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Abstract

We develop a model of firm dynamics with random search in the labor market where hiring

firms exert recruiting effort by spending resources to fill vacancies faster. Consistent with micro

evidence, fast-growing firms invest more in recruiting activities and achieve higher job-filling

rates. In equilibrium, individual recruiting decisions of hiring firms aggregate into an index

of economy-wide recruiting intensity. We use the model to study how recruiting intensity re-

sponds to aggregate shocks, and whether it can account for the dynamics of aggregate matching

efficiency around the Great Recession. Productivity and financial shocks can lead to sizable pro-

cyclical fluctuations in matching efficiency through recruiting effort. Quantitatively, the main

mechanism is that firms attain their employment targets by adjusting their recruitment effort

as labor market tightness varies. Instead, fluctuations in new-firm entry have a negligible effect

on aggregate recruiting intensity, despite their contribution to aggregate job creations.

Keywords: Aggregate Matching Efficiency, Firm Dynamics, Macroeconomic Shocks, Recruiting

Intensity, Unemployment, Vacancies.

PRELIMINARY AND INCOMPLETE – Please, do not cite without permission.

∗We thank Ricardo Lagos, Mark Gertler, Bob Hall, and Rob Shimer for helpful conversations at the early stages

of this research, and our discussants Russell Cooper, William Hawkins, Nicolas Petrosky-Nadeau and Jeremy Lise

for many useful suggestions.
‡London School of Economics and CEPR
§New York University
¶New York University, CEPR, IFS, IZA, and NBER.

1



1 Introduction

A large literature documents cyclical changes in the rate at which the US macroeconomy

matches job seekers and vacancies. Aggregate matching efficiency, measured as the residual

of an aggregate matching function that generates hires Ht from inputs of unemployed work-

ers Ut and vacancies Vt, often represents this crucial role of the labor market. Figure 1 shows

that the Great Recession provides a particularly stark episode, featuring a decline in aggregate

matching efficiency of around 60 percent.1 Our reading of the data is that this decline con-

tributed to a depressed vacancy-yield and to persistently higher unemployment following the

crisis. Hence, identifying the deep determinants aggregate matching efficiency is necessary for

a full understanding of the labor market dynamics during that period.

The literature has offered a number of explanations for the decline in aggregate match-

ing efficiency over the recession. These have emphasized a shift in the composition of

the pool of unemployed workers (Hall and Schulhofer-Wohl, 2013), a rise in occupational

mismatch (Şahin, Song, Topa, and Violante, 2014), and a decline in worker search effort

(Mukoyama, Patterson, and Şahin, 2013).

An alternative view is that fluctuations in the effort with which firms try to fill their open

vacancies affect aggregate matching efficiency. When aggregated over firms, we call this factor

aggregate recruiting intensity. The goal of this paper is to investigate whether this is an important

source of the dynamics of aggregate matching efficiency, and to study the economic forces that

shape how it responds to macroeconomic shocks.

Why study aggregate recruiting intensity? Our main motivation is the empirical analysis of

recruitment intensity at the firm level in Davis, Faberman, and Haltiwanger (2013) (henceforth

DFH)—the first paper to rigorously use JOLTS micro-data to examine what factors are corre-

lated with vacancy-yields at the firm-level. The robust finding of DFH is that firms that grow

faster fill their vacancies at a faster rate.2 These results imply an obvious logic for how macroe-

1In this figure, aggregate matching efficiency is the residual εt of Ht = eε t U1−α
t Vα

t , where we set α = 0.50 and
hires are measured as hires from unemployment. At this point this figure is only illustrative, and we are aware
this may not be the most precise measure of match efficiency due to a number of factors, including: (i) vacancies
are matched also to workers that are employed, (ii) some workers who are out of the labor force also search for
jobs, (iii) many hires occur from unemployed workers on temporary layoffs and, as such, do not require frictional
search on either side (Fujita and Moscarini, 2013).

2The numerous exercises in DFH show that this is a robust finding, not in any way spurious. For example:
by definition, a firm that luckily fills a large amount of its vacancies will have both a higher vacancy yield and a

2



Figure 1: Dynamics of labor market variables in Great Recession (2008:01 - 2014:01)
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Notes (i) Vacancies Vt, and hires Ht (used to compute vacancy-yield Ht/Vt) taken from monthly JOLTS data. (ii) Unemployment Ut is from the

BLS. (iii) The job finding rate is Ht/Ut. (iv) Aggregate matching efficiency is equal to Ht/
(

Vα
t U1−α

t

)

with α = 0.5. (v) Given the availability

of JOLTS data the first five series are measured from January 2001 to January 2014, expressed in logs and then HP-filtered. We plot level
differences of these series from January 2008. (vi) (Firm) entry is taken from Census Business Dynamics Statistics and computed annually as the
number of firms aged less than or equal to one year old at the time of survey and is available from 1977 to 2007. To this we fit and remove a
linear trend. We plot log differences of this series from 2007.

conomic shocks affect aggregate recruiting intensity—and, thus, aggregate matching efficiency.

If an aggregate negative shock depresses firm growth rates, aggregate recruiting intensity de-

clines because hiring firms use lower recruitment effort to fill their posted vacancies.

This mechanism seems potentially consistent with the findings of several recent pa-

pers that document strong cross-sectional and time variation in firm growth rates.

Haltiwanger, Jarmin, and Miranda (2010) find that firm growth depends more on firm age than

size. Siemer (2013) and Chodorow-Reich (2014) find that young firm growth is particularly sen-

sitive to financial shocks. Moreover, Bloom (2009) finds that dispersion in firm growth rates is

strongly counter-cyclical, a fact attributed to counter-cyclical uncertainty shocks. Thus, in prin-

ciple the shocks most-regularly studied by macroeconomists—i.e., productivity, financial, and

uncertainty shocks—may impact aggregate recruiting intensity by shifting the firm growth rate

distribution. For example, as Figure 1 shows, the rate at which firms entered the economy fell

higher growth rate. Or one may think that the result is driven by fixed heterogeneity in vacancy-filling rates across
sectors and that this is correlated with growth rates and vacancy yields. The authors show that these, as well as
several other explanations, do not drive their main result.
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dramatically during the financial crisis. What is the impact of fewer young, fast-growing firms

on aggregate recruiting intensity?

Our approach in this paper is to develop a model of firm dynamics in frictional labor mar-

kets which we use to examine the effect of these different macroeconomic shocks on aggregate

recruiting intensity. Importantly the model is consistent with the facts that are salient to a

discussion of the interaction between macroeconomic shocks, firm level growth rates and re-

cruiting activities: (i) it matches the DFH finding that increases in firm hiring rates are realized

chiefly through increases in vacancy yields rather than higher vacancy rates; (ii) it allows for

credit constraints that slow the expansion of young firms; and (iii) is set in general equilibrium,

since the composition and recruiting behavior of hiring firms depend on labor market tightness,

which fluctuates strongly in the data (Shimer, 2005).

Our model is a version of the canonical Diamond-Mortensen-Pissarides random match-

ing framework with decreasing returns in production and non-convex hiring costs

(Cooper, Haltiwanger, and Willis, 2007; Elsby and Michaels, 2013; Acemoglu and Hawkins,

2014). The model simultaneously features a realistic firm life-cycle, as its classic competitive

setting counterparts (Jovanovic, 1982; Hopenhayn, 1992), and a frictional labor market with

slack on both demand and supply sides. We augment this environment in three dimensions.

First, we allow for endogenous entry and exit of firms. This is a key element for understand-

ing the effects of macroeconomic shocks on the growth rates of hiring firms, since it is well

documented that young firms account for a disproportionately large fraction of job creation,

grow faster than old firms (Haltiwanger, Jarmin, and Miranda, 2010), and are more sensitive to

financial conditions (Siemer, 2013).

Second, we introduce a recruiting intensity decision at the firm level: besides the maximum

number of open positions that they are willing to fill in each period, hiring firms choose the

amount of resources that they devote to recruitment activities. This recruiting intensity gen-

erates heterogeneous job filling rates across firms. In turn, the sum of all individual firms’

recruitment efforts, weighted by their vacancy share, aggregates to the economy’s measured

matching efficiency.

Third, we introduce financial frictions: firms face a nonnegativity constraint on dividends

and a constraint on borrowing that restricts leverage to a multiple of collateralizable firm assets
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as in Evans and Jovanovic (1989).3

We parameterize our model to match a rich set of aggregate labor market statistics and firm-

level cross-sectional moments. Our analyses of the steady state properties of the model show

that it produces firm life-cycles broadly consistent with those in the data: in particular, the

“up-or-out” dynamics of young firms that Haltiwanger (2011b) shows to be important for the

distribution of growth rates, and for the leverage of young firms. Moreover, the model’s age

and size distributions of establishments and of employment are in line with the empirical ones.

The success in matching these facts suggests that our model is well-suited for a quantitative

study of the effect of different macroeconomic shocks on aggregate recruitment intensity. Thus,

we proceed to analyse the effect of productivity and financial shocks on aggregate recruitment

intensity. We find that both shocks generate fluctuations in aggregate recruitment intensity

that account for approximately 50 percent of the deviation in aggregate matching efficiency

observed in the Great Recession. Moreover, financial shocks generate patterns of firm entry

and leverage that are consistent with those observed during the 2008 recession. Productivity

shocks do not.

Surprisingly, we find that the effects of the decline in firm entry (and, thus, of the shifts in the

distribution of firm growth rates) on aggregate recruiting intensity is quantitatively small. Two

counteracting forces dampen the drop in average growth rates after negative shocks: 1) hiring

firms are selected, thus relatively more productive than in steady-state; and 2) the decline in

market tightness allows productive firms to grow faster than in steady-state. Instead, aggregate

recruitment intensity declines mainly because the number of available job seekers per vacancy

increases, making it easier for firms to attain their recruitment targets without spending on

recruitment costs.

To the best of our knowledge, Kaas and Kircher (2015) is the only other paper that focuses

on heterogeneous job filling rates across firms. They consider a directed search environment in

which different firms post different wages that attract jobseekers at differential rates, whereas

we study how firms’ costly recruiting activities determine differential job filling rates.4 More-

over, while they consider the role of aggregate productivity shocks—as we do, as well—we

3Other papers that consider financial frictions in a model with search frictions in labor markets include
Wasmer and Weil (2004) and Petrosky-Nadeau and Wasmer (2013).

