# Discussion of "The Birth of American Ingenuity: Innovation and Inventors of the Golden Age"

Ben Jones, Northwestern & NBER
NBER Economic Growth Meeting
July 15, 2016

#### Overview

- Data
  - Integrates U.S. Census and U.S. patent records, 1980-1940 (and beyond)
- Analysis
  - Part I: Patenting and Economic Growth
  - Part II: Regional Characteristics that Predict Patenting
  - Part III: Inventor and Family Characteristics that Predict Patenting
  - Part IV: Individual Income of Inventors
  - Part V: Regional Inequality and Inventiveness

### Data & Matching

- Complete count census data for 1880-1940
- Match to patents granted (decennial years)
  - Last name, first name, state; then refine using county, middle initial
- Find match for 46% of U.S. patentees
  - 1880: 62%, 1920: 34% (why?)
- Does decennial matching select on especially prolific inventors?
  - People with patents every year more likely to be found. May bias up inventor income measures.

## Part I: Patenting and Economic Growth



• 100%  $\uparrow$  in patenting predicts 15%  $\uparrow$  in Y/L

# Comment 1: What does Correlation Between Y/L and Patenting Tell Us?

- At state level, is it a test of (a) how innovation affects growth, or (b) degree of spillovers?
- If spillovers were complete, then would see zero correlation at state level, even if patenting drove all national growth
- Regression mixes (at least) these two forces.
   It doesn't tell us overall effect of innovation on growth but rather local gains that aren't dissipated to other states.

# Comment 1: What does Correlation Between Y/L and Patenting Tell Us?



## <u>Aggregate</u>

 $\Delta \ln(y) = \Delta \ln(patents)$ 

<u>State</u>

 $\Delta \ln(y) = \frac{1}{7} \Delta \ln(patents)$ 

• Theory suggests  $\Delta \ln(y) = \Delta \ln(A)$ . If we take patent counts seriously, then can reconcile above via large spillovers, which seems natural.

Part I: Patenting and Economic Growth

— It is Causative?

|                            | Annualized Growth Rate |          |          |   |
|----------------------------|------------------------|----------|----------|---|
|                            | OLS                    | OLS      | IV       |   |
|                            | (1)                    | (2)      | (3)      |   |
| Log Patents                | 0.14***                | 0.11***  | 0.14***  | Γ |
|                            | (0.04)                 | (0.04)   | (0.05)   |   |
| Initial Log GDP per Capita | -1.68***               | -1.78*** | -1.84*** |   |
|                            | (0.23)                 | (0.23)   | (0.25)   |   |
| Population Density         |                        | 1.40**   | 1.24**   |   |
|                            |                        | (0.65)   | (0.58)   |   |
| Observations               | 48                     | 48       | 48       |   |
| Mean Growth                | 2.50                   | 2.50     | 2.50     |   |
| Std. Dev. of Growth        | 0.44                   | 0.44     | 0.44     |   |

 Instrument: WW2 Office of Scientific Research & Development (OSRD) contracts

#### Comment 2: Is It Causative?

- OSRD funding is not randomly assigned
- Can it be treated as exogenous?
- Not obvious...
  - Paper tells us that 50% of contracts went to three states: NY (30%), MA (13%), PA (11%)
  - MIT got the most contracts and most money
- One imagines OSRD picked places with high innovative capacity, esp. given wartime needs

#### Comment 2: Is It Causative?

Table 4: PLACEBO TESTS Dependent Variable: 1947-87 GDP Growth Rate Contracts Log Patents 1935-1940 0.115 0.006 (0.189)(0.009)1935-1940 GDP Growth 0.098 (0.161)1935-1940 GDP DHS Growth 2.107 (3.386)3.129\*\*\* 1940 GDP per Capita 0.389 0.018 3.129\*\*\* (1.002)(0.802)(0.038)Population Density -6.731\*\* -0.318\*\* 12.582\*\* (3.248)(0.154)(5.438)(5.438)DHS DHS Growth Rate Annual Annual Observations 48 48

- Placebo tests could use more normal periods (1935-1940 is during Great Depression)
- Can storytelling identify plausibly exogenous shock, perhaps as one OSRD component? Or link today's specific patent classes to OSRD local technology target?

#### Parts II-V

- Many interesting and striking facts
- Example: Tertiary education predictive of inventors (not uneducated "tinkerers") even in 1880-1940.



# Part II: Regional Characteristics • Population density Output Outpu



#### Part V: Inventiveness and Inequality

- Historical lens on a hot topic
- Negative correlation then, mostly



But here 1880-1940 does look different...

#### Part V: Inventiveness and Inequality





- Theory:
  - Aghion et al. (2015): innovation raises inequality (sustains markups / escapes imitators)
  - Jones and Kim (2015): innovation reduces inequality (creative destruction / new entry undercuts leaders)
- Why are 1980-2010 and 1880-1940 different?

#### Part V: Inventiveness and Inequality

#### Possibilities include:

- Scale Effects
  - e.g., digitization & globalization
  - − 1 big tournament, huge share to winners
- Patent Institutions
  - Strengthening property rights
  - New strategies: Increasingly used to foreclose entry as opposed to reward innovation?
  - Allow larger markups and corporate income?
- More evidence to sort out, advance theory

# **Concluding comments**

- Great new dataset
- Very interesting facts emerging
- More intersection with theory/literature and existing facts
  - Are facts contrary or consistent?
  - Do facts support/reject theories?
- The "historical test" is great agenda
- May require narrower paper(s)

Thank You