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Abstract

This paper proposes a decision-theoretic framework for experiment design. We model
experimenters as ambiguity averse decision-makers, who trade-off subjective expected
performance and robustness. This framework suitably accounts for experimenters’
preferences for randomization, and the circumstances in which randomization occurs:
whenever available sample size becomes large enough. We illustrate the practical value
of such a framework by studying the issue of rerandomization. We show that rerandom-
ization creates a trade-off between subjective performance and robustness but that loss
in robustness due to rerandomization grow very slowly with the number of assignment
draws. This lets us propose a simple, principled rule of thumb for rerandomization.
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1 Introduction

As the use of experiments spreads in academia, business, and public policy, there has been a

growing need to clarify best-practices ensuring the reliability of experimental findings. The

experimental community has responded through the introduction of registries, and spirited

discussions of practices such as pre-analysis plans, rerandomization, and statistical techniques

(Bruhn and McKenzie, 2009; Deaton, 2010; Duflo et al., 2008; Humphreys et al., 2013;

Imbens, 2010; Olken, 2015; Athey and Imbens, 2016). Surprisingly, there is no comprehensive

decision theoretic framework for experiment design to guide these efforts. This paper seeks

to provide such a framework.

Models of information acquisition feature prominently in modern microeconomic the-

ory (Rothschild, 1974; Grossman and Stiglitz, 1980; Aghion et al., 1991; Bergemann and

Välimäki, 1996; Persico, 2000; Bergemann and Välimäki, 2002, 2006). Unfortunately, they

fail to predict a key feature of the way scientists learn: by running randomized controlled tri-

als (RCTs; see Kasy, 2013). The reason for this is that much of applied microeconomic theory

models decision-makers using subjective expected utility (Savage, 1954). Mixed strategies

are never strictly optimal for such a decision-maker. Since RCTs are mixed strategies over

experimental assignments, they can never be strictly optimal.

As experimenters often incur significant expense to randomize their experimental alloca-

tions, any useful decision-theoretic framework for experiment design must first account for

such preferences. We propose to replace subjective expected utility with ambiguity averse

preferences, specifically minmax expected utility of the form axiomatized by Gilboa and

Schmeidler (1989). In our model, an ambiguity averse decision-maker must make a binary

policy choice a ∈ {0, 1} affecting a population of individuals with characteristics x ∈ X ⊂ Rm

and conditionally independent outcomes. To improve the quality of her decision-making, the

decision-maker runs an experiment that assigns a given number N of participants to either

treatment or control. Each experimental participant obtains an outcome y ∈ {0, 1} observed
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by the decision-maker. The decision-maker’s final policy choice depends on the experimental

assignment and outcomes.

Under an innocuous assumption, the decision-maker can be thought of as maximizing the

weighted average of a Bayesian subjective expected utility term, and an adversarial maxmin-

expected-utility term capturing the robustness of decision rules. Under this decomposition

the decision-maker can be interpreted as maximizing her payoffs under her own subjective

view of the world, while also trying to satisfy an adversarial audience with non-common

priors, and veto power. The relative weights that the decision-maker places on the subjective

and maxmin terms permit informative comparative static exercises.

The paper reports two main sets of results. First, we show that RCTs can be optimal

for an ambiguity-averse decision-maker, and clarify the circumstances in which it is the case.

If the decision-maker places non-zero weight on satisfying her adversarial audience, then,

for sufficiently large sample sizes, it is always strictly optimal for the decision-maker to use

a RCT. The value of randomness is that it allows audience members with non-common

priors to agree on an ex ante course of action. RCTs permit robust, prior-free inference, and

achieve assignment losses of order 1/
√
N . Inversely, deterministic experiments are generically

strictly optimal when the sample size is small, or when the decision-maker puts sufficiently

high weight on her subjective expected utility.

Our model fits the observed heterogeneity in experimental practive well. Randomized

experiments tend to be used by decision-makers who put a high value on convincing an

adversarial audience (scientists, pharmaceutical companies), or when the decision-maker can

afford large samples (A/B testing in online marketing). Whenever data points are expensive

and the decision-maker puts little weight on satisfying an adversarial audience (private firms

testing new products in select markets, politicians testing platforms in specific states, etc. . . ),

optimal experiments are deterministic, and finely optimize the subjective decision-making

value of each acquired data point.

Our second set of results examines rerandomization (Morgan and Rubin, 2012). Reran-
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domization consists of drawing multiple treatment assignments, and choosing one that max-

imizes the balance between treatment and control groups on some covariates. For example,

a medical researcher may want to ensure that treatment and control groups are similar in

terms of gender, age, race, and baseline health variables such as blood pressure and weight.

Despite the practical ease of using rerandomization to ensure balance, researchers have voiced

the concern that it may affect the reliability of findings (Bruhn and McKenzie, 2009).

We show that the trade-offs at the heart of rerandomization are well captured in our

framework. Successive rerandomizations improve balance, as captured by the subjective

expected utility component of preferences. However, rerandomization reduces robustness,

as captured by the adversarial component of preferences. In the extreme case where the

allocation is rerandomized until perfect balance is achieved, the allocation is effectively de-

terministic and the adversarial term remains bounded away from first best.

Importantly, our framework also lets us assess the costs of rerandomization. We show

that to affect the robustness of decision making in a significant way, the number of reran-

domizations must be exponential in the sample size. This lets us propose a rule of thumb for

rerandomization that markedly improves balance, while keeping losses in robustness small.

