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Abstract

Over 100,000 refugees are permanently resettled from refugee camps to hosting
countries every year. Nevertheless, refugee resettlement processes in most countries
are ad hoc, accounting for neither the priorities of hosting communities nor the prefer-
ences of refugees themselves. Building on models from two-sided matching theory, we
introduce a new framework for matching with multidimensional constraints that mod-
els refugee families’ needs for multiple units of different services, as well as the service
capacities of local areas. We propose several refugee resettlement mechanisms that
can be used by hosting countries under various institutional and informational con-
straints. Our mechanisms can improve match efficiency, incentivize refugees to report
where they would like to settle, and respect localities’ priorities, thereby encouraging
localities to accept more refugees overall. Beyond the refugee resettlement context, our
model has applications ranging from allocating daycare slots to incorporating complex
diversity constraints in public school assignment.
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Business and Economics and the Centre for Market Design at the University of Melbourne. Kominers is
grateful for the support of National Science Foundation grants CCF-1216095 and SES-1459912, the Harvard
Milton Fund, the Ng Fund of the Harvard Center of Mathematical Sciences and Applications, and the Human
Capital and Economic Opportunity Working Group (HCEO) sponsored by the Institute for New Economic
Thinking (INET). Teytelboym is grateful for the support of the Skoll Centre for Social Entrepreneurship at
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1 Introduction

By the end of 2015, there were 65.3 million people displaced by conflict around the world—

the highest level ever recorded (UNHCR, 2016). Over 16 million of these forcibly displaced

people are deemed to be refugees under the mandate of the United Nations High Commis-

sion for Refugees (UNHCR). Half of these refugees come from just three countries: Syria,

Afghanistan, and Somalia.1

In recent years, following escalating conflict in the Middle East, the influx of refugees

into Europe has drastically increased. In 2015, a million people arrived in Greece and Italy,

seeking asylum in Europe (International Organization for Migration, 2015). Germany, for

example, experienced one of the highest influxes of migrants in its post-war history—and for

the first time since records began, the number of its non-European migrants exceeded the

number of European migrants (Statistisches Bundesamt, 2016).

Given the unprecedented current scale of refugee arrival, existing policies designed to

manage refugee flows have effectively collapsed. The Dublin III regulation—requiring that

“irregular” refugees must be processed in the first European Union (EU) country in which

they arrive—has been effectively abandoned.2 Consequently, numerous countries within

the EU and elsewhere have begun to reconsider the systems they use to register, process,

and allocate refugees to local areas.3 Economists, refugee specialists, and policymakers are

1In international law, the term refugee was defined by the 1951 UN Convention Relating to the Status of
Refugees to mean anyone who has left his or her home owing “to a well-founded fear of persecution because
of his/her race, religion, nationality, membership in a particular social group, or political opinion.” More
recently, the definition has been expanded to include those fleeing natural and man-made disasters. Refugee
status is envisioned to be temporary, but the majority of refugees spend years in camps and temporary
settlements in developing countries without residence rights or work permits. There are also 5.2 million
Palestinian refugees registered by the United Nations Relief and Works Agency for Palestine Refugees in the
Near East (UNRWA). An asylum seeker, on the other hand, is someone whose claim for refugee protection
has not been evaluated by any country or by the UNHCR. Those who arrive during a mass movement of
people due to conflict are referred to as prima facie refugees. In this paper, we will use the term “refugee” to
refer to any person who is explicitly or implicitly granted legal sanctuary in another country for any reason.

2Article 13(1) of the EU Parliament and Council Regulation 604/2013 of 26 June 2013 states that “Where
it is established, on the basis of proof or circumstantial evidence [. . . ], that an applicant has irregularly crossed
the border into a Member State by land, sea or air having come from a third country, the Member State thus
entered shall be responsible for examining the application for international protection. That responsibility
shall cease 12 months after the date on which the irregular border crossing took place.” But on 21 August
2015 it was reported that “Germany’s Federal Office for Migration and Refugees (BAMF) suspended the
otherwise obligatory examination which tests whether asylum seekers first entered the EU in another member
state and whether they should be returned to that country” (Dernbach, 2015).

3Most asylum seekers are held in detention centers until their refugee status applications have been
approved. If a refugee’s asylum claim is approved, that refugee is granted formal (i.e., legal) refugee status
and released. (If a refugee’s asylum claim is not approved, that refugee is usually deported.) Many countries
provide asylum seekers who have been granted refugee status with accommodation and welfare support, via
a process known as “dispersal”. The insights in this paper can also be applied directly to refugee dispersal
schemes.
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developing a number of promising solutions for sharing the burden of refugee resettlement

across countries, including tradeable quota systems (Schuck, 1997; Moraga and Rapoport,

2014).

The UNHCR estimates that around one million refugees will not be able return to their

country safely in the future.4 These are some of the most vulnerable refugees in the world:

a third are fleeing persecution, a quarter are survivors of torture, and a tenth are women

and girls at risk of violence (UNHCR, 2016). UNHCR deems these refugees eligible for

resettlement in states that agree to give them permanent residence.5 Most resettlement

places are provided by the United States, Canada, Australia, and the Nordic countries. But,

in 2015, just 134,000 files were submitted by the UNHCR for resettlement and governments

reported that 107,000 refugees were resettled of whom 81,000 were resettled with UNHCR’s

assistance (UNHCR, 2016). In fact, in any given year over the past decade only around ten

percent of refugees who are in need of resettlement were actually resettled.

There is, therefore, a huge shortage of resettlement places. Yet, despite this shortage, a

recent UNHCR report notes that since 2009:

“. . . the total annual number of resettlement country places. . . were not fully

utilized” (UNHCR, 2015, p. 23)

Not only are resettlement places being wasted but also little attention has been paid

to the process of determining which refugees ought be resettled to which local areas in

the hosting country. This is despite ample evidence that the local area (or locality, for

short) to which refugees are initially matched matters a great deal for the refugees’ lifetime

outcomes (Åslund and Rooth, 2007; Åslund and Fredriksson, 2009; Åslund et al., 2010, 2011;

Damm, 2014; Feywerda and Gest, 2016). Most countries have historically treated refugee

resettlement as a purely administrative issue, and as such have not developed systematic

resettlement policies—much less, transparent ones. But there is a growing consensus that

the role of resettlement in refugee protection needs to be drastically expanded. In September

2016, following the first-ever heads-of-state UN summit on refugees, 50 countries pledged to

resettle at least 360,000 refugees in 2017, tripling the figure of 2016 (BBC, 2016b). In

this paper, we take the process of allocating of refugees to localities seriously, introducing

and analyzing several matching market design approaches that balance competing welfare,

incentive, and stability objectives, while being mindful of computational constraints.

4This number is projected to rise to 1.19 million in 2017, a fifty percent increase since 2012 (UNHCR,
2016).

5In the past, the international community has often managed to react quickly to humanitarian crises
by instituting rapid and comprehensive resettlement programs. Examples of rapid resettlement include 2.5
million Indochinese refugees to a number of Western states between 1975-1977 and 60,000 Bhutanese refugees
who left Nepal for the US in 2006.
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Importance of matching market design in refugee resettlement

One simple policy goal is to try and maximize refugees’ welfare based on the observable

characteristics of refugees and local areas. This approach allows us, for example, to maximize

the total number of families resettled, but it does not account in any way for the refugees’

personal preferences over hosting communities. Refugees’ preferences matter for two rea-

sons. First, refugees have information about their own aspirations, which can affect the

match quality—and which cannot be directly observed by government authorities.6 Second,

government agencies spend significant upfront resources on integrating refugees into local

communities; those resources are effectively wasted if refugees leave their assigned localities

soon after arrival.7 Consequently, at least in the early stages of the resettlement process, pol-

icymakers want to minimize internal migration of refugees away from their initially assigned

localities. The priorities and hosting capacities of localities matter, too. This is particularly

salient when the participation of localities in resettlement is voluntary, in which case giving

localities a say might serve as an additional incentive to participate. Localities are more

likely to follow through on their promises to host refugees if they have some control over

which refugees they would be expected to host.

All three of the aforementioned policy scenarios have played out in the recent British

program to resettle Syrian refugees. The United Kingdom is similar to other popular re-

settlement destinations such as Australia, Canada, and the United States, in that it is

geographically remote and thus largely able to control overall refugee entry. When the UK

dramatically increased its target for resettling Syrian refugees in 2015, the Home Office’s

focus was on developing and unifying technological solutions to organize and process assign-

ment, without any specific attention to refugees’ preferences and localities’ priorities.8 After

early numerical targets have been hit, the Home Office has begun to turn its attention to

more systematic matching, in order to both enhance welfare and reduce difficult-to-track in-

ternal migration which could undermine the willingness of localities to participate. Initially,

localities around the UK showed a lot of willingness to host refugees and dozens volunteered

to accept them. However, anti-immigration tensions in the UK have since been increasing—

especially after the British referendum to leave the EU—and the Home Office might have

to focus on locality priorities in order to entice more localities into participating. In our

work, we follow the evolution of the Syrian refugee resettlement policy in the UK, describing

6For example, a refugee might be keen to retrain or start a business.
7One such investment is language classes for children and adults.
8The scheme was originally envisioned to have two stages: “Phase one has the task of immediately

scaling up the existing resettlement program and phase two will work towards transforming our resettlement
and protection offer, including developing ideas for community sponsorship as per the Home Secretary’s
commitment” (Home Office, 2015, p. 2).
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the appropriate matching market design solution at each step. As we show, our insights are

valuable both for designing new resettlement programs and for improving existing ones.

Contribution of this paper

This paper proposes seven mechanisms that hosting countries can use for refugee reset-

tlement under different informational and institutional constraints. Our work draws upon

classical matching mechanisms from contexts such as public school choice. In a standard

school choice model, there is a number of schools with different numbers of seats.9 However,

refugee resettlement requires us to take into account a feature that has not been present in

previous matching market design applications: a refugee family not only takes up a house in

a particular locality, but also a certain number of units of different public services, such as

school seats, hospital beds, slots in language classes, and employment training programmes.

Thus, there are explicit multidimensional constraints that limit the central authority’s abil-

ity to allocate refugees to localities simply on the basis of housing needs. These additional

constraints render most standard matching mechanisms for allocation of objects, houses, or

school seats insufficient for refugee resettlement.

In the case in which neither preferences nor priorities are taken into account, our set-

ting can be analyzed as an integer program called the “multiple multidimensional knapsack

problem”. We show how to apply the “branch-and-bound method”, familiar in operations re-

search and combinatorial optimization, to find an exact solution to this problem (Proposition

1).

In the case where the social planner fully incorporates the preferences of refugee fami-

lies, we show that the Multidimensional Top Trading Cycles (MTTC) algorithm—a slight

modification on the classical Top Trading Cycles (TTC) algorithm of Shapley and Scarf

(1974)—allows us to incorporate multidimensional capacities of localities and housing con-

straints and obtain a Pareto-efficient mechanism in which refugee families do not have any

incentive to misreport their preferences (Proposition 2). However, the social planner may

not want to rely entirely on the preferences of refugee families to determine the allocation.

Instead the planner might start with an exogenous tentative allocation of families to locali-

ties: For example, the maximal outcome that has been obtained from the integer program.

We show that in this case the TTC algorithm fails because some Pareto-improving trading

cycles might be infeasible. Moreover, obtaining a Pareto-efficient outcome without matching

9Students have heterogeneous preferences over schools and schools have priorities over students (having a
sibling or living in the neighborhood typically gives students a higher priority). The social planner’s objective
is to elicit truthful preferences over schools from students (schools are assumed to be non-strategic and school
seats are treated as objects) and to deliver an efficient matching of students to schools in which no student
envies another student’s seat. Importantly, in school choice, one student takes up one school seat.
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any refugee family to a locality it likes less than its match in the maximal outcome imposes a

huge computational burden. In this case, we propose a Serial Multidimensional Top Trading

Cycles (SMTTC) algorithm that reduces waste and finds simple Pareto-improving cycles in

a strategy-proof way (Proposition 3).

