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To protect an ecosystem, governments frequently limit deforestation or other resource 

extraction within a designated conservation zone (Joppa and Pfaff 2010). Globally, 18.4 million 

square km of marine or terrestrial areas have been set aside primarily for nature and biodiversity 

conservation (International Union for Conservation of Nature (IUCN) 2010). One criticism is 

that restricting activity in one area often leads to an increase in ecologically-damaging extraction 

outside the protected zone, which reduces the effect of the conservation policy.   

To study these indirect effects, we borrow wording from other environmental policies. 

For example, a unilateral emissions policy can achieve direct emission reductions, but that 

amount can be partially offset by induced changes in emissions elsewhere, called “leakage”.  

Under some conditions, that leakage could be 100% of the emission reduction, implying the 

policy has no net effect; under other conditions leakage could be negative, so total abatement 

exceeds direct abatement induced by the policy.  In this paper, analogously, we study forest 

cover and the way that a direct set-aside of protected forest could be partly offset by induced 

reductions in forest cover elsewhere (“forest leakage”). We show conditions under which that 

leakage could be negative, with total additional forest cover greater than the initial set-aside, and 

we test these hypotheses empirically. 

While forest leakage is analogous to emissions leakage, the policies and induced indirect 

behaviors are different.  Forest leakage could more than offset any direct conservation gains, if 

the establishment of a protected area shifts all planned deforestation to other areas and induces 

anticipatory logging by land users worried about losing their future logging rights (Wunder 

2008).  Bode et al. (2015) use a bio-economic model of forest leakage to illustrate the tradeoffs 

between human well-being and biodiversity loss owing to possible positive leakage, and they 

show how such tradeoffs can be minimized if leakage is taken into account during conservation 

planning. Conversely, establishing protected areas could reduce nearby deforestation or 

extraction by blocking new roads or by inducing economic growth in non-extractive sectors 

(Herrera et al. 2015). Understanding which characteristics are likely to generate positive or 

negative leakage could allow policy-makers to site parks that will protect the most total forest.     

In this paper, we first develop a general equilibrium model to address what economic 

factors affect the direction and magnitude of forest leakage.  We then test the hypotheses derived 

from this model and estimate the effect of these factors on leakage in Indonesia. To take the 

spatial nature of deforestation into account, we compare deforestation in nearby areas against 



-2- 
 
spatially weighted counterfactuals that account for spatial characteristics.   

Deforestation in Indonesia is a particular concern because it increases carbon emissions 

and threatens the survival of numerous endangered species such as orangutans, elephants, and 

tigers. Indonesia is home to the third largest area of tropical rain forest in the world, but this 

forest is under threat (United Nations, 2016). Indonesia has the third highest rate of forest loss 

due to agricultural expansion and unsustainable commercial logging. Between 1990 and 2000, 

the annual rate of deforestation was 1.61%, and it increased to 1.91% between 2000 and 2005 

(Olsen and Bishop, 2009). In response, Indonesia increased the total land area under protection 

from 10% in 1990 to 14% by 2010. In May 2013, it implemented the world’s largest project 

under the U.N.’s Reducing Emissions from Deforestation and Degradation (REDD+); see Butler 

(2013). To estimate the effect of these and other potential conservation projects, one must 

account for the policy’s impacts on areas outside the protected zone.  

The primary drivers of leakage are likely economic. Since land is a limited resource, a 

policy that restricts the use of land in one region is likely to induce reallocation of land in other 

related areas (Schwarze et al. 2002). Leakage can also result from the relocation of indigenous 

communities from protected areas or by inducing preemptive clearing of forest (Armsworth et al. 

2006; Brokington and Igoe 2006; Oliveira et al. 2007; Wittemeyr et al. 2008). Gan and McCarl 

(2007) use a computable general equilibrium model to illustrate the effect of key factors that 

determine transnational leakage such as the price elasticities of supply and demand for forestry 

products and the degree of cooperation in forest conservation across countries. 

Many impact evaluations report that an increase in protection in one area displaces 

deforestation activities to other areas (Ferraro 2002; Oliveira et al. 2007; Meyfroidt and Lambin 

2009).  Conversely, several studies have found negative forest leakage (or a “green halo” effect), 

where protection increases the forest conservation on adjacent lands (Honey-Rosés et al. 2011; 

Pfaff et al. 2014; Gaveau et al. 2009). Thus, empirical estimates of leakage are mixed.   

Previous studies that model leakage account for the effects on forest cover through 

changes in prices as well as demand and supply conditions in single markets. Wear and Murray 

(2004) find that a mandated reduction in logging activity on public lands in the U.S. Pacific 

Northwest resulted in intensified timber harvesting on nearby private lands. Wu (2000) develops 

a conceptual framework to estimate potential leakage within the Conservation Reserve Program 

(CRP); he finds that about 20% of the acreage enrolled in the CRP was offset by expansion of 
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cropland cultivated elsewhere. These studies do not account for the effect that leakage has on 

prices and production decisions in other sectors, including both extractive and non-extractive 

sectors. In this paper, we investigate economic variables that play key roles in determining the 

direction and intensity of leakage.   

We develop a simple general equilibrium model with two inputs (land and labor) and four 

outputs (eco-services, timber, agriculture, and manufacturing). We use it to ask how local 

characteristics of markets affect the extent and type of leakage, and we derive eight theorems. 

We then calibrate parameters, so that each theorem yields a particular hypothesis for Indonesia. 

For our first theorem, we derive the conditions under which leakage is positive or negative. For 

our other theorems, we show how leakage depends on each key parameter (all else equal).  For 

example, leakage will be larger in cases where the land taken for protection comes relatively 

more from what would have been used for agriculture rather than from timber production. We 

also show leakage will be larger when the fraction of other nearby land initially in timber is 

relatively high (or equivalently, the fraction initially used in agriculture is low).  Leakage is 

larger when nearby agricultural products have relatively inelastic demand, and it is smaller when 

nearby forest products have relatively inelastic demand. We then test those hypotheses. 

To be able to solve this general equilibrium model analytically, we limit the number of 

sectors, factor inputs, and other complications such as heterogeneity.  The theoretical model has 

one agricultural output, one tree product, one type of land, and one type of labor, along with 

assumptions of perfect competition and constant returns to scale. Other considerations may affect 

the amount of forest leakage, but we abstract from them to focus on effects of economic drivers 

that we believe to be most important, including demand elasticities, factor shares, and other key 

differences across parks.  We do capture heterogeneity across districts of Indonesia, however, 

since our model can be taken to represent a locality that faces particular demand elasticities for 

its primary agricultural and tree products that are produced using particular factor shares, so that 

we predict the forest leakage in that locality.  We then test the model using data across Indonesia 

for different localities that produce different goods using different factors near different parks.  

We thus test only some of the drivers of forest leakage, while controlling for other drivers of 

leakage by including other control variables in the regressions.  

 Indonesia was successful in reducing deforestation within its new protected areas.  In 

earlier work, Shah and Baylis (2015) found that the new protected areas had 1.1% more forest 
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cover remaining than did their control counterparts.  When we consider leakage here, we find 

that the new protected areas increase total forest cover in nearby areas by 1% (relative to 

controls).  Thus, on average, the establishment of protected areas decrease land conversion on 

nearby parcels (negative leakage).  That said, these national numbers mask a great deal of 

heterogeneity.  Effectiveness of new protected areas established after 1999 range from  –3.4% to 

+5.3%, and estimates of leakage range from –10.3% to +7.5%.  

Here, we explain these differences in leakage using observed variation in local economic 

characteristics of the forest and agricultural sectors.  For example, districts contiguous to Tesso 

Nilo National Park in Sumatra produce a relatively large fraction of agricultural commodities 

that have inelastic demand. These economic conditions in our first theorem imply that an 

increase in land protection leads to an increase in deforestation activities in nearby districts. 

Indeed, we find statistically significant evidence of positive leakage surrounding that park. 

Conversely, districts contiguous to Sebangau National Park in Kalimantan produce a relatively 

smaller proportion of such goods, so their output faces more elastic demand. As a result, our 

theory and significant evidence both suggest a decrease in deforestation pressures in areas near 

this new protected area.  We test these relations for the regions surrounding all of the newly 

established parks.  However, since we compare these affected areas near each new park to other 

controls that are further away within Indonesia, we measure only this crucial nearby portion of 

leakage, not the effects of these new Indonesian parks on deforestation worldwide.  

Our empirical results generally corroborate our hypotheses about effects of key economic 

indicators on leakage. Given differing parameters around each park, our first theorem/hypothesis 

correctly predicts one of the two areas with positive leakage, and five of the six with negative 

leakage. Also, as predicted by other theorems, we find lower leakage near parks when more of 

that protected area comes from forest land than from agriculture. Also as predicted, we find less 

leakage if nearby districts produce agricultural products with a higher price elasticity of demand 

or produce timber products that have lower demand price elasticity. Finally, we find relatively 

higher deforestation pressures in nearby districts that have larger share of labor relative to land. 

This paper makes several contributions to the existing literature on impact evaluation of 

protected area policies. First, using a general equilibrium framework, we generate predictions of 

how economic variables affect leakage – reductions in nearby forest cover. While past studies 

have estimated leakage for one particular region or one particular sector of the economy, they 
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have not estimated how different economic settings generate different signs and magnitudes of 

leakage (with the exception of recent work by Pfaff et al. 2014). Our study also incorporates 

spatial considerations that capture impacts on deforestation based on characteristics of 

neighboring areas. Particularly in the context of future REDD projects, conservation planners 

may be able to use these results to target the placement of future conservation sites to maximize 

their conservation effect both inside and outside the protected area. 

1. A Simple General Equilibrium Model 

 In a developing country with finite land and forest resources, any policy to set aside land 

for conservation must take land away from agriculture and forest-based production activities.  

Shrinking those sectors may directly affect those outputs by removing land, reallocating labor, or 

both. The policy therefore affects relative prices, which affects production decisions throughout 

the economy. We construct an empirically testable general equilibrium model that captures these 

essential elements and remains simple enough to solve analytically. In this section, we develop a 

basic model that represents an equilibrium in all input and output markets. We differentiate these 

equations and then solve simultaneously for solutions that show the effect on all prices and 

quantities from a small policy shock such as placing additional land into forest reserves. 

Consider an open economy, not necessarily a small open economy, with constant returns 

to scale production of four outputs using two inputs. One input is land and forest resources, R, 

and the other is called labor, L. This second input represents all inputs other than land, so it could 

be interpreted as labor, human capital, physical capital, or a composite of all such inputs. 

The first output is “environment and ecosystem services”,  E,  produced by government 

using land and forest resources set aside for conservation (in amount  RE).  We treat  E  as a 

public good in utility, rather than as a private good for purchase.  Thus, households do not 

choose the amount of  E , but they may benefit from visiting the park or from non-use existence 

value.  Moreover, the travel industry could benefit from  E   for ecotourism; drug companies 

could use it for biodiversity to develop new pharmaceuticals; non-profit organizations may value 

conservation easements; and  E   might be used for sequestration credits.   

The other three goods are produced and sold in competitive markets. One is a sustainable 

forest-based product such as “timber”,  T,  produced using land and forest resources (in amount  

RT) and labor (in the amount LT).  Good  T includes sustainably harvested second-growth timber 
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as well as non-timber forest products.  The private demand for  T  arises outside the economy 

from those who buy sustainable timber products or sequestration credits from the sustainable use 

of forests.  Production of goods  E  and  T  both retain tree cover (in the amount  RE + RT).     

 The third good our economy produces is an agricultural good,  A,  which requires the 

clearing of forest, the potential harvest of old-growth timber, mining products, palm oil, and 

other agricultural exports.  We suppose that production of this good also uses land resources, in 

the amount  RA, and the other composite input called labor, in amount  LA, earning wage  w.  The 

fourth and final output is “manufacturing”,  M,  produced using only labor,  LM, earning wage  

𝑤𝑤𝑀𝑀.  This good represents all other economic output, so it effectively includes food and services 

as well as manufactured goods.   The production functions and zero profit conditions are:1    

𝐸𝐸 = 𝑅𝑅𝐸𝐸 

𝑇𝑇 = 𝑇𝑇(𝑅𝑅𝑇𝑇 , 𝐿𝐿𝑇𝑇) 

𝐴𝐴 = 𝐴𝐴(𝑅𝑅𝐴𝐴, 𝐿𝐿𝐴𝐴) 

𝑀𝑀 = 𝐿𝐿𝑀𝑀 

 

𝑇𝑇𝑃𝑃𝑇𝑇 = 𝑅𝑅𝑇𝑇𝑃𝑃𝑅𝑅 + 𝐿𝐿𝑇𝑇𝑤𝑤 

𝐴𝐴𝑃𝑃𝐴𝐴 = 𝑅𝑅𝐴𝐴𝑃𝑃𝑅𝑅 + 𝐿𝐿𝐴𝐴𝑤𝑤 

𝑀𝑀𝑃𝑃𝑀𝑀 = 𝐿𝐿𝑀𝑀𝑤𝑤𝑀𝑀 

where Pi  is the market price of good  i  (for  𝑖𝑖 = 𝑇𝑇,𝐴𝐴,𝑀𝑀,  and R). The elasticity of substitution in 

production of timber is  𝜎𝜎𝑇𝑇, and the one in agriculture is  𝜎𝜎𝐴𝐴.  Each of the private industries must 

break even, with no excess profits, so the first zero profit condition says that revenue from sale 

of timber (𝑇𝑇𝑃𝑃𝑇𝑇) must match the cost of producing it (𝑅𝑅𝑇𝑇𝑃𝑃𝑅𝑅 + 𝐿𝐿𝑇𝑇𝑤𝑤).  Similarly, for agriculture, 

revenue 𝐴𝐴𝑃𝑃𝐴𝐴  must match costs  𝑅𝑅𝐴𝐴𝑃𝑃𝑅𝑅 + 𝐿𝐿𝐴𝐴𝑤𝑤.  With only one input in  M,  zero profits implies 

that the wage  𝑤𝑤𝑀𝑀  must match the price of output  PM.   

 We assume that labor is perfectly mobile between agriculture and timber production, 

presuming that both are in rural areas.  This rural labor, 𝐿𝐿𝑇𝑇𝐴𝐴 ≡ 𝐿𝐿𝑇𝑇 + 𝐿𝐿𝐴𝐴, earns a single wage w. 

