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Abstract. This paper documents a dramatic decrease in the achievement gap between

youth from high- and low-income households from 1980 to 1997. It does so using ordinal

methods that do not rely on two implausible assumptions pervasive in empirical work

assessing achievement di�erences using test scores. In particular, the methods used in

this paper do not assume that a given (normalized) test score has a �xed meaning over

time, nor do they assume that test scores are cardinal measures of achievement. The pa-

per shows that any weighting scheme that places more weight on higher test scores must

conclude that the income-achievement gap in reading narrowed between the National

Longitudinal Surveys of Youth 1979 and 1997 (NLSY79 and NLSY97). The situation for

math achievement is more complex, but it is nonetheless clear that low-income youth in

the middle and high deciles of the low-income math achievement distribution unambigu-

ously gained relative to their high-income peers. Finally, an anchoring exercise suggests

that the changes in the math and reading achievement distributions between the NLSY79

and the NLSY97 correspond to a convergence in the present discounted value of lifetime

labor income of about $100,000 and in high school and college completion rates of about

0.06 to 0.07 for youth from high- versus low-income households. JEL Codes: I24, I21,

J24, C18, C14.

1. Introduction

Many literatures in economics use test scores to measure group di�erences in achieve-

ment. For example, researchers employ test scores to measure changes in the black-white
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achievement gap over time, to assess school and teacher quality, and to quantify the im-

portance of class size, funding, and other school inputs in generating student achievement.

A fundamental question in all such applications is how best to use test-score data to mea-

sure student achievement. The typical methods employed in economics provide a deeply

inadequate answer to this question.

In almost all empirical work, researchers �rst normalize test scores to have a mean of

zero and a standard deviation of one within each year/age cohort. These �z-scores� are

then compared across di�erent cohorts using standard statistical techniques, such as mean

di�erences and ordinary or instrumental least-squares regression. Unfortunately, such

standard techniques make two very strong, unwarranted assumptions on the z-scores:

cardinal and inter-group comparability. The cardinal comparability assumption (also

referred to as the �interval scale� assumption) states that a score change of ∆s represents

the same change in achievement at all starting locations in the test scale. The inter-group

comparability assumption states that a given test score has a �xed interpretation across

all comparison groups, so that students from di�erent groups (cohorts, grades, classrooms,

etc.) may be ranked against each other consistently based on their test scores.

Neither cardinal nor inter-group comparability is well justi�ed by either economic or

psychometric theory. Cardinal comparability will be violated if improvements in some re-

gions of the test-score distribution are more valuable than improvements in others. Since

the notion of value is context-speci�c, a given test scale may be cardinal for some appli-

cations and not cardinal for others. As an example, in common economic applications,

the presence of achievement thresholds or convex returns to skill will violate cardinal

comparability. Inter-group comparability will be violated for achievement comparisons

made over time in the very likely occurrence that the location of the underlying achieve-

ment distribution is shifting over time; inter-group comparability rules out by assumption

secular increases or decreases in achievement. Emphasizing the implausibility of these

assumptions is not mere pedantry; standard methods may produce severely biased es-

timates under even mild failures of either assumption. It is even possible for standard

methods to misidentify the sign of the relevant achievement gap/change in such cases.

2



This paper studies changes in achievement inequality by parental income using meth-

ods that do not assume that standardized test scores satisfy either inter-group or cardinal

comparability. In particular, I guarantee that inter-group comparability holds throughout

my analysis by using only �crosswalked� test scores that have been explicitly and carefully

constructed so that test scores are ordinally (though not necessarily cardinally) compara-

ble over time. I next handle cardinal comparability using two complementary approaches:

ordinal statistics and anchoring. First, the paper shows how to construct robust achieve-

ment gap-change measures using only the rank-order content of achievement test scores;

these statistics are invariant under all order-preserving transformations of the test scores.

Under intuitive, testable conditions, ordinal statistics allow one to unambiguously sign

an achievement gap or gap change for all plausible cardinalizations of achievement. Ordi-

nal methods cannot be used, however, to measure the magnitudes of achievement shifts.

Therefore, rather than simply assume that observed test scores are cardinal measures of

achievement, my second approach uses the reduced-form relationship between test scores

and later-life economic outcomes to explicitly construct cardinally interpretable, anchored

achievement scales.

Applied to the National Longitudinal Surveys of Youth (NLSY) 1979 and 1997 sur-

veys, my ordinal estimates provide compelling evidence that the income-achievement gap

narrowed substantially between 1980 and 1997. In particular, I show that any reasonable

cardinalization of reading test scores will measure a smaller income-achievement gap in

the NLSY97 than in the NLSY79 (which has test-score data for 1980). This conclusion

follows because the low-income reading achievement distribution in 1997 is unambiguously

higher than in 1980 in the sense of �rst-order stochastic dominance (FOSD), while the

high-income distribution is unambiguously lower, again in the sense of FOSD. I cannot

make such a strong claim about math achievement because low-achieving, low-income

students, along with all high-income students, su�ered an adverse shift in their math

achievement between 1980 and 1997, while high-achieving, low-income students improved

unambiguously. Nonetheless, any scheme that does not place too much weight on the bot-

tom of the math achievement distribution would �nd a smaller math achievement gap in

1997 than in 1980. Additional ordinal measures, such as Cli�'s δ and percentile-percentile
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curves (PPCs), also all uniformly suggest that there was a large, statistically signi�cant

decrease in the income-achievement gap between 1980 and 1997. These estimates are

robust to income and test-score measurement error, as well as to various methods for

adjusting income to re�ect household size and composition.

The anchored gap-change estimates further imply that the ordinal convergence in high-

and low-income test scores between the NLSY79 and the NLSY97 corresponds to econom-

ically large shifts in both lifetime labor wealth and school completion rates at constant

skill prices. Methodologically, I use longitudinal data in the NLSY79 to �exibly esti-

mate the conditional distributions of labor wealth and school completion for a range of

di�erent achievement test scores. I then use these estimated conditional distributions

as skill-pricing functions to understand the distributional consequences of the test-score

shifts from the NLSY79 to the NLSY97. This approach implies that the decrease in

the reading achievement gap between high- and low-income youth corresponds to a nar-

rowing of the mean and median lifetime earnings gaps of $50,000 to $130,000 in present

discounted dollars and decreases in the mean high school and college completion gaps of

0.05 to 0.07 probability units. In addition to these central tendency estimates, I also show

that the anchored gap changes are highly heterogeneous across the supports of the test

score distributions.

Both my ordinal and anchored �ndings stand in sharp contrast to recent work by

Reardon[31], whose standard, cardinal approach �nds no signi�cant change in the income-

achievement gap in the NLSY data and a large increase in the gap over the last several

decades in a number of other data sources. My estimates are not directly comparable to

Reardon's because we study di�erent subsamples of the NLSY and because he covers a

wider range of years using several additional data sources. Nonetheless, my results suggest

that whether one treats test scores cardinally or not can matter critically in important

empirical applications.

These empirical results are signi�cant in their own right, aside from their unorthodox

methodology. The income-achievement gap should be a major determinant of intergener-

ational mobility and adult outcome inequality. Rising income inequality in recent decades

has led to widespread concern that children from di�erent income classes may increasingly
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face divergent life prospects. My estimates suggest that these concerns, though under-

standable, might not be born out in the data. Nonetheless, my results come with the

signi�cant caveat that they cover only one data source, the NLSY, and one speci�c time

period (1980-1997). It is quite possible that these data are exceptional and that the long-

term trend is toward increasing achievement inequality by family income. Moreover, a

smaller income-achievement gap could still translate to greater adult economic inequality

if the relationship between achievement and adult economic outcomes convexi�es su�-

ciently.

My �ndings should give researchers employing standard methods pause. Ordinal meth-

ods disagree with traditional cardinal approaches in at least one important setting, and

other �ndings that use standard methods may be similarly fragile. Ordinal methods are

prima facie more credible, as the conditions needed for them to provide valid inference are

substantially weaker than those required by cardinal methods. Moreover, my anchoring

analysis suggests that the anchored gap/change estimates one obtains often depend cru-

cially how one chooses to weight di�erent moments of the anchoring distribution. When

possible, researchers should use methods that do not rely on economically arbitrary car-

dinalizations of achievement.

The techniques used in this paper apply to any situation in which a researcher wishes

to use test-score data to measure group di�erences in achievement; nothing about the

analysis assumes that time is the dimension of comparison. For example, the methods

in this paper could be used to study black-white achievement inequality in the American

South versus the North at a given point in time, or the achievement of suburban students

versus urban students across di�erent metropolitan areas. More generally, these methods

could be applied whenever the scale of the variable of interest is unknown. Happiness

scales, poverty indexes, and much else could be fruitfully analyzed using ordinal methods

or by anchoring the scales to some interpretable outcome.

The rest of this paper is organized as follows. Section 2 reviews the literatures assessing

achievement di�erences using test scores. Section 3 describes the NLSY data. Section

4 presents a general framework for valuing achievement shifts using test scores. Section

5 presents the results of the ordinal analysis, while section 6 presents the anchoring
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results. Sections 7-8 discuss the connection between my results and the larger literatures

on parental investments and childhood human capital creation. Appendices A-D contain

all the tables and �gures, as well as additional technical details. An online appendix

presents supplemental empirical and theoretical analysis.1

2. Literature Review

Virtually all empirical work in economics using test scores assumes that they are car-

dinal measures of achievement. The most intensely studied achievement gaps in the U.S.

context are by race: Fryer and Levitt[21, 22], Clotfelter, Ladd, and Vigdor[8], Duncan and

Magnuson[11], Hanushek and Rivkin[17], among many others, assume that z-scores are

cardinal measures of achievement in order to assess changes in the black/white test-score

gap over time. Cardinality assumptions are also pervasive in the literatures assessing the

e�ects of school inputs (Krueger[23], Hoxby[19], ...), teacher quality (Raudenbush[29], ...),

and parental income (Reardon[31]) on student achievement.

Of the many empirical papers that treat test scores cardinally, Reardon[31] is closest

in subject matter to this paper. Reardon de�nes the income-achievement gap as the

di�erence in average z-scores between students at the 90th vs. the 10th percentiles of

the household income distribution. Using regression-based methods, he estimates that

this gap is 30 to 40 percent larger for students born in 2001 than for those born three

decades earlier. My paper does not directly address Reardon's larger thesis, as I study a

much shorter time period while using a strict subset of the surveys that he employs. The

large increases that Reardon documents come from cross-sectional income-achievement

gaps estimated using surveys other than the NLSY79 and NLSY97. It is possible that

my methods would also �nd an increasing income-achievement gap with these alternate

data. However, Reardon does use both NLSY surveys in his analysis, and he calculates

a negligible change in the income-achievement gap with these data, while I �nd a sharp

decrease. In a parallel working paper, I extend my ordinal estimates to some of the other

data sources used by Reardon. I �nd that the trends estimated using these other data

1This appendix can be found at the following url: https://sites.google.come/site/

ericnielsenecon/research.
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are substantially more muddled and that longer-term trends are only identi�ed assuming

particular, arbitrary cardinalizations of achievement.

I am not the �rst author to point out that test scores are not cardinal measures of

achievement. Stevens[35] argues that most psychometric scales are inherently ordinal,

while Lord[25] shows that the IRT scale scores commonly used as achievement measures in

economics are ordinal in the sense that there are in�nitely many rescalings of these scores

that will �t any given set of raw test responses equally well. Jacob and Rothstein[20]

caution again uncritically using test scores cardinally on the way to discussing many

empirical challenges for economists wishing to use standard psychometric measures. Bond

and Lang[6] and Reardon[30] show that it is often possible to �ip the sign of standard

achievement gap/change estimates using order-preserving transformations of test scores.2

Nielsen[27] re�nes these arguments by demonstrating that even mild transformations of

test scores are often su�cient to a�ect such sign �ips.

Heckman and coauthors[10, 9], along with many others, argue for creating cardinally

interpretable scales by anchoring test scores on life outcomes, an approach I take in Section

6 of this paper. The basic idea is to use longitudinal data to estimate the relationship

between test scores and some outcome of interest, such as labor market earnings. This

relationship can then be used to re-denominate test-score shifts into interpretable units.

Anchoring o�ers an appealing solution to the arbitrariness of test scales. However, the

approach has a number of signi�cant downsides. Most importantly, anchoring requires

longitudinal data on outcomes measured years or even decades after the test date in

order to accurately capture lifetime di�erences between test-takers. For many pressing

questions, waiting 20 to 30 years for an answer is not a viable option. In addition,

estimates based on anchored scores may be sensitive to the particular outcome chosen

as the anchor and to the functional forms used to implement the anchoring procedure.

Finally, handling test-score measurement error plausibly is quite challenging for many

anchoring methodologies. Therefore, ordinal methods and anchoring are best viewed as

complements; ordinal approaches are feasible in wider variety of applications, but where

2Schroeder and Yitzhaki[32] make a similar argument using self-reported satisfaction measures.
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anchoring analysis is possible, it will often produce more interpretable and compelling

estimates.

3. Data

This paper uses the National Longitudinal Surveys of Youth 1979 and 1997 (NLSY79

and NLSY97). These are high-quality, nationally representative surveys of young adults

with detailed data on respondents' family backgrounds, academic achievement, and later-

life outcomes. This section brie�y describes the construction of the analysis sample.

Please refer to Appendix B for a more detailed discussion.

I de�ne household income in both surveys using a comprehensive measure that sums

together income from all sources (wages, capital, and government transfers) across all

household members.3 I obtain fairly similar estimates if I use instead parental wage

income, which is more tightly related to parental education and human capital, to de�ne

my high and low categories. To reduce the in�uence of measurement error and transitory

components of income on my estimates, I average the yearly household incomes over the

�rst three years of each survey. Using only one year of income data yields qualitatively

similar, though attenuated, gap-change estimates. Finally, my baseline estimates de�ne

high- and low-income to be the top and bottom quintiles of the cross-sectional household

income distributions; di�erent percentile cuto�s tell largely the same story.