When priorities of localities also need to be taken into account as part of the design,

new trade-offs arise unless these priorities are identical (Proposition 4). In particular, stable

outcomes—i.e. outcomes that fully respect the priorities of localities and the preferences

of refugees—may not exist.10 For this case, however, building on insights by Delacrétaz

(2014), we are able to develop an algorithm which finds a stable outcome—whenever such

an outcome exists—that is Pareto-undominated for the families by any other stable outcome

(Proposition 5).

In general, determining whether a stable outcome exists in our model is a computationally

intractable problem. For that reason, we introduce an alternative solution concept called

quasi-stability. Quasi-stable outcomes ensure that a family can only block an outcome if

the family is not the lowest priority among families matched to the desired locality. We

show that family-optimal quasi-stable outcomes can be found via a modification of the

classical Deferred Acceptance (DA) algorithm (Gale and Shapley, 1962), which we call the

Priority-Focused Deferred Acceptance (PFDA) algorithm (Proposition 6). However, unlike

in contexts such as school choice, this modification of the DA algorithm is manipulable,

except under low information conditions (Proposition 7). To address this, we also develop a

benchmark strategy-proof and quasi-stable mechanism, called the Maximum Rank Deferred

Acceptance (MRDA) algorithm (Proposition 8). When looking for quasi-stable outcomes,

we show that there is a clear trade-off between truth-telling incentives and efficiency.

Relationship to prior work

Matching markets for refugee resettlement were first proposed by Moraga and Rapoport

(2014) as a part of a system of international refugee quota trading (Schuck, 1997). In

the international context of matching refugees to countries, however, the refugee matching

market is “thick”—any country can be expected to host any family up to its capacity—

and can be reasonably modeled as a standard school choice problem (Abdulkadiroğlu and

Sönmez, 2003). Jones and Teytelboym (2016) introduced the idea of refugee resettlement

matching in the national context and pointed out the multidimensional constraints and the

thinness of matching markets that arise on the local level. The theory we develop in this

paper will allow us to realize Jones and Teytelboym’s (2016) ideas for local refugee matching.

10In one-sided object allocation settings such as school choice, stability is often referred to as “elimination
of justified envy” (Abdulkadiroğlu and Sönmez, 2003), or simply as “fairness” (Balinski and Sönmez, 1999).
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Our work draws upon and contributes to the applied literature on the design and im-

plementation of matching mechanisms. The most closely related literature has focused on

design of many-to-one markets in which agents on one side take up individual slots made

available by the other side: doctors take up individual residencies at hospitals (Roth, 1984a);

children occupy individual seats at schools (Balinski and Sönmez, 1999; Abdulkadiroğlu and

Sönmez, 2003); families move between individual houses (Abdulkadiroğlu and Sönmez, 1999);

and cadets serve in individual slots in their branches of service (Sönmez and Switzer, 2013).

Even when agents take up slots at multiple levels—as in the Japanese residency match, in

which doctors not only occupy slots at hospitals but also count against regional quotas (Ka-

mada and Kojima, 2015)—the slots are assumed to have a hierarchical structure.11 With

appropriate conditions on the preferences of the two sides, such as “responsiveness” (Gale

and Shapley, 1962; Crawford and Knoer, 1981; Roth, 1985; Roth and Sotomayor, 1989, 1990)

or “substitutability” (Kelso and Crawford, 1982; Roth, 1984b; Hatfield and Milgrom, 2005),

these many-to-one matching markets always have a lattice of stable outcomes. In our setting,

because refugee families may take up several units of different services, we cannot ensure the

existence of stable outcomes—and thus, we are unable to directly apply classical matching

technologies and mechanisms. In fact, even determining whether stable outcomes exist in

our model can be computationally intractable (McDermid and Manlove, 2010).

Our work thus contributes to a growing literature that proposes matching mechanisms

for settings in which stable outcomes may not exist. The most famous example is matching

with couples in the National Resident Matching Program (NRMP), in which residents may

view jobs in nearby hospitals as complementary (Roth and Peranson, 1999; Klaus and Klijn,

2005; Klaus et al., 2007; Haake and Klaus, 2009). There are a number of algorithms that

can find stable matchings in the couples model whenever they exist (Echenique and Yenmez,

2007; Kojima, 2015). However, the structure of our problem is different to the matching

with couples problem since the barriers to stability in our context arise from the constraints

on the locality (hospital) side, rather than from the family (doctor) side (as in the couples

problem). Stable outcomes also do not exist in general in the market for trainee teachers

in Slovakia and Czechia, where teachers are expected to teach two out of three subjects

and schools have capacities for each subject (Cechlárová et al., 2015). Another difficult case

for market design has been matching with minimum quotas, in which stable outcomes also

typically do not exist (Goto et al., 2014; Fragiadakis et al., 2016). Milgrom and Segal (2014)

study an auction setting in which mobile network operators have arbitrary preferences over

sets of TV stations that supply spectrum bandwidth, and the allocation must satisfy complex

11So whenever a resident takes up a place in a hospital, she would also take up a place in the region in
which the hospital is located.
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interference constraints. The main difference between our setting and that of (Milgrom and

Segal, 2014) is that we limit localities (which correspond to mobile network operators in

their context) to have responsive preferences, while allowing refugees (TV stations in their

context) to have heterogeneous preferences over localities (rather than only caring about

compensation as in their context).

Even when stable matchings exist in our setting, respecting preferences and priorities

through stability may create significant welfare losses in strategy-proof mechanisms (Ab-

dulkadiroğlu et al., 2009; Erdil and Ergin, 2008; Kesten, 2010). We seek to strike a balance

between stability and efficiency goals: the Top Choice algorithm that we propose is manip-

ulable, but it ensures that any stable outcome it finds is Pareto-undominated for families by

any other stable outcome. On the other hand, when we use quasi-stability as our solution

concept, insisting on strategy-proofness can come at a high cost to efficiency.

In many matching market design settings, such as school choice in New Orleans or housing

allocation, in which efficiency is prioritized over stability by the social planner, the Top

Trading Cycles algorithm (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003) or

its modifications (Pápai, 2000; Dur and Ünver, 2015) are used instead of stable mechanisms.

Pycia and Ünver (2016) show that in settings where agents have single-unit demands over

objects, all Pareto-efficient mechanisms that cannot be manipulated by a group of agents

can be represented in terms of a general class of Trading Cycles mechanisms. Interestingly,

in school choice settings, these variations on Top Trading Cycles usually have the same

properties irrespective of the initial endowment. In our case, this is no longer true because

not all trading cycles are feasible. Hence, when we start from an exogenous allocation of

refugees to localities, achieving Pareto efficiency without violating individual rationality,

strategy-proofness or imposing a huge computational burden is not always possible.

Finally, our paper is related to market design applications in which the size or the aggre-

gate quality of the overall matching matters. One such example is kidney exchange, in which

maximizing the total number of kidneys exchanged for donation is of first-order importance

(Roth et al., 2004, 2005a,b, 2007). Maximizing the number of high-quality matches is also a

priority in adoption exchanges (Slaugh et al., 2016). More recently, and sharing some moti-

vation with our work, Andersson and Ehlers (2016) examine a market for allocating private

housing to refugees in which landlords have preferences over refugee family size and native

language. They show that as long as landlords prefer larger families compatible with their

home sizes, stable and maximal matchings can be found. Krysta and Zhang (2016) have

examined a similar housing market, but with knapsack constraints.12

12In fact, a number of papers use optimization techniques, such as linear and integer programming, to
find welfare-maximizing outcomes of many-to-one matching markets (Roth et al., 1993; Bäıou and Balinski,
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The remainder of the paper is organized as follows. In Section 2, we describe the in-

stitutional context of the Syrian Vulnerable Persons Resettlement Programme in the UK.

We describe the formal model in Section 3 and introduce a running Example that we use

throughout. In Section 4, we show how the case in which neither preferences nor priorities

are taken into account can be solved as a multiple multidimensional knapsack problem. In

Section 5, we explain how two variations on the Top Trading Cycles algorithm can fully

incorporate preferences of refugees. In Section 6, we present four solutions to the case where

localities priorities need to be respected as well. We point out the tradeoffs between the

mechanisms in Section 7. In Section 8, we describe how our model can be applied to other

large resettlement programs and in Section 9 we illustrate the applicability of our model

beyond the refugee resettlement context. We conclude and offer suggestions for future work

in Section 10. In the Appendix, we recap the entire running Example (A), provide all proofs

(B), give a technical description of the Top Choice algorithm (C), and supply additional

examples of our mechanisms at work (D).

2 Institutional context

In January 2014, the British government launched the Syrian Vulnerable Persons Reset-

tlement (VPR) Programme alongside the UNHCR resettlement programme in order to aid

efforts to resettle refugees fleeing the civil war in Syria. On September 7, 2015, the former

British Prime Minister David Cameron announced that the United Kingdom would extend

this programme and resettle 20,000 refugees in Britain by 2020. By June 2016, 2,800 Syrians

had been resettled in Britain (UNHCR, 2016).

In the UK, the powers of refugee resettlement (like many other powers, including health-

care and education) are devolved from Westminster (the central government) to Wales,

Scotland and Northern Ireland. In England, where the bulk of the resettlement is expected

to happen, local administration takes place at the level of 353 Local Authorities (LAs).13

LAs are responsible for the disbursement of social benefits, the provision of social housing,

primary and secondary education, waste collection and local amenities such as parks and

2000; Sethuraman et al., 2006; Featherstone, 2014; Ashlagi and Shi, 2015; Bodoh-Creed, 2016).
13These administrative local government units (that we refer to as localities following this section) go by

different names, such as “counties”, “districts” and “boroughs”, depending on their location and history.
For unitary authorities, all local governments duties are located under one roof whereas counties and dis-
tricts/boroughs usually split their duties: for example, counties are in charge of police, while housing would
be under the purview of districts/boroughs. For the purposes of this paper, these distinctions are irrelevant
as ultimately we are only concerned with the provision of a service in a particular area. From the perspective
of residents, all levels of government cooperate seamlessly to deliver a full range of services. Scotland, Wales
and Northern Ireland have similar systems of local government.
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libraries.

Throughout the UK, the participation of LAs in the Syrian VPR is voluntary. At the out-

set, dozens of LAs declared their intention to host Syrian refugees.14 Meeting the government

target, however, is likely to require participation of many more LAs.

Syrian refugees who come to Britain are granted five-year leave to remain (after which

they would be eligible to apply for permanent residence) and are given full access to public

services. They are free to move to any part of the UK. Most refugees are housed in private

accommodation and their rent is supported by the centrally administered housing benefit.

State-run schools are also free, and school places are allocated by sibling and catchment area

priority via popular school choice mechanisms (Pathak and Sönmez, 2013). Healthcare in

Britain is publicly funded and free at the point of use to any UK resident. Thus, most of the

longer-run costs of refugee resettlement—housing, unemployment and disability benefits,

healthcare and education—are borne by the state. However, short-run costs—including

language support, welfare, community support, and help with finding local employment—

fall on LAs.15 It is not surprising therefore that LAs prefer to accept only the refugees that

they can support well. Likewise, it is natural that each LA wants the refugees it supports

to remain local, instead of moving away—otherwise the LA’s fixed costs are wasted.

As with other resettlement schemes, refugee families who have expressed a wish to be

resettled are referred to British authorities by the UNHCR.16 The British government then

reviews the files, including medical records, and carries out its own security and background

checks as well as interviews. The typical family size is six and the Home Office endeavours

14By April 2016, 71 LAs in England had accepted refugees, as have half of Scottish LAs. One third of all
refugees on the Syrian VPR scheme came to Scotland (House of Commons Library, 2016).