The paper is structured as follows. Section 2 introduces our framework. Section 3 delin-

eates the forces that determine whether running a randomized or deterministic experiment

is optimal. Section 4 studies the trade-offs involved in rerandomization. Numerical evalua-

tions of the efficiency of various experimental designs are presented in Section 5. Section 6

concludes. Proofs are contained in Appendix A unless mentioned otherwise.

2 A Framework for Optimal Experiment Design

Decisions and payoffs. A decision-maker chooses whether or not to implement a policy

that provides a treatment τ ∈ {0, 1} to a unit mass of individuals. Potential outcomes for a

subject with treatment status τ ∈ {0, 1} are random variables Y τ ∈ {0, 1}; Y = 1 is referred
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to as a success. Each individual is associated with covariates x ∈ X ⊂ Rm, where X is finite.

Covariates x ∈ X are observable and affect the distribution of outcomes Y . The distribution

q ∈ ∆(X) of covariates in the population is known and has full support. Outcomes Y are

i.i.d. conditional on covariates. The probability of success given covariate x is denoted by

pτx ≡ prob(Y τ = 1|x).1

The state of the world is described by the finite-dimensional vector p of success proba-

bilities conditional on covariates, p = (p0
x, p

1
x)x∈X ∈ [0, 1]2X ≡ P. Note that state-space P is

compact, convex, and finite-dimensional. Given a state p and a policy decision a ∈ {0, 1},

the decision-maker’s payoff u(p, a) is

u(p, a) ≡ EpY a =
∑
x∈X

q(x)pax.

Experiments and strategies. To maximize her odds of making the correct policy choice,

the decision-maker can run an experiment on N participants. For simplicity, we assume that

N is even, and exogenously given. Formally, an experiment is a tuple e = (xi, τi)i∈{1,...,N} ∈

(X × {0, 1})N ≡ E. Experiment e generates outcome data y = (yi)i∈{1,...,N} ∈ {0, 1}N ≡ Y ,

with yis independent realizations of Y τi
i given (xi, τi).

The decision-maker’s strategy consists of both an experimental design E ∈ ∆(E), which

is a mixed strategy over experimental assignments, and an allocation rule α : E × Y →

∆({0, 1}), which maps experimental data (e, y) to policy decisions a ∈ {0, 1}.2 We denote

by A the set of such mappings. A standard RCT, assigning a share π ∈ (0, 1) of participants

to treatment τ = 1, corresponds to a strategy (Erct, αrct):

• Erct samples N exchangeable participants labelled by i ∈ {1, · · · , N}, with covariates

(xi)i∈{1,··· ,N} drawn according to q;

1Our framework encompasses unobservable differences z, as well. Then pτx =
∫
pτx,zdF (z|x). As they do

not impact the analysis, we omit them in what follows.
2Targeting treatment to particular sub-populations is possible as well: if the targeting is not too fine—for

example, by gender, race, or economic class—then the analysis within each sub-population would be the same
as the analysis here. For more on targeting by covariates see Kitagawa and Tetenov (2015), and references
therein.
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• Erct assigns treatment τi = 1i≤πN ;

• αrct(e, y) ≡ 1ŷ1≥ŷ0 , where ŷτ ≡
∑N

i=1 yi1τi=τ
/∑N

i=1 1τi=τ .

Preferences. The decision-maker is ambiguity averse with standard maxmin preferences

(Gilboa and Schmeidler, 1989). She chooses a strategy (E , α) that solves

max
α∈A
E∈∆(E)

U(E , α), where U(E , α) ≡ min
h∈H′

Eh,E [u(p, α(e, y))] (1)

and H ′ is a convex set of priors h ∈ ∆(P ) over states p ∈ P . This can be thought of as a

zero-sum game in which nature picks distribution h ∈ H ′ after the decision-maker picks a

strategy (E , α). Randomizations in mixed strategies are independent of moves by nature.

We use the usual statistical distance d(h, h′) ≡ sup A⊂P
A meas.

|h(A)− h′(A)| on distributions

whenever making genericity statements. Almost-sure statements are made with respect to

the Lebesgue measure on P .

Equivalent experiments. Successes are indepedent conditional on covariates, experi-

ments that differ only by a permutation of participants with identical covariates are equiv-

alent from a decision-making perspective. It is useful to formalize this point in the context

of maxmin preferences.

Definition (equivalent experiments). Two experiments e = (xi, τi)i∈{1,...,N} and e′ = (x′i, τ
′
i)i∈{1,...,N}

are equivalent, denoted by e ∼ e′, if there exists a permutation σ : {1, . . . , N} → {1, . . . , N}

of the participants’ labels such that (xi, τi) = (x′σ(i), τ
′
σ(i)) for all i. The equivalence class of

an experiment e is denoted by [e].3 We denote by [E] the partition of possible experiments in

equivalence classes. We say that two experimental designs E and E ′ are equivalent, denoted

by E ∼ E ′, if they induce the same distribution over [E]

Lemma 1. Whenever E ∼ E ′, max
α∈A

U(E , α) = max
α∈A

U(E ′, α).

3It is convenient to include distributions E with support in [e] in the equivalence class of e.
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Thus, equivalent experiments guarantee the decision-maker the same utility.

2.1 Key assumptions

We place two additional assumptions on the model of Section 2. The first is innocuous, and

allows the decision-maker’s objective to be expressed as a weighted average of a Bayesian

subjective expected utility term and a maxmin expected utility term.

The second is more substantial: it ensures that the set of possible priors entertained by

the decision-maker is rich enough that for any given experimental assignment, there exists

a prior under which this assignment does not permit efficient decision-making. Note that

the order of quantifiers is important: given a realized experimental assignment, we can find

such a prior h. Indeed, we show in Proposition 3 that randomized experiments yield efficient

decisions with high probability for all priors.