4In Section 3, we use a hiring cost function that, once firms choose their optimal recruitment effort, is identical
to the labor adjustment cost function in Kaas and Kircher (2015). We have reached this conclusion independently.
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further analyse financial shocks, showing that the dynamics of macroeconomic variable dur-

ing the Great Recessions are consistent with financial, rather than productivity, shocks. Finally,

while in both models aggregate recruitment intensity drops after an aggregate negative shock,

the reasons fundamentally differ. Kass and Kircher argue that the drop depends on recruit-

ment intensity being a concave function of firms’ hiring policies, whose dispersion across firms

increases after a negative shock. Our rich decomposition of the contributions to aggregate re-

cruitment intensity allows us to claim that the main reason for the drop is that the increase in

the number of available job seekers per vacancy allows firms to reduce their recruitment effort.

In Section 5 we closely discuss these differences.

The rest of the paper is organized as follows. Section 2 more precisely relates the above

discussion of firm level recruiting intensity to aggregate match efficiency. Section 3 outlines

the model economy and the stationary equilibrium. Section 4 describes the parameterization of

the model, and highlights some cross-sectional features of the economy. Section 5 describes the

dynamic response of the economy to various shocks and outlines the main results of the paper.

Section 6 proposes a novel index of aggregate recruitment intensity based on our model, and

illustrates its behavior over time. Section 7 concludes.

2 Recruiting Intensity and Aggregate Matching Efficiency

Starting from hiring decisions at the firm level we briefly describe how we can aggregate to an

economy-wide matching function with an efficiency factor that has the interpretation of average

recruitment intensity. This derivation follows DFH.

Any given hiring firm i chooses vit, the maximum number of open positions, ready to be

staffed, and costly to create, as well as eit, an indicator of recruiting intensity. Let v∗it = eitvit be

the number of effective vacancies in firm i. Integrating over all firms we obtain:

V∗
t =

ˆ

eitvitdi, (1)

the aggregate number of effective vacancies. Under out maintained assumption of a CRS Cobb-

6



Douglas matching function, aggregate hires equal:

Ht = (V∗
t )

α U1−α
t = ΦtV

α
t U1−α

t , with Φt =

(
V∗

t

Vt

)α

=

[
ˆ

eit

(
vit

Vt

)

di

]α

, (2)

which corresponds to DFH’s generalized matching function. Therefore, measured aggregate

matching efficiency Φt is an average of firm-level recruitment intensity weighted by individual

vacancy shares, raised to the power of α, the economy-wide elasticity of hires to vacancies.

Finally, consistency requires that each firm i faces hiring frictions, implying that

hit = q (θ∗t ) eitvit, (3)

where θ∗t = V∗
t /Ut is effective market tightness.5 Thus, q (θ∗t ) = Ht/V∗

t = (θ∗t )
α−1 is the

aggregate job filling rate per effective vacancy, constant across all firms at date t.

3 Model

Our starting point is an equilibrium random-matching model of the labor market in which

firms are heterogeneous in productivity and size, and the hiring process occurs through an

aggregate matching function. As discussed in the Introduction, we augment this model in three

dimensions—all of which are essential to develop a framework that can address our question.

First, our framework features endogenous firm entry and exit. Second, beyond the number

of positions to open (vacancies), hiring firms optimally choose their recruiting intensity: by

spending more on recruitment resources, they can increase the rate at which they meet job

seekers. Third, once in existence, firms face two financial frictions: (i) they do not have access

to equity markets, (ii) they can borrow, but debt must be collateralized.

In what follows, we present the economic environment in detail, outline the model tim-

ing, then describe the firm, bank, and household problems. Finally, we define a stationary

equilibrium for the aggregate economy. Since our experiments will consist of perfect foresight

transition dynamics, we do not make reference to aggregate state variables in agents’ problems.

We use a recursive formulation throughout.

5In the paper, we are faithful to the notation in this literature and denote measured labor market tightness Vt/Ut

as θt.
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3.1 Environment

Time is discrete and the horizon is infinite. Three types of agents populate the economy: firms,

banks, and households.

Firms. There is an exogenous measure λ0 of potential entrants each period, and an endogenous

measure λ of incumbent firms. Firms are heterogeneous in their productivity z ∈ Z, stochastic

and i.i.d. across all firms, and operate a decreasing-returns-to-scale (DRS) production technol-

ogy y(z, n′ , k) that uses inputs of labor n′ ∈ N and capital k ∈ K. The output of production is a

homogeneous final good, whose competitive price is the numeraire of the economy.

All potential entrants receive an initial equity injection from households equal to a0. They

then draw a value of z from the initial distribution Γ0 (z) and, conditional on this draw, decide

whether to enter and become an incumbent by paying the set-up cost χ0. Those that do not

enter return the initial equity to the households. This is the only time when firms can obtain

funds directly from households—throughout the rest of their lifecycle they must rely on the

debt issuance.

Incumbents can exit exogenously or endogenously. With probability ζ, a destruction shock

hits an incumbent firm, forcing it to exit. Surviving firms observe their new value of z, drawn

from the conditional distribution Γ (dz′, z), and choose whether to exit or to continue produc-

tion. Under either exogenous or endogenous exit the firm pays out its positive net-worth a to

households. Those incumbents that decide to stay in the industry pay a per-period operating

cost χ and then choose levels of inputs: labor and capital.

The labor decision involves either firing some existing employees or hiring new workers.

Firing is frictionless, but hiring is not: a hiring firm chooses both vacancies v and recruitment

effort e with associated hiring cost C(e, v, n), which also depends on initial employment. Given

(e, v), the individual hiring function (3) determines current period employment n′ used in pro-

duction. To simplify the wage setting, we assume firms make take-it-or-leave it offers to work-

ers, so the wage rate equals ω, the individual flow value from non-employment.

The capital decision involves borrowing capital from financial intermediaries (banks) in in-

traperiod loans. Due to imperfect contractual enforcement frictions, firms can appropriate a

fraction 1/ϕ of the capital received by banks, with ϕ > 1. To pre-empt this behavior, a firm

renting k units of capital is required to deposit k/ϕ units of their net worth with the bank. This
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Figure 2: Timeline of the model

guarantees that, ex-post, the firm does not have an incentive to abscond with the capital. Thus,

a firm with current net worth a faces a collateral constraint k ≤ ϕa.

Banks. The banking sector is perfectly competitive. Banks receive household deposits, freely

transform this into capital, and rent capital to firms. The one-period contract with households

pays a risk-free interest rate of r. Capital depreciates at rate δ in production, and so the price of

capital charged by banks to firms is (r + δ).

Households. We envision a representative household with L̄ family members, U of which

are unemployed. The representative household is risk-neutral with discount factor β ∈ (0, 1).

The household trades shares M of a mutual fund comprised of all firms in the economy and

makes bank deposits T. It earns interest r on deposits, the total wage bill that firms pay to the

employed family members, and D dividends per share held in the mutual fund. Moreover,

unemployed workers produce ω units of the final good at home.

Before describing the firm’s problem in detail, we outline the precise timing of the model,

summarized in Figure 2. Within a period, the events unfold as follows: (i) realization of the

productivity and firm destruction shocks, and exogenous exit of incumbents; (ii) exit decision

by incumbent firms, and entry decision by potential entrants; (iii) borrowing decision by in-

cumbents; (iv) hiring/firing decisions and labor market matching; (v) production and revenues

from sales; (vi) payment of wage bill, costs of capital, hiring and operation expenses; dividend

payment/saving decision by incumbent firms, and household consumption/saving decisions.

To be consistent with our transition dynamics experiments in Section 5, it is useful to note

that we record aggregate state variables—the measures of incumbent firms λ and unemploy-

ment U—at the beginning of the period, between stages (i) and (ii). Moreover, even though the

labor market opens after firms exit or fire, workers who separate in the current period can only
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start searching in the next one.

3.2 Firm Problem

We first consider the entry and exit decisions, and then analyze the problem of incumbent firms.

Entry. A potential entrant who has drawn z from Γ0 (z) solves the following problem

max
{

a0 , V
i (n0, a0 − χ0, z)

}

, (4)

where V
i is the value of an incumbent firm, a function of (n, a, z). The firm enters if the value

to the risk-neutral shareholder of becoming an incumbent with one employee (n0 = 1), initial

net worth a0 − χ0—equal to the household equity injection a0 minus the entry cost χ0—and

productivity z exceeds the value of returning a0 to the household. Let i(z) ∈ {0, 1} denote the

entry decision rule, which depends only on the initial productivity draw, since all the potential

entrants share the same entry cost, the same initial employment and received the same ex-ante

equity injection. As V
i is increasing in z, there is an endogenous productivity cut-off z∗ such

that for all z ≥ z∗ the firm chooses to enter. Thus, the measure of entrants is

λe = λ0

ˆ

Z
i(z)dΓ0 = λ0 [1 − Γ0(z

∗)] . (5)

Exit. Firms exit exogenously with probability ζ. Conditional on survival the firm then chooses

to continue or exit. An exiting firm pays out its net worth a to share-holders. The firm’s expected

value V before the destruction shock equals

V(n, a, z) = ζa + (1 − ζ)max
{

V
i(n, a, z), a

}

. (6)

We denote by x (n, a, z) ∈ {0, 1} the exit decision.

Hire or Fire. An incumbent firm i with employment, assets, and productivity equal to the

triplet (n, a, z) chooses whether to hire or fire workers to solve

V
i(n, a, z) = max

{

V
h(n, a, z), V

f (n, a, z)
}

, (7)
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where the two value functions associated with firing ( f ) and hiring (h) are described below.

The Firing Firm. A firm that has chosen to fire some of its workers (or not to adjust its work

force) solves

V
f (n, a, z) = max

n′,k,d
d + β

ˆ

Z
V(n′, a′, z′)Γ(dz′ , z) (8)

s.t.

n′ ≤ n,

d + a′ = y(n′, k, z) + (1 + r)a − ωn′ − (r + δ)k − χ,

k ≤ ϕa,

d ≥ 0.

Firms maximize shareholder value and, because of risk-neutrality, use β as their discount factor.

Dividends d are given by revenues from production and interest on savings net of the wage

bill, rental and operating costs, and change in net-worth a′ − a. The last two equations in (8)

reiterate that firms face a collateral constraint on the maximum amount of capital they can rent

and a non-negativity constraint on dividends.

To help understand the budget constraint and preface how we take the model to the data,

define firm debt by the identity b ≡ k − a, with the understanding that b < 0 denotes savings.