15According to leaked government documents, the first-year costs of resettlement to LAs themselves are
estimated to be £8,520 per person. The central government also expects to cover £12,700 in social benefits
per adult, £5,500 for a child’s schooling and £2,200 in medical expenses (Dedman, 2015) per person. LAs
are compensated in full for their resettlement costs in the first year (House of Commons Library, 2016),
but are expected to shoulder costs in subsequent years. With sunk costs of resettlement behind them and
some refugees at work, costs after the first year may be significantly lower, but the evidence of what these
costs actually are is still lacking. The recent government initiative for community sponsorship suggests that
sponsors should plan to provide funding of £4,500 per adult per year which is supposed to cover “the initial
provision of cash on arrival and to fund English language tuition and interpretation costs” (Home Office,
2016b).

16“The UNHCR identifies people in need of resettlement based on the following criteria: women and girls at
risk; survivors of violence and/or torture; refugees with legal and/or physical protection needs; refugees with
medical needs or disabilities; children and adolescents at risk; persons at risk due to their sexual orientation
or gender identity; and refugees with family links in resettlement countries. Individuals are not specifically
identified for resettlement based on their membership of Yazidi, Druze, Christian or other communities but
members of those communities may well meet one of the other vulnerability criteria set out by UNHCR.
The UNHCR identifies and proposes Syrian refugees for the Vulnerable Persons Scheme scheme from among
the whole of the registered refugee population in the region, over 4 million people. This includes people in
formal refugee camps, informal settlements and host communities.” (House of Commons Library, 2016)
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to keep all families together via linked independent applications: .17 The file is then sent

to the Home Office which matches the suitable accommodation supplied by LAs. Refugees

have no say as to where in Britain they go, and LAs often refuse to take certain applicants.

What counts as “suitable” accommodation might vary from one LA to another.18 Once

accommodation has been found and the LA is ready to receive a given refugee family, the

family is informed about where it is going and the Home Office arranges transport. To

reduce costs, the Home Office usually charters flights that carry several dozen families. The

referral and application process typically takes between six weeks and three months.19

The need for an efficient matching system comes at a time when the government is

facing increasing scrutiny over the use of its resources and public hostility towards immi-

gration.20 There are also some technical obstacles: databases on refugees characteristics

and preferences, as well as local housing and services availability, need to be merged, while

some logistics of the resettlement process need to be reworked (e.g., when refugees are in-

terviewed, and how housing availability is projected). For example, in order to facilitate

information sharing on housing across LAs and ensure best possible matches, English LAs

already work alongside nine regional coordinators. However, given the recent evidence that

the initial placement of refugees in less desirable areas has negative lifetime impacts on their

labor (Åslund and Rooth, 2007; Damm, 2014), welfare dependence (Åslund and Fredriks-

son, 2009) and educational achievement (Åslund et al., 2011), it is becoming apparent that

improving the matching of refugees to LAs can deliver a lot of value.

3 Model

3.1 Basic ingredients

There is a finite set of refugee families F . A family f ∈ F has size |f |. There is finite set of

localities L. We use ∅ for the null object to represent being unmatched.

A contract is a family-locality pair (f, `) ∈ X ≡ F × (L ∪ {∅}). We denote by f(x) and

`(x) as the family and locality associated with contract x ∈ X.

17Around half of the applicants are under 18; about half are women (Home Office, 2016a).
18For example, some LAs allow teenage siblings of different sexes to share a room, others do not.
19The Home Office tries to match refugees immediately as they come through the application pipeline.

Hence, refugees who have been waiting longest typically receive the highest priority. However, as the housing
market is fast-moving, matches to available houses often need to be made immediately.

20Surveys indicated that the proportion of British public that thought that Britain should take fewer
Syrian and Libyan refugees increased from 31 percent in September 2015 to 41 percent in January 2016
(BBC, 2016a). In July 2016, Theresa May, the incoming British Prime Minister, eliminated the Home Office
“Minister for Syrian Refugees” position.

12



An outcome Y ⊆ X is a set of contracts and X is the set of all outcomes. For any Y ⊆ X,

F (Y ) and L(Y ) denote the families and the localities whose contracts appear in outcome Y

at least once. For any ` ∈ L and Y ⊆ X, F `(Y ) is the set of families associated with locality

` under Y , and F ∅(Y ) is the set of families that do not get matched under Y . Finally, Yf

and Y` denote the contracts that family f and locality ` are associated to in outcome Y .

On top of the matching set-up just described, the refugee matching problem has mul-

tidimensional constraints on the set of outcomes: Refugee families require multiple units

of different services (e.g., hospital beds, school seats, language support) from a set S. We

denote by ν the matrix of family service needs, with typical element νfs ∈ Z≥0 denoting the

total number of units of service s required by family f . A refugee family f can only live in

locality ` if ` can provide services to meet f ’s needs. We denote by κ the matrix of locality

service capacities, with typical element κ`s ∈ Z≥0 denoting the number of units of service s

locality ` can provide.21

We denote by τ `s (Y ) ≡
∑

f∈F `(Y ) ν
f
s the number of units of service s demanded at locality

` under outcome Y . Let τ(Y ) ≡ (τ `s (Y ))`∈L,s∈S be the matrix of service demands at outcome

Y . An outcome Y ⊆ X is feasible if (i) |Yf | = 1 for all f , i.e. each family is either matched to

one locality or is unmatched, and (ii) τ(Y ) ≤ κ i.e. the feasibility constraint is not violated.

A set of families F ′ ⊆ F can be accommodated under Y if Y ∪ {(f, `)}f∈F ′ is feasible. Let Y
denote the set of all feasible outcomes.

Multidimensional constraints introduce a particular complementarity into the choices of

localities, which is absent in many matching models. Suppose there is a locality ` with

two units for a single service s (κ`s = 2). Families f1 and f3 need one unit of s each

(νf1
s = νf3

s = 1), but family f2 needs two units of the service (νf2
s = 2). Suppose that in this

locality f1 has the highest priority, followed by f2 and then f3. Then, we would then match

{f1, f3} when all three families {f1, f2, f3} apply since f1 would be matched first but f2 could

not be accommodated, leaving a unit of the service for f3. When {f2, f3} apply, only f2 is

matched to the locality as it takes up both units of the service.22 Hence, because of the

multidimensional constraint, ` views f1 and f3 as complementary since f3 is less likely to be

matched to ` if f1 does not apply. This kind of complementarity is precisely what prevents

us from using classic tools in matching theory and we return to the problems it creates in

Section 6.23

21As is standard, the null object has infinite capacity for every service. All results in the paper go through
with minimal or no modification, if we assume that νfs , κ

`
s ∈ R≥0. As an example, we might wish to capture

the fact that a refugee may require 1
7 of a dialysis machine because she needs to use it once a week.

22Note that the example would be analogous if there were two services s1 and s2, the locality had one
unit of each service available, families f1 and f3 required one unit of s1 and s2 respectively, while family f2
required one unit of each service.

23From the point of view of localities, refugee families are neither“weak substitutes” (Hatfield and Kojima,
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3.1.1 Relationship to prior models

Our model generalizes a number of existing matching models, including the following:

• School choice (Abdulkadiroğlu and Sönmez, 2003): Every student takes up a single

seat at any school. Let us relabel a student as a family and a school as a locality.

In our model, this corresponds to having only one service (|S| = 1) and any family

needing exactly one unit of the service (νfs = 1 for all f ∈ F ).

• Controlled school choice or college admissions with affirmative action and m type-

specific quotas (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu, 2005; Westkamp,

2013): Each student is one of m types and each school has a quota for each of the m

types. Let us again relabel a student as a family, a school as a locality and a type as a

service. In our model, this corresponds to having m services in each locality (|S| = m).

Each family needs exactly one unit of one of the services (νfs are m-dimensional unit

vectors for every f ∈ F ).

• School choice with majority quotas (Kojima, 2012; Hafalir et al., 2013): Each student

is either a majority of a minority student. Each school has a overall cap on the

number of students, which includes a cap for majority students. Let us again relabel a

majority/minority student as a majority/minority family and a school as a locality. Let

us also relabel “any student” seats as service s1 and “majority student” seats as service

s2 (|S| = 2). In our model, then the capacity of any locality for s1 is greater than the

capacity for s2 (κ`s1 > κ`s2 for all ` ∈ L). A majority family f needs a unit of both

services (νf = (1, 1)) whereas a minority family only needs a unit of s1 (νf = (1, 0)).

• Hungarian college admissions (Biró et al., 2010): Students take up a college seat as well

as a faculty seat. Both colleges and faculties have their own capacities. Let us relabel a

student as a family and a college as a locality. Let us also relabel college capacity as the

capacity of the locality for service s1 (κ`s1). Let us relabel the faculties as the remaining

services S \ {s1}. Therefore, each family has needs νf = (1, 0, 0, . . . , 1, . . . , 0, 0) where

the second “1” is the need for a unit of one service s ∈ S \ {s1}.

• Allocation of trainee teachers to schools in Slovakia and Czechia (Cechlárová et al.,

2015): Teachers are required to teach two out of three subjects and each school has

a capacity for all three subjects. Let us relabel a teacher as a family, a school as a

locality, and a subject as a service. In our model, this corresponds to having three

services (|S| = 3) and any family having needs νfs ∈ {0, 1} for any two different s.

2008), nor even “substitutes and symmetric complements” (Alva, 2015).
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• College admission with multidimensional privileges in Brazil (Aygün and Bó, 2016):

Students can claim any combination of three privileges. Colleges have quotas for

each privilege, but a single student can claim more than one privilege. Let us relabel

a student as a family, a college as a locality, and a privilege as a service. In our

model, this corresponds to having three services (|S| = 3) and any family having needs

νfs ∈ {0, 1}.

• Object allocation (Nguyen et al., 2016) or course assignment (Budish, 2011): Agents

(students) demand a certain number of different objects (courses) that are supplied by

a single seller (a business school). Let us relabel agents (students) as families, different

objects (courses) as services and the single seller as a single locality. In our model, this

corresponds to having only one locality (|L| = 1).

• Resident-hospital matching with sizes (McDermid and Manlove, 2010): Doctors apply

to hospitals, but the doctors can take up more than one seat at a hospital e.g. because

they arrive as couples. Let us relabel doctors as families and hospitals as localities. In

our model, this corresponds to having one service (|S| = 1) and families having a need

of arbitrary size for this service.24

Most of the models described above use further assumptions and develop solution ap-

proaches that differ substantially from ours, but suit their particular context. Nevertheless,

as we note throughout the paper, several impossibility and complexity results established in

these papers will apply immediately to our framework.

3.2 Housing

One of the most important concerns in refugee resettlement is finding appropriate housing

for refugee families. Refugee families do not get a choice over specific housing units. Housing

is extremely heterogeneous and different localities can impose different constraints on which

family can be housed where. That is, some housing units may be impermissible for some

families. In general, we say that there is set of houses H. Each house belongs to a locality

` ∈ L. The set of houses in locality ` is denoted H`.

24This model in turn generalizes the resident-hospital matching with inseparable couples (i.e. when couples
have the same preference list and prefer to be unmatched to being in different hospitals) as well as resident-
hospital matching with couples who have consistent preferences (McDermid and Manlove, 2010, Lemma 2.1).
In both cases, we set |S| = 1 and νfs ∈ {1, 2} in our model.
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3.2.1 Housing as service constraints

In some cases, we can express housing as a subset of services and capture heterogenous

housing with the multidimensional service constraints. Suppose that houses differ by size

{1, . . . ,M} and provide a subset of features from a set Θ. The type of house h is then Θh ⊆
Θ. Each family requires a subset of the features in their house Θf ⊆ Θ. Family f can be

accommodated in house h as long as the house size is greater than |f | and Θf ⊆ Θh. Consider

a subset of service constraints that represents housing Sh ⊆ S. Let shi,Θ be the service

representing a house of size i ∈ {1, . . . ,M} and type Θ ⊆ Θ. Then
(
κ`
s
hi,Θ

)
i∈{1,...,M},Θ⊆Θ

and(
νf
s
hi,Θ

)
i∈{1,...,M},Θ⊆Θ

denote the subvectors of
(
κ`s
)
s∈S and

(
νfs
)
s∈S respectively representing

housing constraints both of dimension |M × 2Θ|. For a family of size i that requires a set

of features Θf , the demand for housing services is νf
s
hj,Θ

= 1 if j ≤ i and Θ ⊆ Θf and zero

otherwise. κ`
s
hj,Θ

is then the number of houses of size at least j that contain features Θ ⊇ Θh

in locality `.