My primary measures of achievement are the Armed Forces Qualifying Test (AFQT)

and its math and reading subscores.4 The AFQT is a high quality achievement test that

has been shown to be predictive of later-life outcomes. Additionally, the AFQT and its

constituent subtests have the very important, if unheralded, property that it is possible

to put scores from the NLSY79 and NLSY97 versions on a common scale such that

respondents from the two surveys can be ranked against each other consistently. Such

a scaling is possible thanks to a percentile-equated crosswalk constructed from a sample

3This de�nition of household income includes income earned by the respondents themselves, in addition
to the income earned by their parents. Since the respondents I study are less than 18 years old, their
share of total household income is usually negligible.
4The math subtests used to de�ne the math subscore of the AFQT changed in 1989; throughout, I
will use the current, post-1989 de�nition. Using the old de�nition results in somewhat larger and more
statistically signi�cant estimated decreases in the math income-achievement gap.

8



of test takers who were randomly assigned to the NLSY79 and NLSY97 versions of the

AFQT.5

The NLSY is an ideal setting for carrying out my anchoring analysis as both surveys

collect a wealth of longitudinal data on income, education, employment, and many other

outcomes annually or biennially through 2012/13. I construct college and high school

completion indicators using the highest reported grade completed from any of the �rst 14

years of each survey. I construct the present discounted value of labor income (pdv_labor)

using round-by-round data on labor earnings, employment status, and hours worked in

the NLSY79.

The construction of pdv_labor is complicated by the fact that wage income data is

often not available in a given round for a given respondent due to item non-response,

non-interview, unemployment, or labor force non-participation. Rather than model selec-

tion into observing wage income explicitly, I handle these various forms of missing data by

adopting extreme imputation rules. In particular, for each missing wage for each survey

respondent I optimistically (pessimistically) impute a wage equal to the maximum (min-

imum) ever observed for that respondent. Although these imputation rules do not allow

me to bound the estimands of interest, the fact that they produce qualitatively similar

estimates suggests that selection is not driving my conclusions.6

Similarly, it is unclear how un(der)employment should be treated in the calculation

of pdv_labor. If labor supply is always freely chosen, then full income (wage×full-time

5In particular, the AFQT changed from a pencil-and-paper format to a computer adaptive design between
the two NLSY surveys. When this format change occurred, the military (the main user of the AFQT)
randomly assigned a group of recruits to take one version of the test or the other. Segall[33] constructs
the crosswalk between these two groups of test-takers by equating the component scores based on their
percentile ranks. Altonji, Bhadarwaj, and Lange[2] take this crosswalk and add to it percentile-mapped
crosswalk across di�erent respondent ages in order to make inter-group comparable scores that are compa-
rable both across NLSY surveys and across respondent ages. These authors make this crosswalk available
at the following url: http://www.econ.yale.edu/~fl88/data.html. Creating a 1980-equivalent AFQT
score by adding these crosswalked subscores together is not strictly valid because it ignores the covariance
structure of the di�erent ASVAB components. However, Segall[34] reports that the AFQT scores result-
ing from such a procedure are virtually identical to those obtained by crosswalking the AFQT scores
directly.
6These optimistic and pessimistic imputation rules are quite extreme. Suppose that a respondent reports
wage income of $100 in 1983 at the age of 20, and then reports wage income of $100,000 for 2000, 2002,
and 2006, but has no wage income recorded for 2004. The pessimistic imputation rule will assign to this
individual a wage income for 2004 of at most $100. Similarly, if the same individual has wage income
missing in 1982, when she was 19 years old, the optimistic imputation rule will assign her a wage income
of at least $100,000 for that year.
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hours), regardless of actual hours worked, is the relevant measure of labor income, while

if unemployment is always involuntary, observed annual earnings are the correct measure.

As with the missing wage data, I avoid taking a stand on which view of the labor market

is closer to the truth and instead estimate anchored gap changes under both assumptions.

Fortunately, as Section 6 demonstrates, the anchored gap-change estimates under these

polar opposite imputation procedures are quite similar.

I restrict my analysis to respondents who were between the ages of 15 and 17 when

they took the AFQT. I select this age range for two reasons. First, the two NLSY surveys

have fairly di�erent age distributions, yet both have large numbers of respondents in this

age range. Focusing on this age group therefore reduces the importance of whether and

how I account for di�erent respondent ages in my analysis. In principle, the crosswalked

scores should be inter-group comparable across di�erent ages, and qualitatively I �nd

extremely similar results whether I estimate income-achievement gaps/changes separately

for 15, 16, and 17 year-olds, if I use age/survey standardized z-scores, or if I ignore age

entirely and estimate gaps/changes using the crosswalked scores pooled across these three

age groups. Second, respondents in this age range were just on the cusp of becoming

independent adults when they took the AFQT. Test scores for such students therefore

provide a summary measure of the cumulative e�ect of parental income on achievement

through the middle/end of high school.

Table 1 displays summary statistics for the NLSY79 and NLSY97 samples I analyze.

My �nal samples include about 3,800 respondents in the NLSY79 and roughly 2,800

in the NLSY97. The two samples are quite similar in terms of race/sex composition

and crosswalked achievement. Real household incomes are higher in the NLSY97, as

expected. Notably, the variance of household income is much greater relative to its mean

in the NLSY97, consistent with the well-documented widening of the income distribution

in recent decades. Turning to life outcomes, about 88% of the NLSY79 sample has at

least a high school education, and roughly 23% have at least 4 years of post-high school

education. The average present discounted labor incomes in the NLSY79 range from

about $371,000 (pessimistic imputation + �xed labor supply) to $1,017,000 (optimistic

imputation + fully chosen labor supply).
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The NLSY surveys are not the only sources for nationally representative data on student

achievement and parental income. Surveys such as the National Education Longitudinal

Study (1988) and High School and Beyond could be used to carry out the ordinal analysis

undertaken in sections 4 and 5. I do not use these data for several reasons. First, these

surveys do not have continuous, high-quality measures of parental income, which makes

constructing comparable high- and low-income categories challenging. Second, these sur-

veys do not contain achievement tests whose scores satisfy inter-group comparability.

Third, the age ranges covered by these surveys vary widely, making the direct comparison

of achievement scores between them di�cult or impossible without taking a strong stand

on how test scores should be compared across di�erent ages. Fourth, these surveys do

not contain detailed, data on long-run economic outcomes which rules out the anchoring

analysis undertaken in Section 6.

4. Valuing Achievement Shifts

Consider a group of students with test scores distributed according to cumulative dis-

tribution function (cdf) F . How should the distribution F be evaluated? If FA and FB are

the test-score distributions for student groups A and B, how should we determine whether

A or B has more achievement? The standard approaches in economics to answering these

questions assume that the scores themselves are cardinal measures of achievement. If test

scores are cardinal, the value of a score distribution F can be consistently estimated by a

sample mean of test scores. Analogously, the gap between A and B can be consistently

estimated simply by the di�erence of sample means as long as cardinal comparability

holds.

As pointed out in the introduction, using test scores in this way implicitly makes two

very strong assumptions. First, it assumes inter-group comparability, that is, that a given

normalized test score corresponds to the same underlying level of achievement across dif-

ferent comparison groups. This assumption is particularly implausible if the achievement

tests used are very di�erent from each other, or if the students being compared are very

di�erent in terms of age and background. Why would a calculus test score one standard
11



deviation above the mean for a high school senior correspond to the same level of achieve-

ment as a basic numeracy score one standard deviation above the mean for a �rst-grader?

The second major assumption is cardinal comparability: that is, that the value of a test-

score gain is constant throughout the range of possible scores. There is no particular

reason to think that this is true; test scores are not designed to have this property, at

least not when applied to economic questions. Moreover, I show in Nielsen[27] that even

mild violations of this assumption are often su�cient to �ip the sign of an achievement

gap/change estimate.

A bit more formalism will make these points clearer. Let si,G be the test score for

student i in group G and let ψG(s) be the monotone increasing map from group-G test

scores to underlying achievement.7 Denote by W (a) the true value of achievement level

a. Later, I will want to interpret W as the social welfare of the economic outcomes

(income, health, etc.) associated with a, but for now suppose only that W (a) is some

non-decreasing function that converts achievement into cardinally-comparable units. In

other words, W is a test scale such that that the true value of score distribution FG is

the expected value of W (ψG(s)); that is, such that V (FG) ≡ EFG [W (ψG(s))].

Now consider the achievement gap between A and B. Measuring this gap by the

di�erence in group means will only be valid if two conditions hold: (i) ψA = ψB ≡ ψ

and (ii) W (ψ(s)) = α + βs for some constants α and β > 0. The condition ψA = ψB

corresponds to the inter-group comparability assumption, while the condition that W be

an a�ne transformation of observed test scores corresponds to the cardinal comparability

assumption. Empirical methods that erroneously assume either (i) or (ii) will in general

produce biased gap/change estimates.

7This formulation asserts that achievement is unidimensional. Allowing achievement to be multidimen-
sional only slightly complicates the theoretical exposition. Empirically, however, such a modi�cation
presents signi�cant di�culties because one must take a stand on which dimensions of achievement are
measured by a given achievement test. The condition that ψG be monotone-increasing implies that test
scores are perfect ordinal measures of achievement in the sense that si,G > sj,G ⇐⇒ ai,G > aj,G. In
reality, of course, test scores are noisy measures of achievement � comparable tests will yield similar, but
not identical, rank orderings of a given set of students. Measurement error is a thorny issue that I devote
signi�cant e�ort to handling in the empirical sections of this paper.

12



It is sometimes possible to guarantee that ψ is �xed across comparison groups. For

example, the percentile-mapped crosswalk I use in this paper ensures (at least approxi-

mately) that test scores in the NLSY79 and NLSY97 satisfy inter-group comparability.

Di�erent versions of many standardized assessments share some items to facilitate the con-

struction of comparable item-response theory scores. Although these common items do

not generally allow one to create a cardinally comparable test scale, they can in principle

be used to create a test scale that satis�es inter-group comparability.

When ψ is �xed, it is possible to unambiguously rank groups by achievement even when

W is unknown, provided that certain stochastic dominance relationships hold between the

relevant test-score distributions. The only requirement to a�ect such a comparison is that

W be increasing, which is a natural assumption in this setting; test scores may not be

cardinal measures of achievement, but a higher test score should still be better than a

lower test score for any halfway sensible test. For example, if W is thought of as a social

welfare function de�ned over various life outcomes, then W should be increasing in a

because most positive life outcomes are increasing in achievement.

Consider �rst the task of assessing the achievement gap between groups A and B.

Atkinson[3] showed in the context of social welfare functions that FA will be preferred to

FB for any increasing W precisely when FA �rst-order stochastically dominates (�) FB.

Under FOSD, changingW will a�ect the magnitude of the estimated achievement gap but

cannot a�ect its sign. A similar condition guarantees the unambiguous sign identi�cation

of achievement gap changes. In particular, consider assessing the change in the gap

between A and B from time t to t + 1. If FA,t � FA,t+1 and FB,t+1 � FB,t, then the gap

between A and B must have narrowed for any weighting functionW . These conditions are

intuitive; FA,t � FA,t+1 implies that any weighting function W would measure a decrease

in A's achievement over time, while FB,t+1 � FB,t implies that any W would measure

an increase in B's achievement. Combined, these conditions therefore imply that any

increasing weighting function would measure a decrease in the gap between A and B.
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5. Ordinal Analysis

5.1. Stochastic Dominance Tests. The preceding section showed that a combination

of FOSD tests can be used to construct ordinal tests of income-achievement gap changes.

If high-income youth achievement declined unambiguously, in the sense of FOSD, while

low-income achievement increased unambiguously, again in the sense of FOSD, then any

cardinalization of achievement test scores will reach the same conclusion about the sign of

the gap change. I jointly test these conditions using the procedure developed in Barrett

and Donald[4], which is based on Kolmogorov-Smirno� statistics.8

Tables 2 and 3 display the results of these tests for high- and low-income youth. The

baseline tests show that low-income reading scores improved and high-income reading

scores declined unambiguously. In contrast, the FOSD tests on the math test-score dis-

tributions show that while high-income youth su�ered an unambiguous adverse shift in

math achievement, low-income youth experienced neither unambiguous increases nor un-

ambiguous decreases. The story using the white-only subsample is similar, although with

some tests rejecting at 10% rather than 5%, the statistical evidence is somewhat weaker.

Nonetheless, low-income white students appear to have improved unambiguously or held

steady in reading, but not in math, between 1980 and 1997, while their high-income peers

seem to have regressed unambiguously in both achievement measures. Interestingly, the

estimates for black youth indicate just the opposite; low-income black youth regressed

unambiguously in math, reading, and AFQT, while their high-income peers clearly im-

proved.

The baseline estimates de�ne the high- and low-income categories relative to the race

and survey-speci�c income distributions. In Tables 2 and 3, the �pooled� estimates use the

same real-dollar cuto�s to de�ne the high- and low-income groups in both surveys while

the �buckets �rst� estimates de�ne the income percentile cuto�s in each survey prior to

subsetting on race. The �pooled� and �buckets �rst� estimates show that the full-sample

8

Suppose that we have independent samples {xi}Ni=1 and {yj}Mj=1 from two populations X and Y with
the same bounded support. Consider testing the null H0 : Fy(z) ≤ Fx(z)∀z against the alter-

native H1 : ∃zs.t.Fy(z) > Fx(z). Barrett and Donald[4] de�ne the following test statistic: Ŝ1 =(
NM
N+M

) 1
2

supz

(
F̂y(z)− F̂x(z)

)
and show that the probability of observing Ŝ1 under H0 is exp

(
−2Ŝ2

1

)
.
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and white-only results are not sensitive to how the high- and low-income subgroups are

de�ned. Turning to the black-only estimates, these alternative income group de�nitions

still generally indicate that low-income achievement declined unambiguously. However,

the FOSD tests now usually yield equality for the high-income distributions, rather than

dominance by the NLSY97 distributions. Though weaker than the double-FOSD condi-

tion outlined in the previous section, an unambiguous decline for low-income black youth,

coupled with no change for high-income black youth, still suggests that the black income-

achievement gap widened. However, because the �equality� outcome of the FOSD tests

consists of failing to reject two null hypotheses, one should not place too much emphasis

on such results. Indeed, some of the Cli�'s δ estimates discussed later in this section

suggest a narrowing, rather than a widening, income-achievement gap for black youth.

These empirical results are remarkable. With only the assumption that observed, cross-

walked test scores are ordinal measures of achievement, I have shown that any plausible

test scale will �nd a decrease in the reading income-achievement gap. This result is much

stronger than what one could ever hope to get out of a standard, cardinal estimate of the

gap change because such estimates inherently hinge on the assumption that the true scale

of achievement has been pinned down (up to a�ne transformations). A cardinal estimate

can at most give a de�nite answer for the particular scale used, while the FOSD tests can

give a de�nite answer for all possible test scales.

