Balanced Growth Despite Uzawa

Gene M. Grossman Princeton University

Elhanan Helpman Harvard University and CIFAR

Ezra Oberfield

Thomas Sampson Princeton University London School of Economics

July 2016

Stylized Facts of Economic Growth

- Kaldor (1961) facts:
 - Constant growth rates of output/worker, capital/worker
 - Constant capital/output ratio, real return to capital
 - Roughly constant factor shares (maybe until 2000?)
- Updated by Jones (2015)

Steady Growth of US Per Capita Income for 150 Years

Figure 1: GDP per person in the United States

Constant Capital/Output Ratio

Figure 3: The Ratio of Physical Capital to GDP

Constant Factor Shares (until 2000)

Figure 6: Capital and Labor Shares of Factor Payments, United States

Balanced Growth: All is Not Well

- Motivated interest in models that predict balanced growth
 - Great success of neoclassical growth theory!
- But ... "all is not well"

Balanced Growth: All is Not Well

- Motivated interest in models that predict balanced growth
 - Great success of neoclassical growth theory!
- But ... "all is not well"
- Uzawa Growth Theorem:
 - Balanced growth requires either Cobb Douglas aggregate production function or an absence of capital augmenting technical progress (embodied or disembodied)
 - How do these requirements square with the evidence?

Uzawa Growth Theorem and the Uncomfortable Evidence

- ullet Preponderance of evidence suggests $\sigma_{\mathit{KL}} < 1$
 - See Chirinko (2008) for survey. Oberfield & Raval (2014), Lawrence (2015), Herrendorf et al. (2015), Chirinko & Mallick (2014) etc.
 - Exception: Karabarbounis & Neiman (2014)
- Falling investment-good prices indicative of investment-specific technical change

Education: A Way Out?

- Uzawa: impossible to line up endogenous K accum with exogenous growth of effective labor when productivity of capital is growing
- Perhaps endogenous human capital accumulation offers way out?

Education: A Way Out?

- Uzawa: impossible to line up endogenous K accum with exogenous growth of effective labor when productivity of capital is growing
- Perhaps endogenous human capital accumulation offers way out?

Education by birth cohort (Goldin and Katz):

Plan of Paper

- Show why endogenous schooling might allow BGP with $\sigma_{KL} < 1$ and $\gamma_K > 0$ under certain circumstances
- Models with optimizing behavior and "short lifespans"
 - Planner's problem with reduced-form tradeoff between labor force and measure of economy's education level
 - Show restrictions on $F\left(\cdot\right)$ that are sufficient and (essentially) necessary for existence of BGP when $\gamma_K>0$
 - Two market economies that yield such a reduced-form:
 - (i) Time-in-school model;
 - (ii) Manager-worker model
- OLG model with time in school

- Let Y = F(AK, BL, s) prod fct with CRS in K and L and increasing in s, where s is scalar representation of educational attainment (e.g., average years of schooling or fraction with college degree)
- ullet Can convert one unit of output into q_t units of investment good
- Let $\gamma_K = g_A + g_q$: disembodied plus embodied capital-augmenting technogical progress
 - g_q is "investment specific technical change"
 - Price of capital falls at constant rate g_q
- Suppose γ_K , g_B , g_L are constant
- BGP: Define as Y, K, and C growing at constant rates and factor shares constant and strictly positive.

Proposition 1: Suppose q grows at constant rate. If there exists a BGP, then

$$\left(1-\sigma_{\mathit{KL}}\right)\gamma_{\mathit{K}} = \sigma_{\mathit{KL}} rac{F_{\mathit{L}}}{F_{\mathit{K}}} rac{\partial \left(F_{\mathit{s}}/F_{\mathit{L}}
ight)}{\partial \mathit{K}} \dot{\mathsf{s}}$$

Proposition 1: Suppose q grows at constant rate. If there exists a BGP, then

$$\left(1-\sigma_{\mathit{KL}}\right)\gamma_{\mathit{K}}=\sigma_{\mathit{KL}}\frac{\mathit{F_{L}}}{\mathit{F_{K}}}\frac{\partial\left(\mathit{F_{s}}/\mathit{F_{L}}\right)}{\partial\mathit{K}}\dot{\mathsf{s}}$$