Definition 1. Housing is combinatorial if housing can be incorporated into the multidimen-

sional service constraints given a fixed number of housing features and sizes.

For one simple case of combinatorial housing, suppose that houses differ only by size and

a family needs a house of a certain size but can be accommodated in any house that is larger.

Denote shi ∈ Sh the service representing housing size i ∈ {1, . . . ,M}. Let
(
κ`
shi

)
i∈{1,...,M}

and
(
νf
shi

)
i∈{1,...,M}

denote the subvectors of
(
κ`s
)
s∈S and

(
νfs
)
s∈S respectively representing

housing constraints. We then denote κ`
shi

as the number of houses of size at least i in locality

`. On the side of refugee needs, if a family requires a house of size i, then denote νf
shj

= 1

for all j ≤ i.

3.2.2 General permissible housing constraints

Some housing requirements cannot be captured by multidimensional service constraints with

a fixed number of housing features and sizes. For example, in addition to minimum house

size regulation there are often also maximum size regulations: In the UK, for example,

refugee families may be denied housing benefit if their house has too many unused bedrooms.

Consider all possible family-house pairs F × (H ∪ {∅}) and the housing assignment

D := {D ∈ 2F×(H∪∅) | |D ∩ {(f, h)}| = 1 ∀f ∈ F and |D ∩ {(f, h)}| ≤ 1, h ∈ H ∪ ∅}

is the set of all sets of pairs such that there is exactly one pair per family and at most one pair

per house. Denote the housing assignment function A : X 7→ D such that A((f, `)) 7→ (f, h)
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where h ∈ H` for all f ∈ F and ` ∈ L and A((f, ∅)) = (f, ∅) for all f ∈ F . That is the housing

assignment function maps each family to a house in the locality of its contract (unmatched

families are not housed anywhere). We say that a family-house pair is permissible if house

meets the legal requirements to accommodate the associated family. We denote the set of

housing assignments that only contains permissible pairs as D∗ ⊆ D. Hence, in the case

when housing is not combinatorial, an outcome Y is feasible if Y ⊆ X, |Yf | = 1 for all

f ∈ F , τ(Y ) ≤ κ, and there is A ∈ A such that A(Y ) ∈ D∗.
Most of our results do not rely on combinatorial housing and we explicitly point out when

they do.

Example

To be able to compare different mechanisms in this paper, we now introduce a single running

Example which we will return to throughout paper. The Example has five families, seven

houses, four localities (three of which have two houses and one of which has one house), and

two services.

• Families: F = {f1, f2, f3, f4, f5}

• Localities: L = {`1, `2, `3, `4}

• Houses: H`1 = {h11, h12}, H`2 = {h21}, H`3 = {h31, h32}, H`4 = {h41, h42}

• Service capacities: Service needs:

κ =



s1 s2

`1 4 2

`2 3 2

`3 2 2

`4 2 2

 ν =



s1 s2

f1 1 0

f2 2 1

f3 0 2

f4 1 1

f5 3 0


In the Example, `4 cannot accommodate f5 in any outcome since νf5

s1
= 3 > 2 = κ`4s1 . On the

other hand, consider an outcome Y , in which f1 and f2 are matched to `1 and f3 and f4 are

matched to `2 and `4 respectively. The corresponding matrix of service demands for services

at localities would be as follows:
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τ(Y ) =



s1 s2

`1 3 1

`2 0 2

`3 0 0

`4 1 1


Since τ(Y ) ≤ κ, the outcome Y is feasible.

Let us introduce some housing constraints in the Example. We will assume that (f1, h12),

(f1, h21), (f1, h41), (f2, h12), (f3, h11), (f4, h11), (f4, h41) and (f5, h11) are the only impermis-

sible family-house pairs. In Appendix A, we show that housing is combinatorial if there are

three housing features and two sizes. However, this housing constraint cannot be represented

as a multidimensional service constraint with a single house size and a single service.

We illustrate the Example in Figure 1 below. For each family service needs are represented

the number of solid blocks (first for s1 and then for s2). Service provision for each locality is

represented with empty blocks. We color code houses according to which family-house pairs

are permissible.

4 Welfare maximization without preferences or prior-

ities

In this section, we consider the case in which the preferences of refugees and the priorities of

localities are not elicited explicitly, as is often the case in rapid responses to unfolding hu-

manitarian catastrophes or indeed in many refugee resettlement schemes around the world.25

Eliciting preferences requires a sophisticated IT infrastructure for sharing data across locali-

ties as well as time and resources in order to conduct interviews with the refugees.26 Instead,

the social planner could estimate the quality of matches based on observable data and on

past experience.

We summarize the estimated quality of each refugee-locality match as a single number

called the quality score, q : X → R≥0 (normalizing q((f, ∅)) = 0 for all f ∈ F ). In order to

maximize the overall observed efficiency of the match within the feasibility constraints, the

social planner solves the following outcome-quality maximization problem (OQMP):

25For example, during the Kosovo airlift in 1999 many Kosovar-Albanian refugees boarded rescue planes
without knowing where they were going (Wells, 1999).

26Even in developed countries that are accustomed to refugee resettlement, this infrastructure is often
lacking.
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f1 f2 f3 f4 f5

l1 l2 l3 l4

h11 h12 h21 h31 h32 h41 h42

Figure 1: Set-up for the running Example
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max
Y⊆X

∑
y∈Y

q(y) subject to: Y is feasible. (1)

Two special cases of q are worth emphasizing: Setting q = 1 (or any other constant)

would maximize the total number of families that are resettled, while setting q((f, `)) = |f |,
i.e. the total number of refugees in each family, would maximize the total number of refugees

that are resettled. However, the quality score can be more general. For example, the social

planner could use survey data on satisfaction with localities as well as on lifetime outcomes

(such as the probability of employment within a given timeframe) in order to determine

which families tend to fare best in which locality.

Let us now state the problem of maximizing the overall observed efficiency of the match

as an integer program. We introduce a binary variable ι(f, `) which is equal to 1 if a contract

(f, `) has been selected (family f has been matched to locality `) and 0 otherwise.

max
∑
f∈F

∑
`∈L

q((f, `))ι(f, `) subject to: (2)∑
f∈F

∑
`∈L

νfs ι(f, `) ≤ κ`s ∀`, s∑
`∈L

ι(f, `) ≤ 1 ∀f

ι(f, `) ∈ {0, 1} ∀f, `

Problem (2) is an example of a 0-1 multiple multidimensional knapsack problem (Song

et al., 2008).

Proposition 1. Suppose that housing is combinatorial. Then the outcome-quality maxi-

mization problem (1) is equivalent to the 0-1 multiple multidimensional knapsack problem

(2) and can be solved exactly using the “branch-and-bound” method.

In the 0-1 multiple multidimensional knapsack problem, there are a number of multi-

dimensional objects that we want to pack into one of many knapsacks which have multi-

dimensional capacities.27 Different objects yield different profits in each knapsack and the

objective is to maximize the total profit, subject to not exceeding the capacity constraints

27This is different from a multidimensional knapsack problem in which there is only one knapsack (Fréville,
2004); from the multiple knapsack problem in which objects vary in size along only one dimension (Martello
and Toth, 1980); and even from the multiple-choice knapsack problems in which exactly one object from
each of the many mutually exclusive classes must be used (Sbihi, 2007).
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and placing any one object in at most one knapsack (hence, “0-1”). Song et al. (2008)

analyzed this problem (also with two-dimensional objects as in our Example) in the case

of spectrum allocation in radio networks. In our proof of Proposition 1, we extend their

approach by establishing upper bound and lower bounds, which are the key inputs in the

“branch-and-bound” method.

Example for Section 4

In addition to the set up of the Example, let us introduce the following quality score q over

the set of feasible contracts X:

q((f, `))

`1 `2 `3 `4

f1 71 ∅ 23 38

f2 46 49 30 91

f3 52 68 43 20

f4 4 75 96 36

f5 92 41 ∅ ∅

Then, the solution to the outcome-quality maximization problem is:

Y OQMP = {(f1, `1), (f2, `4), (f3, `2), (f4, `3), (f5, `1)}

since this outcome gives each family the locality with the highest quality score and is fea-

sible. Note that since f1 and f5 are both allocated to `1 but family-house pair (f1, h12) is

impermissible, it must be case that f1 is assigned to h11 and f5 is assigned to h12.

5 Accounting for preferences of refugee families

Once a refugee crisis has been brought to the world’s attention by the media, there is generally

an outpouring of goodwill from many countries that decide to take on refugees.28 While initial

refugee resettlement responses are organized in a rush and on a shoestring, as countries

allocate more resources to refugee resettlement, authorities gain the bandwidth necessary to

elicit refugees’ preferences, typically through an interview process. Incorporating refugees’

preferences into the matching process is valuable because only refugees themselves know

in what kinds of areas they are most likely to thrive. But knowing preferences can also

28In Britain, some newspapers celebrated the arrival of fifteen Syrian refugee families to the remote Scottish
Isle of Bute (McKenna, 2015).
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help prevent internal migration—in which refugees move away from their assigned localities

soon after arriving—which localities want to avoid because they make substantial upfront

investments in the refugees they host.

Eliciting preferences of refugees over localities is difficult task. In school choice, for

example, parents can be reasonably expected to rank their top twelve schools. In the case

of refugee matching, not only are there many localities in most countries, but refugees often

lack the necessary information to make sensible decisions. In this case, it is reasonable to

ask refugees to rank the properties of areas that are important to them (e.g. proximity to a

city, low crime, presence of a co-ethnic or a co-religious community etc.). The resettlement

authority can then use locality-level data and refugees’ rankings to infer a likely preference

profile over the localities. In order to ensure that this inference is as accurate as possible,

the authority will need to give refugee families clear incentives to submit truthful reports

over area properties.

When locality participation is (relatively) secured, the priorities of localities are not very

important; in such a setting, we can maximally account for refugees’ preferences by seeking a

Pareto-efficient outcome. Pareto efficiency also limits internal migration across participating

localities by ensuring that families will not want to swap localities.

To achieve Pareto efficiency, we build upon the classical Top Trading Cycles mechanism,

which is Pareto-efficient and non-manipulable. Because both refugee preferences and feasibil-

ity constraints act at the locality level, our mechanism must identify and eliminate potential

Pareto-improving locality trades while paying attention to feasibility constraints.

We retain the quality score defined in the previous section, and moreover assume that no

two contracts have the exact same quality score (for any x, x′ ∈ X, q(x) = q(x′) if and only

if x = x′). Additionally, we introduce notation for families’ preferences over localities. We

denote by �f the strict ordinal preference list of family f over L∪{∅}, and let � ≡ (�f )f∈F
be the preference profile of families and � the set of all preference profiles.29 Given any

outcome Y ⊆ X, we will say that ` ∈ L∪ {∅} is family f ’s top-choice locality (or simply top

choice) if (f, `) ∈ Y and for all `′ 6= ` such that `′ ∈ L(Y ) we have that ` �f `′. We will

denote f ’s top choice by Y as ¯̀
f (Y ). We say that f ’s top choice is feasible under Y if f can

be accommodated in its top choice under Y and that f is permanently matched under Y if

|Yf |= 1.

An outcome Y is Pareto-efficient if it is feasible and there is no feasible outcome Y ′ such

that for all f , either `(Y ′f ) = `(Yf ) or `(Y ′f ) �f `(Yf ). In other words, if one refugee family is

matched to a more preferred locality than in a Pareto-efficient outcome, then another family

must be worse off. A (direct) mechanism is a function ϕ :�→ X .