Making this substitution reveals an alternative formulation of the model in which the firm owns

its capital and faces a constraint on leverage. With state variable (k, b, n, z) the firm faces the

following budget and collateral constraints

d +
[
k′ − (1 − δ)k

]

︸ ︷︷ ︸

Investment

=
[
y(n′, k, z)− ωn′ − χ − rb

]

︸ ︷︷ ︸

Operating Profit

+
[
b′ − b

]

︸ ︷︷ ︸

∆ Borrowing

,

b/k ≤ (ϕ − 1)/ϕ.

This makes clear that the firm can fund equity payouts and investment in capital through either

operating profits or expanding borrowing/reducing saving.

The Hiring Firm. The hiring firm additionally chooses the number of vacancies to post v ∈ R+

and recruitment effort e ∈ R+, understanding that, by a law of large numbers, its new hires
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n′ − n equal the firm’s job-filling rate qe of each of its vacancies times the number of vacancies

v created: n′ − n = q(θ∗)ev. Note that the individual job-filling rate depends on the aggregate

meeting rate q, which is determined in equilibrium and taken as given by the firm, as well as

its recruiting effort e. The firm faces a variable cost function C(e, v, n), increasing and convex in

e and v.

Note that a firm’s continuation value depends on n′, not on the mix of recruiting intensity

e and vacant positions v that generates it. As a result, one can split the problem of the hiring

firm in two stages. First, the choice of n′, k and d. Second, given n′, the choice of the optimal

combination of inputs (e, v). The latter reduces to a static cost-minimization problem:

C∗ (n, n′) = min
e,v

C(e, v, n) (9)

s.t. e ≥ 0, v ≥ 0, n′ − n = q(θ∗)ev.

yielding the lowest cost combination e (n, n′) and v (n, n′) that delivers h = n′ − n hires to a

firm of size n, and implied cost function C∗ (n, n′).

The remaining choices of n′, k and d requires solving the dynamic problem

V
h(n, a, z) = max

n′,k,d
d + β

ˆ

Z
V(n′, a′, z′)Γ(dz′ , z) (10)

s.t.

n′
> n,

d + a′ = y(n′ , k, z) + (1 + r)a − ωn′ − (r + δ)k − χ − C∗
(
n, n′

)
,

k ≤ ϕa,

d ≥ 0.

The solution of this problem includes the decision rule n′ (n, a, z). Using this function in the

solution of (9), we obtain decision rules e (n, a, z) and v (n, a, z) for recruitment effort and va-

cancies in terms of firm state variables.

Given the centrality of the hiring cost function C (e, v, n) to our analysis, we now discuss its
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specification. In what follows, we choose the functional form

C (e, v, n) =

[
κ1

γ1
eγ1 +

κ2

γ2 + 1

( v

n

)γ2
]

v, (11)

with γ1 ≥ 1 and γ2 ≥ 0 being necessary conditions for convexity of the maximization prob-

lem (9).6 This cost function implies that the average cost of a vacancy, C/v, has two separate

components. The first is increasing and convex in recruiting intensity per vacancy e. The idea

is that for any given open position, the firm can choose to spend resources on recruitment ac-

tivities to make the position more visible or the firm more attractive as a potential employer,

to assess more candidates per unit of time, or to better screen them, but all such activities are

increasingly costly on a per-vacancy basis. The second component is increasing and convex in

the vacancy rate, and captures the fact that expanding productive capacity is costly in relative

terms: the implicit presumption is that, for example, creating 10 new positions involves a more

expensive reorganization of production in a firm with 10 employees than in a firm with 1000

employees.

In Appendix A we derive several results for the static hiring problem of the firm (9) under

this cost function and derive the exact expression for C∗ (n, n′) used in the dynamic problem

(10). We show that, by combining first-order conditions, we obtain the optimal choice of e

e
(
n, n′

)
=

[
κ2

κ1

(
γ1

γ1 − 1

)] 1
γ1+γ2

q (θ∗)
−

γ2
γ1+γ2

(
n′ − n

n

) γ2
γ1+γ2

, (12)

and, hence, the firm-level job filling rate f (n, n′) ≡ q (θ∗) e (n, n′). Equation (12) demonstrates

that the model implies a log-linear relation between the job filling rate and employment growth

at the firm level, with elasticity γ2/(γ1 + γ2). This is the key empirical finding of DFH, who

estimated this elasticity to be 0.82. In fact, one could interpret our functional choice for C in

equation (11) as a “reverse-engineering” strategy in order to obtain, from first principles, the

empirical cross-sectional relation between firm-level job-filling rate and firm-level hiring rate

uncovered by DFH. Put differently, micro data sharply discipline the recruiting cost function of

the model.

6In the limiting case γ1 = 1, γ2 = 0, the model collapses to the standard matching model without recruiting
intensity margin: the optimal effort choice is 1 and the job filling rate is equal across all firms.
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Figure 3: Cross-sectional relationships between monthly employment growth and the the va-
cancy rate and the job filling rate. Data from DFH online supplemental materials.
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A second empirical finding of DFH is that the firm-level hiring technology h = g(q, v) is

constant-returns-to-scale in v, a feature we have also included in our individual hiring func-

tion. In our implementation, as shown in (12), these two findings imply a specific log-linear

relationship between the job-filling rate and q.

Appendix A also shows that, once (11) includes the optimal choice of e, C is equivalent to

the hiring cost function assumed by Kaas and Kircher (2015).

Why does firm optimality imply that the job filling rate increases with the growth rate with

elasticity γ2/(γ1 + γ2)? For two reasons. First, recruiting intensity and the vacancy rate (v/n)

are complements in the production of the hires per employee (n′ − n) /n, the firm’s growth

rate—see the last equation in (9). Thus, a firm that wants to grow a lot will optimally create

more positions and, at the same time, spend more in recruiting effort. Second, the stronger the

convexity of C in the vacancy rate (γ2), relative to its degree of convexity in effort (γ1), the more

an expanding firm finds it optimal to substitute away from vacancies into recruiting intensity

to realize its target growth rate. In the special case when γ2 = 0, all the adjustment occurs

through vacancies and recruiting effort is irresponsive to the growth rate and to macroeconomic

conditions, as in the canonical model of Pissarides (2000).

Figure 3 plots the cross-sectional relationship between the vacancy rate and employment

growth (panel A) and the job filling rate and employment growth (panel B) in the model and

14



in the DFH data, with the elasticity of the job filling rate to firm’s growth γ2/(γ1 + γ2) = 0.82.7

Since we assume that the individual hiring function is linear in vacancies, the elasticity of the

vacancy rate to firm’s growth equals γ1/(γ1 + γ2) = 0.18.

3.3 Household Problem

The representative household solves

W(U, T, M) = max
T′,M′,C>0

C + βW(U′ , T′, X′) (13)

s.t.

C + Q̄T′ + PM′ = ωL̄ + (D + P)M + T,

U′ = U − H(θ∗) + F(θ∗),

where C denotes household consumption; T are bank deposits; M are shares of the mutual

fund composed of all firms in the economy, with the aggregate number of shares normalized to

one; L̄ denotes the number of household members; and U denotes the number of unemployed

members. The share price is P and owning shares entitles the household to dividends D, the

sum of all firm dividends.8 The total wage bill is the integral over all wage payments from

firms, while workers that are idle this period and begin next period as unemployed job seekers

produce ω units of the final good via home production. Unemployment evolves due to masses

of hires H(θ∗) and separations of mass F(θ∗), which the household takes as given and we

characterize later.

From the first-order conditions for deposits and share holdings, we obtain Q̄ = β and P =

β (P + D) which imply a constant return of r = β−1 − 1 on both deposits and shares and,

thus, the household is indifferent over portfolios. Since the household is risk neutral, it is also

indifferent over the timing of consumption.

7In Figure 3, the model implies zero hires for firms with negative growth rates, whereas in the data time aggre-
gation leads to positive vacancy rates and vacancy yields also for those firms.

8Households consider the initial equity injections into start-ups as negative dividends.
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3.4 Stationary Equilibrium and Aggregation

Let ΣN , ΣA, and ΣZ be the Borel sigma algebras over N and A, and Z. The state space for

an incumbent firm is S = N × A × Z, and we denote with s one of its points (n, a, z). Let ΣS

be the sigma algebra on the state space, with typical set S = N ×A×Z , and (S, ΣS) be the

corresponding measurable space. Denote with λ : ΣS → [0, ∞) the stationary distribution of

incumbent firms at the beginning of the period, following the draw of firm level productivity,

before the exogenous exit shock.

To simplify the exposition of the equilibrium, it is convenient to use s ≡ (n, a, z) and s0 ≡

(n0, a0 − χ0, z) as the argument for incumbents’ and entrants’ decision rules.

A stationary recursive competitive equilibrium is a collection of firms’ decision rules

{i (z) , x (s) , n′ (s) , e (s) , v (s) , a′ (s) , d (s) , k (s)}, value functions
{

V, V
i, V

f , V
h
}

, a measure of

entrants λe, share price P and aggregate dividends D, wage ω, a distribution of firms λ, and

a value for effective labor-market tightness θ∗ such that: (i) the decision rules solve the firms

problems (4)-(10),
{

V, V
i, V

f , V
h
}

are the associated value functions, and λe is the mass of

entrants implied by (5); (ii) the market for shares clears at M = 1 with share price

P =

ˆ

S
V (s) dλ + λ0

ˆ

Z
i (z)V

i (s0) dΓ0

and aggregate dividends

D = ζ

ˆ

S
adλ + (1 − ζ)

ˆ

S
{[1 − x(s)] d (s) + x (s) a} dλ − λ0

ˆ

Z
i (z) a0dΓ0;

(iii) the stationary distribution λ is the fixed point of the recursion:

λ(N ×A×Z) = (1 − ζ)

ˆ

S
[1 − x(s)] 1{n′(s)∈N}1{a′(s)∈A}Γ(Z , z)dλ (14)

+λ0

ˆ

Z
i (z) 1{n′(s0)∈N}1{a′(s0)∈A}Γ(Z , z)dΓ0 ,

where the first term refers to existing incumbents and the second to new entrants; (iv) effective

market tightness θ∗ is determined by the balanced flow condition

L̄ − N(θ∗) =
F (θ∗)− λen0

p (θ∗)
, (15)
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where N(θ∗) is aggregate employment

N (θ∗) = (1 − ζ)

ˆ

S
[1 − x(s)]n′(s)dλ + λ0

ˆ

Z
i(z)n′(s0)dΓ0, (16)

F(θ∗) are aggregate separations

F (θ∗) = ζ

ˆ

S
ndλ + (1 − ζ)

ˆ

S
x (s) ndλ + (1 − ζ)

ˆ

S
[1 − x (s)]

(
n − n′(s)

)−
dλ, (17)

which include all employment losses from firms exiting exogenously and endogenously, plus

all the workers fired by shrinking firms, which we have denoted by (n − n′ (s))−.9 In the three

equations above, the dependence of N and F on θ∗ comes through the decision rules and the

stationary distribution, even though, for notational ease, we have omitted θ∗ as their explicit

argument.