Labor is not perfectly mobile between this rural area and the urban area, where labor used to 

produce M  receives wage  𝑤𝑤𝑀𝑀.  To represent imperfect mobility of labor, we use the function  

𝐿𝐿 = 𝐿𝐿(𝐿𝐿𝑇𝑇𝐴𝐴,𝐿𝐿𝑀𝑀), where  𝜎𝜎𝐿𝐿 is the elasticity of  𝐿𝐿𝑇𝑇𝐴𝐴/𝐿𝐿𝑀𝑀  with respect to  𝑤𝑤𝑀𝑀/𝑤𝑤, and where  

𝐿𝐿𝑃𝑃𝐿𝐿 = 𝐿𝐿𝑇𝑇𝐴𝐴𝑤𝑤 + 𝐿𝐿𝑀𝑀𝑤𝑤𝑀𝑀 is the corresponding zero profit condition.2 

                                                           
1 A general production function with one input could be written as  𝐸𝐸 = 𝐸𝐸(𝑅𝑅𝐸𝐸) or  𝑀𝑀 = 𝑀𝑀(𝐿𝐿𝑀𝑀), but constant returns 
to scale production means that each function must be linear.  Moreover, we can define a unit of output as the amount 
produced using one unit of the input, which yields the simpler forms of production shown.    
2 The function  𝐿𝐿 = 𝐿𝐿(𝐿𝐿𝑇𝑇𝐴𝐴,𝐿𝐿𝑀𝑀)  looks like a production function, but we do not need to solve for “output”  L  or its 
“price”  𝑃𝑃𝐿𝐿 .  Instead, this function for  L is just a convenient way to moderate movement between   𝐿𝐿𝑇𝑇𝐴𝐴  and  𝐿𝐿𝑀𝑀. 
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  Then the two resource constraints are:  

 𝑅𝑅� =  𝑅𝑅𝐸𝐸 + 𝑅𝑅𝑇𝑇 + 𝑅𝑅𝐴𝐴  and     𝐿𝐿� =  𝐿𝐿𝑇𝑇𝐴𝐴 + 𝐿𝐿𝑀𝑀  .   

For simplicity, assume that  T  and  A are produced only for export, which means that this 

economy can import some of the manufactured good, in amount  𝑀𝑀𝐼𝐼.  Consumption is then the 

sum of domestic production and imports:  𝑀𝑀𝐶𝐶 = 𝑀𝑀 + 𝑀𝑀𝐼𝐼.   Balance of payments requires that 

the value of exports equals the value of imports: 

 𝑇𝑇𝑃𝑃𝑇𝑇 + 𝐴𝐴𝑃𝑃𝐴𝐴 = 𝑀𝑀𝐼𝐼𝑃𝑃𝑀𝑀      

The government can remove land from private production of  T  or  A  and allocate it to 

production of  E, the public good.3  This  E  could provide international as well as domestic 

benefits.  Domestic (local) utility is a homothetic function of manufactured goods and the public 

good, 𝑈𝑈 =  𝑈𝑈(𝑀𝑀𝐶𝐶;  𝐸𝐸).  Given  E,  many identical local households choose  𝑀𝑀𝐶𝐶  to maximize 

utility subject to their budget,  𝑀𝑀𝐶𝐶𝑃𝑃𝑀𝑀  = ( 𝑅𝑅�−𝑅𝑅𝐸𝐸) 𝑃𝑃𝑅𝑅  + 𝐿𝐿𝑇𝑇𝐴𝐴𝑤𝑤 + 𝐿𝐿𝑀𝑀𝑤𝑤𝑀𝑀.  Since all functions are 

homothetic of degree one, we have no need to specify the number of firms or the number of 

households.  That is, we can define all of these inputs and outputs as amounts per household.  

We assume that this local economy’s goods  T  and  A  are not the same as others’ timber or 

agricultural products. Thus, this economy faces downward sloping demands for its exports.   We 

have no need to specify the full utility-maximizing behavior of the rest of the world (ROW).  

Rather, we merely suppose that  η < 0  is their price elasticity of demand for good  A,  and  ε < 0  

is their price elasticity of demand for good  T  from this economy.4   

Good  M  is undifferentiated and traded worldwide, and so domestic producers face a 

fixed world price  PM.  Then, because production is linear (𝑀𝑀 = 𝐿𝐿𝑀𝑀), the zero profit condition 

effectively fixes the urban wage.  We use that price as numeraire, so  𝑤𝑤𝑀𝑀 = 𝑃𝑃𝑀𝑀 never changes.   

Next, suppose a policy shock brings additional land under protection. That is, the policy 

increases  RE, the amount of land for conservation and eco-services, E, which results in less land 

                                                           
3 In our simple model, we have no need to identify a separate government budget.  Essentially, the one budget 
constraint represents a consolidation of consumer and government budgets. The government may use lump sum 
taxes to purchase more land for production of  E.  It may even sell some E and return the proceeds to consumers (or 
charge a smaller lump sum tax). Alternatively, the government could just confiscate the land for production of  E.  
Thus, we do not need to consider a price for eco-services, PE .  
4 Later, we differentiate all equations in the model and define a variable with a hat as the proportional change in that 
variable (for example,  𝑇𝑇 � ≡ 𝑑𝑑𝑇𝑇/𝑇𝑇).  Then our elasticity specification here just means that the change in export 
demand for  T   is  𝑇𝑇 � ≡  𝜀𝜀𝑃𝑃𝑇𝑇�,  and the change in export demand for  A  is  𝐴𝐴 � ≡  𝜂𝜂𝑃𝑃𝐴𝐴� .   
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available for production of  T  or  A.  Thus, we expect the input price of land to rise relative to 

the price of labor.  Since both  T  and  A  use the land resource  R,  those output prices also must 

rise for firms to break even (and the output that is more land-intensive will need its price to rise 

more).  The change in each such output is moderated by a downward-sloping demand.  If the 

ROW demand were inelastic, then the economy may receive an increase in export revenue and 

be able to import more  M.  In that case, households could achieve greater utility, as the removal 

of land from production effectively allows the economy to exploit its own market power over the 

goods it exports.  If those ROW demands are elastic, however, then this economy’s higher cost 

of producing exports means less export revenue and less import of  M.  

In this static model, the best interpretation is not that farmers or firms react to this policy 

shock by converting agricultural land to timber, or vice versa. Rather, the comparison is 

counterfactual. We look years after the policy shock to see whether lands that would have been 

converted to agriculture are instead kept forested, or vice versa. 

1.1 Linearization and Solution  

We differentiate all these equations to linearize the model, where Appendix 1 identifies 

the resulting 19 linear equations and matching number of unknowns (new prices and quantities). 

Then, we solve the system of 19 linear equations for the effects of a small exogenous increase in 

the resource set aside for eco-services (𝑅𝑅�𝐸𝐸 ≡
 𝑑𝑑𝑅𝑅𝐸𝐸
 𝑅𝑅𝐸𝐸

> 0).  The closed-form solution for the change 

in the equilibrium amount of the resource used in production of timber, 𝑅𝑅�𝑇𝑇,  is: 

𝑅𝑅�𝑇𝑇 = − 𝜆𝜆𝑅𝑅𝐸𝐸𝑁𝑁
𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷

𝑅𝑅�𝐸𝐸.              (20) 

where 

𝑁𝑁 = − (𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅 − 𝜎𝜎𝑇𝑇 + 𝜃𝜃𝑇𝑇𝑅𝑅𝜎𝜎𝑇𝑇)(𝜂𝜂𝜆𝜆𝐿𝐿𝐴𝐴 + 𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿) + 𝜀𝜀𝜆𝜆𝐿𝐿𝑇𝑇𝜎𝜎𝑇𝑇 + 𝜀𝜀𝜆𝜆𝐿𝐿𝐴𝐴𝜃𝜃𝐴𝐴𝑅𝑅(𝜂𝜂 + 𝜎𝜎𝐴𝐴) (21) 

𝐷𝐷 = (𝜀𝜀 + 𝜎𝜎𝑇𝑇)𝜃𝜃𝑇𝑇𝑅𝑅𝜂𝜂𝜆𝜆𝐿𝐿𝑇𝑇 + 𝜂𝜂𝜆𝜆𝐿𝐿𝐴𝐴𝜎𝜎𝐴𝐴  − (𝜂𝜂𝜃𝜃𝐴𝐴𝑅𝑅 − 𝜎𝜎𝐴𝐴 + 𝜃𝜃𝐴𝐴𝑅𝑅𝜎𝜎𝐴𝐴)(𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿 + 𝜀𝜀𝜆𝜆𝐿𝐿𝑇𝑇)  (22) 

and where  λij  is the fraction of factor  i  (i=R,L)  initially in sector  j  (j=E,T,A,M).  Thus, we 

have  λRA + λRT + λRE = 1  and  λLA + λLM = 1.  Also,  θji  denotes the factor share in sector j 

(j=T,A) for each factor  i  (i=R,L), so  θAR + θAL = 1  and  θTR + θTL  = 1.  The signs of equations 

(21) and (22) are indeterminate, and so the sign of equation (20) is also indeterminate.   

The policy shock sets aside some land for eco-services (dRE  > 0) and retains it in natural 
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vegetation including tree cover. The government takes a fraction  α  of that land  dRE from what 

would become agricultural, and a fraction (1–α) from what would have remained in sustainable 

tree cover.  Thus, the direct addition to tree-covered natural area is simply  αdRE.  This term 

captures the direct “additionality” of the policy to create the protected area. Then leakage reflects 

private market re-allocations between remaining treed land and agricultural land. 

Figure 1 may clarify.  The first and primary effect of this addition to national park, dRE, 

is the direct additional forest, αdRE, the portion of the land added to the national park that is 

taken from what would otherwise have become agricultural (with a red rectangle around it in 

Figure 1). “Leakage” pertains to the remaining privately-owned land.  Positive leakage means 

that remaining ag land expands: if the black vertical line shifts left, then the net addition to forest 

cover is less than  αdRE.  Conversely, negative leakage means that remaining private treed land 

expands.  It is already reduced by (1–α)dRE, but if it re-expands to encroach on ag land, then the 

overall addition to forest cover is more than the direct set-aside, αdRE. 

In the emissions leakage literature, the absolute amount of leakage outside the policy 

zone is normally expressed as a fraction of the amount of protection inside the policy zone.  For 

analogous definitions here, we take the absolute amount of remaining private land that switches 

from  T  to  A, and divide by αdRE , the government’s direct addition to tree cover.  For the 

numerator of that ratio, we define the quantity of leakage as  – [(1–α)dRE +dRT].   The first term 

is the preserved land taken directly from private tree cover.  If the overall equilibrium reduction 

in private tree cover (dRT < 0) exactly matches the land taken directly from tree cover, (1–α)dRE,  

then leakage is zero. To the extent that the size of the equilibrium change (dRT < 0) exceeds the 

amount preserved from tree cover,  (1–α)dRE > 0,  then leakage is positive.  Conversely, if the 

equilibrium reduction in private tree cover is smaller than the amount taken for preservation from 

tree cover, then leakage is negative. 

 Then the leakage fraction,  𝜓𝜓,  is the ratio of that leakage over the direct additional tree 

cover in the natural area set aside by the policy:    

𝜓𝜓 ≡ − (1−𝛼𝛼)𝑑𝑑𝑅𝑅𝐸𝐸+𝑑𝑑𝑅𝑅𝑇𝑇
𝛼𝛼𝑑𝑑𝑅𝑅𝐸𝐸

         

With rearrangement and conversion to our hat notation, we can write this leakage ratio as:   
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𝜓𝜓 = −�(1−𝛼𝛼)
𝛼𝛼

+ 𝑅𝑅𝑇𝑇�

𝛼𝛼𝑅𝑅𝐸𝐸�
  𝑅𝑅𝑇𝑇
 𝑅𝑅𝐸𝐸
�   =  −�(1−𝛼𝛼)

𝛼𝛼
+ 𝑅𝑅𝑇𝑇�

𝛼𝛼𝑅𝑅𝐸𝐸�
 𝜆𝜆𝑅𝑅𝑇𝑇
 𝜆𝜆𝑅𝑅𝐸𝐸

� = −�(1−𝛼𝛼)
𝛼𝛼

− 𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁
𝛼𝛼(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷) �    (23)  

where the last expression follows from the solution for 𝑅𝑅�𝑇𝑇  from equation (20) and rearranging.  

 The first term is the fraction of the land taken from tree cover (1–α) over the fraction 

taken from agriculture (α).  From here on, we call this term the “set-aside effect” (SAE). It is a 

negative effect on leakage: more land taken from private tree cover (1–α) means that remaining 

private lands would have to switch more from agriculture to replace that timber production.  

Since the sign on  𝑅𝑅�𝑇𝑇 is indeterminate, the sign on the second term is also indeterminate. 

However, net leakage can be negative if the magnitude of the negative SAE is large enough. 

1.2 Intuitive Special Cases 

 A couple of special cases might help with intuition.  First, one may ask, when is leakage 

exactly 100%, such that any deforestation prevented in one location becomes deforestation 

elsewhere instead?  In equation (23), the leakage rate 𝜓𝜓 = 1 whenever  D = 0. And from (22), we 

can show that  𝜂𝜂 = 𝜎𝜎𝐴𝐴 = 0  is sufficient for  D = 0.  If market demand is unchanged for 

agricultural output (𝜂𝜂=0), and if that production requires unchanged use of land (𝜎𝜎𝐴𝐴=0), then any 

agricultural land taken for the park must be replaced by use of other private land.  In other words, 

those who expect 100% leakage might not be thinking about behavioral reactions to the raised 

price of land used in agriculture.   

 Second, when is leakage exactly zero?  From (23), 𝜓𝜓 = 0 whenever (1−𝛼𝛼) = 𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁
(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷)

, 

which might occur by coincidence for particular values of parameters. Yet that condition for zero 

leakage is certainly satisfied when  𝛼𝛼=1 and  𝜀𝜀= 𝜎𝜎𝑇𝑇=0 (so that N=0).  That is, leakage is zero 

when all land for the new park is taken from agriculture (𝛼𝛼=1), and markets demand unchanged 

land for tree products (𝜀𝜀=𝜎𝜎𝑇𝑇=0), because then no land gets switched back to agriculture.  

1.3 Calibration of Parameters 

The next subsection below uses the solution of our theoretical model in equation (23) to 

derive eight theorems that show how leakage depends on parameters. For each theorem, we then 

insert parameter values in order to state a specific hypothesis for Indonesia. To do so, we first 

explain here our derivation or calibration of those parameters.   

Table 1 shows the parameters we use in illustrations for the whole country. Most of these 
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parameters are calculated from our data described below for the thousands of parcels used in our 

regressions. For most of the parameters in Table 1, we simply average the corresponding variable 

across all of Indonesia.  For example, we use the “1990 Indonesian Spatial Plan” to identify 

whether each 3 km by 3 km parcel is allocated to be used for conservation, for sustainable tree 

products, or for agriculture (to calculate the average  𝜆𝜆𝑅𝑅𝐸𝐸 ,  𝜆𝜆𝑅𝑅𝑇𝑇 , and 𝜆𝜆𝑅𝑅𝐴𝐴, in the first three rows). 

The underlying data for most other parameters in Table 1 are described in section 2.3 below.  

Data are not available for the elasticities of substitution in the last three rows, however, 

so values must be assumed. For production, we note that the flexibility to change factor input 

ratios must depend on the time frame allowed for such substitution. In our case, most of the new 

parks were established in 2004, and our data show forest cover only eight years later (in 2012). 

Therefore, we assume relatively low elasticities of substitution in production (σA = σT = 0.2).  In 

order to assume somewhat limited mobility of labor, we use 0.3 for σT  (the elasticity of  𝐿𝐿𝑇𝑇𝐴𝐴/𝐿𝐿𝑀𝑀  

with respect to  𝑤𝑤𝑀𝑀/𝑤𝑤).  Later, we discuss the sensitivity of results to these assumptions.  