2.1.1 Decomposition of Maxmin Preferences

The following assumption leads to a useful decomposition of the decision-maker’s preferences.

Assumption 1 (absolute continuity). There exist h0 and λ ∈ (0, 1) such that for every prior

h ∈ H ′ and almost every state p ∈ P ,

h(p) ≥ λh0(p). (2)

Absolute continuity requirement (2) implies that every prior ĥ ∈ H ′ can be written as

ĥ = λh0 + (1−λ)h, where h ∈ H ≡ 1
1−λ(H ′−λh0). Condition (2) also implies that elements

h ∈ H are themselves probability distributions over states p ∈ P , and set H is compact and

convex.

Altogether, this implies that the decision-maker’s objective (1) can be rewritten as

U(E , α) ≡ λEh0,E [u(p, α(e, y))] + (1− λ) min
h∈H

Eh,E [u(p, α(e, y))]. (3)
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Keeping h0 and H fixed, parameter λ provides a convenient and continuous measure of the

decision-maker’s degree of ambiguity aversion. For λ = 1 this nests standard subjective

expected utility maximization. We sometimes refer to the case of λ = 1 as Bayesian.

This yields a useful interpretation: The decision-maker wants to make a decision that is

successful under her own subjective prior h0, but also satisfies an audience of stakeholders

with heterogenous priors h ∈ H. Weights λ and 1− λ represent the respective weights that

the decision-maker places on her own subjective utility and that of her audience.4

2.1.2 Limited Extrapolation

Throughout we assume that N ≤ 2|X| so that, even though there are finitely many covariate

profiles x ∈ X, assigning each of them to treatment and control is not feasible. This condition

is assumed to hold even as we take N to be large.5

This allows us to impose the following limited extrapolation condition on X, N , and H.

Denote by pa ≡
∑

x∈X q(x)pax the expected probability of success given policy a ∈ {0, 1}.

Given an experiment e = (τi, xi)i∈{1,··· ,N}, denote by pe ≡ (pτixi)i∈{1,··· ,N} the subset of success

rates for participants in the experiment. Vector pe is an upper bound to the information

generated by experiment e.

Assumption 2 (limited extrapolation). There exists ξ > 0 such that, for all e ∈ E, there

exists a prior h ∈ arg minh∈H Eh(maxa∈{0,1} p
a) such that, for almost every pe,

min

{
Eh
[

max
a∈{0,1}

pa − p0
∣∣pe] ,Eh [ max

a∈{0,1}
pa − p1

∣∣pe]} > ξ.

Limited extrapolation implies that for any realized experimental assignment there exists a

prior h ∈ H under which that assignment does not allow for first-best decision-making. That

4If audience members have veto power and enjoy a common outside option, then the weight ratio 1−λ
λ is

the Lagrange multiplier placed on the audience’s individual rationality constraint.
5A natural case is that in which N = |X| and q(x) = 1

|X| : individuals are unique, and there are as many

configurations of characteristics as potential subjects.
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is, conditional on the data generated by any experiment, their exists a prior under which

the residual uncertainty about which policy maximizes population-level outcomes remains

bounded away from 0.6

3 Optimal Design and Randomization

We now characterize optimal experimental design.

3.1 Bayesian Experimentation

When λ = 1, the decision-maker is a standard subjective expected utility maximizer. In this

case, it is well known that deterministic experiments are weakly optimal. We restate this

result and show that for generically every prior (that is, for an open and dense set of priors

under statistical distance d), deterministic experiments are strictly optimal when λ is close

to one.

Proposition 2 (near-Bayesians do not randomize). If λ = 1, then for every prior h0, there

exists a deterministic experiment e∗ solving (3).

For generically every prior h0, there exist λ ∈ (0, 1) and a unique equivalence class of

experiments [e∗] such that for all λ > λ, a (potentially mixed) experiment E ∈ ∆(E) solves

(3) if and only if supp E ⊂ [e∗].

Proof. The proof that deterministic experiments are always weakly optimal for a Bayesian

decision-maker is instructive. The decision-maker’s payoff from running experiment E can

be written as

max
α∈A

Eh0,E [u(p, α(e, y))] =
∑
e∈E

E(e)v(h0, e).

6We could do away with this assumption if we considered a decision-maker solving for minmax regrets
rather than minmax expected utility.
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where v(h, e) ≡
∑

y∈Y maxa∈{0,1} Ep∼h [prob(y|p, e)u(p, a)]. Therefore, any deterministic ex-

periment e∗ solving maxe∈E v(h0, e) is optimal. More strongly, E solves (3) if and only if

supp E ⊂ argmax
e∈E

v(h0, e).

The proof that deterministic experiments are generically strictly optimal is provided in

Appendix A.

In recent work, Kasy (2013) uses a version of Proposition 2 when λ = 1 to argue that

RCTs are suboptimal. We believe that rather than invalidating the use of RCTs, Proposition

2 highlights the limits of subjective expected utility maximization as a suitable positive model

of experimenters. We argue instead that the adversarial framework of (3) is more successful

at explaining the range of information acquisition strategies observed in practice.

3.2 Adversarial Experimentation

We now assume that the decision-maker puts a fixed positive weight on satisfying her audi-

ence, and study comparative statics as the sample size becomes large.