Tables 2 and 3 do not account for test-score measurement error in any way. My results

are therefore conservative in the sense that classical measurement error will tend to bias

the FOSD tests against a true null that one distribution dominates the other. To see why,

suppose group A's true scores dominate group B's but that only noisy test scores are

observed. Measurement error will make the observed test-score distributions less distinct

from each other compared to the true distributions, which increases the likelihood of an

erroneous rejection of the true null in �nite samples because the empirical cdfs are more

likely to be close to each other.

These FOSD results, while very strong in one sense, say nothing about the magnitudes

of the high- and low-income test-score shifts and are also not informative about which

parts of the relevant test-score distributions are driving the rejections (or lack thereof)
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of stochastic dominance. Therefore, in the following sections, I present several additional

ordinal estimates that do give a sense of the relative magnitudes of the test-score shifts

that are driving the FOSD results. These estimates also provide much more information

about how high- and low-income achievement distributions have shifted over time.

An additional shortcoming of FOSD tests is that they will yield inconclusive answers

in many empirically relevant settings. If there is no way to construct a plausibly car-

dinal scale (say, through anchoring), then the ordinal methods discussed below provide

an appealing alternative to both FOSD tests and standard cardinal approaches. These

methods, like standard cardinal methods, will not be able to say anything about absolute

changes in achievement, but they may still identify relative changes. Moreover, unlike

cardinal approaches, these methods are robust to any order-preserving transformation

of the test scores, and unlike FOSD tests, they are relatively likely to return a de�nite

answer in real-world settings.

5.2. Percentile-Percentile Curves. This section uses percentile-percentile curves (PPCs)

to document shifts in the income-achievement gap in the NLSY data. Let L and H de-

note youth from low- and high-income households. The PPC for L relative to H simply

plots the percentiles of the group-L scores in the distribution of group-L scores against

the percentiles of the group-L scores in the distribution of the group-H scores. Formally,

let FL and FH be the cumulative distribution functions (cdfs) for low- and high-income

students. The population PPC for L relative to H is given by {(pi, qi)} i ∈ L, where

pi = FL(si) and qi = FH(si). The PPC summarizes how the low-income scores compare

to the high-income scores. If the scores in L tend to be lower than the scores in H,

the corresponding PPC will lie below the 45-degree line, since the pth percentile in the

group-L score distribution will correspond to the qth < pth percentile in the group-H

score distribution. The further below the 45-degree line the PPC is, the more the scores

in H dominate those in L.

Comparing PPCs from di�erent surveys allows one to assess changes in the relative

achievement of low-income youth. Shifts in the PPCs closer to (further from) the 45-

degree line indicate decreasing (increasing) di�erences in the score distributions between
16



the high- and low-income youth. An important caveat is that only relative changes in test

scores between groups L and H are detectable; if both groups are experiencing secular

increases (or decreases) in their test scores, the PPCs will show no change. The empirical

PPCs created using income in the NLSY surveys look very much like Lorenz curves. This

is no accident, as the de�nition of a PPC is very similar to the de�nition of a Lorenz

curve. Since high-income test scores always dominate low-income test scores in both

NLSY surveys, the PPCs in this paper will all be below the 45-degree line. However,

unlike Lorenz curves, this is not true by construction.

Figure 1 displays the math, reading, and AFQT income-achievement PPCs.9 The

large income-achievement gap in both surveys is clear from the great distance between

each PPC and the 45-degree line. For example, the median reading score in the high-

income distribution of the NLSY79 corresponds roughly to the 90th percentile in the

low-income score distribution. Additionally, the NLSY97 reading and AFQT PPCs lie

uniformly closer to the 45-degree line than the NLSY79 PPCs. This indicates that the

score distributions for high- and low-income students are more similar to each other in

the NLSY97 than in the NLSY79. The convergence in the math score distributions is

more localized; the NLSY97 curve lies strictly above the NLSY79 curve only between the

50th and 90th test-score percentiles of the low-income distribution.

Figure 2 displays black-white achievement inequality by designating white respondents

as the H group and black respondents as the L group. Both curves are very far below

the 45-degree line, re�ecting substantial black-white achievement inequality in both sur-

veys. Furthermore, the NLSY97 curve is always above the NLSY79 curve, which implies

that the black and white test-score distributions became more similar between the two

NLSY surveys. This result is consistent with the �ndings on black-white achievement

convergence documented in Altonji et al.[2], Neal[26], and elsewhere.

The narrowing of the black-white gap over this time period is a strong force pushing

against a widening income-achievement gap. Since black students tend to come from

more economically-disadvantaged families than white students, their relative improvement

9These PPCs are estimated using the obvious sample analogues p̂i = F̂L(si) and q̂i = F̂H(si), where F̂L
and F̂H are the empirical cdfs of the high- and low-income score distributions.
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implies that a large subpopulation of low-income families gained on relatively wealthy

white families. Low-income white students would have to have fallen much farther behind

their wealthier white peers in order for the change in the overall income-achievement gap

to have been �at or positive.

The PPC framework can also be adapted to understand why some of the FOSD tests

in Section 5.1 failed. Figure 3 plots the PPCs for high (low) income students in 1980

relative to high (low) income students in 1997. A necessary and su�cient condition for

a 1997 distribution to dominate its 1980 counterpart is that this population PPC lies

everywhere below the 45-degree line. Analogously, a 1980 distribution dominates if and

only if its population PPC lies everywhere above the 45-degree line. The reading and

AFQT PPCs in Figure 3 therefore simply con�rm graphically the FOSD results. The

high- and low-income PPCs for math present a more complex picture. The high-income

math PPC is everywhere above the 45-degree line, suggesting that high-income math

achievement deteriorated unambiguously between the two surveys. The low-income PPC

for math is above the 45-degree line for scores below the 45th percentile and below the

45-degree line for scores above the 45th percentile. This suggests that the low end of the

performance distribution shifted down among low-income students, while the high end

shifted up. It is the downward shift at the bottom end of the low-income achievement

distribution that is driving the rejection of FOSD; a weighting scheme that placed a lot

of emphasis on the bottom end of the achievement distribution could potentially assess a

larger math income-achievement gap in the NLSY97 than in the NLSY79.

5.3. Cli�'s δ. The PPCs provide suggestive evidence that the income-achievement gap

narrowed substantially between 1980 and 1997, but they do not readily admit formal

hypothesis testing. I therefore seek a test statistic that allows me to conduct inference on

shifts in the relative percentile distributions. Furthermore, since the relative percentiles

are themselves not cardinally interpretable, the statistic should be ordinal in the relative

percentiles. Cli�'s δ is an easy-to-compute and easy-to-interpret ordinal statistic measur-

ing the degree of overlap between two distributions that satis�es these requirements.
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The de�nition of Cli�'s δ is quite simple. Consider two randomly selected low-income

students, one from the NLSY79 and one from the NLSY97. Let qi,97 = FH,97(si) and

qj,79 = FL,79(si) be each student's test-score percentile relative to high-income students in

her cohort. Cli�'s δ is then de�ned by

(1) δ97,79 ≡ Pr(qi,97 ≥ qj,79)− Pr(qi,97 < qj,79).

Equation 1 de�nes δ97,79 as the probability that a randomly selected low-income youth

from the NLSY97 has a higher q than a randomly selected low-income youth from the

NLSY79, minus the reverse probability. The subtraction is simply a normalization to

ensure that Cli�'s δ always lies between -1 and 1. A positive value of δ97,79 implies that

the low-income respondent with higher achievement relative to her high-income peers

is more likely to come from the NLSY97. In other words, δ97,79 > 0 suggests that the

income-achievement gap decreased.

Estimating δ97,79 requires two steps. First, one must estimate qi,t for each low-income

student i in each survey t. Second, δ97,79 must be estimated from the estimated q̂'s. Given

consistent estimates {q̂} of the q's, a consistent estimator for δ97,79 is

(2) δ̂97,79 =

∑N97,L

i=1

∑N79,L

j=1 [I (q̂i ≥ q̂j)− I (q̂i < q̂j)]

N97,LN79,L

.

This estimator does not depend on the scale of the q̂'s; it will be una�ected if the test

scores in the two surveys are subjected to distinct, arbitrary rescalings.

I rely exclusively on bootstrapped con�dence intervals to conduct inference on δ̂97,79.

Asymptotic formulas for the variance of δ̂ are available, but they do not account for the

fact that both the q̂'s and the high- and low-income thresholds are estimated from the

data. Adjusting for this �rst-stage estimation is quantitatively important in this setting;

the asymptotic formulas typically give standard errors that are about half as large as

those obtained via the bootstrap.

19



Table 4 displays the baseline δ̂ estimates. I estimate large, positive δ̂'s for both reading

and AFQT. Bootstrapped standard errors allow me to reject δ = 0 at 5% for all com-

parisons and 1% for most. The point estimates for math are also positive, although they

are smaller and only occasionally statistically signi�cant at conventional levels. The race-

speci�c δ̂'s show large decreases in the income-achievement gap among white youth and

large increases among black youth, although the smaller sample sizes in the black-only

comparisons mean that most of the estimates are not distinguishable from 0 at conven-

tional levels.

Table 4 subdivides the sample by race before calculating the income thresholds; each

comparison is between income categories de�ned relative to the race-speci�c income dis-

tribution. Since white respondents come from relatively wealthy households, the high-

and low-income groups de�ned in this manner will be somewhat wealthier than their full-

sample counterparts. Symmetrically, the high- and low-income groups in the black-only

subsample will have lower incomes than their full sample counterparts. Table 5 presents

estimates that set the income thresholds using the full sample before subsetting on race.

The estimates for white respondents are quite similar to before. The black-only estimates

now uniformly suggest a decrease in the income-achievement gap, with some of the read-

ing and AFQT estimates attaining 5% signi�cance. In other words, low-income black

students lost ground relative to relatively high-income (and middle-income overall) black

students, while gaining on the (far fewer) black students at the top of the overall income

distribution.

There are many ways to slice the data prior to estimating the δ̂'s, and most of these

methods suggest that the income-achievement gap decreased dramatically between 1980

and 1997. Table 5 also shows that using the same real dollar cuto�s in both surveys

to de�ne the high- and low-income groups does not change the story; if anything, this

alternate method yields even larger estimated decreases in the income-achievement gap.

Tables 6-7 show that various methods for adjusting test scores based on age yield very
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similar δ̂ estimates, while Table 8 shows that the di�erences in the cross-sectional δ̂'s also

point to a narrowing income-achievement gap.10

My baseline analysis treats all households equally regardless of their size and compo-

sition. Making no distinctions between households with the same total incomes but very

di�erent sizes and compositions ignores the fact that resources must be shared among

household members. Therefore, I adjust for household size and composition by trans-

forming income into equivalency units and then recomputing the δ estimates with the

high- and low-income groups de�ned by percentiles in the transformed income distribu-

tion. In particular, I assume that the equivalency scale for household i with Ai adults

and Ki children is given by Ei = (Ai+θKi)
γ, where γ ∈ (0, 1] gives the returns to scale in

household production and θ ∈ [0, 1] gives the fraction of an adult's consumption used by

a child. In my baseline speci�cation, I follow Citro and Michael[7] and set γ = θ = 0.7. I

also estimate δ̂'s using θ = γ = 1, which simply converts income into per capita units.

Table 9 displays the Cli�'s δ̂'s calculated using these equivalency scales. The estimates

are mostly quite similar to those calculated using unadjusted income; the math estimates

are usually somewhat smaller and the reading and AFQT estimates a bit larger than

their unadjusted counterparts. The standard errors are also quite similar to the unad-

justed estimates for all three achievement tests. Thus, it does not appear that changes in

household characteristics are driving the estimated convergence in high- and low-income

achievement.11

Both test scores and household income are measured with error. Unfortunately, mea-

surement error in either of these variables can create either positive or negative asymptotic

10The cross-sectional δk (in the population) for year k is de�ned by δk ≡ Pr(si,k > sj,k)−Pr(sj,k > si,k)
for i ∈ H and j ∈ L. The cross-sectional δ for each survey can be consistently estimated by the
obvious modi�cation of equation 2. Conceptually, the downside to estimating achievement gap changes

via δ̂79 − δ̂97 is the implicit assumption that the cross-sectional δ's are cardinally comparable.
11I also test an alternative adjustment method in which I regress achievement test scores on a host of
demographic variables such as race, sex, and age of parents and then use the estimated residuals as
measures of �background-adjusted� achievement. Using regression-adjusted scores invariably results in
smaller estimated shifts in the achievement gap between high- and low-income youth. In each case,
however, the adjusted scores still show a sizable decrease in the income-achievement gap between the
NLSY79 and the NLSY97, providing further evidence that household size and composition changes are
not driving the main results.
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bias in the δ̂'s. For su�ciently extreme measurement error distributions, it is even pos-

sible that the probability limit of δ̂ and δ will be of opposite signs.12 Perverse outcomes

like this generally require that the two surveys have very di�erent amounts of measure-

ment error. To see this, suppose that the relationship between household income and

expected achievement is monotone increasing. Income measurement error will result in

misclassi�cations at both ends of the income scale. These misclassi�cations will increase

apparent achievement in the low-income group, since the misclassi�ed youth will have

higher average incomes and thus higher average achievement than their truly low-income

peers. Symmetrically, the misclassi�cations in the high-income group will decrease the

group's apparent achievement. Therefore, income measurement error will bias cross-

sectional measures of achievement inequality toward 0. Now suppose that there is more

actual achievement inequality and more measurement error in the NLSY97 than in the

NLSY79. If the disparity in the amount of measurement error is su�ciently great, it may

erroneously appear as though achievement inequality decreased between the two surveys.

Similarly, measurement error in test scores will tend to bias cross-sectional measures of

the income-achievement gap toward 0 but can bias gap-change estimates away from 0 if

test scores in the two surveys have very di�erent reliabilities.