1 Uzawa: s constant \Rightarrow BGP requires $\sigma_{KL}=1$ or $\gamma_K=0$

Proposition 1: Suppose q grows at constant rate. If there exists a BGP, then

$$\left(1-\sigma_{\mathit{KL}}\right)\gamma_{\mathit{K}}=\sigma_{\mathit{KL}}\frac{\mathit{F_{L}}}{\mathit{F_{K}}}\frac{\partial\left(\mathit{F_{s}}/\mathit{F_{L}}\right)}{\partial\mathit{K}}\dot{\mathit{s}}$$

- **1** Uzawa: s constant \Rightarrow BGP requires $\sigma_{KL}=1$ or $\gamma_K=0$
- **②** Human Capital: \exists measure of human capital H(BL, s) such that $F(AK, BL, s) \equiv \tilde{F}[AK, H(BL, s)] \Rightarrow \text{BGP requires } \sigma_{KL} = 1 \text{ or } \gamma_K = 0.$

Proposition 1: Suppose q grows at constant rate. If there exists a BGP, then

$$\left(1-\sigma_{\mathit{KL}}\right)\gamma_{\mathit{K}}=\sigma_{\mathit{KL}}\frac{\mathit{F_{L}}}{\mathit{F_{K}}}\frac{\partial\left(\mathit{F_{s}}/\mathit{F_{L}}\right)}{\partial\mathit{K}}\dot{\mathit{s}}$$

- **1** Uzawa: s constant \Rightarrow BGP requires $\sigma_{KL}=1$ or $\gamma_K=0$
- **●** Human Capital: \exists measure of human capital H(BL, s) such that $F(AK, BL, s) \equiv \tilde{F}[AK, H(BL, s)] \Rightarrow \text{BGP requires } \sigma_{KL} = 1 \text{ or } \gamma_K = 0.$
- **3** GHOS: $\dot{s} > 0$, $\gamma_K > 0$ and $\sigma_{KL} < 1 \Rightarrow$ BGP requires $\partial \left(F_s / F_L \right) / \partial K > 0$ (capital-schooling complementarity)

Short Lifespans

- Unit measure of identical family dynasties. $N_t = N_0 e^{nt}$
- Infinitessimal lives $\Rightarrow s$ is a jump variable
- Reduced form trade-off between education and labor supply:

$$L_t = D(s_t) N_t; \qquad D' < 0$$

Short Lifespans

- Unit measure of identical family dynasties. $N_t = N_0 e^{nt}$
- Infinitessimal lives $\Rightarrow s$ is a jump variable
- Reduced form trade-off between education and labor supply:

$$L_t = D(s_t) N_t; \qquad D' < 0$$

Planner problem

$$\max_{\{c_t,s_t,L_t\}} \int_{t_0}^{\infty} \textit{N}_t e^{-\rho(t-t_0)} \frac{c_t^{1-\eta}-1}{1-\eta} dt \qquad \text{subject to } \dots$$

$$Y_{t} \leq F(A_{t}K_{t}, B_{t}L_{t}, s_{t})$$

$$L_{t} \leq D(s_{t}) N_{t}$$

$$\dot{K}_{t} = q_{t}(Y_{t} - N_{t}c_{t}) - \delta K_{t}$$

- Assumption 1 Production function can be written as $F(AK, BL, s) = \tilde{F}[D(s)^a AK, D(s)^{-b} BL)]$, with a > 0, b > 0, and
 - (i) \tilde{F} strictly increasing, smooth, concave in first argument
 - (ii) $\sigma_{KL} < 1$

- Assumption 1 Production function can be written as $F(AK, BL, s) = \tilde{F}[D(s)^a AK, D(s)^{-b}BL]$, with a > 0, b > 0, and
 - (i) \tilde{F} strictly increasing, smooth, concave in first argument
 - (ii) $\sigma_{KL} < 1$
- \Rightarrow F strictly l.s.m in (K, s); $\partial (F_s/F_L)/\partial K > 0$.