1.4 Testable Hypotheses 

 Using this model and the solutions above, we prove eight theorems.  We then use data 

from Indonesia to test the applicability of the model.  For the first theorem, we derive conditions 

under which leakage is positive or negative.  For the other theorems, we differentiate (23) with 

respect to key parameters to predict the effect of each parameter on leakage. We use these 

theorems to generate testable hypotheses, which we test statistically.  That is, we investigate the 

effect on leakage of empirical variation across areas of Indonesia in variables such as the share of 

land taken from agriculture, key factor shares in production, and each of the demand elasticities.   

Theorem 1:  Leakage is negative if and only if   𝛼𝛼 < 𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷
(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷)  .  Proof:  Appendix 2. 

Hypothesis 1: Leakage is negative near the new Indonesian parks where  𝛼𝛼 < 𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷
(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷)  . 

If the size of the equilibrium change in private tree cover,  dRT < 0, is smaller than the 

amount taken away for preservation, (1–α)dRE > 0, then leakage is negative.  

To test this first hypothesis below, we undertake a new calibration for just the districts 

contiguous to each new national park. We use this park-specific calibration to calculate the 

predicted sign of leakage near each park (from the inequality in the first hypothesis). Then, 

finally, we see if measured leakage around each park has the predicted sign. 
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To derive the next seven theorems, we differentiate the solution for leakage in (23) with 

respect to  𝛼𝛼,  𝜂𝜂, 𝜀𝜀,  𝜆𝜆𝑅𝑅𝐴𝐴,  𝜆𝜆𝑅𝑅𝑇𝑇 , 𝜃𝜃𝐴𝐴𝐿𝐿 and  𝜎𝜎𝐿𝐿.5  First, consider  α,  the share of land taken from what 

would have become agriculture.  Since  α  enters both terms in (23), a higher  α  has two opposite 

effects.  The first term (the SAE) is a negative term in leakage,  – (1–α )/α,  made smaller when  

α  is larger (which has a positive effect on leakage). When taking more land directly from 

agriculture, α, the private market tends to reallocate more land from timber back into agriculture. 

The second term in (23) is positive, also made smaller when  α  is larger (a negative effect on 

leakage).  The next theorem shows when the first effect dominates.     

Theorem 2:  Leakage is larger in cases with a higher fraction of set aside taken directly from 

agriculture (𝛼𝛼), if and only if   
𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷

(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷)
< 0. Proof: Appendix 2. 

Hypothesis 2:  Using our data averaged across Indonesia, we find  𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷
(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷)

< 0, so we 

expect leakage is larger near new parks that take more land from agriculture.  

 Figure 2 uses our parameterized values for all of Indonesia in Table 1 to illustrate 

numerically how a larger  α  implies larger leakage (holding constant the other parameters).  

Intuitively, a larger  α  indicates that more land for preservation is taken directly away from 

agriculture, so the private market is predicted to reallocate more land from what would have 

remained timber back into agriculture (a positive effect on leakage).  

Theorem 3:  Leakage is smaller in cases with a more elastic demand for agricultural output 

(larger |𝜂𝜂| ) if and only if  𝐷𝐷�𝜀𝜀𝜆𝜆𝐿𝐿𝐴𝐴𝜃𝜃𝐴𝐴𝑅𝑅 − 𝜆𝜆𝐿𝐿𝐴𝐴(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅 − 𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇)� − 𝑁𝑁�(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅 −

𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇)𝜆𝜆𝐿𝐿𝑇𝑇 + 𝜆𝜆𝐿𝐿𝑇𝑇𝜎𝜎𝑇𝑇 + 𝜆𝜆𝐿𝐿𝐴𝐴𝜎𝜎𝐴𝐴 − 𝜃𝜃𝐴𝐴𝑅𝑅(𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿 + 𝜀𝜀𝜆𝜆𝐿𝐿𝑇𝑇)� < 0.  Proof: Appendix 2. 

Hypothesis 3:  This inequality holds for data averaged across Indonesia, so we expect leakage is 

smaller in areas that face a more elastic demand for their agricultural output.  

 The price elasticity of demand for the agricultural good is  𝜂𝜂,  negative by definition. We 

find that the sign of the derivative  𝜕𝜕𝜓𝜓/𝜕𝜕𝜂𝜂  is positive based on our data for Indonesia. Hence, 

we expect to find that leakage is larger in areas where |𝜂𝜂| is smaller (more inelastic demand for 

A). Intuitively, when land is set aside for E, remaining available land becomes scarce and its 

price rises.  This effect raises the price of both goods  T  and  A  (relative to the numeraire wage 

                                                           
5 We use proxies for data on these parameters to test hypotheses below. We do not derive theorems for the effect of 
other parameters in (23), because good proxies are not available for testing them (i.e. θTR,  θTL, θAR, σA, and  σT). 
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or price of  M).  All else equal, a less elastic demand for  A  then means that the market shifts 

more remaining private land from  T  to  A  to meet demand (a positive effect on leakage).   

Conversely, as stated in Hypothesis 3 and shown for our parameters in Figure 3, a larger 

demand elasticity |𝜂𝜂|  means that the higher price of  A  leads to shrinking production of  A, and 

private land can shift from agriculture to forest production  (a negative effect on leakage).  

Theorem 4:  Leakage is smaller in cases with a less elastic demand for sustainable tree products 

(smaller |𝜀𝜀| )  if and only if  𝐷𝐷�−𝜃𝜃𝑇𝑇𝑅𝑅(𝜂𝜂𝜆𝜆𝐿𝐿𝐴𝐴 + 𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿) + 𝜆𝜆𝐿𝐿𝑇𝑇𝜎𝜎𝑇𝑇 + 𝜆𝜆𝐿𝐿𝐴𝐴𝜃𝜃𝐴𝐴𝑅𝑅(𝜂𝜂 + 𝜎𝜎𝐴𝐴)� −

𝑁𝑁�𝜃𝜃𝑇𝑇𝑅𝑅𝜂𝜂𝜆𝜆𝐿𝐿𝑇𝑇 − 𝜆𝜆𝐿𝐿𝑇𝑇(𝜂𝜂𝜃𝜃𝐴𝐴𝑅𝑅 − 𝜃𝜃𝐴𝐴𝐿𝐿𝜎𝜎𝐴𝐴)� < 0.  Proof: Appendix 2. 

Hypothesis 4: This inequality holds for data averaged across Indonesia, so we expect leakage is 

smaller in areas facing less elastic demand for their tree products. 

The price elasticity of demand for timber is  𝜀𝜀,  negative by definition. Since we find that 

the derivative  𝜕𝜕𝜓𝜓/𝜕𝜕𝜀𝜀  is negative based on our data averaged over all of Indonesia, as seen in 

Figure 4, we expect that leakage near new parks is smaller in districts that produce tree products 

having relatively inelastic demand.  Intuitively, when the price of  T  rises, inelastic demand 

leads to a reallocation of private resource  R  from agriculture to timber to meet this inelastic 

demand.  Hence leakage is smaller or more negative. 

Theorem 5:  Leakage is smaller in cases with a larger initial allocation of land resource  R  to 

agricultural production,  𝜆𝜆𝑅𝑅𝐴𝐴, if and only if  𝑁𝑁𝐷𝐷 > 0.  Proof: Appendix 2. 

Hypothesis 5:  This inequality holds for data averaged across Indonesia, so we expect leakage is 

smaller in areas with a larger initial land in agriculture. 

We find that  𝜕𝜕𝜓𝜓/𝜕𝜕𝜆𝜆𝑅𝑅𝐴𝐴  is negative based on our data for Indonesia, which indicates that 

a larger  𝜆𝜆𝑅𝑅𝐴𝐴  implies smaller leakage (as seen in Figure 5). If a large amount of land resource  R  

is initially allocated to agricultural production, then following the policy shock, more ag land is 

available to switch from production of  A  to  T ; hence, leakage is smaller (and possibly 

negative).  

Theorem 6:  Leakage is larger in cases with a larger initial allocation of land to timber, 𝜆𝜆𝑅𝑅𝑇𝑇, if 

and only if  𝑁𝑁𝐷𝐷 > 0.  Proof: Appendix 2. 

Hypothesis 6:  This inequality holds for data averaged across Indonesia, so we expect leakage is 

larger in areas with a larger initial land in timber or tree products. 
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The derivative  𝜕𝜕𝜓𝜓/𝜕𝜕𝜆𝜆𝑅𝑅𝑇𝑇  is positive based on our data for Indonesia, so a larger  𝜆𝜆𝑅𝑅𝑇𝑇  

implies larger leakage (as seen in Figure 6). If a relatively large amount of land resource  R  is 

initially allocated to timber production, then following the policy shock, more of that land is 

available to switch from production of  T  to production  A ; hence, leakage is larger.6   

Theorem 7:  Leakage is smaller in cases with a larger factor share of labor in agriculture, 𝜃𝜃𝐴𝐴𝐿𝐿, if 

and only if  (𝜂𝜂 + 𝜎𝜎𝐴𝐴)(𝐷𝐷𝜀𝜀𝜆𝜆𝐿𝐿𝐴𝐴 + 𝑁𝑁(𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿 + 𝜀𝜀𝜆𝜆𝐿𝐿𝑇𝑇) ) > 0.  Proof: Appendix 2. 

Hypothesis 7: This inequality holds for data averaged across Indonesia, so we expect leakage is 

smaller in cases with a larger  𝜃𝜃𝐴𝐴𝐿𝐿.  

Figure 7 uses our parameterized values for Indonesia to show how a larger 𝜃𝜃𝐴𝐴𝐿𝐿  implies 

smaller leakage. Intuitively, a larger  𝜃𝜃𝐴𝐴𝐿𝐿  indicates that agriculture is relatively labor-intensive. 

Then taking land from agriculture means a decreased need for reallocation of remaining private 

land from timber to agriculture, which decreases leakage.   

Theorem 8:  Leakage is smaller in cases with a larger  𝜎𝜎𝐿𝐿 (elasticity of  𝐿𝐿𝑇𝑇𝐴𝐴/𝐿𝐿𝑀𝑀  with respect to  

𝑤𝑤𝑀𝑀/𝑤𝑤)  if and only if   𝑁𝑁(𝜂𝜂𝜃𝜃𝐴𝐴𝑅𝑅 − 𝜃𝜃𝐴𝐴𝐿𝐿𝜎𝜎𝐴𝐴) − 𝐷𝐷(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅 − 𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇) < 0. Proof: Appendix 2. 

Hypothesis 8: This inequality holds for data averaged across Indonesia, so we expect leakage is 

smaller in cases with more mobility.  

Taking land from production of either timber or agriculture raises the available labor 

relative to land (as seen in Figure 8). When that labor can move more easily to manufacturing, 

then the wage does not have to fall enough for that labor to be employed locally (mostly likely in 

the labor-intensive agriculture sector). In that case agriculture does not need to re-expand to re-

employ that labor, which implies less leakage.  

2. Empirical Methods  

By 2000, the government of Indonesia had already designated 320,000 sq. km in 

protected areas, and it designated an additional 15,300 sq. km in the form of 20 new protected 

areas between 2000 and 2012. Of those, 12 are marine protected areas, and eight are terrestrial 

national parks. The eight new terrestrial national parks comprise about 10,000 sq. km. and are 

located in or contiguous to 35 districts; we treat each district as a small, separate economy 

                                                           
6 Theorems 5 and 6 are obviously related to each other, but they do not make exactly the same point.  Because  
𝜆𝜆𝑅𝑅𝑇𝑇 + 𝜆𝜆𝑅𝑅𝐴𝐴 + 𝜆𝜆𝑅𝑅𝐸𝐸 = 1,  a larger  𝜆𝜆𝑅𝑅𝑇𝑇   does not necessarily mean a smaller  𝜆𝜆𝑅𝑅𝐴𝐴 .       
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(Burgess et al. 2011). We treat these eight recently established protected areas as our measure of 

the policy shock.  

2.1 OLS and IV Regressions  

We use a spatial lag model with data from Indonesia to estimate leakage from protected 

areas established between 1999 and 2004, and we empirically test the hypotheses derived above. 

Our basic approach is to use a difference-in-difference methodology wherein our dependent 

variable, deforestation, represents the difference in forest cover between 2000 and 2012. We 

compare deforestation in the “treatment” parcels that are near these protected areas to controls 

that are further away (that do not have a protected area “nearby”). Each treatment parcel is 

matched to a control parcel based on characteristics that affect protection and deforestation 

decisions (as in Honey-Rosés et al. 2011). 

We relate this measure of leakage to the district-level economic conditions that reflect 

demand for goods from agricultural products and timber products  (A and  T),  as well as other 

variables.  We use the set of matched parcels to generate a dataset on which we can estimate the 

signs and significance of the effects of key economic variables on deforestation and leakage. We 

first estimate seven separate OLS regressions, one for each proxy that we use to represent the 

seven key economic variables in the theoretical model discussed in section 1, 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 =  𝛼𝛼 + 𝛽𝛽�𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝐷𝐷� + 𝛾𝛾(𝐶𝐶𝐷𝐷𝐶𝐶𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + 

𝛿𝛿�𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑖𝑖𝐸𝐸 𝑉𝑉𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑉𝑉𝑉𝑉𝐷𝐷� + 𝜋𝜋�𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝐷𝐷 × 𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑖𝑖𝐸𝐸 𝑉𝑉𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑉𝑉𝑉𝑉𝐷𝐷�. 

Here, we regress deforestation per parcel on the proxy for each economic variable interacted 

with a dummy identifying whether the parcel is a treatment parcel (defined as a parcel within a 

district contiguous to the park). We control for biophysical characteristics of each parcel such as 

slope, elevation, forest cover in 2000, and other determinants of deforestation (distance to city 

and distance to road). We include province dummies to control for the average difference in 

deforestation across provinces. We test the hypothesis from the theoretical model by looking at 

the sign of the coefficient on the interaction term. We then estimate the OLS regression with all 

seven proxy economics variables together. For this regression, we regress deforestation per 

parcel on all proxy economic variables, their interactions with the treatment dummy, covariate 

terms, and province dummies. 

Previous studies find evidence of spatial dependence in deforestation decisions and land 
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use models (Mertens and Lambin 2000; Anselin 2002; Alix-Garcia 2007; Alix-Garcia et al. 

2010). These studies show that forest loss has distinct spatial patterns where deforestation in one 

region is likely to be affected by the deforestation decisions in neighboring regions. However, 

measuring neighbors’ interactions is a difficult task because of possible feedback effects that 

allow individual observations and observations on neighboring parcels to affect each other 

simultaneously (Manski 1993; Brock and Durlauf 2001; Moffitt 2001). Robalino and Pfaff 

(2012) apply the instrumental variable (IV) approach wherein they use exogenously varying 

topological and ecological characteristics of neighbors’ parcels as instruments for the possible 

neighbors’ interactions in deforestation decisions. 