29We assume without loss of generality that every family’s least preferred option is being unmatched.
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A mechanism ϕ is strategy-proof if there does not exist a report of a preference list �′f
such that

`(ϕ((�′f ,�−f ))f ) �f `(ϕ(�)f ).

Strategy-proofness requires that refugee families cannot make themselves better off by mis-

reporting their preferences over localities.

5.1 Using only refugees’ preferences

Our first mechanism, described in Algorithm 1, is an extension of the Top Trading Cycles

mechanism to matching with multidimensional constraints.

The Multidimensional Top Trading Cycles (MTTC) algorithm works in much the same

way as the classical Top Trading Cycles (TTC) mechanism: in each round, each family

points at its most preferred locality that can accommodate it and each locality points at the

highest-quality family that it can accommodate. There must be at least one cycle which is

eliminated by matching families to the localities they pointed at and adjusting the service

capacities of each localities by the service needs of the family that has just been matched

to it. The main difference between the MTTC algorithm and the TTC algorithm is that

even though the family is pointing at a locality it needs to be assigned to a house when

it is part of the cycle. This is not trivial when housing is not combinatorial. Therefore,

the pointing family and the pointing locality are solving independent housing assignment

problems. Hence, even though families are permanently matched to localities in each round,

they are only tentatively assigned to housing until the last period. Indeed, in contrast to

the TTC algorithm, in the MTTC algorithm, the locality might stop pointing at a family

even if it still has capacity and the family is still unmatched because the housing constraints

mean that it is no longer possible to accommodate the family in the locality.

Proposition 2. The MTTC algorithm is strategy-proof and yields a Pareto-efficient out-

come.

Example for Section 5.1

In order to illustrate the MTTC algorithm, in addition to the set-up of the Example and the

quality score in the Example for Section 4, we will need to know the preferences of refugee

families:

f1 : `3 � `4 � `1 � `2.

f2 : `3 � `1 � `2 � `4.

23



Algorithm 1: Multidimensional Top Trading Cycles (MTTC) algorithm

Start with the set of all contracts X. Remove all infeasible contracts under
the empty outcome to obtain outcome Y 1.

Round i ≥ 1:

Under outcome Y i, every family f that is not permanently matched points
at its top choice (see Proof for Proposition 2 for procedure).

For each locality `, consider all families that have a contract with ` at Y but
are not permanently matched. If that set is nonempty, ` points at the family
in that set that has the highest quality score (see Proof for Proposition 2
for procedure). Otherwise ` does not point.

At least one cycle appears. Any family and any locality is in at most one
cycle. For every family involved in a cycle, remove all its contracts that do
not involve its top choice. These families are now permanently matched.

Given the outcome obtained, remove all contracts (f, `) such that ` cannot
accommodate f alongside all other families that are permanently matched
to it. If at least one family becomes permanently matched as a result of
that step, repeat it.

Let Y i+1 be the outcome obtained after the previous step was repeated
for the last time. If all families are permanently matched under Y i+1, the
algorithm ends and generates Y i+1. Otherwise proceed to Round i+ 1.
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f3 : `4 � `3 � `1 � `2.

f4 : `4 � `1 � `2 � `3.

f5 : `1 � `2 � `4 � `3.

In the Example, the MTTC algorithm lasts two rounds.

Round 1 : In the first round, all families point at their top choice. Families f1 and f2 point

at `3, f3 and f4 at `4 and f5 at `1. Locality `1 in turns points at f5; `2 and `3 point at f4;

and `4 points at f2. A cycle appears between f5 and `1 (resulting in f5 being assigned to h12

since h11 is not permissible for f5 by assumption). Another cycle appears between f2, `3, f4

and `4.

Round 2 : Only two families and four houses, one per locality, remain active in the second

round. The relevant quality scores are:

q((f, `))

`1 `2 `3 `4

f1 71 ∅ 8 ∅
f3 ∅ 68 31 7

Family f1 cannot point at `3 because it cannot be accommodated alongside f2. It cannot

point at `4 either since (f1, h41) is an impermissible family-house pair. Family f1 then points

at its third choice, `1, this is possible since family-house pair (f1, h11) is feasible and f1 and f5

can be accommodated together at `1. Family f3 can point at neither `4, `3 nor `1 because it

cannot be accommodated alongside f4, f2 or f5, respectively. Consequently, f3 points at `2.

Locality `1 already accommodates f5 in house h12 and only h11 remains available. Note that

`1’s current f3 is not available because family-house (f3, h11) is impermissible. At this point

`1 needs to work through its preference list and check the highest-quality family that would

solve the (admittedly trivial) housing assignment problem in the locality. Family f1 solves

the problem, so `1 points at f1. Family-house pair (f3, h21) is impermissible but (f1, h21) is

permissible (note the role of the assignment problem again), consequently `2 points at f3.

`3 and `4 do not points at any family since they can no longer accommodate neither f1 nor

f3 alongside, respectively, f2 and f4. Two cycles appear since f1 and `1 as well as f3 and `2

point at each other. f1 is matched to `1 (and assigned house h11), f3 is matched to `2 (and

assigned house h21) and the algorithm terminates.

The resulting outcome is

Y MTTC = {(f1, `1), (f2, `3), (f3, `2), (f4, `4), (f5, `1)}.
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In the Example, taking refugee preferences into account and running the MTTC algo-

rithm makes families f2 and f4 better off than in the solution to outcome-quality maximiza-

tion problem by allowing them to swap their localities.

5.2 Improving refugees’ outcomes from an initial allocation

The resettlement agency might be reasonably apprehensive about relying solely on refugees’

preferences in the allocation process. As the resettlement agencies often have specific goals in

mind (such as the probability of early employment), which might conflict with the preferences

of the refugees, it can be important to take both of these into account. The natural initial

allocation would be the one produced by the outcome-quality maximization problem.

Consider a feasible outcome Y E, which we will refer to as the endowment. We say that

outcome Y is individually rational if for all f ∈ F either `(Yf ) = `(Y E
f ) or `(Yf ) �f `(Y E

f ).

In the case of school choice, starting from any endowment and running the Top Trading

Cycles mechanism (in which any non-empty locality points at its highest-quality family),

produces an individually rational and Pareto-efficient outcome in a strategy-proof way. The

reason is that any that Pareto-improvement from the endowment can be broken down into

simple cycles: If two students from one school want to swap with two students from another

school, we can first swap one pair of students and then the other. Hence, a student only

needs to point at its most preferred schools, which gives an opportunity for the school’s

highest priority student to make a choice.

In our context, simple Pareto-improving cycles will not achieve Pareto efficiency because

families, which have needs for multiple units of different services, may have to swap in groups

in order to find Pareto improvements. To illustrate this with our running Example, let us

start with an endowment

Y E = {(f1, `1), (f2, `4), (f3, `1), (f4, `4), (f5, `2)}

and assume moreover that f4 can no longer be moved. In that case, there is a Pareto-

improvement if f1 and f3 swap with f2. But this Pareto-improvement cannot be achieved

by a pairwise swap or a cycle.

Finding all Pareto-improving exchanges among sets of families in general—even between

two localities—would mean potentially looking at all subsets of the families in these localities

and is therefore computationally intractable. On the other hand, because of feasibility

constraints, if all families simultaneously point at their top-choice locality, a feasible cycle is

not guaranteed to exist.
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We introduce the Serial Multidimensional Top Trading Cycles (SMTTC) algorithm that

finds some of the possible Pareto-improvements in a way that preserves individual rationality

and strategy-proofness. Unlike the TTC algorithm, Hierarchical Exchange rules (Pápai,

2000), or more general Trading Cycle rules (Pycia and Ünver, 2016), the SMTTC algorithm

is run sequentially—one cycle at time. We do this in order to ensure that whenever a cycle

appears at the end of every round, it will be feasible and any family and locality will be

part of at most one cycle. First, we determine active and available localities. Any active

locality participating in a possible Pareto-improving cycle has one family that can feasibly

swap places with other families from all other active localities. Any available locality has

enough capacity to accommodate any family from all active localities.30 All other localities

are inactive. Every active locality points at its highest-quality family—an active family—

participating in the possible swap. Then all active families point at their most preferred

locality. Whenever cycles appear, we match families to localities they pointed at. If there is

no cycle, this is because some family has pointed at an inactive locality. In that case, families

are picked one at a time and their contracts involving inactive localities are removed until

a cycle appears. The reason why a cycle appears eventually is that all families that have

been picked point at an active locality. Once a cycle is found, families are matched to the

localities they pointed at and the remaining families and localities continue being active and

pointing in the next round. This family and locality selection rule is precisely what ensures

that any cycle that appears is feasible and non-manipulable, but this rule is also restrictive

and might not find all Pareto-improving swaps of sets of families. When the endowment is

empty, the SMTTC algorithm reduces to the MTTC algorithm. The SMTTC algorithm is

described in Algorithm 2.

Proposition 3. The Serial MTTC algorithm is strategy-proof and yields an individually

rational outcome from any endowment. If the Serial MTTC algorithm finds any cycles, its

outcome Pareto-dominates the endowment.

Example for Section 5.2

We will use family preferences from Example for Section 5.1. Let us start with an endowment

Y E = {(f1, `1), (f2, `4), (f3, `2), (f4, `3), (f5, `1)}

which is outcome the of outcome-quality maximization problem.

30Alternatively, we could say that a locality is available if there is any family that it can accommodate
in its available capacity. Then the locality would point at the highest-quality such family. However, in that
case the locality might preclude its families from swaps for many rounds if the family it pointed at ranked
this locality low.
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Algorithm 2: Serial Multidimensional Top Trading Cycles algorithm

Arbitrarily index localities such that L ≡ {`1, . . . , `|L|}. For each locality, rank
the families some order of priority (e.g. using the quality score). Start with
the set of all contracts X. Remove all contracts which are infeasible under the
empty outcome. Consider the current outcome Y i.

Round i ≥ 1:

If All families endowed with a locality are permanently matched, label
all families that are not yet permanently assigned and all localities that
can accommodate at least one of these families alongside the families that
are permanently matched to it as active. Every active family points as
its top choice and every active locality points at the active family with
the highest priority among those it can accommodate. Proceed to Step
|L|+ 2.
Else Label all families that were active in the previous round as active
and proceed to Step 1.

Steps 1 ≤ j ≤ |L|
For locality `j:

If there exists an active family endowed with `j, then let f ∗`j be that
family. Label `j as active.
Else if `j can accommodate any active family alongside those with
which it is permanently matched or for which it is the endowment,
then label `j available.
Else if there exists a family whose endowment is `j, is not perma-
nently matched and can swap with all active families, let f ∗`j be the
one with the highest priority for `j. Label `j and f ∗`j as active.
Else, label `j as inactive.

Step |L|+1: Every active family f ∗`j points at its top choice. Every active
locality `j points at f ∗`j . Every available locality points at the active
family with the highest priority for it. Inactive families and localities do
not point.

If a cycle exists, proceed to Step |L|+ 2.
Else arbitrarily pick one family and remove its contracts involving
inactive localities. Return to the start of Step |L|+ 1.

Step |L| + 2: For each family involved in a cycle, remove all contracts
involving that family and a locality that is not its top choice.
Step |L| + 3: Remove all contracts (f, `) such that f cannot be accom-
modated at ` alongside all families permanently matched to `. If any
family has become permanently matched as a result of that step, repeat
it. Otherwise continue to Step |L|+ 4.
Step |L| + 4: Let Y i+1 be the updated outcome. If all families are per-
manently matched, the algorithm ends and generates Y i+1. Otherwise
proceed to Round i+ 1.
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We keep the same index of families so that `1 is considered first, `2 second, `3 third, and

`4 last.

Round 1 : We consider `1 and make f5 active since it has a higher quality than f1. At `2,

f3 is made active since f5 and f3 can feasibly exchange their localities. As f5 can neither

be accommodated at `3 nor `4, these two localities are inactive in that round. `1 and `2

respectively points at f5 and f3 while `3 and `4 do not point. f5 and f3 point at their

respective first preferences, `1 and `4. A cycle occurs between f5 and `1. f5 is permanently

matched to `1.