The left-hand side of (15) is the definition of unemployment—labor force minus

employment—whereas the right-hand side is the steady-state Beveridge curve, i.e., the law

of motion for unemployment in steady state:

U′ = U − p (θ∗)U + F (θ∗)− λe(θ
∗)n0. (18)

Exactly as in Elsby and Michaels (2013), the two sides of (15) are independent equations de-

termining the same variable—unemployment—and, combined, they yield equilibrium market

tightness θ∗.10 Note that equations (15) and (18) account for the fact that every new firm enters

with n0 workers hired ‘outside’ the frictional labor market (e.g., the entrepreneurs).

Clearly, once θ∗ is determined, so is U from either side of (15) and, therefore, V∗. Finally,

we note that measured aggregate matching efficiency, in equilibrium, is Φ = (V∗/V)α, where

9Entrant firms never fire, as they enter with the lowest value on the support for N, n0.
10Our computation showed that, typically, N (θ∗) is decreasing in its argument and the right-hand side of (15)

is always positive and decreasing. Thus, the crossing point of left- and right-hand side is unique, when it exists.
However, an equilibrium may not exist. For example, for very low hiring costs, N(θ∗) may be greater than L̄.
Conversely, for large enough operating or hiring costs, no firms will enter the economy. In this case, there is no
equilibrium with market production (albeit there is always some home-production in the economy).
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Table 1: Externally set parameter values

Parameter Value Target

Discount factor (monthly) β 0.9967 Ann. risk-free rate = 4%
Mass of potential entrants λ0 0.02 Meas. of incumbents = 1
Size of labor force L̄ 24.6 Average firm size = 23
Elasticity of matching function wrt Vt α 0.5 JOLTS

measured and effective vacancies are respectively

V = (1 − ζ)

ˆ

S
[1 − x (s)] v (s) dλ + λ0

ˆ

Z
i (z) v (s0) dΓ0,

V∗ = (1 − ζ)

ˆ

S
[1 − x (s)] e (s) v (s) dλ + λ0

ˆ

Z
i (z) e (s0) v (s0) dΓ0.

4 Parameterization

4.1 Externally Calibrated

We begin from the subset of parameters that are calibrated externally. The model period is

one month. We set β to replicate an annualized risk-free rate of 4%. Since the measure of

potential entrants λ0 scales λ—see equation (14)—we choose λ0 to normalize the total measure

of incumbent firms to one. We normalize the size of the labor force L̄ so that, given a measure

one of firms, under our target unemployment rate of 7 percent, the average firm size will be

23 consistent with Business Dynamics Statistics (BDS) data over the period 2001-2007.11 In line

with empirical studies, we set α, the elasticity of aggregate hires to aggregate vacancies in the

matching function, to 0.5. Table 1 summarizes these parameter values.

4.2 Internally Calibrated

Table 2 lists the remaining 19 parameters of the model that are set by minimizing the dis-

tance between an equal number of empirical moments and their equilibrium counterparts in

11The unemployment rate is u = L̄/N(θ∗) − 1, and with a unit mass of firms the average firm size is simply
N(θ∗). Hence given u = 0.075, L̄ determines average firm size.
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Table 2: Parameter values estimated internally

Parameter Value Target Model Data

Flow of home production ω 1.000 Monthly separ. rate 0.033 0.030
Scaling of match. funct. Φ̄ 0.208 Monthly job finding rate 0.411 0.400
Prod. weight on labor ν 0.804 Labor share 0.627 0.640

Midpoint DRS in prod. σM 0.800 Employment share n: 0-49 0.294 0.306
High-Low spread in DRS ∆σ 0.094 Employment share n: 500+ 0.430 0.470
Mass - Low DRS µL 0.826 Firm share n: 0-49 0.955 0.956
Mass - High DRS µH 0.032 Firm share n: 500+ 0.004 0.004

Persistence of z shocks ρz 0.992 Std. dev ann emp growth 0.440 0.420
Std. dev. of z shocks ϑz 0.052 Mean Q1 emp / Mean Q4 emp 75.161 76.000

Mean z0 ∼ Exp(z̄−1
0 ) z̄0 0.390 ∆ log z: Young vs. Mature -0.246 -0.353

Cost elasticity wrt e γ1 1.114 Elasticity of vac yield wrt g 0.814 0.820
Cost elasticity wrt v γ2 4.599 Ratio vac yield: <50/>50 1.136 1.440
Cost shifter wrt e κ1 0.101 Hiring cost / monthly wage 0.757 0.600
Cost shifter wrt v κ2 5.000 Vacancy share n < 50 0.287 0.340

Exogenous exit probability ζ 0.006 Survive ≥ 5 years 0.497 0.500
Entry cost χ0 9.354 Annual entry rate 0.099 0.110
Operating cost χ 0.035 Fraction of JD by exit 0.210 0.340

Initial wealth a0 10.000 One year old Debt to Output 1.394 1.250
Collateral constraint ϕ 10.210 Aggregate debt-to-assets 0.276 0.330

the model.12 Table 2 lists the targeted moments, their empirical values, and their simulated

values from the model. Even though every targeted moment is determined simultaneously by

all parameters, in what follows we discuss each of them in relation to the parameter for which,

intuitively, that moment yields the most identification power.

We set the flow of home production of the unemployed ω to replicate a monthly separation

rate of 0.03. We choose the shift parameter of the matching function (a normalization of the

value of Φ in steady state) in order to pin down a monthly job finding rate of 0.40. Together,

these two moments yield a steady-state unemployment rate of 0.07.

12Specifically, the vector of parameters Ψ is chosen to minimize the minimum-distance-estimator criterion func-
tion

f (Ψ) = (mdata − mmodel(Ψ))′ W (mdata − mmodel(Ψ))

where mdata and mmodel(Ψ) are the vectors of moments in the data and model, and W = diag
(
1/m2

data

)
is a

diagonal weighting matrix.
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We assume the revenue function y (z, n′, k) = z
[
(n′)νk1−ν

]σ
and introduce a small degree

of permanent heterogeneity in the parameter σ.13 Specifically we consider a three-point distri-

bution with support {σL, σM, σH}—symmetric about σM—leaving four parameters to choose:

(i) the value of σM; (ii) the spread ∆σ ≡ (σH − σL); and (iii)-(iv) the weights on the low and

high DRS firms µL, µH. This allows the model to match the firm size distribution in the same

spirit as the use of permanent heterogeneity in productivity in the quantitative applications of

Elsby and Michaels (2013) and Kaas and Kircher (2015). As noted by Sedlacek and Sterk (2014)

the assumption of heterogeneity in σ is useful in a model of entry and exit since it can gener-

ate old, small firms. The values of these four parameters allow the model to match the BDS

statistics on employment and establishment shares of firms of size 0-49 and 500+.14

Firm productivity z follows an AR(1) process in logs: log z′ = ρz log z + ε, with ε ∼

N (−ϑ2
z /2, ϑz). We calibrate ρz and ϑz to match two measures of firm dispersion, one

in employment growth and one in employment levels: the standard deviation of annual

employment growth for continuing establishments in the Longitudinal Business Database

(Elsby and Michaels, 2013), and the ratio of the mean size of fourth to first quartile of the firm

distribution (Haltiwanger, 2011a).15

The initial productivity distribution for entrants Γ0 is Exponential, with mean z̄0 cho-

sen to match the productivity gap between entrants and incumbents, specifically the dif-

ferential in revenue productivity between firms older than 10 and younger than 1 year old

(Foster, Haltiwanger, and Syverson, 2016).

We now turn to hiring costs. The cost function (11) has four parameters: the two elasticities

(γ1, γ2) and the two cost shifters (κ1, κ2). Recall, from the discussion surrounding equations

(11) and (12), that the cross-sectional elasticity of job filling rates to employment growth rates,

estimated to be 0.82 by DFH, is a function of the ratio of these two elasticities.16 The second

moment used to separately identify the two elasticities is the ratio of vacancy yields of small

13Since we specify the revenue function, we do not take a stand on whether z represents demand or productivity
shocks, or whether σ represents DRS in production or the interaction of a weakly IRS production function with
a downward sloping demand curve, which would be trivial to add to the model. Given this understanding we
discuss the revenue function as if it were a production function: σ represents DRS and z is total factor productivity.

14In terms of the description of the model and stationary equilibrium, one should add σ to the firm’s state vector
s, but nothing substantial in the firm problem and the definition of equilibrium would change.

15In the numerical solution and simulation of the model, z remains a continuous state variable.
16We cannot map γ2/ (γ1 + γ2) directly into this value since in DFH, and in the model’s simulations for consis-

tency, the growth rate is the Davis-Haltiwanger growth rate normalized in [−2, 2].

20



(< 50 employees) to large (> 50 employees) firms from JOLTS data on hires and vacancies by

firm size. Intuitively, when γ2 = 0 this ratio is one as recruiting effort is constant across firms.

We use two targets to pin down the cost shift parameters. The first is the total hiring cost

as a fraction of monthly wage per hire, a standard target for the single vacancy cost param-

eter that usually appears in vacancy posting models. We have two sources for this statistic:

Silva and Toledo (2009) estimate it to be 0.4; O’Leonard (2011) reports a value around 0.8, based

on a survey on firm recruitment practices. In the absence of better information, we target 0.6.

The second target is the vacancy share of small (n < 50) firms from JOLTS: κ2 determines the

size of hiring costs for small (low n) firms and, thus, the amount of vacancies they create.

The parameters χ and ζ have large effects on firm exit. The operation cost χ mostly impacts

exit rates of young firms; therefore, we target the five-year survival rate found in BDS data,

which is approximately 50 percent. The parameter ζ contributes to the exit of large and old

firms; hence we target the fraction of total job destruction due to exit. To pin down the set-up

cost χ0, we target the annual entry-rate of 11 percent from the BDS.17

The remaining two parameters are the size of the initial equity injection a0 and the collateral

parameter ϕ. To inform their calibration, we target the debt-output ratio of one-year old firms

computed from the Kaufman Survey (Robb and Robinson, 2014), and the aggregate debt to total

assets ratio from the Flow of Funds.