Proposition 3. Take weight λ ∈ (0, 1) as given. There exists N such that for all N ≥ N ,

any optimal experiment is randomized. More precisely, the following hold:

(i) For any N , any optimal experiment E∗ satisfies

max
α

min
h∈H

Eh,E∗ [u(p, α(e, y))] ≥ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
−
√

ln 2

N
. (4)

(ii) For any N , all deterministic experiments e ∈ E are bounded away from

first-best:

∀e ∈ E, max
α∈A

min
h∈H

Eh,e [u(p, α(e, y))] < min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ξ. (5)

The first part of the proposition shows that the efficiency loss of the optimal experiment
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Figure 1: trading off subjective decision-making value and adversarial, prior-free, inference.

compared to the first-best decision is bounded above by 1/
√
N . The second part shows that

the loss from a deterministic experiment is bounded below by ξ, where ξ is bounded away

from zero, and independent of N . Thus, as N grows, the optimal experiment cannot be

deterministic: it must be randomized.7 Indeed after the decision-maker picks an experiment

and a decision rule, nature (or the audience) picks the prior which maximizes the chance of

picking the wrong policy, given that experimental design and policy rule. If there is a known

pattern in the decision-maker’s assignment of treatment, nature can exploit this pattern

very effectively to lower the decision-maker’s payoff. Randomization eliminates patterns

that nature can exploit.

Figure 1 maps out implications of Propositions 2 and 3 for practical experiment design.

Proposition 2 shows that when sample points are scarce, or when the decision-maker does

not put much weight on satisfying anyone else (λ close to 1), optimal experimentation will be

7This point is related to Saito (2015) who emphasizes that ambiguity averse agents may have preferences
for randomization even if they exhibit risk-aversion over known lotteries.
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deterministic, driven by prior h0. That is, the experimenter will focus on assigning treatment

and control observations to the participants from whom she expects to learn the most. This

is the case, for example, when a firm is implementing a costly new process in a handful of

production sites: The firm will focus on a few teams where it can learn the most. Similarly, a

politician trying out platforms will do so at a few carefully chosen venues in front of carefully

chosen audiences.

However, when the decision-maker must satisfy a sufficiently adversarial audience, or has

a sufficiently large sample, she will randomize. The former is the case in scientific research.

The latter is the case for firms doing A/B testing online: Although the firm only needs to

convince itself of the effectiveness of a particular ad or UI design, observations are so plentiful

that randomization is used to effictively address internal concerns over robustness.

Proposition 3, clarifies some features of experimental practice. First, it implies that

a decision-maker who randomizes even without understanding all its ramifications—why

she is randomizing, what audience the experiment is meant to satisfy—will nevertheless

produce an almost-optimal experiment for large values of N . Even if someone (or her own

doubts) produces a particularly challenging prior, the decision rule is still likely to be close

to optimal. Further, this proposition highlights the importance of actually randomizing. An

experimenter that adopts a protocol that is only “nearly” random, such as assignment based

on time of day of an experimental session (see Green and Tusicisny, 2012, for a critique), or

the first letter of an experimental subject’s name (as was the case in the deworming study

of Miguel and Kremer, 2004; see Deaton, 2010 for a critique), can always find a skeptical

prior in its audience. Randomization provides a defense against the most skeptical priors,

but near-randomization offers no such protection.

It is important to note that once the experiment is realized, there will exist a prior

under which this experiment is no longer informative. Proposition 3 shows that randomized

experiments let parties with different priors agree on a process. However this agreement is

only possible at the ex ante. The tension between ex ante agreement on a process, and ex
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post disagreement once an experimental design is realized corresponds to the well-known

fact that non-expected utility preferences are not dynamically consistent (Machina, 1989).

4 Rerandomization

Proposition 3 establishes that randomization is essential to guarantee successful prior-free

performance. Since deterministic experiments are subjectively optimal, this must come at

the the experimenter’s subjective goals, whatever form they take. One such prominent goal

is balance, i.e. differences between the mean of covariates across treatment and control

samples.8

A common tool to improve balance and other subjective performance criteria is the

practice of rerandomization—redrawing an assignment until an acceptable subjective per-

formance is achieved. However, concerns about the effects of rerandomization on the ro-

bustness of inference from RCTs lead many scholars to not report the fact that they have

rerandomized (Bruhn and McKenzie, 2009). When possible scholars often use stratification

or matching to achieve balance. Unfortunately this is often impossible to implement when

stratifying on multiple continuous covariates. As a result rerandomization remains a useful

practical tool. Our framework lets us assess the loss in robustness due to rerandomization,

and suggests a rule of thumb for experimental practice.

4.1 Balance and Rerandomization

Balance. The objective of the decision-maker, as described by (3), can be rewritten as

max
E∈∆(E)

λEE [B(e)] + (1− λ)R(E). (6)

8In practice, unbalanced samples can lead to re-evaluation and criticism of a study’s findings Banerjee et
al. (forthcoming); Gerber and Green (2000); Imai (2005).
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Given some assignment rule α(e, y), term B(e) = Eh0 [u(p, α(e, y))] measures the informa-

tional value of the experimental assignment from the perspective of a Bayesian decision-

maker with prior h0.9 Importantly, it depends on the realized experimental sample. Term

R(E) ≡ minh∈H Eh[u(p, α(e, y))] captures robustness objectives.

In practice, decision-makers frequently express preferences for balanced samples, i.e.,

treatment and control samples with matching distributions of characteristics. This suggests

that decision-makers frequently start from symmetric Laplacian priors. Formally, it corre-

ponds to an objective of the form

B(e) = Γ

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i|τi=1

xi −
∑
i|τi=0

xi

∣∣∣∣∣∣
∣∣∣∣∣∣
 (7)

for some appropriate norm || · || in Rm, and Γ a strictly decreasing function.10

In the analysis that follows, we allow for any bounded balance function B(e). Impor-

tantly, this function can come from any source: an experimenter’s pre-analysis plan, an

implementation partner. . . In fact, the objective function B(e) may be chosen knowing the

charcteristics (xi)i∈{1,··· ,N} of participants.