Therefore, in a separate IV specification, we also control for a spatial lag of deforestation, 

using the procedure of Kapoor et al. (2007). Here, we instrument for spatial lag of the dependent 

variable with spatially lagged values of covariates that we include in the matching process.    

2.2 Identification Strategy 

 We focus on 3 km by 3 km parcels. We eliminate parcels with zero forest cover in 2000 

and parcels that were designated as protected before 1999.  Of the remaining 173,956 parcels, 

3057 parcels belong to the eight protected areas newly created between 1999 and 2004.7  Next, 

we define the ‘nearby’ areas that may experience leakage as the districts that are contiguous to 

the parks.  We expect that these areas will experience the greatest impact from the establishment 

of the protected area. We compare these treated parcels to similar parcels further away but still 

within the same province. 

  Because of unobserved spatial heterogeneity and limited factor mobility, we anticipate 

that effects of land conservation will be largest in districts nearby the removal of land from 

production.  One drawback of this approach is that similar areas further away may still be 

affected by some of the changes in price induced by the change in protection. With respect to the 

eight theorems or hypotheses, we do expect price elasticities of demand for agricultural and 

mining outputs (good  A) and for sustainable tree products (good  T) to have effects on leakage 

primarily nearby but potentially somewhat in more distant areas as well.  Limited mobility of 

labor may imply that the initial factor share of labor in agriculture (θAL) has effects on leakage 

that are relatively stronger nearby.  Other variables are also more likely to have stronger effects 

                                                           
7 Of our eight new parks, seven were established in 2004. Only Kerinci Seblat National Park was established in 
1999. We include all eight parks because this 1999 park would have no effect on our “initial” forest cover in 2000. 
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nearby.  In any event, what we measure is not the total amount of leakage, but the difference 

between leakage nearby minus any leakage that occurs further away (in control parcels).     

 Previous studies use simple distance measures to place zones around protected areas to 

delineate where they expect to find leakage (Andam et al. 2008; Pfeifer et al. 2012). In Appendix 

3, we present results using such distance measures, where we define “nearby” areas as those that 

are within a 35 km radius of the new protected areas. 

 One challenge facing empirical estimation of leakage is that protected areas are not 

randomly placed across the landscape.  Recent empirical studies use methods that formally 

develop a counterfactual control group to overcome the potential selection bias arising from non-

random assignment of protected areas (Ferraro and Pattanayak 2006).  Some previous studies use 

propensity score matching to compare the deforestation rates in protected areas with matched 

counterfactuals (Joppa and Pfaff, 2010; Gaveau et al., 2009; Andam et al., 2008).  In our case 

with spatial auto-correlation, propensity score matching is inappropriate, because its use of probit 

estimation would be inconsistent.  Instead, to develop a control group, we use parcels that are 

outside the areas contiguous to the new park but that share similar characteristics with the parcels 

near the park. Specifically, we select control parcels using the nearest neighbor matching 

technique of Abadie and Imbens (2006).  To control for time-invariant parcel fixed effects, we 

consider only the change in forest cover from 2000 to 2012. We define as leakage the change in 

forest cover of parcels in these nearby treatment areas relative to matched controls further away. 

We then use the matched sample to regress forest loss on economic characteristics that our 

model suggests would predict the sign and magnitude of leakage.  

 In generating our counterfactuals, we match over covariates that are likely to affect the 

selection of a parcel into protection and that affect the extent of forest degradation. Indonesian 

policymakers target land parcels for protection based on important determinants of deforestation 

such as slope, elevation, soil type, and peat depth (Wich et al. 2011). Other determinants of the 

probability of deforestation include plot-level accessibility characteristics such as distance to 

roads, distance to rivers, distance to nearest city, and land use opportunities (Angelsen and 

Kaimowitz 1999; Pagiola 2000; Deininger and Minten 2002; Alix-Garcia 2007).  Further, we 

expect parcels within the same administrative region and ecological region to be affected by 

similar deforestation pressures; thus we restrict each match used as a control parcel to be within 

the same province as the treatment parcel and in the same ecoregion (as defined by the World 
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Wildlife Fund). To ensure that the type of forest production activity does not vary greatly 

between treatment and control parcels, we also restrict matches to be in the same land 

management category.  For the areas near the national parks established in 2004, we also include 

the difference in forest cover between 2000 and 2002 as a covariate to control for the trend in 

forest cover change prior to the establishment of the new national park.8 

 To assess the quality of the matches, we calculate the normalized difference for each 

covariate between treated parcels and matched control parcels. We also calculate the normalized 

differences for biophysical characteristics that are not used in the matching process, to evaluate 

whether the matching process is successful in identifying physically similar parcels. We match 

three control parcels for each treated parcel, and we use the bias adjustment procedure to control 

for match fit (Abadie and Imbens 2006). To test the robustness of final results to the choice of 

using three matches, we also generate sets of counterfactuals using two and four matches.   

 Deforestation in any one area is likely to be affected by biophysical characteristics of 

its neighbors. Results from the Moran’s I test of spatial autocorrelation indicate a significant 

positive correlation of 0.59 (p-stat of 0.00) between the extent of forest cover on a given parcel 

of land and on its neighboring parcels. We derive spatially weighted values for the above-

mentioned characteristics using a queen’s contiguity based weights matrix in GeoDa.9  The 

belief that deforestation is likely to spread continuously over space justifies defining neighboring 

parcels by contiguity.  To identify control parcels for each treated parcel, we match parcels over 

their own characteristics and their spatially weighted covariates (Honey-Rosés et al. 2011).  

Our measure of leakage may be biased if our treatment area includes 3x3km parcels that 

are located right on the boundary of a newly established park (Honey-Rosés et al. 2011).  If these 

parcels are affected by negative or positive spatial spillovers simply from being adjacent to a 

protected area, then inclusion of these parcels in the treatment group may over- or under-state the 

impact of protection on leakage. In our analyses, to correct for this potential bias, we remove 3x3 

parcels that are immediately adjacent to the boundary of the new park.  

To test the hypotheses from our model, we pool the matched dataset and interact the 

treatment dummies with the pre-park elasticities of demand, factor shares, and other economic 

                                                           
8 The exception is Kerinci Seblat National Park established in 1999.  See our prior footnote. 
9 The queen’s contiguity based weights matrix defines a location’s neighbors as those that either share a border or a 
vertex.  GeoDa is short for Geographic Data Analysis. 
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characteristics expected to affect leakage. We first use a standard OLS regression, clustering 

standard errors at the village level, and then a spatial lag regression to control for the fact that 

deforestation in one parcel is likely affected by deforestation in nearby parcels. We use regional 

fixed effects to control for unobservable variation in deforestation by region. Some of our 

variables are correlated because they are generated using local production data, so we use a 

regression for each interactions alone and also a regression with all interactions together. 

We rely on the inherent heterogeneity all across Indonesia to identify the characteristics 

associated with more or less leakage near the different parks.  For example, we compare the 

effect of a protected area on leakage in areas producing agricultural products with high demand 

elasticities to areas producing other products with low demand elasticities. The location of 

protection may be driven by unobservables, but as long as those unobservables are not correlated 

with the effect of local characteristics on local leakage, then our results will be unbiased. It is not 

a problem if those unobservables are correlated with the observable economic (or other) 

characteristics, since we control for those.  The scenario that could cause concern is if planners 

choose to place protected areas in regions where, say, the elasticity of demand for agricultural 

products in nearby areas is expected to have a larger effect on deforestation than in other regions. 

In that case, the measured leakage could be associated with specific economic characteristics 

near the parks rather than triggered by the creation of the park. To explore this possible concern, 

we use a placebo test to ask whether we observe similar outcomes in other environmentally 

sensitive areas that did not see a change in protection during our time frame. 

2.3 Data  

Indonesia covers a total area of 1,904,569 square km and is broadly divided into five 

island-regions: Java-Bali, Sumatra, Kalimantan, Sulawesi and Papua (as seen in Figure 9). These 

five regions are then divided into 33 provinces, which are further subdivided into approximately 

500 districts.10 These districts are further subdivided into about 68,000 villages. Our unit of 

observation for forest cover, protection and biophysical characteristics of land are uniform 3 km 

by 3 km parcels, for a total of 195,466 parcels for the whole of Indonesia. Since we treat each 

district as a small separate economy, many of our economic variables are obtained at the district 

level (i.e. employment in agriculture and wages). However, some of the other economic 

                                                           
10 The number of districts in Indonesia were 440 in 2000 but increased to 497 in 2010.  
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variables are estimated at the village level (i.e. price elasticity of demand for agriculture and tree 

products and share of land in agriculture and tree production).11    

We use the World Database on Protected Areas (WDPA) to identify parcels of land that 

are designated as protected, including the six International Union for Conservation of Nature 

(IUCN) categories: national parks, nature reserves, game reserves, wildlife sanctuaries, 

recreation parks, and grand forest parks. These conservation areas are state-owned land 

designated as protected for the conservation of animal and plant species and their ecosystems. 

They are managed by the Ministry of Forestry, though the decentralization process following the 

Reformasi movement in 1999 has increased the role of local governments in forest conservation 

projects. All eight protected areas analyzed in this study are designated as national parks. 

We use data on annual forest cover change between 2000 and 2012 at the 3 km by 3 km 

parcel grid size. These data are based on the Hansen et al. (2013) study that evaluates global 

forest cover change from 2000 to 2012.  This study improves on some prior datasets by using 

Landsat data at a finer spatial resolution of only 30 meters. For Indonesia, that study estimates a 

total forest cover loss of 15 million hectares from 2000 to 2012.  

  We use Village Potential Statistics based on the 2003 Agriculture census to obtain 

village-level economic characteristics such as hectares and production quantities devoted to cash 

crops, plantation products, wood products, forestry products, medicinal plants, and fruits and 

vegetables.  We then allocate these commodities into good A for land-clearing activity and good 

T for tree-products.  

Good  A  represents the major forest-clearing industries of Indonesia, such as production 

of cash agricultural crops (cassava, peanuts, soybeans, rice and corn), mining of coal, ores and 

minerals, and agricultural plantations (e.g. oil palm or coffee). We have data on land use and 

production quantities associated with these agricultural and plantation activities. We also have 

regional GDP derived from agricultural and mining activities for 440 districts in Indonesia. We 

use these data to represent the type of activity within each district that can be categorized as good  

A.  Then we obtain demand elasticities from previous literature for Indonesia for 2002 for all 

products that can be categorized as good  A  (listed in Table 2). We create a village-level demand 

                                                           
11 Our decision to use economic variables at the district or village level is partly based on availability of data and 
partly on what we think is the relevant “economy” within which labor is mobile such that labor and land can be 
reallocated between production of a particular set of agricultural products and a particular set of tree products. 
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elasticity for good  A  by weighting these individual demand elasticities by the production value 

of each product at the village level. Further, we use the district-level employment in agricultural 

activities as a share of district-level agricultural GDP to represent the factor share parameter, 

𝜃𝜃𝐴𝐴𝐿𝐿 .   We calculate the share of land in production of  A in the village,  λRA,  as the share of land 

allocated for agricultural activities under the Indonesian 1990 Spatial Plan. 

Good T  represents any sustainable activity that maintains forest cover, including timber 

harvested in rotation, collection of forest wood for fuel, medicinal and pharmaceutical products, 

and carbon sequestration benefits from land that has maintained forest cover but is not under 

protection.  We obtain demand elasticities from previous literature for Indonesia in 2002 for the 

key timber species found across Indonesia that can be categorized as good  T  (as seen in Table 

2). As for our demand elasticity proxy for good  A, we create a village-level demand elasticity 

for good  T  by weighting these individual demand elasticities by the value of each tree product 

at the village level. As our measure of production of good T, we use variation in the hectares of 

land for collection of medicinal plants and in production of wood and forestry products (e.g. 

acacia, bamboo, teak, or mahogany). Also, we estimate the share of land in production of  T,  λRT,  

as the share of land in the village allocated for sustainable tree products, conservation and 

protection, based on the land zoning provisions under the Indonesia Spatial Plan of 1990.  

We also have data on total cash and in-kind wage rate by district. We take the difference 

between this observed local wage and the urban wage as an indicator of the immobility of labor. 

Assuming that the nationwide urban wage rate is similar across cities, then we can use the log of 

the observed district-level wage rate as our proxy for relative immobility (to represent σL, the 

elasticity of  𝐿𝐿𝑇𝑇𝐴𝐴/𝐿𝐿𝑀𝑀  with respect to  𝑤𝑤𝑀𝑀/𝑤𝑤). We also use the district’s distance-to-city as an 

alternative proxy for the immobility of labor between rural and urban sectors.  

We recognize that some forest production does not include replanting and is perhaps 

better reclassified.  Most empirical studies of leakage test whether observed forest cover in 

regions surrounding protected areas rises or falls after the introduction of protection.  Our 

measure of  T reflects the fact that even for some unsustainable commercial forest production, we 

still observe forest cover.   Further, as long as the mix of sustainable versus extractive forest 

production does not vary greatly among our treatment and control parcels, our results on leakage 

will not be affected.  

  Under Indonesia's 1990 National Spatial Plan, the forests within each region are divided 
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among three broad land management categories: protection, production, and conversion 

(Broich et al. 2011).  Deforestation and logging are strictly prohibited in “protection zones”, 

which include national parks, nature reserves, wildlife sanctuaries, recreational and hunting 

parks, and watershed protection reserves, as well as some areas outside such parks and reserves.  

The “production zone” includes areas allocated for commercial selective logging that leads to 

sustainable forest use (but where deforestation is prohibited). The “conversion zone” includes 

areas allocated to industrial plantations, smallholder agriculture, mining, urban areas, and 

government-sponsored transmigration settlements.  We use these land allocation categories and 

protected area boundaries to determine the initial percentages of land allocated to sectors  E,  T, 

and  A  within each district.12   Land in E includes all parcels that are within protected area 

boundaries.  Land in T incudes all parcels in conservation, protection and production zones 

(outside of protected areas). Land in A includes all that are in the conversion zone (outside of 

protected areas). Table 3 provides details about the area of land in each category based on 

Indonesia’s 1990 National Spatial Plan. We then derive the land share parameters (𝜆𝜆𝑅𝑅𝐴𝐴, 𝜆𝜆𝑅𝑅𝑇𝑇, and  

𝜆𝜆𝑅𝑅𝐸𝐸) for each village, and we determine the amount of land that was taken from each land 

allocation category to be set aside for protection (to calculate α for each park). 

  We use the Indonesian Sub-National Growth and Governance dataset to identify the gross 

regional domestic product (GRDP) and employment shares of major productive sectors of the 

economy in each district in 2001: agriculture, mining, manufacturing, energy and electricity, 

construction, trade, transportation, finance, and other services.  

For each 3 km by 3 km portion of the grid, we also obtain data on characteristics to 

include as covariates in the matching process, such as slope, elevation, distance to nearest city, 

and distance to nearest road. We use ArcGIS13 and a detailed administrative boundary map of 

Indonesia to allocate each parcel to a region, province, and district.  In Table 4, we summarize 

the characteristics of parcels that lie within the treatment area and within the control area (as well 

as characteristics of land within the protected areas that are not used in our regressions). 