4.3 Cross-Sectional Implications

We now explore the main cross-sectional implications of the calibrated model, at its steady-state

equilibrium.

Table 3 reports some empirical moments that we did not target in the calibration and their

model-generated counterparts. The fact that the ratio of dividend payments to profits in the

model is close to its empirical value reinforces the view that our collateral constraint is neither

too tight nor too loose. The model can also replicate well the distribution of employment by

growth rate and by age, neither of which was explicitly targeted.

17When computing moments designed to be comparable to their counterparts in the BDS, we carefully time-
aggregate the model to an annual frequency. For example, the entry-rate in the BDS is measured as the number of
age zero firms in a given year divided by the total number of firms. Computing this statistic in the model requires
aggregating monthly entry and exit over 12 months.
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Table 3: Non-targetted moments

Moment Model Data Source

Aggregate dividend / profits 0.411 0.400 NIPA
1Aggregate capital / output 1.100 1.370 Flow of funds

2Employment share: growth ∈ [−2.00,−0.20) 0.070 0.076 Kaas-Kircher
Employment share: growth ∈ (−0.20,−0.20] 0.828 0.848 Kaas-Kircher
Employment share: growth ∈ (0.20, 2.00] 0.102 0.076 Kaas-Kircher

Employment share: Age ≤ 1 0.013 0.020 BDS
Employment share: Age ∈ (1, 10) 0.309 0.230 BDS
Employment share: Age ≥ 10 0.678 0.750 BDS

In Figure 4 we plot the average firm size, job creation and destruction rates, fraction of

constrained firms and leverage (debt/saving over total assets, b/a) for firms from birth through

to maturity. Panel A shows that σH-firms, those with closer to constant returns in production,

account for the upper tail in the size and growth-rate distributions. On average, though, firm

size grows by much less over the life cycle, since these ‘gazelles’—as they are often referred to

in the literature—are only a small fraction of the total. On average, the model and the data line

up well: average size grows by a factor of 3 between ages 1-5 and 20-25 in the model and 3.4

in the data. Convex recruiting costs and collateral constraints slow down growth: most firms

reach their optimal size around age 10, and σH-firms keep growing for much longer.

Panel B plots job creation and destruction rates by age. It is a stark representation of the

‘up-or-out’ dynamics of young firms documented in the literature (Haltiwanger, 2011b). Panel

C depicts the fraction of constrained firms (defined as those with k = ϕa and d = 0) over the

life cycle. In the model, financial constraints bind only for the first few years of a firm’s life,

when net worth is insufficient to fund the optimal level of capital. Panel D illustrates that the

debt-asset ratio declines with age and after age 10 the median firm is saving (i.e. negative debt).

Firms have a precautionary saving motive due to the simultaneous presence of three elements:

(i) a concave payoff function because of DRS; (ii) stochastic productivity; and (iii) the collateral

constraint.

Panel A of Figure 5 shows that recruiting intensity and the vacancy rate are sharply decreas-

ing with age. These features arise because our cost function implies that both optimal hiring
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Figure 4: Average life cycle of firms in the model
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effort and optimal vacancy rates are increasing in the growth rate, and young firms are those

with the highest desired growth rates. Moreover, the stronger convexity of C in the vacancy

rate (γ2), relative to its degree of convexity in effort (γ1) implies that a rapidly expanding firm

prefers to substitute away from vacancies into recruiting intensity to realize its target growth

rate. Thus, young firms find it optimal to limit the number of new positions, but recruit very

aggressively for the ones that they open. As firms age, growth rates fall and this force weakens.

Panel B shows that, relative to the steady-state age distribution of hiring firms, the effort dis-

tribution is skewed towards young firms, whereas the vacancy distribution is skewed towards

older firms. In the model the age-distribution of vacancies is almost uniform: young firms grow

faster than old ones and, thus, post more vacancies per worker; however, they are smaller and,

thus, they post fewer vacancies for a given growth rate. These two forces counteract each other

and the ensuing vacancy distribution over ages is nearly flat.

Finally, Figure 5 highlights that the JOLTS notion of vacancy as ‘open position ready to be

filled’ is a good metric of hiring effort for old firms, for whom recruiting intensity is nearly

constant, whereas it is imperfect for young firms aged 0-5, whose average recruiting intensity

and variance of recruitment effort are much higher than those of mature firms.18

18We will add an additional panel in Figure 5 to show that the variance of recruitment effort is decreasing in age.
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Figure 5: Vacancy and Effort Distributions by Age
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5 Aggregate Recruiting Intensity and Macroeconomic Shocks

Our main experiments examine the equilibrium of the economy along perfect foresight paths

for shocks to aggregate productivity A and to the financial constraint parameter ϕ. Appendix

C provides details on the solution of the model along these perfect foresight path.

We frame these experiments in the context of the Great Recession. Specifically, we consider

AR(1) shocks, choosing the size of the shock so that the model matches the maximum deviation

of detrended output over 2008-2012 from its value in 2007, a value of -10 percent (Fernald, 2015).

The auto-regressive parameters of each shock are chosen such that the shock has a half-life of

six years. This results in a three-percent shock to A, and a 75-percent shock to ϕ.19

Figure 6 displays the dynamics of key labor market variables and annual firm entry rate,

and Figure 7 displays the dynamics of additional macroeconomic variables, including output,

which we match through our choice of the magnitude of the shocks.20 Figure 6 shows that the

model accounts extremely well for the joint behavior of labor market variables displayed in

Figure 1. While the labor market responds similarly to both shocks, the differential responses

of other variables clearly identify a financial shock in the 2008 recession. Specifically, young-

19These values imply that the auto-regressive parameters depend on the size of the shocks. Thus, the shock to ϕ
is less persistent than the shock to A. In future versions of the paper, we will choose the auto-regressive parameter
to match a fixed half-life of output rather than a fixed half-life of the shock.

20Additionally, Figure B2 in Appendix B displays the dynamics of the fraction of firms that are financial con-
strained and aggregate leverage over the transition.
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Figure 6: Dynamics of labor market variables
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firm values decline sharply, since a large fraction of them are constrained (recall Figure 4),

leading to a decline in entry (by 27 percent) that is remarkably close to its empirical value (29

percent).21 Constrained firms are also forced to deleverage, thereby reducing the capital stock

by 25 percent, which approximates the 26 percent decline observed in the data between 2007

and 2009.22 These patterns indicate that the financial structure of our model, along with the

financial shock, are well posed, commending the conclusions of the analysis that follows.

Figure 6 delivers two additional results regarding aggregate recruiting intensity. First, ag-

gregate recruiting intensity declines by 33 percent after the financial shock, thereby accounting

for approximately half of the decline observed in the data in Figure 1. Second, the patterns of

aggregate recruitment intensity are startlingly similar after both shocks, depressing the aggre-

gate vacancy yield and increasing unemployment. These similar patterns may seem puzzling,

since Figure 6 shows that the entry rate of new firms—which account for a disproportionate

share of job creation—remarkably differs under the two shocks.

21Entry in the data is measured as the number of firms reporting an age of zero divided by the total number of
firms in the LBD. The survey is in March and so this measure excludes firms which enter and exit between surveys.
In the model the measure is computed using a rolling twelve month window.

22We measure capital in the data from the Flow of Funds, Table B.103 as the sum of inflation adjusted Real-estate,
Equipment and Inventories (lines 3-5). If we remove inventories, capital drops by 28.5 percent.
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Figure 7: Dynamics of standard macroeconomic variables
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5.1 Decomposing Aggregate Recruiting Intensity

We now explain this apparent puzzle of why aggregate recruiting intensity responds in the

same way to both shocks. Our explanation highlights the key role of the main elements of

our general-equilibrium model with heterogeneous firms. Specifically, we show that new-firm

entry has a quantitatively sizeable effect on aggregate recruiting intensity only (i) in partial

equilibrium; and (ii) if we ignore the role of selection in hiring.

To guide our explanation, we return to our expression for aggregate recruiting intensity,

using λh to denote the distribution of hiring firms:

Φt =

(
V∗

t

Vt

)α

=

[
ˆ

ei,t

(
vi,t

Vt

)

dλh
t

]α

. (19)

Substituting the policy function for recruitment effort (12) into the above equation and taking

log differences, we obtain:

∆ log Φt = −α
γ2

γ1 + γ2
∆ log q(θ∗t )

︸ ︷︷ ︸

Substitution effect

+ α∆ log

[
ˆ

g
γ2

γ1+γ2
i,t

(
vi,t

Vt

)

dλh
t

]

︸ ︷︷ ︸

Composition effect

. (20)
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We call the two effects in equation (20) the substitution and composition effect, respectively.

The Substitution Effect. The substitution effect is the change in aggregate recruitment intensity

Φt due to firms changing effort in response to movements in q(θ∗t ), holding constant growth

rates gi,t, vacancies vi,t and the distribution of hiring firms λh
t .

In a recession, labor market tightness falls, as firms reduce vacancies and a spike in sep-

arations increases the pool of unemployed workers. The surge in unemployment raises the

probability that any vacancy matches with an unemployed worker q(θ∗t ). Therefore, given the

hiring technology gi,t = q(θ∗t )ei,tvi,t/ni,t, a growing firm with a target growth rate gi,t now reop-

timizes its combination of recruiting inputs ei,t and vi,t. Since costs are increasing in both effort

and vacancies, the firm decreases both: a slack labor market makes it easier for employers to

hire, so employers spend less to attract workers.

The policy functions for effort e and the vacancy rate vr highlight the relative strength of the

substitution effect for these two margins in response to a change in q(θ∗t ):

e (g, θ∗) =

[
κ2

κ1

(
γ1

γ1 − 1

)] 1
γ1+γ2

q (θ∗)
−

γ2
γ1+γ2 g

γ2
γ1+γ2 , (21)

vr(g, θ∗) =

[
κ2

κ1

(
γ1

γ1 − 1

)] 1
γ1+γ2

q (θ∗)
−

γ1
γ1+γ2 (g)

γ1
γ1+γ2 . (22)

Since γ2/(γ1 + γ2) = 0.82 > 0.5 the firm reduces effort relatively more than it reduces its

vacancy-rate. Therefore, in the aggregate, V∗
t declines more than Vt does (or equivalently, Φt

falls), leading to a negative substitution effect.

The Composition Effect. The composition effect is defined residually, thereby including the

effect of changes in growth rates gi,t, vacancy policies vi,t, and the distribution of hiring firms

λh
t on aggregate recruiting intensity.