I use the observed test-score and household income distributions, along with informed

guesses about the reliabilities of both variables, to simulate the asymptotic bias stem-

ming from each type of measurement error.13 For the test scores, I extract measurement

error variances by using the NLSY-reported reliabilities for each assessment. The NLSY

surveys do not give reliability estimates for their income measures, so I use a range of

reliabilities reported from other surveys and data sources. Table 11 has the results of

these simulations, which suggest that both income and test-score measurement error lead

to moderate attenuation bias. For a range of plausible reliabilities, the probability limits

of the δ̂ estimates are 7 to 25 percent closer to 0 than the true population δ's. The only

way to bias the estimates away from 0 is to assume that income in the NLSY79 is much

more precisely measured than income in the NLSY97. To my knowledge, there is no good

12Please refer to the online appendix for a more formal presentation of these claims.
13Please refer to Appendix C for a detailed description of the simulation procedure.
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reason to suppose that the two income measures di�er so dramatically. Overall, then,

I conclude that my baseline estimates are probably conservative, and, at the very least,

that I have correctly identi�ed the signs of the true δ's.

6. Anchoring Analysis

I have thus far been able to make a number of very strong claims about changes in

the income-achievement gap using only ordinal methods. The ordinal analysis is lim-

ited, however, in that it cannot say whether a given test-score shift corresponds to an

economically important change in achievement. Improvements in some parts of the test-

score distribution may correspond to skills that have little real-world value, so that even

large shifts in observed test scores may simply not be very valuable. The reading and

AFQT achievement gaps narrowed unambiguously, but did they narrow by an interesting

amount given a plausible set of weights? The FOSD analysis likewise shows that there

exist achievement weights that would measure a larger math achievement gap in either

NLSY survey. Given this ambiguity, would a realistic set of weights assess an increase or

a decrease in the math gap?

This section estimates the economic importance of the convergence in achievement

between high- and low-income youth by mapping crosswalked achievement test scores

to various life outcomes. My basic approach uses the NLSY79 to �exibly estimate the

reduced-form relationship between test scores and a particular later-life outcome. Holding

this relationship constant, the empirical distributions of crosswalked test scores for low-

and high-income youth in the NLSY97 can then be converted to counterfactual outcome

distributions using this reduced-form relationship. These counterfactual distributions

answer the following question: �If the relationship between achievement and the outcome

were unchanged between the NLSY79 and the NLSY97, what would be the distribution

of that outcome for the NLSY97 cohort given their observed test scores?�

I use a number of di�erent methods to estimate the reduced-form relationship between

test scores and either school completion or the present discounted value of lifetime la-

bor income. These methods allow me to investigate di�erent aspects of the anchored

outcome distributions. The simplest anchoring approach uses regressions to approximate
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the expected value of the outcome conditional on test scores. I use probit regressions

to anchor on high school and college completion and polynomial regressions to anchor

on labor income. I also use quantile regressions and various other numerical techniques

to estimate the entire conditional distribution of lifetime income given test scores. With

these distributional estimates in hand, I investigate how changes in test-score distributions

correspond to changes to various percentiles of labor income.

It is important to emphasize that this approach does not allow me to make any causal

claims. When I make statements like, �The improvement in achievement among low-

income white men corresponds to an increase of $X of lifetime wage income,� I am not

arguing that the improvement in achievement caused an increase in wage income of $X for

low-income white men. Rather, I am simply translating test-score shifts to income shifts

using the same set of (plausible) skill prices for both surveys. Conceptually, di�erences in

outcome inequality can come from either (or both) changes in the stocks of achievement

held by high- and low-income youth and changes in the way skill is priced in the market.

This paper looks only at changes in the stocks of achievement. Since the NLSY97 respon-

dents are only around 30 years old, it is not really possible to estimate the relationship

between achievement and their lifetime labor wealth with any accuracy. As time passes

and more of the uncertainty in the NLSY97 respondents' lifetime outcomes is resolved, it

will become possible to complete the full achievement-stock/skill-price decomposition.

6.1. Formal Discussion. Recall from Section 4 that the value of score distribution Ft

is given by V (Ft) = EFt [W (ψt(s))], where ψt(s) = a is the underlying achievement as-

sociated with test score s and W is some weighting function that converts achievement

into cardinal units. I now modify this formalism to explicitly incorporate economic out-

comes by decomposing W into two functions: Ωt(a) : R→ RN , which maps achievement

into an N -dimensional vector of di�erent life outcomes, and W(Ωt(a)) : RN → R, which

is a standard social welfare function that takes the N outcomes from Ωt as its argu-

ment. W is simply the composition of W and Ωt, so that the value of Ft is given by

V (Ft; Ωt,W , ψt) ≡ EFt [W(Ωt(ψt(s)))].
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Now consider measuring changes in V between periods t and t+ 1. Using crosswalked

test scores guarantees that ψt = ψt+1 ≡ ψ; changes in V must come from changes in

Ω (skill prices) or changes in F (skill distributions). There are two natural �xed-price

comparisons that measure changes in V due to shifts in F : ∆(Ωj) = V (Ft+1; Ωj,W , ψ)−

V (Ft; Ωj,W , ψ) for j ∈ {t, t + 1}. In words, ∆(Ωj) measures the di�erence in value

between test-score distributions Ft+1 and Ft when scores from both distributions are

translated to outcomes using either Ωt or Ωt+1. Similarly, there are two achievement-

constant comparisons that quantify the value of shifts in Ω while holding the distribution

of achievement �xed: ∆(Fj) = V (Fj; Ωt+1,W , ψ)− V (Fj; Ωt,W , ψ) for j ∈ {t, t+ 1}.

Although these expressions provide a convenient theoretical framework for thinking

about evaluating changes in Ω and F , they are of little practical use, both because W

is unknown and because a full list of the outcomes that plausibly enter into W will not

be available in even the richest data sets. Given these di�culties, I pursue a much more

modest objective: I ignoreW altogether and focus on computing gap changes denominated

in the units of some particular outcome yn. Denote by ω
(n)
t (a) : R → R the map from

achievement to the nth outcome in Ωt(a). The yn-denominated value of distribution F is

then given by v
(
F ;ω(n), ψ

)
≡ EF [ω(n)(ψ(s))]. I de�ne four gap changes denominated in

the same units as yn:

∆(ω
(n)
j ) ≡ v

(
Ft+1;ω

(n)
j , ψ

)
− v

(
Ft;ω

(n)
j , ψ

)
, j ∈ {79, 97}(3)

∆(Fj, n) ≡ v
(
Fj;ω

(n)
t+1, ψ

)
− v

(
Fj;ω

(n)
t , ψ

)
, j ∈ {79, 97}(4)

Equation (3) de�nes two �xed price gaps in which the change in test scores from Ft to Ft+1

is valued using either ω
(n)
t or ω

(n)
t+1. Analogously, equation (4) de�nes two �xed distribution

gaps in which the change in the yn-mapping from ω
(n)
t to ω

(n)
t+1 is valued using either Ft

or Ft+1. Once estimated, the changes de�ned in equations (3) and (4) can be combined

to form anchored gap-change estimates for high- and low-income students. In practice,

ω
(n)
97 will be di�cult to estimate because the NLSY97 respondents are not currently old

enough to accurately measure di�erences in many economic outcomes. Therefore, I only

report anchored gap changes using estimates of ω
(n)
79 .
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6.2. Regression-Based Labor Income Anchoring. This section presents anchored

gap/change estimates when the anchoring relationship is E79[pdv_labor|s], approximated

using regressions of the form

(5) log(pdv_labor) = φ(s)︸︷︷︸
polynomial

+γ(race/sex/age/income quintile dummies) + ε.

I �rst estimate equation 5 on the NLSY79 respondents and then use the estimated co-

e�cients to predict ̂log(pdv_labor) for the NLSY97 respondents. These predicted log

labor incomes can then be used to construct various anchored gap/change estimates. The

main methodological subtlety lies in the treatment of test-score measurement error. I set

φ(s) = α + βs in my baseline speci�cation and adjust β̂ by the inverse of the estimated

test reliability prior to calculating ̂log(pdv_labor). Appendix D discusses the method in

more detail.

Table 12 presents the regression-anchored mean gap-change estimates with bootstrapped

standard errors for various demographic groups and achievement tests. These estimates

generally suggest that the achievement shifts documented in Section 5 correspond to large

and statistically-signi�cant decreases in adult earnings inequality for both black and white

men. For example, the narrowing of the math gap corresponds to a decrease in the adult

earnings gap of between $38,000 and $63,000 in present-value dollars for white men, de-

pending on the imputation method used. Similarly, the narrowing of the reading gap

translates to a narrowing of the present-value lifetime earnings gap of between $72,000

and $132,000 for white men. For black men, the narrowing of the math achievement gap

translates to small (≈$15,000) and statistically insigni�cant decreases in labor earnings

inequality, while for reading the corresponding estimates range from $115,000 to $208,000.

These reading estimates are signi�cant at 5% despite the comparatively small number of

black men used in the analysis.

The results for women present a more muddled picture. For white women, the anchored

gap changes for math hint at a widening but are statistically indistinguishable from 0 at

conventional levels. The reading gap changes are generally signi�cant at 5% and translate

to a narrowing of outcome inequality of $32,000 to $42,000. The situation is reversed for
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black women; the reading estimates suggest a widening of the outcome gap but are not

distinguishable from 0, while for math the estimates again suggest a marginally signi�cant

widening.

I check the robustness of the regression methodology in a number of ways. First, I

re-estimate a version of equation 5 using only white men and obtain substantially more

negative gap-change estimates than those reported in table 12. Estimates that do not

adjust for test-score measurement error as well as cubic estimates that set φ(s) = α +

β1s + β2s
2 + β3s

3 produce qualitatively similar gap-change estimates to the baseline,

although the magnitudes of the point estimates tend to be smaller using these alternate

methodologies. Ignoring measurement error results in point estimates that are between

20 and 40 percent closer to 0 than those reported in table 12, while setting φ to be a cubic

usually results in slightly smaller point estimates, although the di�erences with baseline

are modest.14

6.3. Distributional Labor Income Anchoring. Regression-based estimates are easy

to compute and easy to interpret, but they are also limited in that they cannot be used

to study heterogeneity in the anchored e�ects. I now present an alternative anchoring

methodology that allows me to estimate anchored gap changes at di�erent points in both

the test-score and anchored outcome distributions.

I �rst brie�y outline my method; please refer to Appendix D for a more detailed,

technical description of the approach. I stitch together and smooth a large number of

quantile regressions in order to estimate K̂79(y|s), the conditional distribution of outcome

y given test scores s, on a grid of test scores spanning the range of observed scores. I

then compute from these estimated conditional distributions the estimated conditional

quantiles of y given s, which I use as my primary anchoring relationships.

Although this method can be used to compute mean gap-change estimates, its real value

lies in its ability to estimate distributional e�ects.15 Figures 4-5 plot the anchored gap

changes and bootstrapped con�dence intervals for various projected income percentiles for

14Tables with these alternative gap-change estimates can be found in the online appendix.
15Mean gap changes estimated using this method are similar to, but noisier than, regression-based mean
gap-change estimates such as those reported in Section 6.2.
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white male youth at a �xed test-score percentile in the high- and low-income distributions.

That is, if ŝ
(p)
G,t denotes the estimated pth percentile test score for group G ∈ {H,L}

students in year t, and Ŷ
(τ,p)
G,t denotes the estimated τth percentile of y given ŝ

(p)
G,t, these

�gures plot (Ŷ
(τ,p)
H,97 − Ŷ

(τ,p)
L,97 )− (Ŷ

(τ,p)
H,79 − Ŷ

(τ,p)
L,79 ) for a �xed p and many di�erent values of τ .

I show estimates only for white males because this group had substantially higher labor

force participation throughout their prime years than the other demographic groups in the

NLSY data and so their anchored gap changes are more precisely estimated and depend

less on the imputation method used.

Figures 4-5 show that the test-score shifts documented in section 5 correspond to eco-

nomically large, statistically signi�cant decreases in the lifetime earnings gap between

high- and low-income white males for a wide range of test scores and projected incomes.

For instance, the gap in expected median earnings for students at the medians of the high-

and low-income distributions narrowed by $50,000 to $100,000, depending on the impu-

tation method used and the assumptions made on labor supply. Comparing relatively

high performing students (75th percentile) and relatively low performing students (25th

percentile) yields qualitatively similar estimates, although the math gap changes for low

performing students are quite a bit smaller. That the reading gap changes are consis-

tently larger than the math gap changes for these low performing students is consistent

with the declines in absolute math achievement for both high- and low-income students at

the bottom of the achievement distribution. A �nal interesting pattern is that the math

estimates are consistently below the reading estimates for both high and low performing

students, while they are consistently above for median students. The baseline estimates

depicted in these �gures adjust for test-score measurement error. Ignoring measurement

error entirely results in anchored gap changes that are 20-40% smaller, similar to what

I found in the regression-based mean gap-change estimates.16 Even if the observed test

scores are free of measurement error, the observed distributional shifts correspond to large

shifts in lifetime income.

16Please refer to the online appendix for the analogues of �gures 4-5 estimated with no measurement
error adjustments. Additionally, the online appendix shows that using cubic, rather than linear, quantile
regressions produces qualitatively similar distributional gap-change estimates for white males.
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Figures 6-9 break the distributional gap-change estimates out into separate changes

over time for high- and low-income youth. The overall anchored gap changes are just

the anchored changes for low-income youth minus the anchored changes for high-income

youth. These �gures therefore give some sense of whether it is declines among high-

income youth or improvements among low-income youth (or both) that are driving the

signi�cantly positive overall estimates.

Figures 7 and 9 uniformly suggest that the positive overall reading gap changes are

coming from both declines in anchored achievement for high-income youth and improve-

ments in anchored achievement for low-income youth. Although the test-score changes

for both income groups are contributing to the overall gap-change estimates, the mag-

nitudes of the high-income decreases are typically much larger than the magnitudes of

the low-income increases. In other words, holding skill prices �xed, the improvement in

reading achievement among low-income youth was modestly valuable, while the decline

in reading achievement among high-income youth was quite costly.

Figures 6 and 8 paint a more nuanced picture for math achievement. For students at

the 50th and 75th percentiles of the high- and low-income math distributions, the story

is the same as for reading: the overall gap-change estimates are driven by modest im-

provements for low-income youth and larger declines for high-income youth. However,

relatively low-performing (25th percentile) high- and low-income youth both su�ered de-

clines in anchored math achievement. Since the declines for low-income youth are smaller

in magnitude than the declines for high-income youth, the overall gap-change estimates

remain positive.