Elevation and slope are highest for parcels within protected areas as compared to parcels outside 

                                                           
12 The data actually classify land in Indonesia into six categories: conservation, protection, production, conversion, 
non-forest areas, and other.  Deforestation and logging are strictly prohibited in the conservation and protection 
zone, selective logging is permitted in production zone, and deforestation is permitted only in the conversion zone. 
“Non-forest” represent areas without forest cover, while “other” includes urban areas and all other parcels. 
13 ArcGIS is a geographic information system software for working with maps and information. 

http://onlinelibrary.wiley.com.proxy2.library.illinois.edu/doi/10.1111/j.1755-263X.2011.00220.x/full#b6
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protected areas; elevation and slope for parcels within the treatment areas near the new parks are 

lower than parcels in the control area further away. Parcels within protected areas are closer to 

cities than parcels outside protected areas. Parcels within the treatment areas are in closer 

proximity to cities and roads than parcels in the control areas.  

In Figure 10, we see average forest cover for parcels in the areas near the new parks and 

areas in the matched counterfactuals for each year from 2000 through 2012. The figure indicates 

that the trend in forest cover is similar across treatment and matched parcels before the seven 

new parks were established in 2004.14  

Table 5 provides summary statistics for some of the key economic variables of the 

matched dataset. Both price elasticities of demand for good A and good T are similar across 

treatment areas and matched controls. Only 5% of the total land taken to establish the eight new 

protected areas is from land designated for agriculture; the remaining 95% of the set-aside is 

taken from land designated for sustainable tree products. The initial share of total land 

designated for sustainable tree products (λRT) is similar across treatment and matched control 

parcels, but the share of land designated for agriculture (λRA) is higher within treatment parcels. 

The ratio of agricultural workers to district-level gross regional domestic product (GRDP) from 

agriculture (θAL) is lower within treatment areas. The wage rate is similar between treatment and 

matched control parcels.  

2. Results 

Our first hypotheses states that leakage will be negative if and only if  𝛼𝛼 < 𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷
(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷).  

To test this hypothesis, we calibrate the model to the area around each new park.  Then we use 

each park’s parameter values to calculate that ratio, the direction of the inequality, and the 

predicted sign of leakage. We then measure actual leakage around each park to see if it has the 

predicted sign.  

As shown in Table 6, these calibrations predict that leakage will be negative in areas 

immediately around six of the new parks and positive around the other two. To measure actual 

leakage, we compare treated parcels to other counterfactual parcels using the nearest neighbor 

matching process.  In fact, the counterfactuals for this leakage calculation are the same control 

                                                           
14 We cannot compare this trend for the treatment parcels near the protected area that was established in 1999 (i.e. 
Kerinci Seblat National Park), because we only have forest cover data from 2000. 
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parcels as used in regressions below.  Here, we estimate the average treatment effect on the 

treated (ATT) for forest loss in parcels near each of the eight newly established protected areas 

compared to these controls; this ATT serves as our estimate of observed leakage.  

Results in Table 6 show statistically significant positive leakage near two parks, 

Aketajawe Lolobata National Park (+7.4%) and Tesso Nilo National Park (+6.9%). In areas near 

the other six parks, we find evidence of negative leakage ranging from –0.2% to –10.3%. As 

seen in Table 6, our theoretical model and calibration correctly predicts positive leakage around 

one of the two parks found to have positive leakage.  And it correctly predicts negative leakage 

for five of the six parks found to have negative leakage.  Overall, the sign on predicted leakage 

matches the sign on observed leakage for six of the eight national parks. Five of those estimates 

are statistically significant in the predicted direction, and two are statistically significant in the 

opposite direction. Thus, while most of these results are consistent with our theoretical model, 

the first hypothesis is not unambiguously proven using only these eight observations.15  

In Table 7a, we assess the quality of the matches used for estimating leakage by 

comparing summary statistics of the covariates for control and treatment parcels that were used 

in the nearest neighbor matching process. The fact that the normalized differences of covariates 

used in the matching process are less than 0.25 standard deviations suggests that the matched 

control parcels are similar to the treatment parcels (Imbens and Wooldridge, 2008). In Table 7b, 

we also check covariate balances for parcel-level characteristics that are not included in the 

matching process, such as distance to river, spatially lagged values of distance to river, and 

accessibility. For these characteristics, the normalized differences between treatment parcels and 

matched control parcels are also lower than 0.25, further indicating that the matching process is 

successful in finding control parcels that are similar to treatment observations. 

Next, we use the same matched dataset for empirical tests of hypotheses 2 through 8. We 

test these hypotheses in two ways. First, we run separate regressions of forest cover loss on 

covariates described above and on one of the key economic variables at a time. In all cases, the 

empirical test of our hypothesis depends on the significance of the sign of the estimated 

coefficient on the interaction between the treatment dummy and each key economic variable. For 

each of those separate regressions, a row of Table 8 shows the estimated coefficient only for the 

                                                           
15 With higher assumed values of 0.5 for elasticities of substitution in production of A and T, then the first theorem 
would lead to an hypothesis that all eight parks have negative leakage. In this case, the model would still yield six 
correct predictions for the eight parks.  
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key interaction term, both for the OLS and the IV spatial lag regression. For a second way of 

testing these hypotheses, we run a regression of forest cover loss on the covariates described 

above and all the key economic variables simultaneously in one regression (omitting only the 

share of land in T).16 Table 9 shows results from this latter regression. The spatial lag in Table 9 

is positive and significant in the IV regression, indicating that deforestation in one parcel leads to 

an increase in deforestation in neighboring parcels. All regressions include treated parcels in the 

35 districts contiguous to the new parks and matched parcels outside these districts. 

Our second hypothesis states that areas where more of the new park is taken away from 

designated agricultural land will experience more leakage, i.e., forest will be cut to replace some 

of that taken agricultural land.  Our empirical results support this hypothesis, as seen by the 

positive coefficient on the share of land taken from A in both tables, although this coefficient is 

significantly different from zero only in the spatial lag regressions.   

Our third hypothesis is that leakage will be smaller (or more negative) if the demand for 

agricultural products is more elastic. The removal of land raises the equilibrium price of those 

products, with less need to replace that land if demand is elastic. In Tables 8 and 9, we find 

evidence supporting this hypothesis.  The coefficient for the price elasticity of demand for good  

A  interacted with the treatment dummy is negative, and significant in the OLS regressions. The 

indication is that parcels near the new parks that produce good A with inelastic demand tend to 

have more deforestation than areas producing agricultural products with more elastic demand.   

Our fourth hypothesis posits that leakage will be larger if the demand for the tree 

products produced in that area is more elastic (because production of tree products can shrink).  

Indeed, the coefficient on the interaction term between the treatment dummy and the price 

elasticity for good  T  is positive and significant in both tables (in both OLS and IV). Thus, we 

find that the empirical results corroborate our expectation of an increase in deforestation in 

nearby areas that have a higher price elasticity of demand for their good  T.   

Our fifth hypothesis posits that more land initially allocated for agriculture will lead to 

less leakage (because any taking of agricultural land for the new protected area can be more 

easily replaced by the large existing agricultural land base). Our estimated coefficient on the 

share of land in agriculture interacted with nearby areas is negative as predicted (in both columns 

                                                           
16 We omit the share of land in T from the full regression because it is highly collinear with the share of land in A. 
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of both tables), but the estimate is not significantly different from zero.  

Hypothesis six says that a greater initial share of land allocated to timber production will 

lead to larger leakage.17  When we regress forest loss on that initial share of land for timber 

interacted with the indicator variable for nearby parcels in Table 8, the coefficient is positive and 

significant. Thus, when more land is already used for production of good  T, all else equal, 

nearby areas experience greater deforestation after the park is established.  Essentially, in that 

case, more of that existing timber land is available for reallocating to good  A.   

 Our seventh hypothesis is that a higher factor share for labor in agriculture (θLA) will be 

associated with smaller leakage. We proxy for this factor share using district-level employment 

in agricultural activities as a share of district-level agricultural GDP.  As predicted, Tables 8 and 

9 show that this key economic variable interacted with the treatment dummy has a coefficient 

that is always negative (and usually significant). The intuition from the theoretical model is that 

the taking of agricultural land for a new park is not as critical for areas that produce labor-

intensive agricultural goods (as opposed to land-intensive agricultural goods).  

Our last hypothesis posits that when labor is more mobile from the rural sectors (timber 

and agriculture) to urban manufacturing (M), then forest leakage will be smaller (because 

agricultural labor can move to find employment elsewhere, with less need to cut trees for land to 

employ those workers in the area near the new park). To proxy for this mobility, we use the wage 

rate in the district near a new park (before the park is established).  Wage rates in rural areas tend 

to be less than in urban areas, so a lower wage in a particular rural area implies less labor 

mobility.  That is, greater mobility of labor will tend to be associated with a higher wage in the 

rural area compared to its urban counterpart.  Indeed, as predicted, Tables 8 and 9 show that a 

higher local rural wage is associated with less leakage after the park is established. 

4. Conclusion 

In this paper, we build a simple theoretical general equilibrium model that can predict 

positive or negative leakage in a way that depends on key economic characteristics of the local 

forest goods and non-forest goods.  For protected areas in Indonesia established between 1999 

and 2004, compare nearby areas to matched controls further away.  We use data on the 

                                                           
17 This hypothesis is similar to the previous one, but it is not identical because the shares of land for tree products 
and for ag products do not add to one. Because many or most districts contain only agricultural and timber land, 
however, we cannot include both of these shares in the single regression of Table 9. 
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differences in product demand and production processes near each park to estimate whether 

nearby leakage is driven by differing market factors.  Our model helps predict where and when 

leakage is most likely to affect the success of protecting forest, allowing policy-makers either to 

target their conservation efforts or to find alternative methods for mitigating leakage.  

Based on the general equilibrium model, we expect leakage to be smaller or negative in 

cases with a larger initial allocation of land for agricultural production, or when the price 

elasticity of demand for such sustainable forestry products is small. Following the policy shock, 

markets may reallocate land from agricultural and extractive industries to these forest industries 

in order to maintain production of forest products. Conversely, when the price elasticity of 

demand for agricultural output is small, or when the initial land allocated for sustainable tree 

products is large, the model predicts larger leakage, as the markets may reallocate land from 

production of sustainable forestry goods to production of agricultural goods under such 

scenarios.  Leakage is also expected to be larger when more land is taken away from agricultural 

production for new protection and when the factor share of land in agriculture is larger.  

Our empirical results confirm almost all of these hypotheses. We first find that the 

“nearby” areas with larger share of land taken from extractive industries to create new protected 

areas experience an increase in deforestation pressures. Thus, policy-makers may achieve higher 

success from protection policy if they target areas that are designated for sustainable tree 

products rather than agricultural production.  

Next, we find that areas near new parks experience lower deforestation pressures if they 

face higher price elasticity of demand for their agricultural outputs. Thus, future policy decisions 

could designate new protected areas in regions that have higher price elasticity of demand for 

agricultural and extractive industries. To reduce the potential increase in deforestation levels 

following the policy shock, policy-makers may also want to consider incentive-based payments 

or greater enforcement in areas near recently established protected areas with lower price 

elasticity of demand for their agricultural output. 

Empirical results also show that nearby areas with a larger initial allocation of land for ag 

and extractive industries can face lower deforestation pressures.  The policy shock may lead to 

smaller relative reduction of this sector, and hence some land may be reallocated to sustainable 

forestry production. Future conservation policy can focus more on areas where large amount of 

resources such as land are allocated for agriculture and extracion, such that a policy shock that 
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reduces these resources for conservation will not lead to major reallocation from sustainable 

sectors to extractive sectors.  

Empirically, we find relatively higher deforestation pressures in nearby areas with larger 

employment in extractive industries. A policy implication is that areas with a large proportion of 

people employed in agriculture and mining activities could be more stringently monitored 

following establishment of protected areas in order to constrain leakage. These areas can also 

benefit from an increase in non-extractive industries that are labor intensive,to provide 

employment opportunities for workers following the establishment of new protected areas. 

Finally, we find that areas with greater labor mobility have less forest leakage Thus, one 

option to limit leakage may be to facilitate labor movement out of local resource-extracting 

industries.   
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Table 1: National Average Parameter Values for Simulation Exercises 

Variable Name Variable Symbol Value 

Initial fraction of land allocated to good  E λRE 0.04 

Initial fraction of land allocated to good  A  λRA 0.28 

Initial fraction of land allocated to good  T  λRT 0.68 

Share of dRE taken from land initially allocated 
      for production of good  A α 0.05 

Demand elasticity for good  T  ε -0.50 

Demand elasticity for good  A η -0.49 

For good A, labor share of production a θAL 0.40 

For good A, land share of production a θAR 0.60 

For good T, labor share of production b θTL 0.10 

For good T, land share of production b θTR 0.90 

Factor share of labor in good  T λLT 0.15 

Factor share of labor in good  A λLA 0.85 

Factor share of labor in manufacturing c   λLM 1.00 

Elasticity of substitution between  L  and  R  in 
       production of the agricultural good d σA 0.20 

Elasticity of substitution between  L  and  R  in 
       production of tree products e σT 0.20 

Elasticity of substitution between rural labor 
       ( LTA) and urban labor (LM) f σL 0.30 

a,b,c,d,e,f Due to unavailability of data, values for these parameters are assumed. 
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Table 2: Elasticities for Agricultural Output and Sustainable Tree Products 

Agricultural Products Elasticity  Tree Products Elasticity 
Fruits -0.95  Teak -0.05 
Vegetables -1.11  Meranti -0.20 
Plantation Products 
 (includes palm oil) 

-0.40  Mahogany -0.10 

Cassava -0.33  Pine -0.80 
Maize -0.82  Camphor -0.50 
Rice -0.42  Keruing -0.50 
Soybean -0.54  Acacia -0.10 
Sweet Potatoes -0.40  Bamboo -0.60 
Peanuts -0.41  Eucalyptus -0.20 
   Walnuts -0.10 
   Lamtoro -0.90 
   Rattan -1.00 
   Sengon -0.60 
   Sono -0.50 
   Trembesi -0.50 

Sources: Deaton 1990; Adamovicz and Dyrcz 2008; Chimeli and Soares 2011; Abildtrup et al. 2012; 
Dermoredjo et al. 2013.  