It is useful to split the composition effect into its two main components. The first is a direct

composition effect: the response to the shock in a partial-equilibrium economy, while keeping

θ∗t at its steady state level, denoted θ̄ (in what follows, we use variables with a bar to denote

their steady-state values, e.g., θ̄). The direct effect reduces aggregate recruiting intensity, since

a negative aggregate shock lowers firm growth rates and reallocates hiring away from young,

fast-growing firms. Moreover, this reduction should be larger after the financial shock than after
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Figure 8: Decomposition of aggregate recruitment intensity
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the productivity shock, since the former disproportionately hits young, fast-growing firms.

The second is the indirect composition effect: the response of the economy under the equi-

librium path for θt due to the shock, while keeping ϕt = ϕ̄ and At = Ā at their respective

steady-state values. The indirect effect increases aggregate recruiting intensity, since firms grow

faster when q(θ∗t ) rises, as they meet job seekers more easily. Therefore, this indirect effect par-

tially offsets the decline in the growth rates of firms.23

Figure 8 plots these components of aggregate recruitment intensity in response to the pro-

ductivity (panel A) and financial shocks (panel B), revealing several interesting patterns. First,

the substitution effect (red line) is quantitatively the largest one, accounting for virtually all

the decline in aggregate recruitment intensity (black line). Second, the composition effect (red

dashed line) is positive but small, as the direct (blue line) and the indirect (green line) compo-

nents almost offset each other. Third, comparing the two plots confirms that the direct effect is

somewhat larger after the financial shock than after the productivity shock, consistent with the

23We should point out that the composition effect also varies over time because it is concave in gi,t, since
γ2/(γ1 + γ2) < 1; hence, a mean-preserving spread in growth rates lowers Φt. However, our calibration im-
plies that the quantitative magnitude of the change in Φt due to the increase in the dispersion of growth rates is
negligible and, thus, we focus here on the two main components. Section 5.3 and Appendix D provide further
details.
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notion that a financial crisis has a larger adverse effect on firm entry.

We now discuss the magnitudes of these components in further detail. We focus on the

financial shock, although we have verified that the intuition and quantitative results extend to

the case of the productivity shock.

5.2 Why Is the Substitution Effect Large?

Figure 8 shows that the substitution effect is the most important factor in determining aggregate

recruiting intensity. We now explain how this magnitude obtains, proceeding in three steps.

First, we note that the policy functions for effort and the for the vacancy rate—i.e., equations

(21) and (22)—imply that the relative magnitudes of γ1 and γ2 determine the magnitudes of the

elasticities of each policy with respect to g/q. DFH’s cross-sectional regressions of firms’ growth

rates gi,t on the vacancy-filling rate (including time fixed effects) impose γ2/(γ1 + γ2) = 0.82,

which means that effort is more elastic than the vacancy rate.

Second, these policy functions highlight that firms’ efforts and vacancy rates respond sym-

metrically to a change in g keeping q fixed, and to a change in q keeping g fixed. These sym-

metric responses arise because q, e and v/n enter the growth ‘production’ technology symmet-

rically: g = q(θ∗)e(v/n).

Figure 9 puts together the two previous points: (i) the elasticity of effort is larger than that

of the vacancy rate with respect to g; (ii) the elasticity of effort with respect to g has the same

magnitude, but opposite sign, as to that with respect to q. Specifically, we plot firms’ effort and

vacancy-rate policies in steady-state (panel A) and two periods after the shock (panel B). Panel

A shows that in steady state recruitment intensity increases much faster than the vacancy rate

as firm growth rates increase, due to its higher elasticity. Since q increases substantially after the

shock (Figure 6), the comparison between panel A and panel B shows that recruitment intensity

declines substantially more than the vacancy rate does.

Third, our quantitative results displayed in Figure 6 and 7 imply that changes in aggregate

q are substantially larger than changes in g across firms, which allows us conclude that the

substitution effect is negative and large. The next Section leverages our general-equilibrium

model to explain in more detail why the change in firm growth rates is small (and, thus, the

composition effect is small).
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Figure 9: Recruitment policies and distribution of growth rates of hiring firms
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Note (i) Panel B plots distribution of growth rates and recruitment policies two periods after the shock. To be precise, period 0 the economy is
in steady-state, in period 1 the path for the shock is realized, period 2 then follows. We choose period 2 rather than period 1 since due to the
timing of the model workers that are fired in period 1 do not enter the labor market as unemployed workers until period 2. (ii) The growth rate
distribution is computed over bins of width 0.02.

5.3 Why Is the Composition Effect Small?

An important implication of the plots displayed in Figure 9 is that the growth rate distribution

of hiring firms changes only slightly after the shock. We have already emphasized that the

direct and the indirect effects are off-setting forces: the former reduces firm growth rates, due

to the negative shock; the latter increases firm growth, as per worker hiring costs fall. A further

consideration is that the positive selection of hiring firms on productivity tempers both effects.

Specifically, the decline in ϕt increases the average productivity of hiring firms, since some

firms that hired in steady state no longer hire after the shock. Conversely, the increase in q(θ∗)

decreases the average productivity of hiring firms, since some firms that did not hire in steady

state find it easier to hire after the shock.

Figure 9 also displays the distribution of growth rates in steady-state (panel A) and two

periods after the shock (panel B). The net effect is that the average growth rate of hiring firms

increases.

Figure 10 illustrates the role of the changes in the productivity distribution of firms on the

direct and the indirect composition effects. Specifically, we plot in panel A): the fraction of firms
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Figure 10: Selection of hiring firms on productivity z and DRS σ
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hiring; B) the average growth rates of hiring firms; C) average productivity, and; D) average σ

(the DRS parameter). All panels display their respective values computed over three different

paths for the transition dynamics: (i) the general equilibrium transition dynamics that generate

Figure 6 (black); (ii) the partial equilibrium dynamics along the equilibrium path for θ∗t , keeping

ϕt = ϕ̄ (red) corresponding to the indirect composition effect; and (iii) the partial equilibrium

dynamics along the equilibrium path for ϕt, keeping θt = θ̄ (blue), corresponding to the direct

composition effect .

Panels C and D indicate that selection—i.e., changes in the productivity distribution of

firms—has a quantitatively large impact on the direct effect: the blue lines show that the av-

erage productivity of hiring firms (panel C) and their average returns-to-scale (panel D) both

increase substantially after the shock; in turn, these attenuate the decreases of the fraction of

firms hiring (panel A) and of their average growth (panel D). Instead, selection seems to have

a quantitatively smaller impact on the indirect effect: the red lines show that fraction of firms

hiring (panel A) and their average growth (panel B) spike after the shock. Overall, Figure 10

shows that the positive selection of hiring firms in a recession is quantitatively substantial and
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Table 4: Cross-sectional firm statistics for general and partial equilibrium transitions

Unweighted Vacancy-weighted
SS (θ̄∗, ϕ̄) GE (θ∗t , ϕt) PE (θ∗t , ϕ̄) PE (θ̄∗, ϕt) SS (θ̄∗, ϕ̄) GE (θ∗t , ϕt) PE (θ∗t , ϕ̄) PE (θ̄∗, ϕt)

A. Hiring firms
Ave g 0.290 0.406 0.459 0.387
Std dev g 0.405 0.541 0.578 0.544
Ave z 0.771 0.762 0.766 0.762
Ave σ 0.763 0.762 0.762 0.762

B. All firms
Ave g 0.016 0.025 0.069 0.027
Std dev g 0.126 0.183 0.244 0.165
Ave z 0.888 0.882 0.882 0.882
Ave σ 0.762 0.762 0.762 0.762

Note (i) All non-steady-state statistics are computed in period 2 of transition dynamics as in Figure 9.

prevents the composition effect from having a large impact on aggregate recruiting intensity.24

An additional source of fluctuations in Φt that enters into the composition effect arises

because the composition effect is concave in gi,t, since γ2/(γ1 + γ2) < 1. A mean-

preserving spread in growth rates therefore has a negative effect on Φt. This mechanism bears

some similarities to that which generates fluctuations in aggregate recruitment intensity in

Kaas and Kircher (2015). Returning to the experiment considered in Figure 9, we report in

Table 4 the vacancy-weighted standard deviation of growth rates across hiring firms, as well

as other related statistics. We are well positioned to assess this effect since (i) we match the

standard deviation of growth rates in steady state, (ii) the financial shock generates a 45 percent

increase in the standard deviation of growth rates, which compares well to the 39 percent in-

crease estimated by Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012). We find that

this mechanism has a negligible contribution to the composition effect, since γ2/(γ1 +γ2) = .82

is close to 1 and, thus, E

[

g
γ2

γ1+γ2

]

≈ E[g]
γ2

γ1+γ2 . See Appendix D for a more thorough discussion.

24A more nuanced exercise to isolate the role of selection—which we plan to add to our analysis—would be to
take the measure of hiring firms over the transition

λh
t = 1[hi,t>0]λ

and use this to compute a counter-factual series for the composition effect under the steady-state policies

Compt =

[
ˆ

ē
v̄

V
dλh

t

]α

.
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Finally, Table 4 illustrates that the moments of the distribution of growth rates are similar

whether we compute them over the distribution of hiring firms directly, or weighted by va-

cancies, as the analytical expression of recruitment intensity in equation (19) requires. This

similarity further highlights that firms attain their hiring targets mostly by modifying their re-

cruitment effort rather than their posted vacancies.

6 A New Index of Aggregate Recruitment Intensity

Based on the results from our general-equilibrium model we now construct a rule-of-thumb

index of aggregate recruiting intensity. The index is easy to compute from observable labor

market aggregates. We further compare it with the one that DFH provide via their “generalized

matching function.”