Round 2 : Family f3 is immediately made active since it was active in Round 1 but did not

get permanently matched. At `1, f1 is the only candidate left since f5 has been permanently

matched, however f1 cannot be accommodated at `2 as (f1, h21) is not a feasible family-house

pair, as a result `1 remains inactive in this round. In contrast, f4 and f2 are made active

since they can both be accommodated at `2 and f3 can be accommodated at both `3 and `4.

`1 does not point, `2 points at f3, `3 points at f4 and `4 points at f2. All three families can

be accommodated at their respective first preferences, therefore f3 and f4 point at `4 and f2

points at `3. A cycle occurs between f2, `3, f4 and `4. f2 and f4 are permanently matched

to `3, respectively `4.

Round 3 : Family f3 is again made active immediately so that `1 remains inactive. As f4

and f2 have been permanently matched, `3 and `4 are this time inactive as well. A simple

cycle occurs between f3 and `4 and f3 is permanently matched to `4.

Round 4 : All families except f1 have been permanently matched, as a result the latter is the

only one to be active. f1 and `1 point at one another and the algorithm ends.

The outcome of the Serial MTTC algorithm with this endowment is the same as the

outcome of the MTTC algorithm as it allows f2 and f4 to exchange their localities:

Y SMTTC = {(f1, `1), (f2, `3), (f3, `2), (f4, `4), (f5, `1)}.

6 Accounting for refugees’ preferences and localities’

priorities

As a refugee crisis goes on, it typically becomes more difficult to obtain goodwill from

localities.31 Beyond direct cash transfers and coercion, the social planner has a market

design tool that can increase localities’ willingness to participate: explicitly incorporating

localities’ priorities over refugees. Eliciting which refugees localities want to prioritize not

31Some of the British media, for example, soon reacted against the Isle of Bute refugees (Reid, 2015).
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only gives an important sense of control to local communities, but also helps ensure that

refugees are located in places where they are most welcome and where their needs can be

best addressed. Moreover, similarly to Pareto efficiency, satisfying priorities can serve to

reduce early internal migration that is costly for localities.

In this section, we offer mechanisms that respect priorities of the localities in addition to

the preferences of the refugee families.32

6.1 Stable outcomes

We let π` be the strict ordinal priority list of locality ` over families in feasible contracts X`

and let π be the ordinal priority profile of the localities.33 Denote by F̂(f,`) the set of families

with a priority for ` higher than f .

We say that for an outcome Y ⊆ X, f and ` form a blocking pair if ` �f `(Yf ) and there

exists a feasible outcome Y ′ such that `(Y ′f ) = ` and if `(Yf ′) = ` then `(Y ′f ′) = ` for all

f ′ ∈ F̂(f,`). Y is stable if it is feasible and does not allow any blocking pairs.

In words, family f and locality ` form a blocking pair if f prefers ` to its current match

and it is possible to accommodate f in ` while ensuring that families that have a higher

priority in ` than f can remain in the same locality. Therefore, in a stable outcome, every

refugee family prefers its current match to not being resettled at all, and there is no family

that prefers another locality in which it has higher priority than other families in that locality.

This stability concept is an extension of “elimination of justified envy” used in the school

choice to our case with multidimensional constraints (Abdulkadiroğlu and Sönmez, 2003).

While in school choice models stable outcomes always exist, in a model with multidimen-

sional constraints they do not. The reason is that the complementarity over families from

the point of view of localities. Let us return briefly to the example of complementarity that

we described immediately after our model in Section 3.1. Let us add another locality `′ with

a single unit of the service. Assume moreover that f3 has higher priority that f1 in `′ and

f1 : `′ � ` � ∅
f2 : ` � ∅
f3 : ` � `′ � ∅.
In this case, there is no stable outcome precisely because of the complementarity between

f1 and f3.34

32It is straightforward to incorporate locality priorities while ignoring the preferences of the refugees
by reversing the direction of matching (locality is matched with its highest-quality family) in the MTTC
algorithm.

33These priorities could, of course, come directly from the quality score.
34This instability is a consequence of our focus on local refugee matching markets which are thin and

heterogeneous. If we assumed a continuum of families and localities, our set-up would admit a stable
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In fact, determining whether a stable outcome exists is a computationally intractable

problem (McDermid and Manlove, 2010).35 This means that the running time of an algorithm

that guarantees to find a stable outcome or proves that none exists will increase exponentially

with the problem size. This can be an impediment to practical applications in large matching

markets.

A stable outcome Y ⊆ X is (Pareto-)undominated if there does not exist any stable

outcome Y ′ ⊆ X such that either `(Y ′f ) = `(Yf ) or `(Y ′f ) �f `(Yf ) for all f ∈ F . That is,

a stable outcome is undominated if there is no other stable outcome in which some families

stay in their existing localities but others are matched to localities they prefer. A stable

outcome Y ⊆ X is family-optimal if there does not exist another stable outcome Y ′ ⊆ X

such that `(Y ′f ) �f `(Yf ) for any f ∈ F . A family-optimal stable outcome is unanimously

preferred to any other stable outcome by all families. Note that, similarly to school choice,

we only consider welfare from the point of view of refugee families and treat slots in localities

as objects and locality priorities as non-strategic decisions.

6.1.1 Identical priorities

There is one case in which stable outcomes can be found straightforwardly: When the

priorities of all localities are identical. This is common: For example, localities could agree

that refugees families who have spent longer in the the refugee camps or those who are

in urgent medical need should have a higher priority. In this case, every stable outcome

coincides with an outcome from a simple mechanism—the serial dictatorship: first, the top-

ranked family is matched to its top-choice locality, then the second-ranked family is matched

to its top-choice locality given that the top-ranked family has already been matched, and so

on.

Proposition 4. If priorities of localities are identical, then the outcome of the serial dicta-

torship is the unique stable outcome.

Since the MTTC algorithm collapses to the serial dictatorship when priorities are iden-

tical, the serial dictatorship is also strategy-proof and the outcome it produces is Pareto-

efficient.

outcome (Azevedo and Hatfield, 2015, Theorem 1).
35This decision problem is NP-complete, meaning there is no known efficient (e.g. with polynomial running

time in the number of families or localities) method of solving it. Finding a stable outcome, like solving the
multiple multidimensional knapsack problem, is therefore NP-hard i.e. as hard as the hardest computational
problems. Verifying whether a particular outcome is stable is, however, a simple computational problem.
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6.1.2 Finding stable outcomes in general

We now describe the Top Choice algorithm, which finds a stable outcome, if one exists, that

is undominated from the refugees’ perspective, and reports that the set of stable outcomes is

empty otherwise. This algorithm will not run in polynomial time, however, many instances

of the refugee resettlement problem, especially in small resettlement schemes like the UK’s,

comprise a few dozen families and a couple of dozen localities at a time, so even computa-

tionally slow algorithms can perform well. After we discuss the mechanism, we comment on

its strategic properties. The Top Choice algorithm runs in three phases. The technical de-

scriptions of each phase of the algorithm and an application of this algorithm to our running

Example can be found in Appendix C.

Phase 1: Top-Down Bottom-Up (TDBU) algorithm

The Top-Down Bottom-Up (TDBU) algorithm is run exactly once at the beginning of

the Top Choice algorithm. TDBU algorithm dramatically reduces the search space for a

solution used in the subsequent phase. The TDBU algorithm cycles through localities and

identifies contracts that cannot be part of any stable outcome. It does so from the top-down

by identifying guarantees i.e. families whose priority at a given locality is high enough to

ensure the two will form a blocking pair if the family were not resettled in that locality. This

allows us to eliminate all contracts between that family and any less preferred locality. The

TDBU algorithm also eliminates contracts from the bottom-up by identifying rejections i.e.

families whose priority at a given locality is too low for any contract between this family and

this locality to be part of a stable outcome. These contracts can also be eliminated. Once

the TDBU algorithm stops, we end up with a set of contracts φ(X) ⊆ X which could form

all stable outcomes (although they may not exist). That is, if a stable outcome exists then

any contract in that outcome is in φ(X).

Let us attempt to construct an outcome by matching each family to their top-choice

locality from the remaining contracts φ(X). If this outcome φ∗(X) is feasible, then we have

found the unique family-optimal stable outcome, and the algorithm stops.

Phase 2: Depth-First Search for a stable undominated outcome

If φ∗(X) is not feasible, we continue to this phase.

We begin with a description of the first steps of the Depth-First Search (DFS) algorithm

and then explain how its intermediate steps—the Augmented TDBU (ATDBU) algorithm—

work. We order the families, labelling them f1, f2, ..., f|F |. This can be done arbitrarily or

reflecting a general priority, for example due to their level of vulnerability or the waiting

time in the resettlement pipeline. The general priority order does affect whether the stable
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undominated outcome is found or not. However, in the case of multiple undominated stable

outcomes, the general priority order impacts which one is found. As we shall see, it is

advantageous for families to be as high on general priority list as possible because it allows

them to secure an undominated stable outcome they prefer. In Appendix C, we illustrate

how different general priority orders might result in different outcomes and different running

times for the algorithm.

An illustration of the DFS algorithm is in Figure 2. This illustration is not related to

our running Example and is only there to convey the mechanics of the algorithm. The steps

correspond to number labels on the nodes in this Figure. The general version of the DFS

algorithm is in Appendix C.3.

Description of the DFS algorithm as illustrated in Figure 2

Step 1: We start the DFS algorithm with φ(X) and in the first round give f1 an artificial

guarantee for its top choice ¯̀
f1 meaning that we tentatively eliminate all contracts involving

f1 and localities which f1 ranks below `f1 . This hypothetical elimination allows us to begin

our search along the lattice of possibly stable outcomes (a solution tree), looking for a feasible

one. Once f is artificially guaranteed locality ¯̀
f1 , we reduce the set of contracts and check

for a feasible outcome by running a version of the TDBU algorithm, which we call the

Augmented TDBU (ATDBU) algorithm (see Appendix C.2). The ATDBU algorithm works

in the same way as the TDBU algorithm described above except that it also keeps track of

artificial guarantees and artificial rejections (defined below). Let us suppose that f1 can be

feasibly matched to ¯̀
f1 given the artificial guarantee.

Step 2: Let us now give f2 its top choice ¯̀
f2 as an artificial guarantee and remove all its

contracts involving localities that are less preferred to ¯̀
f2 .

Step 3: Let us now give f3 its top choice ¯̀
f3 as an artificial guarantee and remove all its

contracts involving localities that are less preferred to ¯̀
f3 .

Step 4: Suppose that after running the ATDBU algorithm, one of the artificial guarantee is

rejected. Hence, we find that it is infeasible to match both f1, f2, and f3 to their top-choice

localities in any stable outcome. In that case, we go back to the situation obtained at the

end of Step 2 (before f3 get an artificial guarantee) and instead tentatively remove contract

(f3, ¯̀
f3). We call this hypothetical rejection an artificial rejection as it is only dictated by

the current set of artificial guarantees.36

Step 5: Let us re-run the ATDBU algorithm with (f1, ¯̀
f2) and (f2, ¯̀

f2) as artificial guarantees

and (f3, ¯̀
f3) as an artificial rejection.

36The ATDBU algrotihm is equivalent to the TDBU algorithm whenever the sets of artificial guarantees
and rejections are empty.
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Step 6: If ATDBU returns an empty outcome (because the artificial rejection (f3, ¯̀
f3) has

been guaranteed), this means that there is no stable outcome in which f1 and f2 get their

top-choice localities.

Step 7: Let us return back to the case where f1 had an artificial guarantee for its top choice

locality and let us artificially reject f2’s top-choice locality by removing (f2, ¯̀
f2).