The declines in anchored math achievement among low-performing youth mirror the

ordinal declines documented in �gure 3. In discussing the ordinal results, I argued that

a score weighting scheme that placed a lot of emphasis on the bottom of the score distri-

bution might measure an increase in the math income-achievement gap. Figures 6 and 8

demonstrate that using expected future wage income as test-score weights does not place

su�cient emphasis on the bottom of the math achievement distribution to generate a

negative gap-change estimate.
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6.4. School Completion. In this section, I anchor test scores to high school and college

completion rates. My approach uses a straightforward modi�cation of equation 5 in

which probit regression takes the place of polynomial least-squares regression. Table

13 displays the gap-change estimates with bootstrapped standard errors. Using NLSY79

skill prices, I calculate that the improvements in reading and AFQT achievement between

1980 and 1997 correspond to signi�cant (at 5%) decreases of about 0.06 in the high school

graduation gap for white men, while the changes in math achievement correspond to a

smaller, insigni�cant decrease of 0.02. The changes in each of the three achievement

measures correspond to highly signi�cant (at 1%) decreases in the college completion

gap of between 0.065-0.07. The estimates are inconclusive for other demographic groups,

although there is some evidence that the changes correspond to large increases in both the

high school and college completion gaps among black women and large decreases among

black men. Because education di�erences are mostly �xed by age 30, it is also feasible to

estimate anchored gap changes using NLSY97 skill prices. Interestingly, these estimates,

omitted for brevity, are virtually identical to the NLSY79-anchored gap changes. The

similarity between the two sets of estimates suggests that the reduced-form relationship

between achievement measured around age 16 and school completion has not changed

very much between 1980 and 1997.

7. A Puzzle: The Parental Income-Investment Gap

The gap in investment expenditures on children between high- and low-income par-

ents increased dramatically over the last several decades. Data on parental time use and

direct monetary expenditures show that while all parents substantially increased their

investments since 1970, high-education and high-income parents increased their expen-

ditures much more rapidly. For example, Duncan and Murnane[12] calculate that the

parents in the top income quintile increased their enrichment expenditures per child by

150% between 1972 and 2006, while parents in the bottom quintile increased their ex-

penditures �only� 57%. Looking at time diaries, Ramey and Ramey[28] estimate that
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college-educated mothers increased their childcare time by almost 9 hours per week in the

1990s, while less-educated mothers increased their childcare time by only 4 hours.17

Given my �nding that the income-achievement gap decreased between 1980 and 1997,

these results are quite puzzling. High-income parents dramatically increased their in-

vestments relative to low-income parents but seem to have less than nothing to show for

it. One caveat here is that the time use results do not necessarily contradict my results

because high-income parents only began to di�erentially increase their time investments

around 1993; the NLSY79 and NLSY97 youth could have received similar parental time

investments at least through their early teen years. In contrast, the evidence on parental

expenditures does imply that the gap in enrichment spending between high and low-

income households is likely much larger in the NLSY97 than in the NLSY79. If parental

investments are subject to decreasing returns, it is logically possible for the investment

gap to increase and for the achievement gap to simultaneously decrease. However, my

results using the crosswalked test scores show that the achievement of high-income youth

actually decreased in absolute terms between 1980 and 1997. This is not consistent with

a decreasing-returns explanation for achievement convergence, as such an explanation

implies that both groups in 1997 should outperform their like-income peers in 1980.

There are a number of explanations that could rationalize the enrichment expenditure

results with my estimates of the income-achievement gap. The parental expenditure data

may be misclassifying consumption spending as enrichment spending. Art camp, trips

to the science museum, and similar activities may simply not be e�ective at improving

achievement test scores.18 Alternatively, perhaps the kind of enrichment spending high-

income parents di�erentially engage in has payo�s along dimensions not well-measured

17Gautier, Smeeding, and Furstenburg[13] �nd evidence in Canadian time-use surveys that educated
mothers increased their time spent with children more than did low-education mothers. Guryan, Hurst,
and Kearney [16, 15] estimate that college-educated mothers spend 16.5 hours per week on childcare tasks,
while women with only a high school degree spend 12.1 hours. This �nding is particularly surprising,
as low-education mothers have higher fertility. Hill and Sta�ord [18] and Leibowitz [24] reach similar
conclusions about cross-sectional di�erences in time investments. Aguiar and Hurst[1] �nd that parental
time with children increased by roughly 2.0 hours per week between 1965 and 2003. Other papers reaching
similar conclusions include Bianchi[5] and Ramey and Ramey[28].
18There are profound econometric problems associated with estimating achievement production functions.
In an interesting recent paper, Caetano et al.[14] use a novel methodology to argue that napping is the
most productive use of time for young children, while active time with parents is the most important for
older children.
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by achievement tests. For example, colleges like to see well-rounded students with diverse

lists of extracurricular activities. Spending on these activities by parents may not improve

achievement test scores, but may nevertheless provide a large bene�t. These explanations

are speculative, and without more research, my results have uncovered a genuine puzzle.

8. Discussion

Ordinal methods using test-score data show that the gap in academic achievement be-

tween youth from high-income and low-income households decreased dramatically between

1980 and 1997. These results are robust to measurement error, composition adjustments,

and various data-inclusion criteria. Using percentile-equated test scales, I �nd strong

evidence that the ordinal shifts in reading and AFQT test scores must correspond to un-

ambiguous decreases in the underlying achievement gaps between high- and low-income

youth. The ordinal shifts in math achievement do not necessarily correspond to a de-

crease in the underlying achievement gap, although low-income students above the 45th

percentile of the low-income math-achievement distribution unambiguously gained. An-

choring reading and AFQT test scores on various later-life outcomes shows that these

ordinal shifts correspond to economically-important shifts in achievement. For white

men, the narrowing of the income-achievement gap translates to a narrowing in the life-

time wealth gap of roughly $100,000 to $200,000 and a narrowing of the high school

and college completion gaps of 0.05 to 0.08 probability units. The estimates for math

are smaller and less clear-cut, but they still suggest a sizable decrease in the wealth gap

between 1980 and 1997.

My results should give pause to economists and policymakers who analyze achievement

inequality using test-score data. The typical methods used to quantify di�erences in

academic achievement between groups assume that test scores are cardinally comparable.

This assumption is not well justi�ed, and cardinal methods are often quite sensitive to

order-preserving transformations of the test-score data. Cardinal methods can lead to

conclusions about changes in achievement inequality that are not supported by the ordinal

content of the test scores.
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Given recent �ndings on changes in parental investments in children by income class,

my �nding that the income-achievement gap has narrowed is puzzling. High-income

parents have increased their enrichment spending on their children much more rapidly

than low-income parents have over the last three decades, yet my estimates imply that

the distribution of high-income reading achievement shifted down while the low-income

reading distribution shifted up. Even for math achievement, where the ordinal analysis

leads to less clear-cut conclusions, I �nd no evidence that the achievement distribution

for high-income youth shifted up between 1980 and 1997. Testing various hypotheses that

could resolve this puzzle is a worthwhile avenue for future research.

Holding skill prices �xed, the anchoring estimates imply that the convergence in achieve-

ment between high- and low-income should have been a powerful force reducing adult out-

come inequality. This does not imply, however, that inequality in outcomes between youth

from high- and low-income households will be lower in the NLSY97 than in the NLSY79.

If the returns to achievement become more convex over time, for example, smaller true

achievement di�erences may well translate to larger absolute outcome di�erences than in

the past. Unfortunately, the young age of the NLSY97 respondents precludes directly

examining their lifetime labor market outcomes.
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Appendix A. Tables and Figures

Table 1. Summary Statistics

Variable Survey N Mean S.D. Min Max

male NLSY79 3,820 0.49 0.25 0 1

NLSY97 2,824 0.50 0.25 0 1

white NLSY79 3,820 0.79 0.58 0 1

NLSY97 2,824 0.73 0.44 0 1

black NLSY79 3,820 0.14 0.35 0 1

NLSY97 2,824 0.14 0.35 0 1

income NLSY79 3,820 $43,853 $26,728 0 $165,753

NLSY97 2,824 $55,827 $48,551 0 $417,074

age NLSY79 3,820 16.08 0.79 15 17

NLSY97 2,824 15.73 0.70 15 17

math NLSY79 3,820 96.89 18.34 55 134

NLSY97 2,824 98.74 19.15 56 134

read NLSY79 3,820 94.14 19.42 40 123

NLSY97 2,824 93.62 19.96 40 123

afqt NLSY79 3,820 142.58 27.12 67.5 190

NLSY97 2,824 142.99 28.15 68.5 190

high school NLSY79 3,820 0.88 0.32 0 1

college NLSY79 3,820 0.23 0.42 0 1

pdv_pess_�xed NLSY79 3,794 $371,562 $267,756 $0 $1,209,416

pdv_opt_�xed NLSY79 3,795 $672,697 $436,490 $0 $2,442,542

pdv_pess_�ex NLSY79 3,795 $451,766 $251,922 $0 $1,209,416

pdv_opt_�ex NLSY79 3,772 $1,017,437 $739,481 $0 $7,060,312

Note: Respondent ages are restricted to 15-17 as of ASVAB test date. All dollars have been converted to
a 1997 basis using the CPI-U. Sample statistics use each survey's respective base-year sampling weights.
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Table 2. FOSD Probabilities of Crosswalked Score Distributions

Subject/Year High/Low Defn. Low High Low, White High, White Low, Black High, Black

math 79 baseline 0.00 1.00 0.08 0.98 0.71 0.01

math 97 baseline 0.00 0.00 0.08 0.01 0.00 0.29

reading 79 baseline 0.01 0.88 0.07 0.82 0.49 0.05

reading 97 baseline 0.37 0.01 0.83 0.08 0.05 0.85

AFQT 79 baseline 0.01 0.98 0.13 0.98 0.80 0.04

AFQT 97 baseline 0.04 0.00 0.68 0.01 0.00 0.80

math 79 pooled 0.00 1.00 0.13 0.99 0.71 0.01

math 97 pooled 0.00 0.00 0.10 0.00 0.00 0.18

reading 79 pooled 0.01 0.89 0.09 0.85 0.51 0.28

reading 97 pooled 0.36 0.00 0.79 0.01 0.04 0.79

AFQT 79 pooled 0.01 0.97 0.20 0.98 0.81 0.21

AFQT 97 pooled 0.04 0.00 0.53 0.00 0.00 0.88

math 79 buckets �rst 0.00 1.00 0.12 0.98 0.19 0.22

math 97 buckets �rst 0.00 0.00 0.07 0.00 0.00 0.58

reading 79 buckets �rst 0.01 0.88 0.05 0.85 0.56 0.70

reading 97 buckets �rst 0.37 0.01 0.76 0.04 0.08 0.06

AFQT 79 buckets �rst 0.01 0.98 0.10 0.98 0.84 0.42

AFQT 97 buckets �rst 0.04 0.00 0.68 0.01 0.00 0.20

Note: Each cell represents the probability that the row distribution dominates the column distribution.
The column distribution is just the same achievement test from the other NLSY survey. �Pooled� means
that the income cuto�s are percentiles in the income distribution (in real dollars) pooled across both
NLSY surveys. �Buckets First� means that the high- and low-income buckets are de�ned using the full,
rather than the race-speci�c, sample income distributions.

Table 3. FOSD Tests of Crosswalked Score Distributions

Subject High/Low Defn. Low High Low, White High, White Low, Black High, Black

math baseline crossing F79 � F97 equal F79 � F97 F79 � F97 F97 � F79

reading baseline F97 � F79 F79 � F97 equal F79 � F97 F79 � F97 F97 � F79

AFQT baseline crossing F79 � F97 equal F79 � F97 F79 � F97 F97 � F79

math pooled crossing F79 � F97 equal F79 � F97 F79 � F97 F97 � F79

reading pooled F97 � F79 F79 � F97 equal F79 � F97 F79 � F97 equal

AFQT pooled crossing F79 � F97 equal F79 � F97 F79 � F97 equal

math buckets �rst crossing F79 � F97 equal F79 � F97 F79 � F97 equal

reading buckets �rst F97 � F79 F79 � F97 F97 � F79 F79 � F97 equal equal

AFQT buckets �rst crossing F79 � F97 equal F79 � F97 F79 � F97 equal

Note: Each test done at 5% using probabilities drawn from Table 2. �Pooled� means that the income
cuto�s are percentiles in the income distribution (in real dollars) pooled across both NLSY surveys.
�Buckets First� means that the high- and low-income buckets are de�ned using the full, rather than the
race-speci�c, sample income distributions.
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Table 4. Baseline δ̂ Estimates

Income Percentiles Race Math Reading AFQT

[80-100] vs [0-20] all 0.11 (-0.01, 0.25) 0.25*** (0.14, 0.36) 0.23*** (0.13, 0.35)

[80-100] vs [20-40] all 0.17*** (0.05, 0.27) 0.19*** (0.08, 0.29) 0.2*** (0.08, 0.3)

[90-100] vs [0-10] all 0.1 (-0.13, 0.32) 0.28*** (0.09, 0.44) 0.25*** (0.07, 0.42)

[90-100] vs [10-20] all 0.12 (-0.05, 0.31) 0.2** (0.06, 0.37) 0.18** (0.03, 0.36)

[80-100] vs [0-20] white 0.11 (-0.02, 0.25) 0.18*** (0.06, 0.3) 0.17*** (0.05, 0.3)

[80-100] vs [20-40] white 0.19*** (0.07, 0.32) 0.2*** (0.08, 0.34) 0.21*** (0.1, 0.35)

[90-100] vs [0-10] white 0.16 (-0.11, 0.35) 0.22** (0.03, 0.39) 0.21** (0.01, 0.37)

[90-100] vs [10-20] white 0.06 (-0.18, 0.26) 0.09 (-0.13, 0.27) 0.08 (-0.14, 0.25)

[80-100] vs [0-20] black -0.19 (-0.41, 0.06) -0.13 (-0.38, 0.1) -0.16 (-0.4, 0.09)

[80-100] vs [20-40] black -0.02 (-0.24, 0.23) -0.06 (-0.33, 0.16) -0.07 (-0.31, 0.16)

[90-100] vs [0-10] black -0.06 (-0.34, 0.33) 0.23 (-0.16, 0.5) 0.18 (-0.23, 0.5)

[90-100] vs [10-20] black -0.23 (-0.52, 0.16) -0.03 (-0.41, 0.34) -0.06 (-0.45, 0.31)