Rerandomization. Given an integer K, the K−rerandomized experiment EK proceeds as

follows:

1. For a fixed sample of xs drawn according to population distribution q ∈ ∆(X), inde-

pendently draw a set of K assignments {e1, · · · , eK} with each ek = (xi, τi,k) such that

a fraction π ∈ (0, 1) of participants receives treatment τ = 1;

2. Select the assignment e∗K ∈ argmaxe∈{e1,··· ,eK}B(e) that maximizes balance function

B(e), breaking ties randomly;

9A natural assignment rule is α(e, y) ≡ argmaxa∈{0,1} y
a − y1−a.

10Relevant norms include the Mahalanobis distance commonly used in multivariate matching (Rubin, 1980;
Cochrane and Rubin, 1973; Rubin, 1979).
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3. Run the experiment e∗K .

Rerandomization rules may also use a stopping time to endogenously pick the number

of randomizations (Morgan and Rubin, 2012).11 Provided the stopping time has an upper

bound K, all our results apply for this bound.12

Note that it follows from standard arguments based on exchangeability that the asymp-

totic standard error of the Wald estimator is unchanged provided the balance function B is

symmetric.

4.2 A Tradeoff

It is immediate that B(e∗K) first-order stochastically dominates B(e∗K−1). By definition,

rerandomization must mechanically improve balance. The question, therefore, is whether

rerandomization can adversely affect robustness. We show that it can. For simplicity we

consider the focal case where N = |X| and the selection of characteristics (xi)i∈{1,··· ,N} is

fixed, matching the population distribution.

Proposition 4. Consider rerandomized experiment EK. There exists ρ > 0 such that for

every N , if K ≥
(

1
κ

)N
, where κ = min{π, 1− π}, then

max
α

min
h∈H

Eh,EK [u(p, α(e, y))] < min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ρξ.

Intuitively, when K is sufficiently large, the allocation is essentially deterministic, which

by Proposition 3 precludes first-best robustness.13

11One criticism levelled against rerandomization is that it could be more effectively replaced by imposing
ex ante constraints on acceptable assignments, and randomizing within those constraints. This is in principle
a valid point, but doing so requires understanding how the geometry of constraints affects robustness. This
is far from obvious. Some constraints may be equivalent to picking a single experiment, causing significant
losses in robustness.

12Our analysis also extends to resampling procedures for which both the set of participants and the
treatment assignment are redrawn at each step. Interestingly the loss or robustness from resampling may
exceed the loss of robustness from rerandomization. Indeed, further randomizations increase the range of
experimental designs that may be picked by a misguided balance function.

13However, it doesn’t affect inference for a Bayesian, as h0(p | e, y, e ∼ δe) = h0(p | e, y, e ∼ Erct) =
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Quantifying the cost of rerandomization. The number of rerandomizations K needed

to cause fixed losses in robustness is exponential in the sample size. This suggests that the

cost of rerandomization may be quite small for reasonable numbers of assignment draws.

This is the case.

Proposition 5. Given K ≥ 2, consider a rerandomized experiment EK assigning treatment

to a proportion π ∈ (0, 1) of participants. Then,

min
h∈H

Eh,EK [u(p, α(e, y))] ≥ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
−
√

lnK

κN
,

where κ = min{π, 1− π}.

Comparing this with Proposition 3, the additional loss from rerandomization,
√

lnK,

is relatively small: between 1.5 and 3 for sample sizes between 10 and 10,000. Subjective

balance is also established very quickly: K rerandomizations guarantee that the final sample

will be within the group of 5% most balanced samples with probability 1 − 0.95K , and the

improvement in balance falls off relatively quickly. Observing that 1 − 0.95100 > 0.99, we

suggest the following rule of thumb for rerandomization:

Rule of Thumb. Set K = min{N, 100}.

The approach to rerandomization studied in (Morgan and Rubin, 2012) insists on pre-

specifying the balance function ahead of drawing assignments. However it may be difficult

to hierarchize balance priorities ahead of looking at data. In this respect, it is reassuring

that Proposition 5 holds even if the objective balance function B is determined ex post, after

potential assignments are drawn.

This observation leads to an intriguing potential application. Since the choice of an

assignment among K can be performed ex post according to any criterion, it can be delegated

h0(p | e, y, e ∼ EK), where e ∼ δe denotes that e is drawn deterministically, and e ∼ EK denotes e is drawn
according to the K rerandomized experiment EK .
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to other parties without affecting the bound on losses given in Proposition 5. This may

provide experimenters with a useful degree of freedom when bargaining with implementation

partners. Choice among K options may provide implementation partners the sense of control

and legitimacy that standard randomization precludes.14

5 Simulations

We provide two numerical exploration of our results. We begin by considering a well-behaved

case in which treatment effects are continuous with respect to a small number of underlying

characteristics, so that there is limited tension between balance and robustness. We then

turn to a much more discontinuous setting designed to oppose the desire to balance and

robust policy making. The message from both simulations is clear: rerandomization increases

balance with very little to no increase in mistaken decisions.

5.1 Smooth Priors

We consider the following environment. Covariates x are drawn i.i.d. according to
∏5

k=1 U [0, 1],

a five-dimensional uniform distribution. These are mapped to outcomes according to a five-

dimensional unknown parameter µ:

prob(Yi = 1|x) =
exp(µ · x)

1 + exp(µ · x)
.