Step 8: This time the ATDBU algorithm might not give us an empty outcome. This means

that there is a possible stable outcome where f1 has its top choice and f2 has something other

than its top choice (which we have artificially rejected). Now, give f2 an artificial guarantee

for its next top-choice locality. Continue trying along f2’s preference list until the ATDBU

algorithm gives a non-empty outcome for some artificially guaranteed locality. Let’s say this

happens for locality ˜̀
f2 . We can then proceed searching for a stable outcome. Let us try

giving f3 an artificial guarantee for its top choice (as we did in Step 3).

Steps 9-12: These follow analogously to Steps 2-5.

Step 13: The ATDBU algorithm returns a feasible outcome, which is a stable undominated

outcome.

More generally, the ATDBU algorithm run at each step of the DFS can end in three

different ways:

1. Outcome of the ATDBU algorithm is feasible: This means that DFS has

found enough new rejections to identify a stable undominated outcome (Step 13).

2. Outcome of the ATDBU algorithm is non-empty: The ATDBU algorithm

shows that a stable outcome given the current set of artificial guarantees and artificial

rejections may exist but more rejections are needed to find it. We continue by giving

an artificial guarantee to the next top choice to the next family in the general priority

and running the ATDBU algorithm again (Step 1-3 and 8-10). We give top choices to

families according to the general priority until either a stable outcome is found or we

find that such an outcome is infeasible.

3. Outcome of the ATDBU algorithm is empty: The ATDBU algorithm shows

that no stable outcome exists given the current set of artificial guarantees and artificial

rejections. This can only happen if either an artificial guarantee has been rejected or

an artificial rejection has been guaranteed, or both. The DFS algorithm retraces its

steps by removing the top choice of the latest family with an artificial guarantee and

re-running ATDBU (Steps 4-5 and 11-12). If the outcome of the ATDBU algorithm

is empty again, then the DFS algorithm retraces its steps to the latest step at which

the set of artificial guarantees and rejections was the same and removes the top choice

of the family in that step (Step 6-7). If the outcome of the ATDBU algorithm is not
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empty, the DFS algorithm goes back to giving top choices to families according to the

general priority (Step 8).

The DFS algorithm continues until either it finds a stable undominated outcome, which

always happens if one exists, or by identifying that the set of stable outcomes is empty. The

latter happens if an impossibility is found after all of f1’s choices (including being unmatched)

are first artificially guaranteed but then eventually rejected (or alternatively f1’s top choice

is artificially guaranteed and rejected and then an artificial rejection of f1’s top choice is

immediately guaranteed).

Phase 3: Assigning housing

If a stable undominated outcome Y between families and localities has been found in

Phase 2, we run the final phase, which assigns houses to families. We simply apply any

permissible housing assignment function to Y .

Proposition 5. The Top Choice algorithm finds a stable undominated outcome if and only

if the set of stable outcomes is nonempty.

The Top Choice algorithm is not a strategy-proof mechanism. This does not mean it is

easy to manipulate. The general priority does not need to be revealed to the families and

creates randomness that can punish potential manipulation. Refugees submit preferences in

an environment of uncertainty since the priorities of localities can shift unpredictably over

time. Hence, it is also hard to learn from past matches how to manipulate the system as

parents have done over time when the highly manipulable Boston mechanism was used for

school choice. Intuitively, manipulability increases as the DFS algorithm searches deeper (i.e.

further to the right of the solution tree in Figure 2). The longer the DFS algorithm runs,

the worse is the potential stable outcome for the refugee families and hence the stronger is

their incentive to manipulate(Erdil and Ergin, 2008; Kesten, 2010).

6.2 Quasi-stable outcomes

The possible non-existence of stable outcomes and the computational challenges involved in

finding them motivates us to seek an alternative stability concept. We now introduce quasi-

stability, which respects priorities of localities, but introduces possible underuse in service

capacities. In the context of refugee resettlement, this may well be tolerable. Refugees arrive

to many localities regularly and many services, such as hospital beds and school places, are

durable and unlikely to disappear if they are not immediately used. Any unused service

capacities can simply be used for the next cohort of resetted refugee families.
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ATDBU outcome is non-empty.
Top-choice attempt is infeasible.
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Figure 2: Depth-first search of the Top Choice algorithm
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Algorithm 3: Top Choice algorithm

Phase 1: Run the TDBU algorithm to obtain φ(X). If φ∗(X) is feasible,
stop and report the family-optimal stable outcome. If φ∗(X) is not feasible,
let the current outcome be Y = φ(X). Create an arbitrary general priority
order. Let the sets of artificial guarantees and artificial rejections be empty.
Phase 2: Run the DFS algorithm with ATDBU as intermediate steps,
keeping track of not only guarantees and rejections, but also artificial guar-
antees and artificial rejections.
Phase 3: If an unmoderated stable outcome is reported at the end of Phase
2, assign housing using a permissible housing assignment function.

Definition 2 (Quasi-Stability). A feasible outcome Y is quasi-stable if, for any locality `

and family f ′ ∈ F `′(Y ) with `′ 6= `, either `′ �f ′ ` or f π` f
′ for all f ∈ F `(Y ).

Quasi-stability does not allow families to block an outcome if the family has the lowest

priority in the new locality. This immediately shows that quasi-stability itself is a permis-

sive stability concept—an empty outcome is a quasi-stable outcome therefore quasi-stable

outcomes always exist. Nevertheless, any quasi-stable outcome maintains complete respect

for the priorities of the localities, and in the context of school choice any stable outcome is

quasi-stable.37

6.2.1 Mechanism for a family-optimal quasi-stable outcome

In Algorithm 4, we present the Priority-Focused Deferred Acceptance (PFDA) algorithm—

a modified version of the classic deferred-acceptance (DA) algorithm (Gale and Shapley,

1962)—which finds the family-optimal quasi-stable outcome. In each round families apply

to localities that have not rejected them yet. In order not to be rejected from a locality,

the locality must be able to accommodate the family alongside families with a higher pri-

ority at that locality and must not have already rejected a family with a higher priority

for that locality in this or an earlier round. The key difference between the DA and the

PFDA algorithms is the condition that requires any family with a lower priority than one

already rejected from a locality to be rejected from that locality immediately. This happens

automatically in the DA algorithm in models without multidimensional constraints, such

as school choice. In these contexts, the PFDA and the DA algorithms coincide. However,

37Even in the context of school choice, our definition of quasi-stability is stronger than envy-freeness (Wu
and Roth, 2016), simplicity (Sotomayor, 1996), and firm-quasi-stability (Blum et al., 1997).
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naively running the DA algorithm in our model means that a “smaller” family with a lower

priority could be accepted after a “larger” family with a higher priority is rejected (because

it could not be accommodated), resulting in an outcome which is not quasi-stable.

Proposition 6. The PFDA algorithm yields a family-optimal quasi-stable outcome.

The PFDA algorithm also makes it very clear how “wasted capacity” the family-optimal,

quasi-stable outcome leaves: when |S| = 1 in any locality, maximum possible amount of

capacity of any service that could be used by a low-priority family is the highest demand

for this service minus 1. When there is more than one service, “large” families with high

priorities for localities with small capacities could create greater waste.

Example for Section 6.2.1

In addition to the set-up of the Example and family preferences in the Example for Section

5.1, we now introduce priorities for the localities38 into our Example.

`1 : f2, f1, f4, f5, f3

`2 : f5, f1, f3, f4, f2

`3 : f5, f3, f2, f1, f4

`4 : f1, f5, f2, f4, f3

The PFDA algorithm calculates that outcome in four rounds, which are displayed below:

Round 1 Round 2 Round 3 Round 4

f1 → `3 7 f1 → `4 3 f1 → `4 3 f1 → `4 3

f2 → `3 3 f2 → `3 7 f2 → `1 3 f2 → `1 3

f3 → `4 7 f3 → `3 3 f3 → `3 3 f3 → `3 3

f4 → `4 3 f4 → `4 7 f4 → `1 3 f4 → `1 3

f5 → `1 3 f5 → `1 3 f5 → `1 7 f5 → `2 3

If a family is proposing to a locality and has not been rejected by the locality, we say it has

been tentatively accepted.

Round 1 : Families f1 and f2 are in competition for `3. Family f2 is tentatively accepted

as it has a higher priority than f1 and can be accommodated by itself. f1 on the other

hand cannot be accommodated alongside f2 at `3. Therefore it is rejected. Similarly, f4

is tentatively accepted by `4, but f3 is rejected since it cannot be accommodated. f5 is

tentatively accepted by `1 as it is the only family proposing and can be accommodated by

itself.

38With these priorities, the outcome of the MTTC algorithm would be
{(f1, `4), (f2, `3), (f3, `4), (f4, `2), (f5, `1)}

38



Algorithm 4: Priority-Focussed Deferred Acceptance algorithm

Start with the set of all contracts X. Remove all contracts which are
infeasible under the empty outcome. Consider the current outcome Y 1.

Round 1:
Each family proposes to its top-choice locality under Y 1. Each locality does
not reject f if family f can be accommodated in this locality alongside
all families from set F̂(f,`) that are proposing to the locality. Remove all
contracts involving the rejected families and the localities they proposed to
from Y 1. If at least one family is rejected, update current outcome to Y 2

and proceed to Round 2. Otherwise each family is matched to the locality
to which it last proposed and the algorithm ends.

Round i > 1:
Each family proposes to its top-choice locality under Y i. Each locality does
not reject f if:

Family f can be accommodated in this locality alongside all families
from set F̂(f,`) that are proposing to the locality, and

Family f does not have a lower priority than a family which was re-
jected from this locality in this or an earlier round.

Any family that cannot be accommodated alongside proposing families or
has a lower priority than a family which was rejected from this locality
in this or an earlier round is rejected. Remove all contracts involving the
rejected families and the localities they proposed to from Y .

If at least one family is rejected update current outcome to Y i+1 and proceed
to Round i + 1. Otherwise each family is matched to the locality to which
it last proposed and the algorithm ends.
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Round 2 : Family f1 proposes to its second choice and competes with f4 for `4. f1 is tenta-

tively accepted as it has a higher priority and can be accommodated by itself, however f1

and f4 cannot be accommodated alongside one another as h41 is not permissible for either

of them. Family f4 is rejected. Locality `3 can only accommodate one of f2 and f3, so f2 is

rejected since it has a lower priority. As in Round 1, `1 tentatively accepts f5.

Round 3 : Families f1 and f3 are again tentatively accepted by `4 and respectively `3 since

they are the only proposers. f2, f4 and f5 all propose to `1. f2 and f4 are tentatively accepted

as they both have a higher priority than f5 and `1 can accommodate both of them. f5 is

rejected since `1 only has two houses.

Round 4 : Family f5 proposes to `2 and is tentatively accepted since it can be accommodated.

The other families propose to the same localities as in the previous round and are tentatively

accepted as well. The tentative outcome becomes final and the algorithm ends.

The family-optimal quasi-stable outcome is:

Y PFDA = {(f1, `4), (f2, `1), (f3, `3), (f4, `1), (f5, `2)}.

6.2.2 Strategic properties of the PFDA algorithm

The PFDA algorithm is appealing because it finds family-optimal quasi-stable outcomes

quickly while respecting priorities of localities, but it is not strategy-proof. The reasoning is

straightforward: When a family f applies to a locality and is rejected, it may also trigger an-

other rejection (first example in Appendix D.2). Moreover, even when a family has proposed

and has not been rejected (but is rejected subsequently), its proposal may trigger multiple

rejections (second example in Appendix D.2). In either case, the other rejected families end

up competing with f for other localities. Therefore, if f does not get its top-choice locality,

its chances of getting its second- or third-choice locality can also be reduced. Hence, this

is reminiscent of the Boston mechanism as families have an incentive to carefully consider

what they report as their first preference since an early rejection may affect their eventual

outcome.