Note: Estimates use age-standardized, crosswalked test scores. 95% con�dence intervals calculated
using 2,500 bootstrap iterations shown in parentheses. (***) = two-sided hypothesis test signi�cant at
1%; (**) = signi�cant at 5%; (*) = signi�cant at 10%.
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Table 5. δ̂ Estimates Using Alternative High-/Low-Income De�nitions

Income Percentiles Race Type Math Reading AFQT

[80-100] vs [0-20] all pooled 0.16** (0.03, 0.28) 0.3*** (0.19, 0.4) 0.28*** (0.17, 0.38)

[80-100] vs [20-40] all pooled 0.19*** (0.07, 0.3) 0.21*** (0.1, 0.31) 0.23*** (0.11, 0.32)

[90-100] vs [0-10] all pooled 0.21* (-0.05, 0.45) 0.42*** (0.22, 0.56) 0.36*** (0.18, 0.55)

[90-100] vs [10-20] all pooled 0.2** (-0.02, 0.38) 0.31*** (0.14, 0.44) 0.28*** (0.1, 0.45)

[80-100] vs [0-20] white pooled 0.11 (-0.02, 0.26) 0.21*** (0.1, 0.33) 0.2*** (0.08, 0.33)

[80-100] vs [20-40] white pooled 0.22*** (0.09, 0.34) 0.24*** (0.11, 0.36) 0.26*** (0.13, 0.38)

[90-100] vs [0-10] white pooled 0.18 (-0.02, 0.4) 0.27*** (0.11, 0.46) 0.26*** (0.08, 0.46)

[90-100] vs [10-20] white pooled 0.07 (-0.12, 0.31) 0.16* (-0.03, 0.35) 0.14 (-0.04, 0.34)

[80-100] vs [0-20] black pooled -0.17 (-0.34, 0.07) -0.14 (-0.35, 0.12) -0.18 (-0.39, 0.11)

[80-100] vs [20-40] black pooled -0.02 (-0.21, 0.24) -0.11 (-0.33, 0.14) -0.12 (-0.32, 0.14)

[90-100] vs [0-10] black pooled 0.18 (-0.16, 0.53) 0.42*** (0.17, 0.7) 0.39*** (0.13, 0.7)

[90-100] vs [10-20] black pooled 0.12 (-0.22, 0.4) 0.28* (-0.04, 0.57) 0.25 (-0.1, 0.54)

[80-100] vs [0-20] all buckets �rst 0.11 (-0.01, 0.25) 0.25*** (0.14, 0.36) 0.23*** (0.13, 0.35)

[80-100] vs [20-40] all buckets �rst 0.17*** (0.05, 0.27) 0.19*** (0.08, 0.29) 0.2*** (0.08, 0.3)

[90-100] vs [0-10] all buckets �rst 0.1 (-0.13, 0.32) 0.28*** (0.09, 0.44) 0.25*** (0.07, 0.42)

[90-100] vs [10-20] all buckets �rst 0.12 (-0.05, 0.31) 0.2** (0.06, 0.37) 0.18** (0.03, 0.36)

[80-100] vs [0-20] white buckets �rst 0.09 (-0.05, 0.25) 0.2*** (0.08, 0.33) 0.19*** (0.07, 0.33)

[80-100] vs [20-40] white buckets �rst 0.13** (-0.02, 0.24) 0.13** (0.01, 0.25) 0.15** (0.01, 0.27)

[90-100] vs [0-10] white buckets �rst 0.19 (-0.07, 0.41) 0.3*** (0.1, 0.48) 0.28*** (0.08, 0.48)

[90-100] vs [10-20] white buckets �rst 0.03 (-0.15, 0.29) 0.11 (-0.04, 0.35) 0.09 (-0.07, 0.33)

[80-100] vs [0-20] black buckets �rst 0.06 (-0.19, 0.42) 0.31** (0.07, 0.59) 0.31** (0.02, 0.6)

[80-100] vs [20-40] black buckets �rst 0.23 (-0.05, 0.54) 0.4*** (0.15, 0.66) 0.43*** (0.14, 0.69)

[90-100] vs [0-10] black buckets �rst 0.08 (-0.27, 0.74) 0.34 (-0.16, 0.83) 0.26 (-0.32, 0.8)

[90-100] vs [10-20] black buckets �rst 0.24 (-0.1, 0.78) 0.51** (0.01, 0.82) 0.46** (-0.05, 0.81)

Note: Estimates use age-standardized, crosswalked test scores. �Pooled� means that the income cuto�s
are percentiles in the income distribution (in real dollars) pooled across both NLSY surveys. �Buckets
First� means that the high- and low-income buckets are de�ned using the full, rather than the
race-speci�c, sample income distributions. 95% con�dence intervals calculated using 2,500 bootstrap
iterations shown in parentheses. (**) = two-sided hypothesis test signi�cant at 5%; (*) = signi�cant at
10%.
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Table 6. δ̂ Estimates Under Di�erent Treatments of Age

Income Percentiles Race Age Std Math Reading AFQT

[80-100] vs [0-20] all no age std 0.11* (-0.02, 0.24) 0.25*** (0.14, 0.36) 0.24*** (0.12, 0.35)

[80-100] vs [20-40] all no age std 0.17*** (0.04, 0.27) 0.19*** (0.08, 0.3) 0.19*** (0.09, 0.3)

[90-100] vs [0-10] all no age std 0.11 (-0.1, 0.34) 0.28*** (0.11, 0.45) 0.25*** (0.05, 0.42)

[90-100] vs [10-20] all no age std 0.12 (-0.05, 0.31) 0.21*** (0.07, 0.38) 0.18** (0.02, 0.36)

[80-100] vs [0-20] all by age q̂ 0.11* (-0.01, 0.25) 0.26*** (0.16, 0.37) 0.24*** (0.13, 0.35)

[80-100] vs [20-40] all by age q̂ 0.17*** (0.04, 0.27) 0.19*** (0.09, 0.3) 0.2*** (0.09, 0.31)

[90-100] vs [0-10] all by age q̂ 0.07 (-0.1, 0.32) 0.28*** (0.14, 0.45) 0.22** (0.07, 0.43)

[90-100] vs [10-20] all by age q̂ 0.1 (-0.06, 0.3) 0.2** (0.06, 0.38) 0.17** (0.03, 0.36)

Note: �No age std� means that the crosswalked test scores were not adjusted for age prior to estimating

δ̂. �By age q̂� means that the relative percentiles used to calculate δ̂ via equation 2 were estimated o� of
each survey-age speci�c test-score distribution. 95% con�dence intervals calculated using 2,500
bootstrap iterations shown in parentheses. (***) = two-sided hypothesis test signi�cant at 1%; (**) =
signi�cant at 5%; (*) = signi�cant at 10%.

Table 7. δ̂ Estimates at Speci�c Ages

Income Percentiles Race Age Math Reading AFQT

[80-100] vs [0-20] all 15 0.08 (-0.12, 0.32) 0.17 (0.00, 0.42) 0.16 (-0.03, 0.41)

[80-100] vs [20-40] all 15 0.07 (-0.09, 0.31) 0.21** (0.04, 0.43) 0.18* (0.00, 0.41)

[90-100] vs [0-10] all 15 0.09 (-0.16, 0.47) 0.42*** (0.19, 0.63) 0.33*** (0.12, 0.60)

[90-100] vs [10-20] all 15 0.05 (-0.22, 0.37) 0.20 (-0.08, 0.45) 0.13 (-0.11, 0.43)

[80-100] vs [0-20] all 16 0.08 (-0.15, 0.32) 0.23** (0.05, 0.41) 0.21** (0.01, 0.40)

[80-100] vs [20-40] all 16 0.12 (-0.05, 0.31) 0.1 (-0.05, 0.29) 0.11 (-0.04, 0.32)

[90-100] vs [0-10] all 16 0.81 (-0.21, 0.56) 0.44*** (0.07, 0.66) 0.34* (-0.04, 0.65)

[90-100] vs [10-20] all 16 0.91 (-0.18, 0.43) 0.3** (-0.05, 0.49) 0.22 (-0.10, 0.49)

[80-100] vs [0-20] all 17 0.09 (-0.16, 0.32) 0.25** (0.03, 0.49) 0.21* (-0.02, 0.47)

[80-100] vs [20-40] all 17 0.32*** (0.12, 0.56) 0.29*** (0.09, 0.51) 0.31*** (0.10, 0.54)

[90-100] vs [0-10] all 17 0.00 (-0.28, 0.39) 0.24 (-0.15, 0.55) 0.16 (-0.21, 0.58)

[90-100] vs [10-20] all 17 0.35* (-0.13, 0.62) 0.35** (-0.05, 0.61) 0.31* (-0.10, 0.62)

Note: δ̂ estimated using crosswalked test scores separately by age at test administration. 95%
con�dence intervals calculated using 2,500 bootstrap iterations shown in parentheses. (***) = two-sided
hypothesis test signi�cant at 1%; (**) = signi�cant at 5%; (*) = signi�cant at 10%.
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Table 8. Estimated Di�erences in Cross-Sectional δ̂'s

Income Percentiles Race Math Reading AFQT

[80-100] vs [0-20] all 0.09** (0.02, 0.18) 0.16*** (0.08, 0.24) 0.14*** (0.07, 0.22)

[80-100] vs [20-40] all 0.14*** (0.03, 0.23) 0.15*** (0.04, 0.25) 0.15*** (0.04, 0.25)

[90-100] vs [0-10] all 0.10* (-0.01, 0.2) 0.14*** (0.03, 0.24) 0.13*** (0.03, 0.22)

[90-100] vs [10-20] all 0.09 (-0.02, 0.22) 0.12** (0.01, 0.25) 0.11* (0.01, 0.24)

[80-100] vs [0-20] white 0.09 (-0.01, 0.21) 0.13** (0.02, 0.24) 0.12** (0.01, 0.23)

[80-100] vs [20-40] white 0.16*** (0.05, 0.29) 0.18*** (0.07, 0.32) 0.19*** (0.08, 0.33)

[90-100] vs [0-10] white 0.13* (-0.03, 0.27) 0.18** (0.02, 0.32) 0.17** (0.01, 0.29)

[90-100] vs [10-20] white 0.04 (-0.13, 0.19) 0.03 (-0.15, 0.18) 0.04 (-0.14, 0.18)

[80-100] vs [0-20] black -0.17* (-0.35, 0) -0.1 (-0.28, 0.06) -0.12 (-0.29, 0.04)

[80-100] vs [20-40] black -0.02 (-0.19, 0.18) -0.04 (-0.25, 0.14) -0.04 (-0.24, 0.14)

[90-100] vs [0-10] black -0.07 (-0.28, 0.16) 0.1 (-0.12, 0.34) 0.07 (-0.14, 0.3)

[90-100] vs [10-20] black -0.23* (-0.46, 0.04) -0.08 (-0.3, 0.17) -0.11 (0.13, -0.33)

Note: The cross-sectional δ̂ is de�ned as the probability that a randomly selected high-income youth
has a larger test score than a randomly selected low-income youth from the same cohort, minus the

reverse probability. The table shows cross-sectional δ̂'s from the NLSY79 minus the corresponding

cross-sectional δ̂'s from the NLSY97. Estimates use age-standardized, crosswalked test scores. 95%
con�dence intervals calculated using 2,500 bootstrap iterations shown in parentheses. (***) = two-sided
hypothesis test signi�cant at 1%; (**) = signi�cant at 5%.
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Table 9. δ̂ Estimates Using Various Income Equivalency Scales

Income Percentiles Race Method Math Reading AFQT

[80-100] vs [0-20] all per capita 0.05 (-0.08, 0.19) 0.19*** (0.08, 0.33) 0.19*** (0.05, 0.32)

[80-100] vs [20-40] all per capita 0 (-0.13, 0.1) 0.07 (-0.03, 0.2) 0.06 (-0.05, 0.17)

[90-100] vs [0-10] all per capita 0.05 (-0.15, 0.28) 0.31*** (0.12, 0.48) 0.27*** (0.06, 0.47)

[90-100] vs [10-20] all per capita 0.13 (-0.06, 0.33) 0.26*** (0.09, 0.41) 0.24*** (0.07, 0.4)

[80-100] vs [0-20] white per capita 0.03 (-0.13, 0.14) 0.12* (-0.02, 0.23) 0.11 (-0.05, 0.22)

[80-100] vs [20-40] white per capita 0.01 (-0.12, 0.15) 0.09 (-0.05, 0.21) 0.06 (-0.07, 0.2)

[90-100] vs [0-10] white per capita 0.18* (-0.03, 0.38) 0.28*** (0.11, 0.46) 0.27*** (0.1, 0.46)

[90-100] vs [10-20] white per capita -0.04 (-0.27, 0.15) 0 (-0.21, 0.17) 0 (-0.22, 0.16)

[80-100] vs [0-20] black per capita -0.17 (-0.4, 0.04) -0.06 (-0.3, 0.17) -0.09 (-0.33, 0.15)

[80-100] vs [20-40] black per capita -0.04 (-0.27, 0.15) -0.01 (-0.25, 0.22) -0.02 (-0.25, 0.2)

[90-100] vs [0-10] black per capita -0.08 (-0.38, 0.26) 0.17 (-0.23, 0.48) 0.18 (-0.2, 0.46)

[90-100] vs [10-20] black per capita -0.27 (-0.56, 0.18) 0.03 (-0.3, 0.39) 0.04 (-0.28, 0.4)

[80-100] vs [0-20] all composition 0.04 (-0.08, 0.19) 0.21*** (0.11, 0.36) 0.2*** (0.08, 0.33)

[80-100] vs [20-40] all composition 0.05 (-0.07, 0.16) 0.14** (0.04, 0.26) 0.13** (0.01, 0.23)

[90-100] vs [0-10] all composition 0.16 (-0.08, 0.39) 0.39*** (0.22, 0.54) 0.36*** (0.18, 0.53)

[90-100] vs [10-20] all composition 0.16* (-0.03, 0.35) 0.24*** (0.09, 0.4) 0.23*** (0.08, 0.4)

[80-100] vs [0-20] white composition 0.03 (-0.1, 0.18) 0.15** (0.04, 0.29) 0.14** (0.01, 0.28)

[80-100] vs [20-40] white composition 0.1 (-0.06, 0.22) 0.09 (-0.04, 0.23) 0.11 (-0.04, 0.23)

[90-100] vs [0-10] white composition 0.22** (0.02, 0.42) 0.29*** (0.12, 0.47) 0.29*** (0.11, 0.48)

[90-100] vs [10-20] white composition 0.05 (-0.15, 0.29) 0.11 (-0.07, 0.31) 0.1 (-0.09, 0.31)

[80-100] vs [0-20] black composition -0.2* (-0.42, 0.03) -0.14 (-0.36, 0.11) -0.17 (-0.38, 0.1)

[80-100] vs [20-40] black composition -0.01 (-0.24, 0.2) 0 (-0.24, 0.23) -0.02 (-0.24, 0.22)

[90-100] vs [0-10] black composition -0.03 (-0.36, 0.27) 0.21 (-0.25, 0.47) 0.21 (-0.24, 0.44)

[90-100] vs [10-20] black composition -0.28 (-0.58, 0.12) 0.02 (-0.35, 0.34) 0.01 (-0.37, 0.32)

Note: The per capita estimates divide the baseline family income measure by the number of household
members reported in the base year of the survey. The composition-adjusted estimates adjust family
income according to the equivalency scale Ei = (Ai + θKi)

γ , where Ai is the number of adults in the
household in the base year of the survey, Ki is the number of children, and θ = γ = 0.7 are parameters
that modulate the assumed economies of scale (γ) and child/adult consumption requirements (θ).
Estimates use age-standardized, crosswalked test scores. 95% con�dence intervals calculated using 2,500
bootstrap iterations shown in parentheses. (***) = two-sided hypothesis test signi�cant at 1%; (*) =
signi�cant at 10%.
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Table 10. NLSY Test-Score Reliabilities

Test Unadjusted Reliability Adjusted Reliability

math 0.85 0.82

reading 0.81 0.75

AFQT 0.89 0.86

Note: Unadjusted reliabilities are the midpoints of the ranges reported by NLS. The adjusted

reliabilities are calculated from the unadjusted reliabilities R via Ra = var(ε̂)−(1−R)var(s)
var(ε̂) , where

ε̂ are the residuals of a regression of s on race/sex dummies, age dummies, and income quintile
dummies from the NLSY79.