 

Table 3: Land Uses in Indonesia and our Allocation in the Data 

Name of Category  
in the 1990 National 
Spatial Plan of 
Indonesia 

 
Activities  Included 

 
 

Allocated to 

 
Total Area 

in 
Indonesia 
(sq. km) 

 
 

% 

Prior Protected Areas Protected areas established 
before 1999 

E 190,883 11.00% 

New Protected Areas Protected areas established 
between 1999 and 2004 

dE 27,512 
 

1.58% 

Areas Outside of Protected Areas 
Protection Deforestation and logging 

strictly prohibited 
T 409,864 23.61% 

Conservation Deforestation and logging 
strictly prohibited 

T 21,385 1.23% 

Production Deforestation prohibited but 
selective logging allowed 

T 461,627 26.59% 

Conversion Deforestation is permitted A 191,343 11.02% 
Non-Forest Areas not considered forest N/A 431,903 24.88% 
Other Areas not in above categories N/A 1,373 0.08% 
TOTAL   1,735,890 100% 
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Table 4: Summary Statistics for Parcels within Protected Areas, within Treatment Areas, 

and Outside Treatment Areas 
 

 New Protected 
Areas 

Treated Parcels in 
Nearby Districts 

Parcels outside 
Nearby Districts 

Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
Neighbors’ Average a Forest 
    Cover Loss 2000-2012  (ha) 

43.04 103.09 153.88 171.20 73.06 121.18 

Forest Cover Loss  
     2000-2012  (ha) 

42.66 122.41 156.39 210.42 74.52 146.05 

Neighbors’ Average  
     Pre-Trend b (ha) 

4.13 14.04 17.66 33.45 6.70 14.15 

Pre-Trend b (ha) 4.16 19.33 17.94 50.00 6.86 21.70 
Neighbors’ Average Distance 
      to City (km) 

74.40 75.88 89.69 73.98 126.98 99.89 

Distance to City (km) 74.68 76.81 92.62 79.11 129.83 100.80 
Neighbors’ Average Distance 
      to Road (km) 

31.10 29.03 26.38 36.94 60.82 84.05 

Distance to Road (km) 31.23 29.10 26.87 37.28 62.71 87.16 
Neighbors’ Average 
      Elevation (m) 

702.15 549.64 207.82 290.35 312.34 455.14 

Elevation (m) 712.32 581.18 206.89 299.90 315.01 490.46 
Neighbors’ Average Slope 
       (deg) 

11.75 7.07 5.24 5.10 6.92 6.39 

Slope (deg) 11.94 7.66 5.26 5.53 7.02 6.86 
No. of Observations 3057 17088 153811 

a   Neighbors are defined as those polygons that share a continuous boundary (where we assume that these 
values from neighboring polygons can be weighted equally).  

b “Pre-trend” refers to the average forest cover loss from 2000 to 2002. 

Notes: (1.) Each parcel is 900 hectares; for example, a mean forest cover loss of 43 for new protected 
areas means that the total forest cover loss from 2000 to 2012 for these parcels averaged 4.8%. The above 
table represents summary statistics for the parcels remaining after we drop all parcels that were protected 
before 1999 and parcels with zero forest cover in 2000. 
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Table 5: Summary Statistics for Key Economic Variables in Matched Dataset  

 Treatment Parcels Matched Counterfactuals 
Variable Mean Std. Dev. Mean Std. Dev. 
Share of new park taken from  A  (𝛼𝛼) 0.05 0.16 0.00 0.00 
Elasticity of demand for good A    (η) 0.49 0.13 0.50 0.13 
Elasticity of demand for good T    (𝜀𝜀) 0.50 0.36 0.48 0.34 
Initial fraction of land in T    (λRT) 0.53 0.42 0.55 0.44 
Initial fraction of land in A    (λRA) 0.22 0.33 0.15 0.30 
Ag employment/Ag GRDP a  (θAL) 1.46 0.87 1.75 0.88 
Log of wage rate b    (σL) 13.20 0.25 13.17 0.25 

a This ratio represents the number of people employed in agriculture at the district level divided by the 
district-level GRDP for agriculture. 
b The wage rate represents the ratio of total wages (i.e. cash plus in-kind) at the district-level divided by 
the number of people employed in that district. 

 

 

Table 6: Predictions and Estimates of Leakage Near Eight New National Parks 

National Park  Leakage (ha) 
(std. errors in 
parentheses) 

Leakage 
(%) 

Sign of 
Predicted 
Leakage 

Does the Model 
Predict Correct 

Direction? 

Aketajawe Lolobata 67.01 
(4.95) 7.45% – N 

Bantimurung Bulusaraung -28.59 
(2.04) -3.18% – Y 

Batang Gadis -4.32 
(5.79) -0.48% – Y 

Gunung Ciremai -2.66 
(1.22) -0.30% – Y 

Gunung Merbabu -1.78 
(0.85) -0.20% – Y 

Kerinci Seblat -9.56 
(2.49) -1.06% + N 

Sebangau -92.78 
(6.91) -10.31% – Y 

Tesso Nilo 61.96 
(5.5) 6.88% + Y 

 Notes: Calculations for these model predictions assume σT  = σA = 0.2 and σL = 0.3. 
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Table 7a: Covariate Balance for Variables Used in the Matching Process  

                                                                                 Treatment Parcels     Control Parcels  
Variable Mean Std. 

Dev. 
Mean Std. 

Dev. 
Norm. 
Diff. b 

Neighbors’ Average a Forest Cover 2000 (ha) 17.66 33.45 16.76 31.58 0.02 
Forest Cover 2000 (ha) 17.94 50.00 16.79 47.65 0.02 
Neighbors’ Average Forest Loss 2000-2012 (ha) 153.87 171.20 157.16 174.82 0.01 
Forest Loss 2000-2012 (ha) 156.38 210.40 159.15 210.54 0.01 
Neighbors’ Average Distance to City (km) 89.68 73.98 87.29 80.68 0.02 
Distance to City (km) 92.61 79.11 90.26 86.35 0.02 
Neighbors’ Average Distance to Road (km) 26.38 36.94 28.98 38.47 0.05 
Distance to Road (km) 26.86 37.28 29.93 39.82 0.06 
Neighbors’ Average Elevation (m) 207.80 290.33 192.66 292.14 0.04 
Elevation (m) 206.88 299.88 190.51 299.04 0.04 
Neighbors’ Average Slope (deg) 5.24 5.10 5.11 5.07 0.02 
Slope (deg) 5.26 5.53 5.14 5.48 0.02 

a  Neighbors are defined as those polygons that share a continuous boundary (where we assume that these 
values from neighboring polygons can be weighted equally).  

b The normalized difference is the ratio of the difference in the average covariate value between treatment 
and control parcel to the square root of the sum of the squared standard deviations of treatment and 
control parcels.  

 

Table 7b: Covariate Balance for Variables Not Used in the Matching Process 

 Treatment Parcels Control Parcels   
Variable Mean Std. Dev. Mean Std. Dev. Norm. Diff. c 
Neighbors’ Average a Distance to 
River (m) 3842.63 4007.65 3610.69 3540.20 0.04 
Distance to River (m) 3756.52 3546.55 3542.65 3112.88 0.05 
Accessibility b (minutes) 678.57 811.96 591.63 733.63 0.08 

a  Neighbors are defined as those polygons that share a continuous boundary (where we assume that these 
values from neighboring polygons can be weighted equally).   

 b “Accessibility” is provided in these data as the average travel time in minutes to the nearest city with 
50,000 inhabitant in 2000.   

c The normalized difference represents the ratio of the difference in the average covariate value between 
treatment and control parcel to the square root of the sum of the squared standard deviations of treatment 
and control parcels.  
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Table 8: Key Coefficients from Individual Regressions of Forest Loss on Covariates  
and One Key Variable at a Time 

Economic Parameter 
from Theory Model 

Expected 
Sign 
from 

Theory 
Model 

Proxy 
Economic 
Variable 

Coefficient Estimate 
from Individual OLS 
Regression (clustered 

standard errors) 

Marginal Effect 
from Individual  
IV Spatial Lag 

Regressions 
(robust standard 

errors) 
Share of park taken 
    from A  (𝛼𝛼) 

+ Treatment × 
Share of park 
taken from A  

33.39 
(34.51) 

193.99** 
(93.14) 

Elasticity of demand 
     for A   (𝜂𝜂) 

- Treatment × 
Elasticity of A 

-75.58*** 
(18.53) 

-33.05 
(46.43) 

Elasiticity of demand 
     for T   (𝜀𝜀) 

+ Treatment × 
Elasticity of T 

28.31*** 
(5.34) 

39.09*** 
(13.13) 

Initial fraction of land 
     in A   (𝜆𝜆𝑅𝑅𝐴𝐴) 

- Treatment × 
Fraction of 
land in A 

-0.95 
(8.96) 

-14.59 
(23.94) 

Initial fraction of land 
      in T    (𝜆𝜆𝑅𝑅𝑇𝑇) 

+ Treatment × 
Fraction of 
land in T 

75.39*** 
(3.58) 

127.97*** 
(13.39) 

Factor share of labor  
    in agriculture (𝜃𝜃𝐴𝐴𝐿𝐿) 

- Treatment × 
Ratio of ag. 
workers /ag. 
output 

-86.28*** 
(28.00) 

-66.54 
(73.55) 

Labor mobility between 
    rural (A and T) vs 
   urban (M) sector (𝜎𝜎𝐿𝐿) 

- Treatment × 
Log of wage 
rate 

-50.30*** 
(8.56) 

-40.56* 
(22.23) 

*** p<0.01, ** p<0.05, * p<0.1 

Note: The OLS column shows the estimated coefficient (which for OLS is also the marginal effect). 
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Table 9: Regressions of Forest Loss on All Variables Together (t-statistic in parentheses) 

 OLS Instrumental Variable 
Spatial lag in forest cover loss 2000-2012  0.880*** 
  (0.0143) 
Treatment dummy 852.6*** 611.63* 
 (127.4) (345.91) 
Distance to city (km) 0.168*** -0.06 
 (0.0398) (0.12) 
Distance to road (km) 0.458*** 0.99*** 
 (0.0773) (0.19) 
Elevation (m) -0.0804*** -0.08*** 
 (0.00349) (0.01) 
Slope (deg) -7.395*** -10.16*** 
 (0.219) (0.66) 
Elasticity of demand for A 33.05** -4.65 
 (15.08) (32.39) 
Elasticity of demand for T -15.90*** -24.07** 
 (5.114) (12.20) 
Fraction of total land initially in A 1.335 -6.46 
 (7.991) (18.52) 
Ratio of employment in A to district-level  
         GRDP from A 

-23.30*** 
(2.101) 

-35.45*** 
(5.08) 

Log of wage rate 80.07*** 75.35*** 
 (7.890) (18.50) 
Treatment × α  (Share of park taken from A) 36.78 191.71** 
 (33.70) (92.85) 
Treatment × η   (Elasticity of demand for A) -85.48*** -49.30 
 (18.75) (45.85) 
Treatment × ε  (Elasticity of demand for T) 22.81*** 32.86** 
 (5.643) (14.48) 
Treatment × λRA   (Fraction of land in A) -3.770 -18.76 
      (9.619) (24.95) 
Treatment × θLA   (Ratio of employment in 
      A to district-level GRDP of A) 

-177.7*** -149.58* 

 (30.18) (80.19) 
Treatment × σL   (Log of wage rate) -62.45*** -46.15* 
 (9.587) (26.30) 
Regional FE yes yes 
Observations 90,446 90,446 
R-squared 0.223 0.739 

*** p<0.01, ** p<0.05, * p<0.1 
Notes: (1.) The OLS column shows the estimated coefficient (which for OLS is also the marginal effect).  
The IV column shows the coefficent for the spatial lag and the marginal effects for all other variables. 

(2.) The parameter α appears only with the interactin, because it is only relevant for treatment parcels; it is 
always zero for control parcels. 

(3.) We drop the fraction of land in T (and treatment × fraction of land in T) from the full regression 
because of high collinearity between this variable and the fraction of land in A. 
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    Figure 1: Schematic Representation of our Leakage Definition 

 

 

 

 

Figure 2: Effect on Leakage of Variation in the Fraction of the Set-Aside taken from 
Agriculture 

 

Note: The values used for the figure are shown in Table 1. 
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Figure 3: Effect on Leakage of  Variation in the Price Elasticity of Demand of Good A 

 

Note: The values used for the figure are shown in Table 1.  

 

Figure 4: Effect on Leakage of Variation in the Price Elasticity of Demand of Good T  

 

Note: The values used for the figure are shown in Table 1.   
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Figure 5: Effect on Leakage of Variation in the Initial Allocation of Resource R to Good A  

 

Note: The values used for the figure are shown in Table 1. 

 

 

 

Figure 6: Effect on Leakage of Variation in the Initial Allocation of Resource R to Good T 

 

Note: The values used for the figure are shown in Table 1. 
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Figure 7: Effect on Leakage of Variation in the Factor Share of Labor in the Production of 
Good  A 

 

Note: The values used for the figure are shown in Table 1. 

 

Figure 8: Effect on Leakage of Variation in the Elasticity of Subsitution between Rural and 
Manufacturing Labor   

 

Note: The values used for the figure are shown in Table 1. 

 

-4.84

-4.82

-4.8

-4.78

-4.76

-4.74
0 0.2 0.4 0.6 0.8 1 1.2

Le
ak

ag
e

Factor Share of Labor in Agriculture (θAL)

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4
0 0.2 0.4 0.6 0.8 1

Le
ak

ag
e

Elasitcity of Substitution between Rural and Manufacturing 
Labor (σL)



-40- 
 

 
 

 
Figure 9: Protected Areas Established between 1999 and 2004, and Our Treatment Regions 

for Indonesia  
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Figure 10: Forest Cover Near the Seven National Parks and Counterfactuals 

 
Note: This figure illustrates the average forest cover for each year from 2000 to 2012 for treatment 
parcels in the districts near the new parks and for the matched control parcels.  
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Appendix 1: Linearization of the Basic Model 

To derive the impact of a small increase in  RE,  we totally differentiate the equations of 

the general equilibrium model above, and we solve the resulting system of linear differential 

equations.  First, totally differentiating the resource constraints yields: 

𝑅𝑅�𝑇𝑇𝜆𝜆𝑅𝑅𝑇𝑇 + 𝑅𝑅�𝐴𝐴𝜆𝜆𝑅𝑅𝐴𝐴 + 𝑅𝑅�𝐸𝐸𝜆𝜆𝑅𝑅𝐸𝐸 = 0                            (1) 

𝜆𝜆𝐿𝐿𝑇𝑇𝐿𝐿�𝑇𝑇 + 𝜆𝜆𝐿𝐿𝐴𝐴𝐿𝐿�𝐴𝐴 = 𝐿𝐿�𝑇𝑇𝐴𝐴                 (2) 

𝐿𝐿�𝑇𝑇𝐴𝐴𝜆𝜆𝐿𝐿 + 𝐿𝐿�𝑀𝑀𝜆𝜆𝐿𝐿𝑀𝑀 = 0         (3) 

where  𝜆𝜆𝑅𝑅𝑅𝑅  is the fraction of  R  initially in sector  j  (j=T,A, E), so  𝜆𝜆𝑅𝑅𝑇𝑇 + 𝜆𝜆𝑅𝑅𝐴𝐴 + 𝜆𝜆𝑅𝑅𝐸𝐸 = 1.  Also,  

𝜆𝜆𝐿𝐿𝑇𝑇  and  𝜆𝜆𝐿𝐿𝐴𝐴  are the fractions of rural labor  𝐿𝐿𝑇𝑇𝐴𝐴  that are in sectors  T  and  A, respectively, so 