- Assumption 1 Production function can be written as $F(AK, BL, s) = \tilde{F}[D(s)^a AK, D(s)^{-b} BL)]$, with a > 0, b > 0, and
 - (i) \tilde{F} strictly increasing, smooth, concave in first argument
 - (ii) $\sigma_{KL} < 1$
- \Rightarrow F strictly I.s.m in (K, s); $\partial (F_s/F_L)/\partial K > 0$.

Example:
$$F(AK, BL, s) = (BL)^{1-\beta} \left\{ (AK)^{\alpha} + \left[D(s)^{-(a+b)} BL \right]^{\alpha} \right\}^{\beta/\alpha}$$
, with $\alpha < 0$, $\beta = \frac{b}{a+b}$.

- Assumption 1 Production function can be written as $F(AK, BL, s) = \tilde{F}[D(s)^a AK, D(s)^{-b} BL]$, with a > 0, b > 0, and
 - (i) \tilde{F} strictly increasing, smooth, concave in first argument
 - (ii) $\sigma_{KL} < 1$
- \Rightarrow F strictly l.s.m in (K, s); $\partial (F_s/F_L)/\partial K > 0$.

Example:
$$F(AK, BL, s) = (BL)^{1-\beta} \left\{ (AK)^{\alpha} + \left[D(s)^{-(a+b)} BL \right]^{\alpha} \right\}^{\beta/\alpha}$$
, with $\alpha < 0$, $\beta = \frac{b}{a+b}$.

- More Assumptions: Parameter restrictions to ensure
 - $F_s > 0$
 - s > 0
 - utility is finite

Planner's Problem

• Choice of s_t , L_t is a static problem

$$Y_{t} = \max_{s,L} \tilde{F} \left[D(s)^{a} A_{t} K_{t}, D(s)^{-b} B_{t} L \right]$$
 s.t

Planner's Problem

• Choice of s_t , L_t is a static problem

$$Y_t = \max_{s,L} \tilde{F}\left[D\left(s\right)^a A_t K_t, D\left(s\right)^{-b} B_t L\right]$$
 s.t. $L \leq D\left(s\right) N_t$

FOCs imply

$$\frac{A_{t}K_{t}}{B_{t}L_{t}}D\left(s_{t}\right)^{a+b}=z^{*}=\mathcal{E}_{h}^{-1}\left(\theta\right)$$

where $\theta \equiv \frac{b-1}{a+b-1}$, independent of t.

Planner's Problem

• Choice of s_t , L_t is a static problem

$$Y_t = \max_{s,L} \tilde{F} \left[D(s)^a A_t K_t, D(s)^{-b} B_t L \right]$$
 s.t.
$$L \leq D(s) N_t$$

FOCs imply

$$\frac{A_{t}K_{t}}{B_{t}L_{t}}D\left(s_{t}\right)^{a+b}=z^{*}=\mathcal{E}_{h}^{-1}\left(\theta\right)$$

where $\theta \equiv \frac{b-1}{a+b-1}$, independent of t.

• Substitute into Y_t :

$$Y_t = (A_t K_t)^{\theta} (B_t N_t)^{1-\theta} z^{*-\theta} h(z^*)$$

⇒ Optimal education and Assumption 1 imply output Cobb-Douglas in capital and population!

14 / 27

Balanced Growth

Proposition 2 Suppose $L=D\left(s\right)N$ and Assumptions 1-3 hold. Then along the optimal trajectory from any initial capital stock K_{t_0} the economy converges to a unique BGP. On the BGP

aggregate output and aggregate consumption grow at the common rate

$$g_Y = n + \gamma_L + \frac{b-1}{a} \gamma_K$$

schooling evolves to satisfy

$$g_D = -\frac{\gamma_K}{a}$$
;

the capital share is constant and equal to

$$\theta_K = \frac{b-1}{a+b-1}$$

Role of Functional Form

Assumption 1:

$$F[AK, BL, s] = \tilde{F}[AKD(s)^{a}, BLD(s)^{-b}]$$

- Schooling as if augments L, while curtailing K
- Combined effect is positive: $\partial F/\partial s > 0$
- Decline in productivity of K (given $LD(s)^{-b}$) just what is needed to keep schooling-plus-technology augmented K stock growing in line with output.
 - $D(s_t)^a q_t A_t$ is constant along BGP

