place	as	possible.	This	is	partly	a	matter	of	good	fortune,	but	with	

the	right	roadmap,	it	is	also	something	for	which	they,	and	all	of	us,	can	prepare.	
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Appendix:	Derivation	of	the	Productivity	Bias	from	Unmeasured	AI	Capital	

	

Our	setup	adopts	the	approach	of	Yang	and	Brynjolfsson	(2001)	as	follows.	

Take	a	constant	returns	to	scale	production	function		

𝑌 = 𝑝𝐹 𝐾,𝑁, 𝑡      (1)	

where	Y	is	the	final	goods	output	of	the	firm,	p	is	the	price	of	final	goods	output,	K	is	the	

vector	of	capital	goods,	N	is	the	vector	of	variable	inputs	(e.g.	labor),	and	t	represents	the	

level	of	total	factor	productivity	at	time	t.	With	flexible	capital	and	input	prices	(r,	w),	we	

have	the	following,	with	g	representing	a	growth	rate:	

𝑔! =
𝑌
𝑌 =

𝑝 𝐹!𝐾 + 𝐹!𝑁 + 𝐹!
𝑌 =

𝑟𝐾
𝑌 𝑔! +

𝑤𝑁
𝑌 𝑔! + 𝑔!      (2)	

The	values	with	an	upper	dot	represent	the	total	derivative	with	respect	to	time.	

In	words,	the	growth	in	output	over	time	can	be	decomposed	into	the	growth	in	

capital	stock	multiplied	by	capital’s	share	of	output	plus	the	growth	in	flexible	input	

quantity	multiplied	by	the	expenditure	share	of	flexible	inputs	and	a	final	total	factor	

productivity	growth	term.	This	is	the	familiar	Solow	Residual.	As	mentioned	above,	it	

represents	a	kind	of	“measure	of	our	ignorance”	in	how	a	firm	converts	inputs	to	outputs,	

but	growth	in	TFP	indicates	improvement	in	productive	efficiency.	

To	incorporate	adjustment	costs,	we	modify	(1)	following	Lucas	(1967):	

𝑌 = 𝑝𝐹 𝐾,𝑁, 𝐼, 𝑡     (3)						

Now	the	production	function	incorporates	an	investment	term	I	with	market	price	z	such	

that	the	total	cost	of	investment	in	one	unit	of	capital	goods	is	(z	–	pFI).	F	is	assumed	non-

increasing	and	convex	in	I	to	represent	the	idea	that	adjustment	costs	grow	increasingly	

costly	for	larger	I.	This	helps	model	why	firms	cannot,	for	example,	instantaneously	

replicate	the	capital	stocks	of	their	competitors	without	incurring	larger	costs.	

	 We	can	relate	firm	investment	behavior	to	market	value	using	this	production	

function.20	For	the	price-taking	firm,	market	value	is	equal	to	the	sum	of	the	capitalized	

adjustment	costs.	The	firm	must	solve:	

																																								 																					
20	See	for	example	Hayashi	(1982),	Wildasin	(1984),	and	Hayashi	and	Inoue	(1991).	
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max
!,!

𝜋 𝑡 𝑢 𝑡 𝑑𝑡
!

!
= 𝑉(0) 	

where      𝜋 𝑡 =  𝑝𝐹 𝐾, 𝐼,𝑁, 𝑡 − 𝑤!𝑁 − 𝑧′𝐼	

and     
𝑑𝐾𝑖
𝑑𝑡

= 𝐼! − 𝛿!𝐾!  ∀𝑖 = 1, 2,… , 𝐽.    (4)	

That	is,	Ki	is	the	capital	stock	of	type	i	(indexes	capital	variety),	N	is	a	vector	of	flexible	

goods,	u(t)	denotes	the	discount	rate	at	time	t,	and	δi	is	the	depreciation	rate	of	capital	of	

type	i.	F	is	assumed	non-decreasing	and	concave	in	K	and	N,	and	with	homogeneity	of	

degree	one	for	F	we	get	the	solution	to	the	maximization	of	the	Hamiltonian	in	(5)	at	time	

0:	

𝐻 𝐾,𝑁, 𝐼, 𝑡 = 𝑝𝐹 𝐾,𝑁, 𝐼, 𝑡 − 𝑤!𝑁 − 𝑧!𝐼 𝑢 𝑡 + 𝜆!(𝐼! − 𝛿!𝐾𝑖)
!
!!!      (5)		

with	first	order	conditions:	
𝜕𝐻
𝜕𝜆𝑗

= 𝐾! = 𝐼! − 𝛿!𝐾!     ∀𝑗 ∈ 1,2,… , 𝐽 ,∀𝑡 ∈ [0,∞]	

𝜕𝐻
𝜕𝐾𝑗

= −𝜆! = 𝑝𝐹!!𝑢 − 𝜆!𝛿!      ∀𝑗,∀𝑡	

𝜕𝐻
𝜕𝐼𝑗

= 0 = 𝑝𝐹!! − 𝑧! 𝑢 + 𝜆!     ∀𝑗,∀𝑡	

𝜕𝐻
𝜕𝑁𝑖

= 0 = 𝑝𝐹!! − 𝑤! 𝑢     ∀𝑖 ∈ 1,2,… , 𝐿 ,∀𝑡	

𝜆 ∞ 𝐾 ∞ = 0	

leading	to	an	equation	for	the	value	of	the	firm:	

𝑉 0 =  𝜆! 0 𝐾!(0)
!