Table 11. Simulated Measurement Error Bias

Achievement Measure Type Minimum Bias Maximum Bias

math test score -16% -16%

reading test score -11% -23%

AFQT test score -7% -23%

math income -7% -17%

reading income -8% -17%

AFQT income -7% -20%

Note: The lower and upper limits are calculated by taking optimistic and pessimistic estimates for the
assessment reliabilities for each NLSY assessment. The narrow range of bias in math is due to the
narrow range of reported reliabilities for the AFQT math subtest.
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Table 12. Linear Regression Mean Achievement Gap Changes Adjusted
for Test-Score Reliability

Group Category Math Reading AFQT

white men opt_�x -$63,414 (-$155,261, $14,263) -$132,041** (-$247,917, -$36,460) -$95,363** (-$181,332, -$19,585)

white men opt_�ex -$40,385 (-$94,840, $5,929) -$70,646** (-$133,717, -$14,232) -$57,290** (-$114,168, -$9,152)

white men pess_�x -$41,491* (-$88,868, $1,236) -$83,836*** (-$146,639, -$25,395) -$58,886** (-$106,613, -$15,470)

white men pess_�ex -$37,763* (-$84,664, $379) -$72,734** (-$136,263, -$19,728) -$53,577** (-$100,962, -$11,369)

white women opt_�x $11,715 (-$36,657, $59,615) -$42,361 (-$99,652, $8,640) -$18,858 (-$63,271, $24,066)

white women opt_�ex -$423 (-$40,633, $39,746) -$35,455 (-$78,782, $7,369) -$21,454 (-$59,257, $16,633)

white women pess_�x $2,642 (-$24,594, $29,731) -$32,487** (-$66,344, -$2,282) -$15,653 (-$38,897, $9,013)

white women pess_�ex $4,780 (-$28,376, $37,965) -$34,960* (-$74,839, $2,424) -$17,193 (-$49,370, $13,051)

black men opt_�x -$19,801 (-$179,407, $127,335) -$207,763** (-$425,644, -$16,448) -$120,309 (-$282,414, $31,031)

black men opt_�ex -$11,082 (-$125,198, $80,949) -$116,147* (-$238,259, $4,042) -$74,244 (-$178,022, $21,708)

black men pess_�x -$15,138 (-$108,004, $66,541) -$128,798** (-$265,301, -$20,463) -$73,134 (-$169,645, $12,059)

black men pess_�ex -$11,078 (-$105,178, $67,274) -$115,435** (-$226,468, -$12,368) -$67,413 (-$157,443, $17,502)

black women opt_�x $82,357 (-$21,675, $183,948) $50,055 (-$122,341, $194,033) $58,387 (-$73,050, $164,011)

black women opt_�ex $69,617 (-$26,291, $155,729) $35,147 (-$105,722, $151,131) $47,209 (-$68,451, $138,421)

black women pess_�x $41,208 (-$28,080, $107,294) $17,553 (-$98,920, $113,743) $25,653 (-$56,014, $98,364)

black women pess_�ex $53,133 (-$28,209, $127,421) $26,769 (-$93,146, $124,807) $35,454 (-$58,898, $113,831)

Note: Estimates use linear speci�cations of equation 5. The coe�cients on the test scores are in�ated
by the appropriate inverse reliability drawn from Table 10. All dollar values de�ated to 2015 basis using
the CPI-U. PDV calculations use a 5% discount rate. Estimates use age-standardized, crosswalked test
scores. 95% con�dence intervals calculated using 2,500 bootstrap iterations shown in parentheses. (***)
= two-sided hypothesis test signi�cant at 1%; (**) = signi�cant at 5%; (*) = signi�cant at 10%.

Table 13. Probit Mean School Completion Gap-Change Estimates Using
NLSY79 Skill Prices

Group Math Reading AFQT

college white men 0.07*** (0.02, 0.12) 0.07*** (0.02, 0.12) 0.07*** (0.02, 0.12)

college white women 0.01 (-0.05, 0.07) 0.04* (-0.01, 0.08) 0.04 (-0.01, 0.09)

college black men 0.02 (-0.08, 0.12) 0.07 (-0.03, 0.17) 0.06 (-0.04, 0.17)

college black women -0.08 (-0.22, 0.05) -0.05 (-0.14, 0.04) -0.07 (-0.18, 0.05)

high school white men 0.02 (-0.03, 0.08) 0.07** (0, 0.13) 0.06** (0.01, 0.12)

high school white women -0.05* (-0.09, 0) 0.01 (-0.05, 0.06) 0 (-0.06, 0.06)

high school black men -0.07 (-0.19, 0.05) 0.08* (-0.01, 0.17) 0.05 (-0.06, 0.15)

high school black women -0.06 (-0.18, 0.06) -0.02 (-0.15, 0.11) -0.01 (-0.13, 0.12)

Note: Estimates based on probit models of the form Di = Φ (g(si) + γDummiesi) where g is a cubic
polynomial and Dummiesi is a vector of race/sex/income quintile dummies. Estimates do not adjust for
measurement error and use age-standardized, crosswalked test scores. 95% con�dence intervals
calculated using 2,500 bootstrap iterations shown in parentheses. (***) = two-sided hypothesis test
signi�cant at 1%; (**) = signi�cant at 5%; (*) = signi�cant at 10%.
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Figure 1. Top vs. Bottom Income Quintile PPCs
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Note: Figures compare the top and bottom income quintiles. Relative percentiles are estimated using
the relevant empirical cdfs. Green 45-degree line of equality plotted for reference. The pseudo-Gini

coe�cient is de�ned as 1− 2
´ 1
0
PPC(z)dz. Pseudo-Gini Coe�cients in parentheses after the line

marker in the legend. Estimates use age-standardized, crosswalked test scores.
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Figure 2. Black vs. White PPCs
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Note: Figures compare test scores from white and black respondents. Relative percentiles are estimated
using the relevant empirical cdfs. Green 45-degree line of equality plotted for reference. The

pseudo-Gini coe�cient is de�ned as 1− 2
´ 1
0
PPC(z)dz. Pseudo-Gini Coe�cients in parentheses after

the line marker in the legend. Estimates use age-standardized, crosswalked test scores.
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Figure 3. High- and Low-Income Scores in 1980 Relative to High- and
Low-Income Scores in 1997
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Note: Figures compare low (high) income youth in the NLSY79 to low (high) income youth in the
NLSY97. Relative percentiles are estimated using the relevant empirical cdfs. Green 45-degree line of

equality plotted for reference. The pseudo-Gini coe�cient is de�ned as 1− 2
´ 1
0
PPC(z)dz.

Pseudo-Gini Coe�cients in parentheses after the line marker in the legend. Estimates use
age-standardized, crosswalked test scores.
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Figure 4. White Male PDV Income Changes Assuming Flexible Labor Supply
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Note: Estimates based on 101 linear quantile regressions evenly spaced on τ ∈ [0, 100] of the form

y
(τ)
i = α(τ) + β(τ)si + γ(τ)Dummiesi, where Dummiesi is a vector of age dummies and i is a white male
youth from the NLSY79. All estimates are discrete approximations calculated on a grid of 1,500 evenly

spaced points on the range of the test scores. The β̂(τ)'s are in�ated by the inverse of the relevant
reliability from Table 10. Estimates shown are for white males who were 16 years old on the testing
date. All dollar values de�ated to 2015 basis using the CPI-U. PDV calculations use a 5% discount rate.
Optimistic imputations assign missing incomes the maximum ever observed for each respondent, while
pessimistic imputations assign the minimum. Estimates assume respondents have full control over their
labor supply and therefore estimate labor income as (estimated wagei × full time hours). Estimates use
non-age-adjusted, crosswalked test scores. Figures show normal approximations to 95% con�dence
intervals based on 50 bootstrap iterations.
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Figure 5. White Male PDV Income Changes Assuming Fixed Labor Supply
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Note: Estimates based on 101 linear quantile regressions evenly spaced on τ ∈ [0, 100] of the form

y
(τ)
i = α(τ) + β(τ)si + γ(τ)Dummiesi, where Dummiesi is a vector of age dummies and i is a white male
youth from the NLSY79. All estimates are discrete approximations calculated on a grid of 1,500 evenly

spaced points on the range of the test scores. The β̂(τ)'s are in�ated by the inverse of the relevant
reliability from Table 10. Estimates shown are for white males who were 16 years old on the testing
date. All dollar values de�ated to 2015 basis using the CPI-U. PDV calculations use a 5% discount rate.
Optimistic imputations assign missing incomes the maximum ever observed for each respondent, while
pessimistic imputations assign the minimum. Estimates assume respondents have no control over their
labor supply and therefore estimate labor income by the observed (or imputed) annual labor income.
Estimates use non-age-adjusted, crosswalked test scores. Figures show normal approximations to 95%
con�dence intervals based on 50 bootstrap iterations.
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Figure 6. PDV Math Changes Assuming Fixed Labor Supply for High-
and Low-Income White Male Youth
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Note: Estimates based on 101 linear quantile regressions evenly spaced on τ ∈ [0, 100] of the form

y
(τ)
i = α(τ) + β(τ)si + γ(τ)Dummiesi, where Dummiesi is a vector of age dummies and i is a white male
youth from the NLSY79. All estimates are discrete approximations calculated on a grid of 1,500 evenly

spaced points on the range of the test scores. The β̂(τ)'s are in�ated by the inverse of the relevant
reliability from Table 10. Estimates shown are for white males who were 16 years old on the testing
date. All dollar values de�ated to 2015 basis using the CPI-U. PDV calculations use a 5% discount rate.
Optimistic imputations assign missing incomes the maximum ever observed for each respondent, while
pessimistic imputations assign the minimum. Estimates assume respondents have no control over their
labor supply and therefore estimate labor income by the observed (or imputed) annual labor income.
Estimates use non-age-adjusted, crosswalked test scores. Figures show normal approximations to 95%
con�dence intervals based on 50 bootstrap iterations.
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Figure 7. PDV Reading Changes Assuming Fixed Labor Supply for High-
and Low-Income White Male Youth
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Note: Estimates based on 101 linear quantile regressions evenly spaced on τ ∈ [0, 100] of the form

y
(τ)
i = α(τ) + β(τ)si + γ(τ)Dummiesi, where Dummiesi is a vector of age dummies and i is a white male
youth from the NLSY79. All estimates are discrete approximations calculated on a grid of 1,500 evenly

spaced points on the range of the test scores. The β̂(τ)'s are in�ated by the inverse of the relevant
reliability from Table 10. Estimates shown are for white males who were 16 years old on the testing
date. All dollar values de�ated to 2015 basis using the CPI-U. PDV calculations use a 5% discount rate.
Optimistic imputations assign missing incomes the maximum ever observed for each respondent, while
pessimistic imputations assign the minimum. Estimates assume respondents have no control over their
labor supply and therefore estimate labor income by the observed (or imputed) annual labor income.
Estimates use non-age-adjusted, crosswalked test scores. Figures show normal approximations to 95%
con�dence intervals based on 50 bootstrap iterations.
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Figure 8. PDV Math Changes Assuming Flexible Labor Supply for High-
and Low-Income White Male Youth
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Note: Estimates based on 101 linear quantile regressions evenly spaced on τ ∈ [0, 100] of the form

y
(τ)
i = α(τ) + β(τ)si + γ(τ)Dummiesi, where Dummiesi is a vector of age dummies and i is a white male
youth from the NLSY79. All estimates are discrete approximations calculated on a grid of 1,500 evenly

spaced points on the range of the test scores. The β̂(τ)'s are in�ated by the inverse of the relevant
reliability from Table 10. Estimates shown are for white males who were 16 years old on the testing
date. All dollar values de�ated to 2015 basis using the CPI-U. PDV calculations use a 5% discount rate.
Optimistic imputations assign missing incomes the maximum ever observed for each respondent, while
pessimistic imputations assign the minimum. Estimates assume respondents have full control over their
labor supply and therefore estimate labor income as (estimated wagei × full time hours). Estimates use
non-age-adjusted, crosswalked test scores. Figures show normal approximations to 95% con�dence
intervals based on 50 bootstrap iterations.
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Figure 9. PDV Reading Changes Assuming Flexible Labor Supply for
High- and Low-Income White Male Youth
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Note: Estimates based on 101 linear quantile regressions evenly spaced on τ ∈ [0, 100] of the form

y
(τ)
i = α(τ) + β(τ)si + γ(τ)Dummiesi, where Dummiesi is a vector of age dummies and i is a white male
youth from the NLSY79. All estimates are discrete approximations calculated on a grid of 1,500 evenly

spaced points on the range of the test scores. The β̂(τ)'s are in�ated by the inverse of the relevant
reliability from Table 10. Estimates shown are for white males who were 16 years old on the testing
date. All dollar values de�ated to 2015 basis using the CPI-U. PDV calculations use a 5% discount rate.
Optimistic imputations assign missing incomes the maximum ever observed for each respondent, while
pessimistic imputations assign the minimum. Estimates assume respondents have full control over their
labor supply and therefore estimate labor income as (estimated wagei × full time hours). Estimates use
non-age-adjusted, crosswalked test scores. Figures show normal approximations to 95% con�dence
intervals based on 50 bootstrap iterations. 52



Figure 10. Comparing Imputation Rules for White Male PDV Income Changes
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Note: Estimates based on 101 linear quantile regressions evenly spaced on τ ∈ [0, 100] of the form

y
(τ)
i = α(τ) + β(τ)si + γ(τ)Dummiesi, where Dummiesi is a vector of age dummies and i is a white male
youth from the NLSY79. All estimates are discrete approximations calculated on a grid of 1,500 evenly

spaced points on the range of the test scores. The β̂(τ)'s are in�ated by the inverse of the relevant
reliability from Table 10. Estimates shown are for white males who were 16 years old on the testing
date. All dollar values de�ated to 2015 basis using the CPI-U. PDV calculations use a 5% discount rate.
Optimistic imputations assign missing incomes the maximum ever observed for each respondent, while
pessimistic imputations assign the minimum. Flexible labor supply estimates assume respondents have
full control over their labor supply and therefore estimate labor income as
(estimated wagei × full time hours). Fixed labor supply estimates assume respondents have no control
over their labor supply and therefore estimate labor income by the observed (or imputed) annual labor
income. Estimates use non-age-adjusted, crosswalked test scores. Figures show normal approximations
to 95% con�dence intervals based on 50 bootstrap iterations.