Role of Functional Form

Assumption 1:

$$F\left[AK,BL,s
ight]= ilde{F}\left[AKD\left(s
ight)^{a},BLD\left(s
ight)^{-b}
ight]$$

- Schooling as if augments L, while curtailing K
- Combined effect is positive: $\partial F/\partial s > 0$
- Decline in productivity of K (given $LD(s)^{-b}$) just what is needed to keep schooling-plus-technology augmented K stock growing in line with output.
 - $D(s_t)^a q_t A_t$ is constant along BGP
- Race between education and effective capital:
 - More abundant effective $K \Rightarrow \theta_K \downarrow$
 - ullet F log-supermodular in K, s and $\dot{K}>0 \Rightarrow$ return to schooling \uparrow
 - ullet Capital-schooling complementarity and $\dot{s}>0\Rightarrow heta_{K}\uparrow$

Role of Functional Form

Assumption 1:

$$F[AK, BL, s] = \tilde{F}[AKD(s)^{a}, BLD(s)^{-b}]$$

- Schooling as if augments L, while curtailing K
- Combined effect is positive: $\partial F/\partial s > 0$
- Decline in productivity of K (given $LD(s)^{-b}$) just what is needed to keep schooling-plus-technology augmented K stock growing in line with output.
 - $D(s_t)^a q_t A_t$ is constant along BGP
- Race between education and effective capital:
 - ullet More abundant effective $K\Rightarrow heta_K\downarrow$
 - ullet F log-supermodular in K, s and $\dot{K}>0\Rightarrow$ return to schooling \uparrow
 - ullet Capital-schooling complementarity and $\dot{s}>0\Rightarrow heta_{\mathcal{K}}\uparrow$
- Can we dispense with Assumption 1? Essentially NO.
 - If \exists BGP with $\gamma_K > 0$, technology must have representation as \tilde{F} .

Time-in-School

- Individuals inherit capital from family, maximize dynastic utility.
- Individual spends fraction s of life in school, remaining fraction 1-s in labor force. In this case, D(s) = 1-s

Time-in-School

- Individuals inherit capital from family, maximize dynastic utility.
- Individual spends fraction s of life in school, remaining fraction 1-s in labor force. In this case, D(s) = 1-s
- Firms face wage schedule $W(s_t)$, rental rate R_t . Allocate capital to workers as function of s_t and technology to maximize profits.

Time-in-School

- Individuals inherit capital from family, maximize dynastic utility.
- Individual spends fraction s of life in school, remaining fraction 1-s in labor force. In this case, D(s) = 1-s
- Firms face wage schedule $W(s_t)$, rental rate R_t . Allocate capital to workers as function of s_t and technology to maximize profits.
- Individuals choose s to maximize $(1-s) W_t(s)$
- Capital deepening raises $W_t'\left(s\right)/W_t\left(s\right)$ (return to education) due to K-s complementarity
 - Wage schedule gives incentives for schooling to grow over time

Manager-Worker

- Individuals face discrete choice: Devote fixed fraction *m* of time to train as manager, or work full-time as production worker.
- Workers and equipment generate output. Productivity depends on s
 ("monitoring by managers").
 - s = M/L, ratio of manager hours to worker hours
- Schooling/hours tradeoff: $N = L + \frac{M}{1-m} = \left(1 + \frac{s}{1-m}\right)L$

$$D(s) = \frac{L}{N} = \left(1 + \frac{s}{1 - m}\right)^{-1}$$

Manager-Worker

- Individuals face discrete choice: Devote fixed fraction *m* of time to train as manager, or work full-time as production worker.
- Workers and equipment generate output. Productivity depends on s
 ("monitoring by managers").
 - s = M/L, ratio of manager hours to worker hours
- Schooling/hours tradeoff: $N = L + \frac{M}{1-m} = \left(1 + \frac{s}{1-m}\right)L$

$$D(s) = \frac{L}{N} = \left(1 + \frac{s}{1 - m}\right)^{-1}$$

- In equilibrium $(1-m) W_{Mt} = W_{Lt}$
- This gives incentives for s = M/L to grow over time
 - Capital deepening raises F_M/F_L , due to K-s complementarity
 - Incentive for greater fraction of population to be trained as managers as effective capital grows