To do so, we return to the aggregate matching function and obtain log(Ht/Vt) = log Φt +

log qt, which links the aggregate vacancy-yield, recruitment intensity, and matching rate. To-

tally differentiating this expression for (i) the aggregate hiring rate Ht/Nt, and (ii) the matching

rate qt, we obtain:

d log Ht/Vt

d log Ht/Nt
+ 1 =

d log Φt

d log(Ht/Nt)
+

d log Φt

d log qt
+

d log qt

d log(Ht/Nt)
+ 1. (23)

The working hypothesis of DFH is that (i) the second and third terms on the right-hand side

are zero; and (ii) the term on the left-hand side—the macro-elasticity of the vacancy-yield to the

hiring-rate—is the same as the estimated micro-elasticity ξ = 0.82. These assumptions deliver

the DFH measure of aggregate recruitment intensity: d log ΦDFH
t = ξd log(Ht/Nt). Using data

on Ht/Nt, DFH find that it accounts for 20 percent of the decline in job finding rates over the

2007-08 recession.25

The transition dynamics of our model indicate that the general-equilibrium effect of changes

in qt on the composition of recruiting activities (the second term in the RHS of eq. 23) accounts

for most movements in aggregate recruitment intensity. Thus, we propose an alternative back-

of-the-envelope measure of aggregate recruitment intensity that focuses on it. Specifically, as

25Under a standard matching function d log ft = αd log(Vt/Ut). Under the augmented matching function
d log ft = αd log(Vt/Ut) + αd log ΦDFH

t . With data on ft and their constructed series ΦDFH
t DFH’s result is com-

puted by dividing d log ft by αd log ΦDFH
t .
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Figure 11: Dynamics of aggregate recruitment intensity

0 0.2 0.4 0.6 0.8 1
Years

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

L
og

d
ev
ia
ti
o
on

fr
om

d
at
e
0

A. Productivity A-shock

0 0.2 0.4 0.6 0.8 1
Years

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

L
og

d
ev
ia
ti
o
on

fr
om

d
at
e
0

B. Finance ϕ-shock

Hrate
t Φt Φ

DFH
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t θ

∗
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per equation (20) we set
d log Φt

d log qt
= −α γ2

γ1+γ2
= −αξ. We still need to map observable aggregates

into qt = Φ̄θ
∗−(1−α)
t . We do not directly observe effective market tightness θ∗t , but the quan-

titative evaluation of our model prompts us to infer θ∗t from observed θt, with an elasticity of

εθ∗t ,θt
= 1.45.26 Therefore, our expression for changes in aggregate recruitment intensity equals:

d log ΦGMV
t = αξ × (1 − α)× εθ∗t ,θt

︸ ︷︷ ︸

≈0.30

d log θt. (24)

Figure 11 plots the equilibrium path of aggregate recruitment intensity (red circled line), our

ΦGMV
t index (red squared line), as well as the DFH index ΦDFH

t . Our ΦGMV
t index approximates

remarkably well the path of aggregate recruitment intensity, more precisely than ΦDFH does.

Figure 12 replicates Figure X of DFH, adding our index ΦGMV
t , as well as aggregate matching

efficiency. We should point out that the causal interpretations of the two indices differ. Our

index ΦGMV
t relies on the role of market-tightness, as our general-equilibrium model highlights

that this is the primary driver of aggregate recruitment intensity. The DFH index ΦDFH
t instead

relies on the aggregate hiring rate. Nonetheless, the two indices line up closely, due to the

26This elasticity lies between the elasticities estimated from the transition dynamics paths for θ∗t and θt following
the productivity shock (equal to 1.41) and financial shock (equal to 1.51).
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Figure 12: Index of implied aggregate recruiting intensity (Jan 2007 = 0)
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strong correlation between market-tightness and hiring rates in the time-series.

7 Conclusions

We have developed a rich model to study aggregate recruitment intensity and its role in ex-

plaining the fluctuations in aggregate matching efficiency. The model allows for numerous

different mechanisms—of both partial- and general-equilibrium nature—to affect recruitment

intensity at the firm level. Specifically, it allows for financial frictions, as well as firm age and

size, to affect the growth rates of firms, which are the key determinants of firm-level recruiting

intensity according to the empirical findings of Davis, Faberman, and Haltiwanger (2013). Our

calibration of the unknown parameters of the model ties all of these features to the data.

The calibrated model generates sizeable movements in aggregate recruiting intensity. More-

over, our calibrated model indicates that, during the Great Recession, aggregate recruitment

intensity declined mainly because the number of available job seekers per vacancy increased—

i.e., market tightness declined—making it easier for firms to achieve their recruitment targets

without having to spend on recruitment costs. The decline of new-firm entry played a small

role for aggregate recruitment intensity, even though our model matches the large contribution

of young firms to the aggregate number of vacancies and hires observed in the data.

As emphasized by Faberman (2016), making progress in understanding how firms’ hiring
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decisions respond to macroeconomic conditions is important since job creation policies that fail

to recognize the determinants of employer’s recruitment effort may fall short in achieving their

goal.
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APPENDIX

This Appendix is organized as follows. Section A contains the derivations of the cost hiring

function that we introduced in Section 4. Section B provides additional figures referenced in the

main text. Section C details the algorithms for the computation of the stationary equilibrium

and the transitional dynamics.

A The hiring cost function

In this section we show that, once we postulate the hiring cost function

C(n, e, v) =

[
κ1

γ1
eγ1 +

κ2

γ2 + 1

(v

n

)γ2
]

v (A1)

then, through firm’s optimization we obtain a log-linear cross-sectional relationship between

the job-filling rate and the employment growth rate that is consistent with the empirical find-

ings in DFH. Next, we show that our cost function boils down to the one that Kaas and Kircher

(2015) choose. Finally, by substituting the firm FOCs into (A1), we derive a formulation of the

cost only in terms of (n, n′) that we use in the intertemporal problem (10) in the main text.

As we explained in Section (3.1), the firm solves a static cost minimization problem: given

a choice of n′, it determines the lowest cost combination of (e, v) that can deliver n′. The hiring

firm’s cost minimization problem is

C(n, n′) = min
e,v

[
κ1

γ1
eγ1 +

κ2

γ2 + 1

(v

n

)γ2
]

v (A2)

s.t. : n′ − n ≤ q (θ∗) ev

e ∈ [0, 1] , v ≥ 0

Convexity of the cost function (A1) in (e, v) requires γ1 ≥ 1 and γ2 ≥ 0. When γ1 = γ2 = 0,

we have the standard model where every firm sets e = 1 and the cost of vacancy creation is

linear. After setting up the Lagrangian, and ignoring for now the corner solution e = 1, one can

easily derive the two FOCs with respect to e and v that, combined together, yield a relationship
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between the optimal choice of e and the optimal choice of the vacancy rate v/n :

e =

[
κ2

κ1

(
γ1

γ1 − 1

)] 1
γ1

( v

n

) γ2
γ1 . (A3)

Note that, if γ2 = 0, as in Pissarides (2000), recruiting intensity is equal to a constant for all

firms and it is independent of aggregate labor market conditions—both counterfactual impli-

cations. The following changes in parameters (ceteris paribus) result in a substitution away

from vacancies and towards effort: ↑ κ2, ↓ κ1, ↑ γ2, and ↓ γ1. The effect of the cost shifter is

obvious. A higher curvature on the vacancy rate in the cost function (↑ γ2) makes the marginal

cost of creating vacancies rising faster than the marginal cost of recruiting effort; since the gain

in terms of additional hires from a marginal unit of effort or vacancies is unaffected by γ2, it is

optimal for the firm to use relatively more effort.

Now, substituting the law of motion for employment at the firm level into (A3) , we obtain

the optimal recruitment effort choice, expressed only as a function of the firm-level variables

(n, n′) :

e
(
n, n′

)
=

[
κ2

κ1

(
γ1

γ1 − 1

)] 1
γ1+γ2

q (θ∗)
−

γ2
γ1+γ2

(
n′ − n

n

) γ2
γ1+γ2

(A4)

which, in turn implies, for the job filling rate,

f
(
n, n′) = q (θ∗) e

(
n, n′) =

[
κ2

κ1

(
γ1

γ1 − 1

)] 1
γ1+γ2

q (θ∗)
γ1

γ1+γ2

(
n′ − n

n

) γ2
γ1+γ2

. (A5)

This equation demonstrates that the model implies a log-linear relation between the job filling

rate and employment growth at the firm level, with elasticity γ2/ (γ1 + γ2) < 1 as in the data.

Moreover, firm-level job filling rates are countercyclical, through their dependence on q (·) .

Finally, substituting (A5) into the firm-level law of motion for employment yields an ex-

pression for the vacancy rate

v

n
=

[
κ2

κ1

(
γ1

γ1 − 1

)] 1
γ1+γ2

q (θ∗)
−

γ1
γ1+γ2

(
n′ − n

n

) γ1
γ1+γ2

. (A6)

Now, note that, by substituting the optimal choice for recruitment effort (A3) into (A1), we
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obtain the following formulation for the cost function

C (n, v) =

[

κ2
γ1 + γ2

(γ1 − 1) (γ2 + 1)

( v

n

)γ2
]

v, (A7)

which is one of the specifications that Kaas and Kircher (2015) invoke.

Finally, if we use (A6) into (A7), we obtain a version of the cost function only as a function

of (n, n′) that we can use directly in the dynamic problem (10):

C∗ (n, n′) = κ2

[
γ1 + γ2

(γ1 − 1) (γ2 + 1)

]{[
κ2

κ1

(
γ1

γ1 − 1

)] 1
γ1+γ2

q (θ∗)
−

γ1
γ1+γ2

(
n′ − n

n

) γ1
γ1+γ2

}1+γ2

n.
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B Additional figures

Figure B1: Vacancy and Effort Distributions by Size
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Figure B2: Dynamics of financial variables
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A. Productivity A-shock
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C Computational details

C.1 Value and policy functions

We use collocation methods to solve the firm’s value function problem (4)-(7). Let s = (n, a, z)

be the firm’s idiosyncratic state, abstracting from heterogeneity in σ since this is fixed. We

approximate the expected value function Ve(n′, a′, z) which gives the firm’s expected value con-

ditional on current decisions for assets and employment

V
e(n′, a′, z) =

ˆ

Z
V(n′, a′, z′)dΓ(z, z′),

where the integrand is the value given in (6).

We set up a grid of collocation nodes S = N × A × Z where N = {n1, . . . , nNn}, with Nn =

Na = Nz = 10. The grid Z is constructed by first creating an equi-spaced grid in probabilities

from 0.001 to 0.999, which is then inverted through the cdf of the stationary distribution implied

by the process for z to obtain Z. The grids A and N are chosen to have a far higher density

at lower values. The upper bound for employment, n̄, is chosen so that the optimal size of

the highest productivity firm n∗(z̄) < n̄. The upper bound for assets, ā, is chosen so that

the optimal capital k∗(z̄) can be financed, that is k∗(z̄) < ϕā. Note that these are parameter

dependent, therefore recomputed for each new vector of parameters considered in estimation.

We approximate V
e(s) on S using a linear spline with Ns = Nn × Na × Nz coefficients.