!!!

      (6)	

The	value	of	the	firm	at	t	=	0	is	the	sum	over	all	varieties	of	the	capital	stock	

quantities	multiplied	by	the	“shadow	price”	of	investment	of	the	respective	varieties.	This	

shadow	price,	representative	of	adjustment	costs	in	the	original	formulation,	corresponds	

directly	to	intangible	AI	capital	in	our	context.	Assume	that	market	prices	correctly	

represent	the	value	of	claims	on	publicly	traded	firms.	Equation	(6)	suggests	that	a	

regression	of	firm	value	on	dollar	quantities	of	asset	varieties	will	yield	a	coefficient	vector	

that	represents	the	value	of	one	unit	of	each	type	of	capital.	In	a	frictionless	efficient	
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market,	that	vector	would	be	equal	to	unity	for	all	assets.	In	the	presence	of	adjustment	

costs,	the	coefficient	is	equal	to	unity	plus	the	marginal	adjustment	cost	for	all	asset	

varieties.	This	of	course	assumes	that	all	asset	stocks	are	measured	perfectly.	

We	can	extend	this	logic	to	intangible	AI	investments	that	are	correlated	or	

complementary	to	tangible	assets	and	imperfectly	measured.	Suppose	an	AI-intensive	firm	

must	invest	in	two	assets:	data	centers	and	firm-specific	AI	specialist	training.	If	a	firm	

owns	a	measurable	quantity	of	tangible	capital	in	data	centers	and	has	invested	in	firm-

specific	training	of	AI	specialists,	the	estimated	shadow	price	coefficient	for	the	data	center	

investment	will	exceed	the	“true”	data	center	coefficient	by	the	amount	necessary	to	

represent	the	training	as	well.	The	specialist	training	is	not	capitalized	on	the	firm’s	

balance	sheet,	yet	the	financial	market	adequately	values	the	training	service	flow	if	no	

arbitrage	conditions	are	to	hold.	The	market	value	premium	over	book	value	implies	a	

value	greater	than	unity	for	Tobin’s	Q;	the	value	of	the	firm	is	higher	than	the	simple	

replacement	cost	of	its	observed	assets.	Technology	firms	have	considerably	higher	values	

of	Q,	suggesting	that	they	have	higher	levels	of	adjustment	costs,	intangible	correlate	

investments	to	the	booked	assets,	or	both.	

	

MARKET	

In	the	growth	accounting	framework,	the	value	of	final	goods	in	any	given	year	can	

be	divided	into	the	value	of	consumption	goods	and	the	value	of	capital	goods	as	follows:	

𝑝!𝐶 + 𝑧𝐼 = 𝑌 = 𝑝!𝐹 𝐾,𝑁, 𝐼 =  𝑝!𝐹!𝑁 + 𝑝!𝐹!𝐾 + 𝑝!𝐹!𝐼 = 𝑤𝑁 + 𝑟𝐾 + 𝑧 − 𝜆 𝐼     (7)	

This	is	the	growth	accounting	identity.	The	value	of	consumption	goods	plus	the	value	of	

capital	investment	is	equal	to	total	output	Y.	This,	in	turn,	is	equal	to	the	total	income	of	

flexible	inputs,	capital	rental	costs,	and	investment	(both	measured	and	unmeasured).	

If	(λ–z)I	value	of	capital	goods	production	goes	unmeasured,	then	part	of	the	

expenditure	on	capital	goods	is	missing	when	the	growth	decomposition	is	performed.	In	

the	context	of	AI,	this	means	that	much	of	the	training,	the	investment	in	implementing	

data-driven	decision	processes,	the	reorganization	costs,	and	the	incentive	designs	

necessary	to	generate	capital	service	flow	from	AI	capital	are	left	out.	
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Furthermore,	if	the	economy	is	accumulating	AI	capital	faster	than	it	accumulates	

measurable	capital,	then	TFP	will	be	underestimated.	To	see	why,	we	can	update	the	

growth	decomposition	equation	as	follows:	

𝑔! =
𝑌
𝑌 =

𝑝 𝐹!𝐾 + 𝐹!𝑁 + 𝐹!𝐼 + 𝐹!
𝑌     (8)	

following	the	first	order	conditions	for	the	Hamiltonian	above,	we	have	

𝜆! 0 = (𝑧! − 𝑝𝐹!!)						and	

𝑔! =
𝑝𝐹!𝐾
𝑌

𝐾
𝐾 +

𝑝𝐹!𝑁
𝑌

𝑁
𝑁 + 1−

𝜆
𝑧

𝑧𝐼
𝑌

𝐼
𝐼 +

𝐹!
𝐹      (9)	

	 The	growth	decomposition	now	clearly	shows	the	missing	component	of	investment	

in	the	second	to	last	term.	Because	the	growth	of	productivity	in	the	last	term	is	a	residual,	

it	will	also	subsume	the	missing	investment.		

Thus,	we	have	shown	that	in	the	case	that	the	shadow	price	of	AI	investment	is	close	

to	zero,	there	is	no	missing	growth	in	output.	But	when	there	are	extensive	unmeasured	AI	

investments	that	correlate	the	tangible	capital	goods	production,	as	is	likely	to	be	the	case,	

then	estimates	of	TFP	growth	will	be	biased	downward.		The	extent	of	this	bias	will	depend	

on	the	magnitude	of	the	unmeasured	capital.	