Overlapping Generations

- Instantaneous lifetimes yield a simple framework, but
 - no cross-sectional variation in schooling
 - must have scalar measure of schooling; that can jump!
 - capital share does not depend on technical change

Overlapping Generations

- Instantaneous lifetimes yield a simple framework, but
 - no cross-sectional variation in schooling
 - must have scalar measure of schooling; that can jump!
 - capital share does not depend on technical change
- Introduce overlapping generations to allow
 - life cycle of schooling, work, retirement
 - varying earnings over life cycle
 - younger cohorts with more schooling
 - composition of labor force changes over time
 - labor force participation rate changes over time

Overlapping Generations

- Instantaneous lifetimes yield a simple framework, but
 - no cross-sectional variation in schooling
 - must have scalar measure of schooling; that can jump!
 - capital share does not depend on technical change
- Introduce overlapping generations to allow
 - life cycle of schooling, work, retirement
 - varying earnings over life cycle
 - younger cohorts with more schooling
 - composition of labor force changes over time
 - labor force participation rate changes over time
- Challenge: How to maintain balance in face of evolving composition of labor force and different amounts of capital allocated to different workers?
- Answer: Technology with Mincer (1974) wage equation

Elements of the Model

- Size of representative dynasty is $N_t = e^{(\lambda v)t} N_0$, where λ is instantaneous probability of offspring for any individual and v is instantaneous hazard of death
- Production function $F(A_tK, B_tL, s, u)$, where $F(A_tK, B_tL, s, u) = 0$ for $u \ge \bar{u}$
 - Wage of individual with schooling s and experience u at t is $W_t(s, u)$
 - Firm hires workers with $\{s, u\}$, allocates capital to each
- Maximize dynastic welfare s.t. intertemporal budget constraint
 - Dynasties choose schooling for individual born at b to maximize expected pdv of lifetime wages:

$$\int_{b+s}^{\infty} e^{-(\iota+v)(t-b)} W_t(s, t-b-s) dt$$

- Assumption 4 The production function can be expressed as $F(AK, BL, s, u) = \tilde{F}(e^{-as}AK, e^{bs}BL, u)$, with a > 0 and b > 0, s.t.
 - (i) \tilde{F} is strictly increasing, smooth, concave in first argument
 - (ii) F(AK, BL, s, u) = 0 for all $u \ge \bar{u}$; and
 - (iii) $\sigma_{KL}(K, L, s, u) < 1$
- More Assumptions Parameter restrictions that ensure (i) $F_s > 0$, (ii) s is interior, (iii) $\dot{s} > 0$, (iv) finite lifetime budget

Main Results

Proposition 3 Suppose that Assumptions 4 and 5 hold. Then the OLG economy has a unique balanced growth path. On the BGP

(i) aggregate output, consumption, and wages grow at rate

$$g_Y = n + \gamma_L + \frac{b - \lambda}{a} \gamma_K$$
;

(ii) the educational attainment of new cohorts rises linearly over time

$$\dot{s}_b = rac{\gamma_K}{\mathsf{a} - \gamma_K}$$
 ;

(iii) aggregate K share constant (θ_K varies with s, u in cross section)

Main Results

Proposition 3 Suppose that Assumptions 4 and 5 hold. Then the OLG economy has a unique balanced growth path. On the BGP

(i) aggregate output, consumption, and wages grow at rate

$$g_Y = n + \gamma_L + \frac{b - \lambda}{a} \gamma_K$$
;

(ii) the educational attainment of new cohorts rises linearly over time

$$\dot{s}_b = rac{\gamma_K}{a - \gamma_K}$$
 ;

- (iii) aggregate K share constant ($heta_K$ varies with s,u in cross section)
- BGP? Linear increase in s generates constant decline in e^{-as} , offsets growth in A and q