Parameter µ is drawn according to a five-dimensional truncated normal: µ ∼
∏5

k=1N (0, 1)|[−2,2].

We denote by τ ∗ and α the Bayes optimal assignment of treatmentm and policy choice under

this model.

We report balance — captured by the negative of the L2 norm between mean charac-

14Satisfying implementation partners lead Miguel and Kremer (2004) to assign treatment alphabetically,
leading to the criticism of Deaton (2010). Drawing K samples, and leaving the implementation partner to
choose between them may have been a practical alternative.
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teristics across treatment and control — as well as several efficiency losses of interest (see

Figure 2):

• Bayes Loss given Bayes Optimal Assignment

Eµ,x,τ∗( max
a∈{0,1}

u(p, a)− u(p, α)); (8)

• Loss under worst prior given Bayes optimal assignment

max
µ

Ex,τ∗( max
a∈{0,1}

u(p, a)− u(p, α)); (9)

• Loss under worst prior, and worst assignment τ

max
µ

Ex max
τ

E( max
a∈{0,1}

u(p, a)− u(p, α)). (10)

The ex-ante Bayes expected loss (8), which is essentially identical under randomization

and rerandomization. Loss measure (9) chooses the prior that maximizes the error rate

given the experimental strategy E of the experimenter. While this is substantially higher

than the Bayes expected loss — as expected — it is not substantially different between

randomization and rerandomization. Finally, loss measure (10) stacks the deck against the

experimenter, and assumes that the experimenter has an “evil RA” who chooses the exper-

imental assignment τ from eK that maximizes the expected loss. This has no application

in the case of randomization, but in the case of rerandomization it substantially increases

error rates. However, it is important to note even under this highly unrealistic scenario—the

evil RA must know the data-generating process—the error rate is about one-tenth of 1% for

N ≥ 300.

In the simulations above, we vary K, the number of rerandomizations according to our

rule of thumb, K = min{N, 100}. This suggests that the simulation may be masking some

decision-making cost of rerandomization by increasing N simultaneously. Figure 3 shows

this is not the case by plotting worst-prior loss and balance with K, holding N fixed at 100.

Balance improves substantially, especially for the first 20 rerandomizations, but the error
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Figure 2: Rerandomization substantially increase balance with no cost to robustness.

0

2%

4%

6%

8%

10%

L
o

ss
 C

o
m

p
ar

ed
 t

o
 F

ir
st

−
b

es
t 

(E
rr

o
r 

R
at

e)

10 100 1,000
N (Log Scale)

0

−0.1

−0.2

−0.3

−0.4

−0.5

B
al

an
ce

10 100 1,000
N (Log Scale)

Randomization Rerandomization

Randomization (Worst Prior) Rerandomization (Worst Prior)

Rerandomization (Worst Prior, Evil RA)

Figure 3: Rerandomizaton increases balance with no robustness cost with fixed N .
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5.2 The Case of Non-Smooth Priors

We now consider a environment designed to create a tension between balance and robustness.

Also, we pick assignment τ using balance objective B(e) = −||x̂1 − x̂0||2. Policy is chosen

according to α(e, y) ≡ argmaxa∈{0,1} y
a − y1−a.

The environment invloves a single covariate x ∈ X = {1, 2, . . . , 10,000}. Even covariates

are twice as likely as odd covariates, and the treatment effect is small and negative for even

covariates, and large and positive for odd covariates. Specifically, for n ∈ {1, 2, . . . , 5,000},

q(2n− 1) =
q(2n)

2
=

2

3|X|
, p1

2n−1 = 4p0
2n−1 =

4

5
, and p1

2n =
p0

2n

2
=

1

4
,

Thus, on aggregate, u(p, 1) = 13
30
> 2

5
= u(p, 0), so treatment is beneficial, and α = 1 is

the “correct” decision. This setup is meant to make attempts to balance the sample likely

to cause inferential mistakes—balancing will tend to pair odd observations with the more

numerous even observations, which are not an appropriate comparison group.15

Figure 4 examines the error rates and balance according to (7), using the l1 norm, of

randomization and rerandomization. As can be seen in the first panel, all three give roughly

the same error rate. This is because the chosen balance function, B(e), in these simulations

is very unlikely to select a more biased sample allocation. While in any specific application

the interaction of the model parameters and the balance function may produce different

results, it appears quite difficult to find a balance function that 1) might actually be used

and 2) is particularly pernicious.

On the other hand, once again, rerandomization substantially improves the balance of

the samples. This is particularly true for small and moderate sample sizes, up to the order

of 1,000, although even with 10,000 participants there is an improvement in balance, even

though we only re-draw the experimental allocation 100 times.

15Indeed, using pairwise matching to assign treatment and control status increases inferential errors, but
does so equally for randomization and rerandomization
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Figure 4: Rerandomization substantially increase balance with no cost to robustness.
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6 Conclusion

We show that the observed variety in experimentation behavior is well captured by a model

of experimentation by an ambiguity averse decision maker who trades-off subjective perfor-

mance and robustness. We illustrate the practical value of such a framework by clarifying

the trade offs involved in rerandomization. We establish two main sets of results.

First, randomization is always optimal for sufficiently large sample sizes, since it lead to

approximately efficient policy decisions in a prior-free way. Inversely, deterministic experi-

ments maximizing the value of individual data points are optimal when the sample size is

low, and when concerns of robustness are limited.