Given a guess for the spline’s coefficients we iterate towards a vector of coefficients that solve

the system of Ns Bellman equations, which are linear in the Ns unknown coefficients. Each

iteration proceeds as follows. Given the spline coefficients we use golden search to compute

the optimal policies for all states s ∈ S, and the value function V(s). We then fit another spline

to V(s) which facilitates integration of productivity shocks ε ∼ N (0, ϑz). To compute V
e(s) on

S we approximate the integral by

V
e(n, a, z) =

Nε

∑
i=1

wiV (n, a, exp(ρz log(z) + εi)) .

Here Nε = 80 and the values of εi are constructed by creating a grid of equi-spaced points

between 0.001 to 0.999, then using the inverse cdf of the shocks (normal) to create a grid in ε.
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The weights wi are given by the probability mass of the normal distribution centered around

each εi. Note that this differs from quadrature schemes where one is trying to minimize the

number of evaluations of the integrand, usually with Nε around four. Since V(s) is already

given by an approximant at this step, and the integral is only computed once each iteration,

this is not a concern and we compute the integral very precisely. We then fit an updated vector

of coefficients to V
e(s) and continue.27

C.2 Stationary distribution

To construct the stationary distribution we use the method of non-stochastic simulation from

Young (2010), modified to accommodate a continuously distributed stochastic state. We create

a new, fine grid of points S f on which we approximate the stationary distribution using a his-

togram, setting N
f
n = N

f
n = N

f
z = 100. Given our approximation of the expected continuation

value we solve for the policy functions n′
(
s f
)

and a′
(
s f
)

on the new grid and use these to cre-

ate two transition matrices Qn and Qa which determine how mass shifts from points s f ∈ S f to

points in N f and A f , respectively. We construct Qx as follows for x ∈ {a, n}

Qx[i, j] =



1
x′
(

s
f
i

)

∈
[

X
f
j−1,X

f
j

]

x′
(

s
f
i

)

− X
f
j

X
f
j − X

f
j−1

+ 1
x′
(

s
f
i

)

∈
[

X
f
j ,X

f
j+1

]
Xj+1 − x′(si)

X
f
j+1 − X

f
j



 ,

for i = 1, . . . , N
f
s and j = 1, . . . , N

f
x .28 This approach ensures that aggregates computed from

the stationary distribution will be unbiased. For example if x′(s) ∈ (Xj, Xj + 1), then masses

wj and wj+1 are allocated to Xj and Xj+1 such that wjXj + wj+1Xj+1 = x′(s). The transition

matrix for the process for z is computed by Qz = ∑
Nε
i=1 wiQ

i
z, where Qi

z is computed as above

under z′(s f ) = exp(ρz log z+ εi). Finally the overall incumbent transition matrix Q is the tensor

product Q = Qz ⊗ Qa ⊗ Qn.

To compute the stationary distribution we still need the distribution of entrants. To allow

for entry cut-offs to move smoothly we compute entrant policies on a dense grid of N0
z =

27In practice, instead of this simple iterative approach to solve for the coefficients, we follow a Newton algo-
rithm as in Miranda and Fackler (2002), which is two orders of magnitude faster. The Newton algorithm requires
computing the Jacobian of the system of Bellman equations with respect to the coefficient vector. The insight of
Miranda and Fackler (2002) is that this is simple to compute given the linearity of the system in the coefficients.

28If exit is optimal on grid point s
f
i then we set row i of Qx to zero.
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500 productivities. This is clearly important for us since it ensures that entry does not jump

in the transition dynamics or across parameters in calibration. The grid Z0 is constructed by

taking an equally spaced grid in cumulative probabilities and inverting it through the cdf of

potential entrant productivities (exponential). Let the corresponding vector of weights be given

by P0. Given the approximation of the continuation value V
e we can solve the potential entrants

policies n′
0(s0) and a′0(s0), conditional on entry. We can then solve the firm’s discrete entry

decision. Finally we compute an equivalent transition matrix Q0 using these policies, where

non-entry results in a row of zeros in Q0.

The discretized stationary distribution L on S f is then found by the following approximation

to the law of motion (14)

L = (1 − ζ)Q′L + λ0Q′
0P0,

which is a contraction on L, solved by iterating on a guess for L. The final stationary distribution

is found by choosing λ0 such that ∑
N

f
s

i=1 Li = 1.

C.3 Computation of moments

An aggregate X is computed by integrating λ over firm policies x(s). Using the above approxi-

mation this is simply X = L′x(s).

For age based statistics, our moments in the data refer to firm ages in years. We therefore

generate an ‘age zero’ measure of firms by allowing for 12 months of entry. We then iterate this

distribution forward to compute age statistics such as average debt to output for age 1 firms, or

the distribution of vacancies by age.

For statistics such as the average annual growth rate conditional on survival we need to

simulate the model. In this case we draw 100,000 firms on S f in proportion to L and simulate

these forwards solving (rather than interpolating) firm policies each period and evolving pro-

ductivity with draws from the continuous distribution of innovations ε. To remove the effect of

the starting grid, we simulate for 36 months and compute our statistics comparing firms across

months 24 and 36.
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C.4 Transition dynamics

Transition dynamics are solved for in the usual way. Consider the case of a shock to aggregate

productivity A. A path for {At}
T
t=0 is chosen with A0 = AT = Ā. Given a conjectured path for

equilibrium market-tightness
{

θ̃∗t
}T

t=0
and the assumption that the date T continuation values

of the firm are the same as in steady state, one can solve backwards for expected value functions

Ve
t at all dates T − 1, T − 2, . . . , 1. Setting the aggregate states U0 = Ū and λ0 = λ̄, and using

conjectured given paths for θ∗t , the shocks and continuation values one can then solve forwards

for a new market-clearing θ∗,′
t that equates unemployment from labor demand Udemand

t and

worker flows U
f lows
t in every period using the labor demand and evolution of unemployment

equations

U
f lows
t+1 = Ut − H(θ∗t ) + F(θ∗t )− λe,tn0

Udemand
t+1 = L̄ −

ˆ

n′(s, θ∗t , At, Ve
t)dλt

Once we reach t = T we set θ̃∗t = θ∗t and iterate until the proposed and equilibrium paths for

market tightness converge.
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D Further discussion of dispersion results

In the main text we discussed a final source of fluctuations in Φt that here we discuss in more

detail. This is the effect of changes in the dispersion of growth rates that would enter the

composition effect. Due to the concavity of the composition effect in gi,t (since γ2/(γ1 + γ2) <

1), a mean-preserving spread in growth rates of hiring firms would have a negative effect on Φt.

A version of this mechanism is responsible for the fluctuations in aggregate recruitment in-

tensity in Kaas and Kircher (2015). In their model of competitive search, aggregate recruitment

intensity is expressed can be expressed as an average of meeting rates in each market, where

meeting rates are a concave function of market-tightness. In terms of our notation this would

be given by ΦKK
t =

´

q(θm,t)(vm/V)dm where m indexes markets. They find that productivity

recessions are accompanied by an increase in the dispersion of market-tightness across markets,

leading to a decline in ΦKK
t . How important might this be for aggregate matching efficiency?

In our model, consistent with DFH, dispersion in firm level meeting rates are driven by dis-

persion in firm level growth rates. Table 4 shows that following a financial shock the standard

deviation of firm growth increases by about 45 percent. Suppose that this increase in the vari-

ance were mean preserving. This would lead the average growth rate of hiring firms to increases.

Is the Jensen’s inequality effect large enough to offset this first order effect?

To answer this question we conduct a simple exercise. We posit a normal distribution of

growth rates in steady-state with parameters µ̄, σ̄.29 Assuming a uniform distribution of vacan-

cies, the composition effect in equation (20) is then

ΦC(µ, σ) =

ˆ ∞

0
g

γ2
γ1+γ2
i f (gi) dgi,

where f describes the normal density. We ask how changes to µ and σ affect ΦC. To do this we

consider an alternative measure Φ̃C in which this curvature effect is zero

Φ̃C(µ, σ) =

[
ˆ ∞

0
gi f (gi) dgi

] γ2
γ1+γ2

.

In choosing values for µ and σ we turn to Table 4, setting µ̄ = 0.016 and σ̄ = 0.126. Table 4

29We also conducted this experiment for a leptokurtic distribution of growth rates using a Pearson Type VII
distribution and found our results to be unchanged.
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Table D1: Effect of firm growth rate dispersion on the composition effect

µ σ µh Pct hiring ΦC Φ̃C ΦC/Φ̃C

(1) (2) (3) (4) (5) (6) (7)

1. µ̄, σ̄ 0.016 0.126 0.107 55.1 1.000 1.000 0.861
2. µ̄, σR 0.016 0.183 0.152 55.1 1.299 1.307 0.856
3. σR and µ s.t. µh = µ̄h -0.135 0.183 0.107 23.1 0.415 1.000 0.730

suggests a recession value of σR = 0.183. Recall that we found that this mapped well into the

values found in Bloom et al. (2015) when studying the Great Recession. We compute ΦC and

Φ̃C at (i) (µ̄, σ̄), (ii) (µ̄, σR), and (iii) under σR with µ chosen such that the average growth rate

of hiring firms µh = 0.107 as in steady-state.

Table D1 gives results. Column 4 shows the percent of firms hiring, columns 5 and 6

show ratios of ΦC(µ, σ) and Φ̃C(µ, σ) to their values at (µ̄, σ̄). Column 7 gives the ratio

ΦC(µ, σ)/Φ̃C(µ, σ).

Column 7 shows that in steady state the curvature effect is sizeable, reducing the compo-

sition effect by 16 percent. Yet our real interest is the effect of cyclical changes in σ. When

increasing only the standard deviation of growth rates (row 2) the average growth rate of hir-

ing firms increases by 5 percent (column 3). This first order effect leads to a 29.9% increase in the

composition effect (column 5). This is only negligibly offset by the curvature effect: in a model

without the curvature effect the increase would have been 30.7% (column 6). To further isolate

the curvature effect we decrease firm growth rates by a counterfactually large 13.5 ppt (row 3)

so as to maintain the steady state average growth rate of hiring firms (column 3). Having set

the first order effect to zero we find a 59% decline in the composition effect. This is large and

around the same magnitude as the decline in aggregate match efficiency in the Great Recession.

However this has required a decline in the annualized growth rate of more than 80 ppt (column

3), and the mass of hiring firms to be halved (column 4). Both are clearly counterfactual. As a

benchmark, Bloom et al. (2016) find that the annual rates of sales growth declined by 21 ppt.

This experiment points to the additional ‘curvature’ effect being quantitatively small, and

reiterates the first-order role of the selection effect generating counter-cyclical movements in

aggregate recruiting intensity. The curvature effect is large only when the first order effect is set

to zero, which requires counterfactually large declines in firm growth.
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