Additional Results for BGP

- The labor force participation rate L/N declines exponentially (longer time spent in school)
- Distribution of experience in labor force is stable
- Density of s in labor force shifts right at constant rate per year
- ullet Mincerian wage equation for log wages as function of s and u

Determinants of Capital Share

- At given R, those with higher s produce with higher K share
 - Aggregate capital share is an average
 - No closed form for θ_K :

$$\theta_K = \frac{\int_0^{\bar{u}} e^{-\left[\lambda + \frac{b-\lambda}{a}\gamma_K\right]u} e^{-\gamma_K u} x^* \Phi\left[e^{-\gamma_K u} x^*, u\right] du}{\int_0^{\bar{u}} e^{-\left[\lambda + \frac{b-\lambda}{a}\gamma_K\right]u} h\left\{\Phi\left[e^{-\gamma_K u} x^*, u\right], u\right\} du}$$

- No clear relationship between rates/form of technological progress and capital share!
- Resort to numerical simulation of parameterized version of model
- Use production function

$$F(A_tK, B_tL, s, u) = \tilde{h}(u) (B_tL)^{1-\beta} \left[A_tK^{\alpha} + (e^{\mu s}B_tL)^{\alpha} \right]^{\beta/\alpha}$$

• Use quadratic experience profile for $u \leq \bar{u}$:

$$\tilde{h}(u) = 1 + 0.2 \left[1 - (2u/\bar{u} - 1)^2 \right]$$

Simulation Parameters

- Working life: $\bar{u} = 40$
- Birth and death rates: $\lambda = v = 0.01$
- Production function parameters: α , β , μ so that capital share is 0.35, average local elasticitity of substitution between K and L is 0.6, and educational attainment grows one year per decade in baseline scenario with $\gamma_K=0.02$ and $\gamma_L=0.01$
- Discount rate and elasticity of substitution?
 - ullet Sensitivity of $heta_K$ to γ_K and γ_L governed by real interest rate
 - Low riskless rate of return suggests targeting low interest rate
 - High rate of return on schooling suggests targeting high interest rate
 - Cannot match both low riskless rate and high internal rate of return on schooling in our model
 - Do not take strong stand: Present low-interest rate and high-interest rate scenarios.

Simulation Results

Low Interest Rate: $\rho = .01, \ \eta = 1$									
γ_K	γ_L	Growth in	Annual Increase	Capital Share	Interest Rate				
		per capita Income	in Schooling						
0.03	0.01	0.028	0.158	0.348	0.038				
0.02	0.01	0.022	0.1	0.35	0.032				
0.01	0.01	0.016	0.048	0.352	0.026				
0.02	0.02	0.032	0.1	0.35	0.042				
0.02	0.01	0.022	0.1	0.35	0.032				
0.02	0	0.012	0.1	0.35	0.022				

High Interest Rate: $\rho = .01, \ \eta = 3$								
γ_K	γ_L	Growth in	Annual Increase	Capital Share	Interest Rate			
		per capita Income	in Schooling					
0.03	0.01	0.038	0.158	0.288	0.123			
0.02	0.01	0.028	0.1	0.35	0.095			
0.01	0.01	0.019	0.048	0.402	0.068			
0.02	0.02	0.038	0.1	0.303	0.125			
0.02	0.01	0.028	0.1	0.35	0.095			
0.02	0	0.018	0.1	0.394	0.065			

Conclusions

- Can generate balanced growth in neoclassical growth model with endogenous education, provided capital is more complementary with schooling than it is with raw labor
- Mechanism is straightforward:
 - Over time, growth of effective capital stock due to $\dot{K}>0$ and $\gamma_K>0$ raise returns to schooling
 - Individuals induced to spend more time in school.
 - \bullet Capital accumulation tends to lower capital share with $\sigma_{\mathit{KL}} < 1.$
 - Schooling offsets. With Assumption 1, it neutralizes.
- OLG model captures salient trends in US growth experiences, including linear growth in educational attainment
- For reasonable parameter values, capital share grows when technological progress slows.
- BGP requires delicate functional-form restrictions, as in any balanced growth model.