Second, rerandomization creates a trade-off between balance and robustness: it improves

balance, but can cause significant losses in robustness when the sample size grows very large.

Still, we are able to show that losses in robustness grow very slowly with the number K of

assignments drawn during rerandomization. This lets us propose a simple rule of thumb for

rerandomization in practice. In addition, it suggests that rerandomization may be a way
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to find compromises between the experimenter’s value for robust decision making, and the

wishes of implementation partners.

In Banerjee et al. (forthcoming) we make an informal use of this framework to discuss

other aspects of experimental design, including registration, pre-analysis plans, and external

validity .

Appendix

A Proofs

Proof of Lemma 1: By the Minimax Theorem (Luenberger, 1969), the decision-maker’s

indirect utility from running experiment E , can be written as

V (E) ≡ max
α∈A

U(E , α) = max
α∈A

min
h∈H′

Eh,E [u(p, α(e, y))]

= min
h∈H′

max
α∈A

Eh,E [u(p, α(e, y))]

Given h, the decision-maker’s payoff from running experiment E can be written as

max
α∈A

Eh,E [u(p, α(e, y))] = max
α∈A

∑
e∈E

E(e)Ep∼h

[∑
y∈Y

prob(y|p, e)u(p, α(e, y))

]

=
∑
e∈E

E(e)
∑
y∈Y

max
a∈{0,1}

Ep∼h [prob(y|p, e)u(p, a)]

=
∑
e∈E

E(e)v(h, e),

where v(h, e) ≡
∑

y∈Y maxa∈{0,1} Ep∼h [prob(y|p, e)u(p, a)]. Since v(h, e) = v(h, e′) ≡ v(h, [e])

for all e′ ∈ [e], it follows that V (E) = minh∈H′
∑

[e]∈[E] E([e])v(h, [e]). Thus, if E and E ′ induce

the same distribution over [E], V (E) = V (E ′). �
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Proof of Proposition 2: We beign by showing that argmax[e]∈[E] v(h0, [e]) is generically

a singleton for λ = 1. We first show that the set of priors h0 such that there is a uniquely

optimal equivalence class of experiments is open. Suppose that [e0] is uniquely optimal under

h0. Since E is finite, there exists η > 0 such that v(h0, [e]) < v(h0, [e0])− η for all [e] 6= [e0].

Since v(h, e) is continuous in h, this implies that there exists a neighborhood H0 of h0 such

that, for all h ∈ H0, v(h, [e]) < v(h, [e0]) − η/2. Hence, [e0] is the uniquely optimal design

for all priors h ∈ H0.

We now prove that the set of priors h0 such that there is a uniquely optimal equivalence

class of experiments is dense. The proof is by induction on the number of equivalence classes

[e0] in argmax[e]∈[E] v(h0, [e]). We show that if there exist n such equivalence classes, then in

any neighborhood of h0 there exists a prior h such that there are at most n− 1 equivalence

classes in argmax[e]∈[E] v(h, [e]).

Indeed, assume that [e0] 6= [e1] both belong to argmax[e]∈[E] v(h0, [e]). For θ > 0, consider

the polynomial Mθ(p) in p ∈ P defined by

Mθ(p) = v ((1− θ)h0 + θp, [e0])− v ((1− θ)h0 + θp, [e1]) ,

where (1− θ)h0 + θp denotes the mixture probability measure that places mass 1− θ on h,

and mass θ on the Dirac mass at p. Since [E] is finite, for all θ > 0 small enough, it must

be that

argmax
[e]∈[E]

v((1− θ)h0 + θp, [e]) ⊂ argmax
[e]∈[E]

v(h0, [e]).

Consider such a θ > 0. The fact that [e0] 6= [e1] implies that Mθ(p) is not identically equal

to 0. Hence, there exists p such that v ((1− θ)h0 + θp, [e0]) 6= v ((1− θ)h0 + θp, [e1]). This

implies that the inductive step holds at prior h̃ = (1 − θ)h0 + θp. Using the fact that

[E] is finite and v(h, [e]) is continuous in h, this implies that the inductive step holds at a

prior that admits a density against the Lebesgue measure. Thus, when λ = 1, deterministic

experiments are generically strictly optimal.
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We now consider the case of λ < 1. Given any λ, h, and [e], since the decision-maker’s

utility only takes values in [0, 1], letting α0 ∈ argmaxα∈A Eh0,e[u(p, α(e, y))] we have

v(λh0 + (1− λ)h, [e]) ≤ λv(h0, [e]) + (1− λ)v(h, [e]) ≤ v(h0, [e]) + (1− λ) and

v(λh0 + (1− λ)h, [e]) ≥ λv(h0, [e]) + (1− λ)Eh,e[u(p, α0(e, y))] ≥ v(h0, [e])− (1− λ).

As there are finitely many experiments, if [e0] is the unique maximizer of v(h0, [e]), there

exists η > 0 such that, for all [e] 6= [e0], v(h0, [e0]) > v(h0, [e]) + η. Together, this implies

that there exists λ ∈ (0, 1) such that, for all λ > λ, objective (3) is maximized at E if and

only if supp E ⊂ [e0]. �

Proof of Proposition 3: To establish point (i) we use the strategy (Erct, αrct) such that

• Erct consists of samplingN participants with covariates independently drawn according

to q and assigning treatments τi = 1i≤N/2;

• αrct(e, y) ≡ 1ŷ1>ŷ0 , where ŷτ is the sample average of outcomes among participants

with treatment status τ .

Losses L(p) from first best, given state of the world p, are defined as

L(p) ≡ max
a∈{0,1}

pa − Ep,Erct
[
p1y1−y0>0

]
.