𝜆𝜆𝐿𝐿𝑇𝑇 + 𝜆𝜆𝐿𝐿𝐴𝐴 = 1.  Finally  𝜆𝜆𝐿𝐿  is the fraction of total labor that is rural, and  𝜆𝜆𝐿𝐿𝑀𝑀  is the fraction of 

total labor in sector  M.  Next, we totally differentiate the production functions to find how 

changes in inputs affect output: 

𝐸𝐸� = 𝑅𝑅�𝐸𝐸            (4) 

𝑇𝑇� = 𝜃𝜃𝑇𝑇𝑅𝑅𝑅𝑅�𝑇𝑇 + 𝜃𝜃𝑇𝑇𝐿𝐿𝐿𝐿�𝑇𝑇           (5) 

�̂�𝐴 = 𝜃𝜃𝐴𝐴𝑅𝑅𝑅𝑅�𝐴𝐴 + 𝜃𝜃𝐴𝐴𝐿𝐿𝐿𝐿�𝐴𝐴                     (6)  

𝑀𝑀� = 𝐿𝐿�𝑀𝑀            (7) 

𝐿𝐿� = 𝜃𝜃𝐿𝐿𝑇𝑇𝐴𝐴𝐿𝐿�𝑇𝑇𝐴𝐴 + 𝜃𝜃𝐿𝐿𝑀𝑀𝐿𝐿�𝑀𝑀         (8) 

where  θTi  denotes the factor share in sector T for each factor  i  (i=R,L), so  θTR  +  θTL  = 1, and    

θAi  denotes the factor share in sector A for each factor  i  (i=R,L),  so  θAR  +  θAL  = 1.  Also, 

𝜃𝜃𝐿𝐿𝑇𝑇𝐴𝐴  and  𝜃𝜃𝐿𝐿𝑀𝑀  are factor shares in the function  𝐿𝐿 = 𝐿𝐿(𝐿𝐿𝑇𝑇𝐴𝐴,𝐿𝐿𝑀𝑀),  so  θLTA  + θLM  = 1.  Totally 

differentiating the zero profit conditions yields: 

𝑃𝑃�𝑇𝑇 + 𝑇𝑇� = 𝜃𝜃𝑇𝑇𝑅𝑅(𝑃𝑃�𝑅𝑅+𝑅𝑅�𝑇𝑇) + 𝜃𝜃𝑇𝑇𝐿𝐿(𝑤𝑤�+𝐿𝐿�𝑇𝑇)      (9) 

𝑃𝑃�𝐴𝐴 + �̂�𝐴 = 𝜃𝜃𝐴𝐴𝑅𝑅(𝑃𝑃�𝑅𝑅+𝑅𝑅�𝐴𝐴) + 𝜃𝜃𝐴𝐴𝐿𝐿(𝑤𝑤�+𝐿𝐿�𝐴𝐴)      (10) 

𝑃𝑃�𝑀𝑀 + 𝑀𝑀� = 𝑤𝑤�𝑀𝑀+𝐿𝐿�𝑀𝑀         (11) 

𝑃𝑃�𝐿𝐿 + 𝐿𝐿� = 𝜃𝜃𝐿𝐿𝑇𝑇𝐴𝐴(𝑤𝑤� + 𝐿𝐿�𝑇𝑇𝐴𝐴) + 𝜃𝜃𝐿𝐿𝑀𝑀(𝑤𝑤�𝑀𝑀 + 𝐿𝐿�𝑀𝑀)      (12) 

Differentiating the definitions of  𝜎𝜎𝑇𝑇, 𝜎𝜎𝐴𝐴, and 𝜎𝜎𝐿𝐿,  and rearranging terms yields: 

𝑅𝑅�𝑇𝑇 − 𝐿𝐿�𝑇𝑇 = 𝜎𝜎𝑇𝑇�𝑤𝑤� − 𝑃𝑃�𝑅𝑅�         (13) 

 𝑅𝑅�𝐴𝐴 − 𝐿𝐿�𝐴𝐴 = 𝜎𝜎𝐴𝐴�𝑤𝑤� − 𝑃𝑃�𝑅𝑅�         (14) 
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𝐿𝐿�𝑇𝑇𝐴𝐴 − 𝐿𝐿�𝑀𝑀 = 𝜎𝜎𝐿𝐿(𝑤𝑤�𝑀𝑀 − 𝑤𝑤�)                    (15) 

Totally differentiating the budget constraint, 𝑀𝑀𝐶𝐶𝑃𝑃𝑀𝑀  = (𝑅𝑅𝐴𝐴 + 𝑅𝑅𝑇𝑇) 𝑃𝑃𝑅𝑅  + 𝐿𝐿𝑀𝑀𝑤𝑤𝑀𝑀 + 𝐿𝐿𝑇𝑇𝐴𝐴𝑤𝑤  yields: 

 𝑀𝑀�𝐶𝐶 + 𝑃𝑃�𝑀𝑀 = 𝜃𝜃𝐼𝐼𝑅𝑅𝑅𝑅�𝑅𝑅�𝐴𝐴 + 𝑃𝑃�𝑅𝑅� + 𝜃𝜃𝐼𝐼𝑅𝑅𝑇𝑇�𝑅𝑅�𝑇𝑇 + 𝑃𝑃�𝑅𝑅� + 𝜃𝜃𝐼𝐼𝐿𝐿𝑀𝑀(𝐿𝐿�𝑀𝑀 + 𝑤𝑤�𝑀𝑀) + 𝜃𝜃𝐼𝐼𝐿𝐿𝑇𝑇𝑅𝑅(𝐿𝐿�𝑇𝑇𝐴𝐴 + 𝑤𝑤�) 

where  𝜃𝜃𝐼𝐼𝑅𝑅𝑅𝑅,  𝜃𝜃𝐼𝐼𝑅𝑅𝑇𝑇,  𝜃𝜃𝐼𝐼𝐿𝐿𝑀𝑀,  and  𝜃𝜃𝐼𝐼𝐿𝐿𝑇𝑇𝑅𝑅   represent the income shares from 𝑅𝑅𝐴𝐴, 𝑅𝑅𝑇𝑇 , LM, and LTA, 

respectively.  Thus we have   𝜃𝜃𝐼𝐼𝑅𝑅𝑅𝑅 + 𝜃𝜃𝐼𝐼𝑅𝑅𝑇𝑇 + 𝜃𝜃𝐼𝐼𝐿𝐿𝑀𝑀 + 𝜃𝜃𝐼𝐼𝐿𝐿𝑇𝑇𝑅𝑅   = 1.   

Totally differentiating the balance of payments constraint yields:18 

 𝑀𝑀�𝐼𝐼 + 𝑃𝑃�𝑀𝑀 = 𝜃𝜃𝐵𝐵𝑇𝑇�𝑇𝑇� + 𝑃𝑃�𝑇𝑇� + 𝜃𝜃𝐵𝐵𝐴𝐴��̂�𝐴 + 𝑃𝑃�𝐴𝐴�      (16) 

where  θBT   and  θBA  represent the share of export income from sale of goods  T, and  A, 

respectively, and  θBT  +  θBA  = 1.  We know that the domestic consumption of good  M  has to 

equal the sum of domestic production plus imports, 𝑀𝑀𝐶𝐶 = 𝑀𝑀 + 𝑀𝑀𝐼𝐼.  Totally differentiating this 

constraint, we have: 

 𝑀𝑀�𝐶𝐶 = 𝛿𝛿𝑀𝑀𝐷𝐷𝑀𝑀� + 𝛿𝛿𝑀𝑀𝐼𝐼𝑀𝑀�𝐼𝐼        (17) 

where  δMD  represents the initial share of  MC  produced domestically, and  δ MI  is the share of  

MC  imported, and  δMD + δMI = 1.  Finally, rearranging the definitions of the ROW’s demand 

elasticities implies:   

 𝑇𝑇� = 𝜀𝜀𝑃𝑃�𝑇𝑇          (18) 

 �̂�𝐴 = 𝜂𝜂𝑃𝑃�𝐴𝐴          (19) 

Since  𝑅𝑅�𝐸𝐸  is an exogenous policy shock ( 𝑅𝑅�𝐸𝐸 > 0), we have 19 equations in 20 unknowns 

(𝑅𝑅�𝑇𝑇 ,𝑅𝑅�𝐴𝐴, 𝐿𝐿�𝐴𝐴, 𝐿𝐿�𝑀𝑀, 𝐿𝐿�𝑇𝑇 ,𝐸𝐸� ,𝑇𝑇� ,𝑀𝑀� ,𝑀𝑀�𝐶𝐶 ,𝑀𝑀�𝐼𝐼 , �̂�𝐴,𝑃𝑃�𝑅𝑅 ,𝑃𝑃�𝑇𝑇 ,𝑃𝑃�𝑀𝑀,𝑃𝑃�𝐿𝐿 ,𝑃𝑃�𝐴𝐴, 𝐿𝐿�𝑇𝑇𝐴𝐴,𝑤𝑤�𝑀𝑀,𝑤𝑤� , 𝐿𝐿�).  We further assume that 

labor in  M  is the numeraire, so  𝑤𝑤�𝑀𝑀 = 0, and we are left with 19 equations for 19 unknowns.  

Successive substitution is laborious but straightforward to find solutions in the text, including 

equations (20) through (23). 

 

 

                                                           
18 The combination of the zero profit conditions and the balance of payments constraint together imply the 
household budget constraint, so we do not use that budget as an independent equation in our system to be solved. If 
all markets but one are in equilibrium, Walras’ Law ensures that the last market must also be in equilibrium.       



-48- 
 
Appendix 2: Comparative Statics on Equation (23) 

In section 1.1, equation (23) shows that leakage is  𝜓𝜓  =  −�(1−𝛼𝛼)
𝛼𝛼

− 𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁
𝛼𝛼(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷) � .  Here, we 

use this equation to prove each theorem.  

Proof of Theorem 1: 

From (23), leakage is negative if and only if  (1−𝛼𝛼)
𝛼𝛼

 > 𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁
𝛼𝛼(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷).  Rearranging, we have: 

(1 − 𝛼𝛼)(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁 + 𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷) > 𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁  

𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷 − 𝛼𝛼(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁 + 𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷) > 0 

𝛼𝛼 <
𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷

(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁 + 𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷) 

which proves Theorem 1.   

Next, we partially differentiate the solution for  𝜓𝜓  in (23) with respect to each of the 

seven parameters: 𝛼𝛼, 𝜂𝜂, 𝜀𝜀, 𝜆𝜆𝑅𝑅𝐴𝐴, 𝜆𝜆𝑅𝑅𝑇𝑇, 𝜃𝜃𝐴𝐴𝐿𝐿, and 𝜎𝜎𝐿𝐿.    

 

Proof of Theorem 2: 

In order to derive the effect of  𝛼𝛼 on leakage, we take the derivative of equation (23) with respect 

to 𝛼𝛼, and rearrange, to get:   
𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼 = − 𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷

𝛼𝛼2(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷)  

Thus, 𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼

> 0   if and only if  − 𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷
𝛼𝛼2(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷) > 0, or equivalently, 𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷

(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷) < 0. 

Proof of Theorem 3: 

Next, we derive the effect on leakage of the price elasticity of demand of agriculture, 𝜂𝜂. We take 

the derivative of equation (23) with respect to 𝜂𝜂, and rearrange, to get:   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

= 𝜆𝜆𝑅𝑅𝑇𝑇𝜆𝜆𝑅𝑅𝑅𝑅(𝐷𝐷�𝜀𝜀𝜆𝜆𝐿𝐿𝑅𝑅𝜃𝜃𝑅𝑅𝑅𝑅−𝜆𝜆𝐿𝐿𝑅𝑅(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅−𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇)�−𝑁𝑁�(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅−𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇)𝜆𝜆𝐿𝐿𝑇𝑇+𝜆𝜆𝐿𝐿𝑇𝑇𝜎𝜎𝑇𝑇+𝜆𝜆𝐿𝐿𝑅𝑅𝜎𝜎𝑅𝑅−𝜃𝜃𝑅𝑅𝑅𝑅(𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿+𝜀𝜀𝜆𝜆𝐿𝐿𝑇𝑇)�)
𝛼𝛼(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷)2   

Here, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

> 0   if and only if 

 𝜆𝜆𝑅𝑅𝑇𝑇𝜆𝜆𝑅𝑅𝑅𝑅(𝐷𝐷�𝜀𝜀𝜆𝜆𝐿𝐿𝑅𝑅𝜃𝜃𝑅𝑅𝑅𝑅−𝜆𝜆𝐿𝐿𝑅𝑅(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅−𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇)�−𝑁𝑁�(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅−𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇)𝜆𝜆𝐿𝐿𝑇𝑇+𝜆𝜆𝐿𝐿𝑇𝑇𝜎𝜎𝑇𝑇+𝜆𝜆𝐿𝐿𝑅𝑅𝜎𝜎𝑅𝑅−𝜃𝜃𝑅𝑅𝑅𝑅(𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿+𝜀𝜀𝜆𝜆𝐿𝐿𝑇𝑇)�)
𝛼𝛼(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷)2 > 0.  

The denominator is positive by definition and 𝜆𝜆𝑅𝑅𝑇𝑇𝜆𝜆𝑅𝑅𝐴𝐴 > 0. So 𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

> 0   if and only if   
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𝐷𝐷�𝜀𝜀𝜆𝜆𝐿𝐿𝐴𝐴𝜃𝜃𝐴𝐴𝑅𝑅 − 𝜆𝜆𝐿𝐿𝐴𝐴(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅 − 𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇)�

− 𝑁𝑁�(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅 − 𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇)𝜆𝜆𝐿𝐿𝑇𝑇 + 𝜆𝜆𝐿𝐿𝑇𝑇𝜎𝜎𝑇𝑇 + 𝜆𝜆𝐿𝐿𝐴𝐴𝜎𝜎𝐴𝐴 − 𝜃𝜃𝐴𝐴𝑅𝑅(𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿 + 𝜀𝜀𝜆𝜆𝐿𝐿𝑇𝑇)� > 0. 

Simplifying the above inequality further, we get: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

> 0   if and only if  

 (𝜀𝜀(𝜃𝜃𝑇𝑇𝑅𝑅 − 𝜃𝜃𝐴𝐴𝑅𝑅) − 𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇)(𝜆𝜆𝐿𝐿𝐴𝐴𝐷𝐷 + 𝜆𝜆𝐿𝐿𝑇𝑇𝑁𝑁) + 𝑁𝑁(𝜆𝜆𝐿𝐿𝑇𝑇𝜎𝜎𝑇𝑇 + 𝜆𝜆𝐿𝐿𝐴𝐴𝜎𝜎𝐴𝐴 − 𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿) < 0.  

Proof of Theorem 4: 

Next we derive the effect of the price elasticity of demand of timber, 𝜀𝜀 on leakage. We take the 

derivative of equation (23) with respect to 𝜀𝜀, and rearrange, to get:   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜀𝜀 = 𝜆𝜆𝑅𝑅𝑇𝑇𝜆𝜆𝑅𝑅𝑅𝑅(𝐷𝐷�−𝜃𝜃𝑇𝑇𝑅𝑅(𝜂𝜂𝜆𝜆𝐿𝐿𝑅𝑅+𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿)+𝜆𝜆𝐿𝐿𝑇𝑇𝜎𝜎𝑇𝑇+𝜆𝜆𝐿𝐿𝑅𝑅𝜃𝜃𝑅𝑅𝑅𝑅(𝜂𝜂+𝜎𝜎𝑅𝑅)�−𝑁𝑁�𝜃𝜃𝑇𝑇𝑅𝑅𝜂𝜂𝜆𝜆𝐿𝐿𝑇𝑇−𝜆𝜆𝐿𝐿𝑇𝑇(𝜂𝜂𝜃𝜃𝑅𝑅𝑅𝑅−𝜃𝜃𝑅𝑅𝐿𝐿𝜎𝜎𝑅𝑅)�)

𝛼𝛼(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷)2
  

The denominator in the RHS is positive, and  𝜆𝜆𝑅𝑅𝑇𝑇𝜆𝜆𝑅𝑅𝐴𝐴 > 0, so 𝜕𝜕𝜕𝜕
𝜕𝜕𝜀𝜀

> 0  if and only if: 

𝐷𝐷�−𝜃𝜃𝑇𝑇𝑅𝑅(𝜂𝜂𝜆𝜆𝐿𝐿𝐴𝐴 + 𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿) + 𝜆𝜆𝐿𝐿𝑇𝑇𝜎𝜎𝑇𝑇 + 𝜆𝜆𝐿𝐿𝐴𝐴𝜃𝜃𝐴𝐴𝑅𝑅(𝜂𝜂 + 𝜎𝜎𝐴𝐴)� − 𝑁𝑁�𝜃𝜃𝑇𝑇𝑅𝑅𝜂𝜂𝜆𝜆𝐿𝐿𝑇𝑇 − 𝜆𝜆𝐿𝐿𝑇𝑇(𝜂𝜂𝜃𝜃𝐴𝐴𝑅𝑅 −

𝜃𝜃𝐴𝐴𝐿𝐿𝜎𝜎𝐴𝐴)� > 0. 

Proof of Theorem 5: 

In order to derive the effect of the initial land allocated for agriculture, 𝜆𝜆𝑅𝑅𝐴𝐴 on leakage, we take 

the derivative of equation (23) with respect to 𝜆𝜆𝑅𝑅𝐴𝐴, and rearrange, to get:   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑅𝑅𝐴𝐴

= − 𝑁𝑁𝐷𝐷(𝜆𝜆𝑅𝑅𝑇𝑇+𝜆𝜆𝑅𝑅𝐴𝐴)
𝛼𝛼𝜆𝜆𝑅𝑅𝐸𝐸(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷)2

  
The denominator in the RHS of this equation is positive and 𝜆𝜆𝑅𝑅𝑇𝑇 + 𝜆𝜆𝑅𝑅𝐴𝐴 > 0 so 𝜕𝜕𝜕𝜕

𝜕𝜕𝜆𝜆𝑅𝑅𝑅𝑅
> 0  if 

and only if: 

𝑁𝑁𝐷𝐷 < 0.  

Proof of Theorem 6: 

In order to derive the effect on leakage of the initial land allocated for timber, 𝜆𝜆𝑅𝑅𝑇𝑇, we take the 

derivative of equation (23) with respect to 𝜆𝜆𝑅𝑅𝑇𝑇, and rearrange, to get:   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑅𝑅𝑇𝑇

= 𝑁𝑁𝐷𝐷(𝜆𝜆𝑅𝑅𝑇𝑇+𝜆𝜆𝑅𝑅𝐴𝐴)
𝛼𝛼(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝑅𝑅𝐷𝐷)2

. 

The denominator in the RHS of this equation is positive and (𝜆𝜆𝑅𝑅𝑇𝑇 + 𝜆𝜆𝑅𝑅𝐴𝐴) > 0  so 𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑅𝑅𝑇𝑇

> 0  if 

and only if: 

𝑁𝑁𝐷𝐷 > 0.  
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Proof of Theorem 7: 

In order to derive the effect on leakage of the factor share of land in agriculture, 𝜃𝜃𝐴𝐴𝐿𝐿, we take the 

derivative of equation (23) with respect to 𝜃𝜃𝐴𝐴𝐿𝐿, and rearrange, to get:   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑅𝑅𝐿𝐿

= −𝜆𝜆𝑅𝑅𝑇𝑇𝜆𝜆𝑅𝑅𝑅𝑅(𝜂𝜂+𝜎𝜎𝑅𝑅)�𝐷𝐷𝜀𝜀𝜆𝜆𝐿𝐿𝑅𝑅+𝑁𝑁(𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿+𝜀𝜀𝜆𝜆𝐿𝐿𝑇𝑇)�
𝛼𝛼(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷)2   

The denominator in the RHS is positive, and −𝜆𝜆𝑅𝑅𝑇𝑇𝜆𝜆𝑅𝑅𝐴𝐴 < 0, so  𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑅𝑅𝐿𝐿

< 0 if and only if: 

(𝜂𝜂 + 𝜎𝜎𝐴𝐴)(𝐷𝐷𝜀𝜀𝜆𝜆𝐿𝐿𝐴𝐴 + 𝑁𝑁(𝜆𝜆𝐿𝐿𝑀𝑀𝜎𝜎𝐿𝐿 + 𝜀𝜀𝜆𝜆𝐿𝐿𝑇𝑇) ) > 0.  

Proof Theorem 8: To derive the effect on leakage of labor mobility between the rural sector and 

urban sector, we take derivative of leakage with respect to  𝜎𝜎𝐿𝐿:   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝐿𝐿

= 𝜆𝜆𝑅𝑅𝑇𝑇𝜆𝜆𝑅𝑅𝑅𝑅𝜆𝜆𝐿𝐿𝑀𝑀(𝑁𝑁(𝜂𝜂𝜃𝜃𝑅𝑅𝑅𝑅−𝜃𝜃𝑅𝑅𝐿𝐿𝜎𝜎𝑅𝑅)−𝐷𝐷(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅−𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇))

𝛼𝛼(𝜆𝜆𝑅𝑅𝑇𝑇𝑁𝑁+𝜆𝜆𝑅𝑅𝐴𝐴𝐷𝐷)2  . 

The denominator in the RHS is positive, and 𝜆𝜆𝑅𝑅𝑇𝑇𝜆𝜆𝑅𝑅𝐴𝐴𝜆𝜆𝐿𝐿𝑀𝑀 > 0, so  𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝐿𝐿

> 0  if and only if:  

𝑁𝑁(𝜂𝜂𝜃𝜃𝐴𝐴𝑅𝑅 − 𝜃𝜃𝐴𝐴𝐿𝐿𝜎𝜎𝐴𝐴) − 𝐷𝐷(𝜀𝜀𝜃𝜃𝑇𝑇𝑅𝑅 − 𝜃𝜃𝑇𝑇𝐿𝐿𝜎𝜎𝑇𝑇) > 0.   

 

 

 

 

Appendix 3: Analysis based on 35km Distance to Delineate “Nearby” Areas  

The text measures leakage in districts near new parks, whereas other previous studies 

measure leakage within a specified distance (Andam et al. 2008; Pfeifer et al. 2012).  In this 

appendix, we also delineate a 35 km zone around newly established protected areas within which 

to estimate the effect of the key economic variables on the change in forest cover (relative to 

controls further away). Table A3-1 presents the summary statistics for characteristics of parcels 

that are within and outside this 35 km zone. 
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Table A3-1: Summary Statistics for Parcels inside and outside 35km Treatment Zone 

 35km Treatment Zone Parcels outside those Zones 

Variable Mean Std. Dev. Mean Std. Dev. 

Neighbors’ Average Forest Loss (ha) 122.96 151.49 79.40 128.06 

Forest Loss (ha) 124.92 186.28 81.41 154.02 
Neighbors’ Average Distance to City (km) 68.88 64.39 125.52 98.77 

Distance to City (km) 71.42 70.45 128.39 99.86 
Neighbors’ Avg Distance to Road (km) 21.38 29.36 58.88 82.37 

Distance to Road  (km) 21.75 29.73 60.69 85.38 
Neighbors’ Average Elevation (m) 289.69 359.52 302.40 445.68 

Elevation (m) 287.07 369.18 304.91 479.90 
Neighbors’ Average Slope (deg) 6.03 5.31 6.78 6.33 

Slope (deg) 6.01 5.76 6.88 6.79 
No. of Observations 6856 164043 

Notes for this table correspond to notes on Table 4 of the text. 

 

We identify counterfactual parcels that are outside of this 35 km zone around the new 

protected areas but that are similar to the parcels within this zone. Table A3-2 presents the 

summary statistics for the key economic variables.  Table A3-3 shows normalized differences for 

the covariates used in the matching process for this matched dataset. Table A3-4 presents the 

summary statistics for other land characteristics that are not used in the matching process. 

 

Table A3-2: Summary Statistics for Key Economic Variables in the Matched Dataset  
(for 35km Treatment Zone)  

 Treatment Parcels Control Parcels 
Variable Mean Std. Dev. Mean Std. Dev. 
Share of new park taken from A (𝛼𝛼) 0.01 0.08 0.00 0.00 
Elasticity of demand for  A  (η) 0.49 0.14 0.50 0.13 
Elasticity of demand for  T (𝜀𝜀) 0.58 0.42 0.54 0.37 
Initial fraction of land in A (λRA) 0.15 0.28 0.20 0.35 
Initial fraction of land in T (λRT) 0.42 0.42 0.34 0.42 
Ag employment/Ag GRDP  (θAL) 1.69 1.01 1.85 1.20 
Log of wage rate   (σL) 13.11 0.28 13.12 0.27 

Notes for this table correspond to notes on Table 5 of the text.  
 
 



-52- 
 
 
 

Table A3-3: Covariate Balance for Variables Used in the Matching Process 
(for 35km Treatment Zone)  

 Treatment Parcels Control Parcels   
Variable Mean Std. Dev. Mean Std. Dev. Norm. Diff 
      
Neighbors’ Average Forest Loss (ha) 124.84 152.33 122.09 136.40 0.01 
Forest Loss (ha) 126.77 187.44 122.93 169.15 0.02 
Neighbors’ Avg Distance to City (km) 69.51 64.82 68.14 62.72 0.02 
Distance to City (km) 72.10 70.94 70.53 68.44 0.02 
Neighbors’ Avg Distance to Road (km) 21.67 29.60 19.49 25.87 0.06 
Distance to Road (km) 22.06 29.97 19.77 26.14 0.06 
Neighbors’ Average Elevation (m) 272.09 341.09 246.27 324.63 0.05 
Elevation (m) 269.89 352.21 242.95 332.85 0.06 
Neighbors’ Average Slope (deg) 5.93 5.30 5.70 5.09 0.03 
Slope (deg) 5.92 5.74 5.68 5.49 0.03 

Notes for this table correspond to notes on Table 7a of the text. 

 

 

 

 

Table A3-4: Covariate Balance for Variables Not Used in the Matching Process 
(for 35km Treatment Zone) 

 Treatment Parcels Control Parcels   
Variable Mean Std. Dev. Mean Std. Dev. Norm. Diff 
Distance to River (m) 3144.75 3653.45 2965.68 3158.53 0.04 
Neighbors’ Avg Distance to River (m) 3091.71 3277.22 2949.59 2850.01 0.03 
Accessibility (minutes) 579.79 592.98 471.56 518.55 0.14 

Notes for this table correspond to notes on Table 7b of the text. 
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Table A3-5: Key Coefficients from Individual Regressions of Forest Loss on Covariates and 

One Key Variable at a Time 

Economic Parameter 
from Theory Model 

Expected 
Sign 
from 

Theory 
Model 

Proxy 
Economic 
Variable 

Coefficient Estimate 
from Individual OLS 
Regression (clustered 

standard errors) 

Marginal Effect 
from Individual  
IV Spatial Lag 

Regressions 
(robust standard 

errors) 
Share of park taken 
    from A  (𝛼𝛼) 

+ Treatment × 
Share of park 
taken from A  

13.14 
(29.88) 

406.62 
(271.57) 

Elasticity of demand 
     for A   (𝜂𝜂) 

- Treatment × 
Elasticity of A 

-118.52*** 
(19.89) 

-362.89** 
(173.61) 

Elasiticity of demand 
     for T   (𝜀𝜀) 

+ Treatment × 
Elasticity of T 

 
13.96** 
(7.06) 

 
68.21 

(51.70) 
Initial fraction of land 
     in A   (𝜆𝜆𝑅𝑅𝐴𝐴) 

- Treatment × 
Fraction of 
land in A 

-9.36 
(11.60) 

175.20 
(113.07) 

Initial fraction of land 
      in T    (𝜆𝜆𝑅𝑅𝑇𝑇) 

+ Treatment × 
Fraction of 
land in T 

57.80*** 
(4.88) 

139.85*** 
(52.69) 

Factor share of labor  
    in agriculture (𝜃𝜃𝐴𝐴𝐿𝐿) 

- Treatment × 
Ratio of ag. 
workers /ag. 
output 

6.63*** 
(2.57) 

18.45 
(22.18) 

Labor mobility between 
    rural (A and T) vs 
   urban (M) sector (𝜎𝜎𝐿𝐿) 

- Treatment × 
Log of wage 
rate 

-3.35 
(9.86) 

-42.98 
(70.27) 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A3-6: Regressions of Forest Loss on All Variables Together  
(t-statistic in parentheses) 

 OLS Instrumental Variable 
Spatial lag in forest cover loss 2000-2012   
   
Treatment dummy -105.56 559.99 
 (158.46) (1101.44) 
Distance to city (km) 0.72*** 0.07 
 (0.07) (0.52) 
Distance to road (km) 0.71*** 2.13* 
 (0.15) (1.12) 
Elevation (m) -0.04*** -0.06** 
 (0.00) (0.03) 
Slope (deg) -7.06*** -11.58*** 
 (0.34) (2.82) 
Elasticity of demand for A 56.18*** 286.11** 
 (16.42) (138.95) 
Elasticity of demand for T -22.94*** -65.15* 
 (6.42) (39.45) 
Fraction of total land initially in A 20.68** -78.23 
 (9.22) (74.45) 
Ratio of employment in A to district-level  
         GRDP from A 

-19.51*** 
(2.12) 

-11.46 
(12.56) 

Log of wage rate -12.73 -15.46 
 (11.54) (59.90) 
Treatment × α  (Share of park taken from A) 24.25 369.81 
 (29.04) (250.85) 
Treatment × η   (Elasticity of demand for A) -118.89*** -386.78** 
 (20.41) (176.72) 
Treatment × ε  (Elasticity of demand for T) 18.77** 85.53 
 (7.54) (54.02) 
Treatment × λRA   (Fraction of land in A) 0.09 232.51* 
      (13.10) (126.34) 
Treatment × θLA   (Ratio of employment in 
      A to district-level GRDP of A) 

6.17** 
(3.10) 

37.69 
(24.83) 

     
Treatment × σL   (Log of wage rate) 11.09 -37.95 
 (11.76) (80.91) 
Regional FE yes yes 
Observations 40,276 40,276 
R-squared 0.2394 0.7254 

*** p<0.01, ** p<0.05, * p<0.1 
 