Appendix B. Data Description and Variable Construction

Calculating pdv_labor for each respondent is complicated by four forms of missing

data. First, not every respondent has a valid income variable recorded in a given year.

Second, not every survey respondent is in the labor force in a given year. Third, after

1994, the respondents were only interviewed every other year, so income data is missing for

odd-numbered years between 1994 and 2012. Fourth, the NLSY79 respondents can only
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be observed through ages 47-49, while the NLSY97 respondents can be seen only through

ages 29-31. I address the �rst two kinds of missing data through the imputation rules

described in Section 3. I address the third form of missing data by linearly interpolating

wage income values for the odd-numbered years between 1995 and 2011 after applying one

of my two imputation rules. I address the fourth form of missing data by using education-

speci�c age-earnings pro�les to extrapolate observed labor income pro�les through to

retirement.

I build the various pdv_labor estimates using NLS variables that measure total an-

nual labor earnings and total hours worked across all jobs. I drop annual earnings above

$250,000. Annual earnings are already truncated by the NLS, so this procedure removes

very few observations from the sample. I do not adjust my anchored estimates for trun-

cation, although the quantile regression-based estimates should not be sensitive to either

truncation or the presence of outliers. I estimate wage rates by dividing annual earnings

by annual hours worked. I perform this division after imputing missing wages using either

the optimistic or pessimist rule outline in Section 3 and after �lling in the alternate-year

data using the procedure described above. This division results in a few unrealistically

high wage estimates; I drop observations with implied wage rates above $500 (in 2015$);

my estimates are not sensitive to this particular threshold choice. The NLS also pro-

vides estimated hourly rates of pay. Using these wage variables changes the anchored

gap/change estimates very little. I convert hourly wages to annual earnings by assuming

a full-time year of work consists of 2,087 hours, which is the O�ce of Personnel Manage-

ment assumption for full-time work.

The age-earnings pro�les of men with di�erent education levels are not simply log-

level shifts of each other. Highly educated men experience much more rapid wage income

growth in percentage terms between the ages of 20 and 50. To account for these di�erences,

I use Census Bureau data from 2005 to construct synthetic age-earnings pro�les for men

with di�erent education levels. I use the mean earnings of men in several age buckets

(18-24, 25-34, 35-44, 45-54, 55-64, and 65+) crossed with several education categories

(<high school, high school, and college+). The results presented in this appendix use

the same synthetic pro�le for both the optimistic and pessimistic imputations. Since the

synthetic data are computed for full-time, year-round workers over the age of 18, they are

more directly applicable to the estimates that assume no involuntary unemployment.

I use data bucketed into 5- and 10-year increments. Let me,a,a+1 be the slope of the

earnings line connecting the labor income in age buckets a and a+1 for education category

e ∈ {< high school, high school, college+}, and let w̃i,t,k be the (imputed) annual wage

income for respondent i in survey wave t using imputation rule k ∈ {pess, opt}. Since

most workers retire between the ages of 60 and 70, I assume that each NLSY respondent

will work until age 65 and then retire. I calculate the expected annual wage income

of i in year 2013, ŵi,2013,k using a regression of ŵi,2012,k on time trends and prior-year
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income estimates. I assume that i's yearly income increases and decreases from ŵi,2013,k

between the ages of 47 and 65 in accordance with the slopes {me(i),a,a+1}, where e(i) is

the education level of i. Putting all of this together, the pdv of a youth who was 15 at

the start of the NLSY79 is given by

PDVi,k ≡
t=33∑
t=0

(0.95)t w̃i,t,k︸ ︷︷ ︸
observed/imputed

+ ŵi,2013,k

8∑
j=1

(0.95)33+j
(
1 + jme(i),35,45

)
︸ ︷︷ ︸

projected, age 48-55

+ ŵi,2013,k
(
1 + 10me(i),35,45

) 10∑
j=1

(0.95)41+j
(
1 + jme(i),45,55

)
︸ ︷︷ ︸

projected, age 56-65

.

Both NLSY surveys record the highest grade completed for each respondent in each

survey wave. Using these grade-completion variables, I construct a new variable for each

survey wave t equal to the highest grade completed observed in any wave up to and

including t. Occasionally, the highest grade completed for a respondent will decrease

between one survey and the next. These data are di�cult to interpret; my �ll-in rule

assumes that the lower value is incorrect. I only use the grade-completion variables up to

14 years after the start of the survey, as this is as far out as I can go in the NLSY97. Very

few people change their education status after age 30 in the NLSY79, so this restriction

should have little e�ect on my estimates.

Appendix C. Asymptotic Bias Simulation Procedure For Cliff's δ

I use the unadjusted test-score reliabilities drawn from Table 10 in all of the simulations.

For each test s, I estimate (µ̂s,t,G, σ̂s,t,G) for G ∈ {H,L} and t ∈ {1979, 1997} using the

sample means and standard deviations. I draw random pseudo-samples of test scores of

size N , for N large, from each distribution N(µ̂s,t,G, σ̂s,t,G). I use these pseudosamples to

estimate δ̃. Then, if Rs,t is the reliability of assessment s in year t, I generate �noiseless�

pseudosamples drawn from N(µ̂s,t,G,
√
Rs,tσ̂s,t,G) and use these pseudosamples to compute

δ. I compute δ and δ̂ for each achievement test for the whole range of possible reliabilities

reported in Reardon[31] and report the extrema of this procedure.

To simulate the bias stemming from income measurement error, I suppose the true

distribution of income is lognormal with mean µt and variance σ2
t in both surveys t. I

also assume that observed log income m̃i,t is equal to true log income plus a normally

distributed classical measurement error ηi,t with variance ση,t. Finally, I suppose that

observed standardized test scores are linear in true log income: si,t = at + Btmi,t +

εi,t, E[εi,t|mi,t] = 0, εi,t ∼ N(0, σε,t). Under these assumptions, a linear regression of

test scores on observed log income will recover an asymptotically biased estimate of Bt:
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plim B̂ols
t = BtRt = Bt

(
σ2
t

σ2
t+σ

2
η,t

)
. If R2 is the true share of variance explained, then the

asymptotic share explained in the noisy regression is R̃2 = RtR
2. These facts imply that

the following procedure will provide valid approximations for δ and δ̃:

(1) Estimate ˆ̃µt and ˆ̃σt from the sample means and standard deviations of the log

income distributions. Then, for some large N ∈ N, draw a sample {mi,t} of size
N from N(ˆ̃µt, Rm

ˆ̃σ2
t ). These {mi,t} are the �clean� income values.

(2) Run a linear regression of si,t on the observed log income values. Using the R̃2

from this regression, simulate a population of errors {εi,t} of size N by drawing a

random sample from N
(

0, 1−R̃
2

Rm

)
. Then, for each mi,t in the created sample from

step 1, simulate a test score via si,t = RmB̂
ols
t mi,t + εi,t.

(3) Create a virtual population of noisy incomes {m̃v
i,t} of size N via m̃v

i,t = mi,t + ηi,t,

where the ηi,t are iid draws from N(0, (1 − Rm)ˆ̃σ2
t ). Repeat these steps for the

other survey.

(4) For the clean data, calculate δ̂ from the scores that correspond to incomes in the

top 20 percent and bottom 20 percent of the true income distributions for years

t and t + 1. For the noisy data, calculate ˆ̃δ analogously using the noisy income

distribution and compute Bias(Rm) = δ̂−ˆ̃
δ

δ̂
.

Appendix D. Anchoring Methods

I use only the �raw� (not age-standardized) test scores for the regression-based anchoring

analysis described in Section 6. For each achievement test, I use the NLSY79 to estimate

equation 5. My baseline speci�cations are linear in s. Higher-order polynomials produce

similar gap/change estimates but are much harder to adjust for test-score measurement

error. Various plausible speci�cations of equation 5 produce similar gap/change estimates.

The basic idea is to use the estimated coe�cients from equation 5 to convert test scores

into y-denominated units. In particular, if ŷi,G,t is the predicted value of y for survey

respondent i in racial/gender group G in year t, then the anchored average achievement

for G in year t is estimated by the empirical average of the {ŷi,G,t}'s. These anchored

averages can then be used to estimate any gap/change of interest. In this framework,

the regression estimate of β1 determines how strongly changes in test scores are re�ected

in changes in y. If test scores are estimated noisily (and substantial psychometric work

suggests that they are), the OLS estimate of β1 will be attenuated. I therefore manually

adjust the OLS estimates of β1 to re�ect plausible guesses about the noisiness of the s. The

NLS reports reliability estimates for each component AFQT test. I back out the implied

measurement error variances using the observed test-score variances and the reliability

estimates. I then compute �regression-adjusted� reliabilities using only the components of

s that are orthogonal to the other regressors. Finally, I scale up the β̂1's by the inverses
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of these reliabilities prior to estimating the ŷ's. Adjusting for measurement error in this

way typically increases the gap-change estimates by about 20-30%. Table 10 shows the

regression-adjusted test-score reliabilities I use.

Implementing the quantile regression-based procedure outlined in Section 6 requires

that I estimate K79(y|s) for each s ∈ [s, s̄] and the marginal test-score distributions Ft,G

for each t ∈ {79, 97} and G ∈ {H,L}. I estimate the marginal test-score distributions

using a smoothed kernel density estimator. I estimate K79,t(y|s) in two steps. First, I

estimate polynomial quantile regressions of the form y(τ) = α(τ)+β
(τ)
1 s+β

(τ)
2 s2+ . . . β

(τ)
n sn

for each τ ∈ {τ1, . . . , τM}, where 0 < τi < τi+1 < 1, 1 ≤ i ≤M−1. My baseline estimates

use linear quantile regressions (n = 1), as my measurement error adjustment procedure

(described below) only works well in this case.

Test-score measurement error is a thorny issue in this setting. In general, errors-in-

variables will bias the quantile regression coe�cients, and, by extension, the corresponding

gap/change estimates. There is no straightforward, readily available method for handling

measurement error in polynomial quantile regressions. I adjust for test-score measurement

error by setting n = 1 and multiplying each estimated quantile regression coe�cient by

R−1
s , where R−1

s is the inverse of the corresponding test reliability in Table 10. To my

knowledge, there is no general theorem supporting this procedure. Nonetheless, simulation

exercises suggest that this procedure will be approximately valid when the latent test-

score and measurement error distributions are symmetric and when the reliability of the

observed scores is in the range reported by the NLS. The approximation is most accurate

when τ ≈ 0.5; the adjustment will overcompensate for measurement error bias when

τ is close to one and will under compensate when τ is close to zero. Adjusting for

measurement error in this way has a relatively large e�ect for some of the quantile gap-

change estimates. I do not adjust the cubic quantile regression-based estimates reported

in the online appendix. I note only that test-score measurement error will generally have

the e�ect of muting the estimated gradient between test scores and outcomes. Since the

estimated reliabilities of the AFQT assessments are similar in the two NLSY surveys, this

implies that my baseline cubic estimates should be viewed as conservative.

I use the estimated quantile regressions to estimate Q̃79(u|s), the quantile function

of y conditional on s. Since the quantile regressions do not guarantee that the resulting

Q̃79(u|s) is monotone in u, I estimate K̂79(y|s) by
´ 1
0
I
(
Q̃79(u|s) ≤ y

)
du. Even if Q̃79(u|s)

is not monotone, K̂79(y|s) =
´ 1
0
I
(
Q̃79(u|s) ≤ y

)
du will be. Finally, I use cubic b-splines

to smooth out the stepwise function de�ned by the above integral. The derivative of this

smoothed cdf yields a smooth estimate of the conditional density of y given s, k̂79(y|s).
My empirical work allows the estimated relationship between s and y to depend on

student characteristics. In particular, I estimate K79(y|s, x) for a student with character-

istics x ∈ {{Black,White} × {Male,Female}} via two methods. My baseline speci�cation
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estimates quantile regressions subsetting on the relevant race/sex category prior to esti-

mation. That is, I estimate y(τ) = α(τ) + β
(τ)
x,1s+ β

(τ)
x,2s

2 + . . .+ β
(τ)
x,nsn + γ

(τ)
x (age dummies)

for x ∈ {{Black,White} × {Male,Female}}. I also produce estimates, presented in the

online appendix, in which I run the quantile regressions on the full data set but include

dummies for x. The estimates produced using these alternate speci�cations are quite

similar to those I report in this paper.

58