By symmetry, it suffices to treat the case where p1 − p0 > 0. In this case, we have L(p) =

(p1 − p0)probp,Erct(y
1 − y0 ≤ 0). The probability of choosing the suboptimal policy can be

bounded using McDiarmid’s inequality.1 By applying McDiarmid’s inequality to f(y) ≡
1McDiarmid’s (1989) inequality can be stated as follows. Let X1, . . . , Xn be independent random vari-

ables, with Xk taking values in a set Ak for each k. Suppose that the (measurable) function f : ×kAk → R
satisfies |f(x) − f(x′)| ≤ ck whenever x and x′ differ only in the kth coordinate. Then, for any t > 0,
prob (f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t) ≤ exp

(
−2t2/

∑
k c

2
k

)
.
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2
N

∑N/2
i=1 y

0
i+N/2 − y1

i , we obtain

probp,Erct(y
1 − y0 ≤ 0) = probp,Erct

(
ŷ0 − ŷ1 − (p0 − p1) ≥ (p1 − p0)

)
≤ exp

(
−(N/2)(p1 − p0)2

)
.

For any a > 0, x 7→ x exp(−ax2) is log-concave and maximized at x = (2a)−1/2. This

implies that

max
a∈{0,1}

pa − Ep,Erct
[
p1y1−y0>0

]
≤
√

ln 2

N
. (11)

An analogous argument delivers (11) also for the case where p1 − p0 ≤ 0. Hence, given

any h ∈ H,

Eh
(

max
a∈{0,1}

u(p, a)

)
− Eh,Erct [u(p, αrct(e, y))] ≤

√
ln 2

N
.

To establish point (ii), fix a deterministic experiment e ∈ E. From Assumption 2, there

exists h ∈ H such that for almost every pe,

min

{
Eh
[

max
a∈{0,1}

pa − p0
∣∣pe] , Eh [ max

a∈{0,1}
pa − p1

∣∣pe]} > ξ. Hence,

max
α

Eh,e [u(p, α(e, y))] ≤ Eh,e
[

max
a∈{0,1}

Eh,e [u(p, a)|pe]
]

≤ Eh,e
[

max
a∈{0,1}

u(p, a)

]
− ξ.

�

Proof of Proposition 4: Fix any e† ∈ argmaxe∈supp EK B(e). Since the assignment of

covariates is fixed, the kth rerandomized trial, k ∈ {1, . . . , K}, selects each experiment in its

support with probability at least r ≡ πN , where π ≡ min{π, 1 − π} ≤ 1/2. Therefore, the

odds of rerandomization picking experiment e† are at least ρ ≡ 1− (1− r)K . For K ≥ 2N ,

ρ = 1− exp(K ln(1− r)) ∼ 1− exp(−Kr) ≥ 1− 1/ exp 1 > 0.
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Hence, there exists ρ > 0 such that, for all N , rerandomized experiment EK selects deter-

ministic experiment e† with probability at least ρ.

The proof of Proposition 3 implies that there exists h† ∈ H such that

∀e ∈ E, max
α∈A

Eh†,e[u(p, α(e, y))] ≤ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
,

and max
α∈A

Eh†,e† [u(p, α(e†, y))] ≤ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ξ.

Hence, max
α∈A

min
h∈H

Eh,EK [u(p, α(e, y))] ≤ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ρξ.

�

Proof of Proposition 5: Denote by (y0,k, y1,k) the sample average of outcomes by treatment

group for experiment ek, and by (y∗0, y
∗
1) the sample average of outcomes by treatment group

for the experimental design e∗K selected by rerandomized experiment EK .

Losses L(p) from first best given state of the world p are defined as L(p) ≡ maxa∈{0,1} p
a−

Ep,EK
[
p
1y∗1−y∗0>0

]
. By symmetry, it suffices to treat the case where p1 − p0 > 0. In this case,

we have

L(p) = (p1 − p0)probp,EK (y∗1 − y∗0 ≤ 0)

≤ (p1 − p0)probp,EK

(
min

k∈{1,...,K}
y1,k − y0,k ≤ 0

)
≤ (p1 − p0) min

{
1,

K∑
k=1

probp,EK (y1,k − y0,k ≤ 0)

}

≤ (p1 − p0) min
{

1, K exp
(
−2π(1− π)(p1 − p0)2N

)}
≤ (p1 − p0) min

{
1, K exp

(
−κ(p1 − p0)2N

)}
,

where the second-to-last step used McDiarmid’s inequality (McDiarmid, 1989), already in-

voked in the proof of Proposition 3, applied to f(y) ≡ y0,k − y1,k, and the last step follows

from 2π(1− π) ≥ κ ≡ min{π, 1− π}.
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We have that K exp(−κ(p1 − p0)2N) ≤ 1 ⇐⇒ p1 − p0 ≥
√

ln(K)
κN

, which implies that

L(p) ≤

 p1 − p0 if p1 − p0 <
√

ln(K)
κN

,

K(p1 − p0) exp(−κ(p1 − p0)2N) if p1 − p0 ≥
√

ln(K)
κN

.
(12)

The mapping x 7→ x exp(−κNx2) is ln-concave and maximized at x =
√

1
2κN

. Since K ≥ 2,

we have that
√

ln(K)
κN
≥
√

1
2κN

, which implies that both terms on the right-hand side of (12)

are maximized at p1 − p0 =
√

ln(K)
κN

. This implies that indeed L(p) ≤
√

ln(K)
κN

. Identical

reasoning applies in the case where p1 − p0 < 0. �
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