Although the PFDA algorithm is not strategy-proof, it shares enough structure with the

DA algorithm so that in a low-information environment truth-telling is preferred to other

strategies. Following Roth and Rothblum (1999), we consider two informational environ-

ments: (i) {`, `′}-symmetric information in which families assign the same probability to any

submitted preference profile and its symmetric profile in which the ranking of ` and `′ is

interchanged (ii) completely symmetric information in which families have {`, `′}-symmetric

information about any pair {`, `′}. Although under these low information conditions, fam-

ilies’ beliefs are required to treat localities equally, it does not require families’ beliefs to
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be independent. Hence, families’ preferences can be correlated. We informally state the

proposition and leave the technical details of the statement and the proof for the Appendix.

Proposition 7. The PFDA algorithm is not strategy-proof, but

• for any family with {`, `′}-symmetric information, truth-telling stochastically domi-

nates reports that swap the order of ` and `′ under the PFDA algorithm.

• for any family with completely symmetric information, truth-telling stochastically dom-

inates any other report under PFDA algorithm. Hence, if all families have completely

symmetric information, truth-telling is an ordinal Bayesian Nash equilibrium of pref-

erence revelation game under the PFDA algorithm.

This strategy-proofness result for the PFDA algorithm is rather weak. Indeed, even the

highly-manipulable Boston mechanism (Abdulkadiroğlu and Sönmez, 2003) and the Stable

Improvement Cycles (Erdil and Ergin, 2008) mechanism are strategy-proof in low information

settings. In the school choice context, Kesten (2010) shows that for his “efficiency-adjusted

deferred acceptance mechanism”, under a certain commonality of preferences, even partially

symmetric information is sufficient for truth-telling for families to be an ordinal Bayesian

Nash equilibrium. However, in our case, even when preferences of families are identical,

manipulation of the PFDA algorithm is possible.39

6.2.3 A strategy-proof mechanism that finds quasi-stable outcomes

Our discussion of manipulability of the PFDA algorithm reveals two important properties

that a strategy-proof mechanism ought to have. First, if a family proposes to a locality and

is rejected straight away, it does not start a rejection chain. Second, if a family proposes

to a locality and is not rejected, the rejection chain of other families either comes back and

triggers the family’s subsequent rejection or make it more difficult to obtain its next choice,

but not both. If these properties are satisfied, then whenever the family is rejected by the

locality to which it last proposed, it has the same competition for its next choice as it would

have had without the proposal.

We now introduce the Maximum Rank Deferred Acceptance (MRDA) algorithm in which

we first assign each family-locality pair a Maximum Rank and then use it to define a rejection

rule in the strategy-proof mechanism that finds a quasi-stable outcome.

39Specifically, our first counterexample to the strategy-proofness of the PFDA algorithm in Appendix D.2
shows that Case 2 of the proof of Proposition A.2. Kesten (2010)[p. 1343] fails when the quality classes are
{`1, `2} and {`3} and relabelling s as `1, s′ as `2, and x as `3.
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Consider a family f and a family f ′ which is just above f on the priority list of `. The

Maximum Rank for a family f in locality ` is either the minimum number of families that

have a higher priority than f in ` alongside which f cannot be accommodated in `, or

the minimum number of families that have a higher priority than f ′ in ` alongside which f ′

cannot be accommodated in `—whichever is smaller. Family f ’s Maximum Rank for locality

` is 0 if f cannot be accommodated at ` even on its own, i.e. it is “too big to fit”. Family

f ’s Maximum Rank for locality ` is ∞ if f can be accommodated at ` alongside any set of

families that have a higher priority at ` than f .

For example, if f ′ is 5th on `’s priority list and has a Maximum Rank of 3 while f is 6th on

that list, f ’s Maximum Rank can be at most 3, even if it can be accommodated alongside all

subsets of size greater than 3. Maximum Ranks must then be assigned recursively for each

locality, starting from the family at the top of the locality’s priority list and going through

that list one family at a time. This can be computed quickly if housing is combinatorial:

Families can be sorted by sizes for each service and being able to fit with any subset of size

n requires to be able to fit with the largest subset of size n for all services.

Once Maximum Ranks have been assigned to every family in every locality, we can use a

variation on the DA algorithm where the rejection rule is tied to Maximum Ranks (Algorithm

5): A family is rejected if the number of families with a higher priority proposing to the same

locality in a particular round is no less than the family’s Maximum Rank for that locality.

The MRDA algorithm shares important other similarities with the DA algorithm that ensure

its strategy-proofness. The Maximum Rank of family f for locality `, which depends on

priorities and constraints but not on preferences, determines the number of families with a

higher priority for ` than f that can be matched to ` before f is rejected. The algorithm

then aims to satisfy families as much as possible given that constraint. In the school choice

model, the DA algorithm works analogously, but the simplicity of the capacity constraints

mean that the Maximum Rank of any student is the school’s capacity minus one.

Proposition 8. The MRDA algorithm is strategy-proof and yields a quasi-stable outcome.

If housing is combinatorial, then the MRDA algorithm runs in polynomial time.

Running the MRDA algorithm for our Example is straightforward and we show a richer

case in Appendix D.1. The Example vividly highlights that the efficiency cost of strategy-

proofness in the MRDA algorithm can be high compared to the outcomes of the PFDA

algorithm. Unsurprisingly, for our Example, the outcome obtained by the PFDA algorithm

dominates the one obtained by the MRDA algorithm: Families f1, f2 and f5 are matched

to the same localities but f3 and f4 are unmatched under the MRDA algorithm. But this is

not always the case. In Appendix D.3, we show a manipulable example of PFDA algorithm
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Algorithm 5: Maximum Rank Deferred Acceptance algorithm

Phase 1:
Arbitrarily index localities L = {`1, `2, ..., `|L|}. Label families so that fk,p
refers to the family with the p-th highest priority for locality `k. Proceed
to Round 1.
Round i ≥ 1
Step 1 : Family fi,1’s Maximum Rank for locality `i to ∞ if fi,1 can be
accommodated at `i and to 0 otherwise. Proceed to Step 2.
Step j > 1:

If fi,j cannot be accommodated at `i, set its Maximum Rank for `i to
0.
Else if fi,j can be accommodated at `i alongside all other families with
a higher priority, set its Maximum Rank for `i to ∞.
Else consider the Maximum Rank of fi,j−1 for `i:

If it is 0, set fi,j’s Maximum Rank for `i to 0.
Else if it is n ∈ N and fi,j can be accommodated at `i alongside all
subsets of n−1 families with a higher priority, set fi,j’s Maximum
Rank for `i to n.
Else it is∞ or it is n ∈ N and there is a subset of n−1 families with
a higher priority alongside which fi,j cannot be accommodated. In
that case set fi,j’s Maximum Rank for `i to be m ≤ n such that fi,j
can be accommodated at `i alongside all subsets of m− 1 families
with a higher priority but there exists a subset of m families with
a higher priority alongside which fi,j cannot be accommodated at
`i.

If j < |F |, proceed to step j + 1.
Else if j = |F | and i < |L|, proceed to Round i+ 1.
Else j = |F | and i = |L|, proceed to Phase 2.
Phase 2:
Start with the set of all contracts X. Remove all contracts which are infea-
sible under the empty outcome. Consider the current outcome Y 1.
Round i′ ≥ 1
Every family proposes to its top-choice locality under Y i′ . A family is re-
jected if the number of families with a higher priority proposing to the same
locality is no less than the family’s Maximum Rank for that locality. Con-
struct Y i′+1 by removing all contracts between the rejected families and the
localities they proposed to from Y i′ . If at least one rejection occurs proceed
to Round i′ + 1, otherwise each family is matched to the locality to which
it last proposed and the algorithm ends.
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for which the MRDA algorithm still produces a family-optimal quasi-stable outcome but

removes the temptation of agents to manipulate the mechanism.

Example for Section 6.2.3

In addition to the set-up of the Example and family preferences in the Example for Section

5.1, we use the priorities of localities introduced in the Example for Section 6.2.1.

Phase 1

The Maximum Ranks of all families for all localities are summarized below:

`1 `2 `3 `4

f2 ∞ f5 ∞ f5 0 f1 ∞
f1 1 f1 0 f3 0 f5 0

f4 1 f3 0 f2 0 f2 0

f5 1 f4 0 f1 0 f4 0

f3 1 f2 0 f4 0 f3 0

Family f2 has the highest priority for `1 and can be accommodated there, hence its

Maximum Rank is ∞. Family f1’s Maximum Rank for `1 is 1 as it can be accommodated

by itself but not alongside f2. As a result, the Maximum Rank of all other families with

a lower priority is at most 1. Since they can all be individually accommodated at `1 they

all get a Maximum Rank of 1. Family f5 can be accommodated at `2 and has the highest

priority, hence its Maximum Rank is ∞. Family f1, however, cannot be accommodated at

`2 since (f1, h21) is impermissible. Its Maximum Rank for `2 is 0, which implies that the

Maximum Rank of f3, f4 and f2 is also 0. Family f5 requires 3 units of service 1 and cannot

be accommodated at `3 or `4 since they can only provide 2 units. Since f5 has the highest

priority for `3 and the second highest priority for `4, all Maximum Ranks involving `3 or `4

are 0 with the exception of the Maximum Rank of f1 for `4. The latter is ∞ since `4 can

accommodate f1.

Phase 2

The second phase of the MRDA algorithm lasts five rounds, which are summarized below:
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Round 1 Round 2 Round 3 Round 4 Round 5

f1 → `3 7 f1 → `4 3 f1 → `4 3 f1 → `4 3 f1 → `4 3

f2 → `3 7 f2 → `1 3 f2 → `1 3 f2 → `1 3 f2 → `1 3

f3 → `4 7 f3 → `3 7 f3 → `1 7 f3 → `2 7 f3 → ∅ 3

f4 → `4 7 f4 → `1 7 f4 → `2 7 f4 → `3 7 f4 → ∅ 3

f5 → `1 3 f5 → `1 7 f5 → `2 3 f5 → `2 3 f5 → `2 3

If a family is proposing to a locality and has not been rejected by that locality, we say it has

been tentatively accepted.

Round 1 : Locality `3 rejects f1 and f2 and `4 rejects f3 and f4 because the Maximum Rank

of these families is 0. `1 tentatively accepts f5 since it is the only family to propose and its

Maximum Rank is 1.

Round 2 : Family f1 is tentatively accepted by `4 since its Maximum Rank is∞. Families f2,

f4 and f5 propose to `1. Locality `1 tentatively accepts the family with the highest priority,

f2, and rejects the other two since their Maximum Ranks are 1. Family f3 is rejected by `3 as

its Maximum Rank is 0. Because f1 and f2’s Maximum Ranks for `4 and `1 respectively are

∞, both families continue to propose to these localities for the remainder of the algorithm

and are matched to them in the end.

Round 3 : Locality `1 rejects f3 since it has a lower priority than f2 and a Maximum Rank

of 1. Locality `2 tentatively accepts f5, which has a Maximum Rank of ∞ but rejects f2 as

its Maximum Rank is 0. Family f5 will continue to propose to `2 for the remainder of the

algorithm and will be matched to it in the end.

Round 4 : Families f3 and f4 are rejected by `2 and `3 respectively since their Maximum

Rank is 0.

Round 5 : Families f3 and f4 propose to the null object in Round 5 and all families are

tentatively accepted. The algorithm ends and yields the following outcome:

Y MRDA = {(f1, `4), (f2, `1), (f3, ∅), (f4, ∅), (f5, `2)}.

7 Tradeoffs between different mechanisms

This paper developed seven different mechanisms for matching with multidimensional con-

straints (Table 1). Some of these, such as the serial dictatorship and the Multidimensional

Top Trading Cycles algorithm, are based on familiar matching market design tools. Others

are completely tailored to our context. We showed how information about the preferences

of refugees and the priorities of localities can be incorporated into the refugee matching

system. However, the eventual choice of the refugee matching algorithm not only depends
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Preferences Priorities Manipulability Computation

OQMP – – – NP-hard

MTTC Pareto-efficient – Strategy-proof Polynomial

Serial
MTTC

Individually
rational

– Strategy-proof Polynomial

Serial dic-
tatorship

Pareto-efficient Stable (identical
priorities)

Strategy-proof Polynomial

Top
Choice

Family-
undominated

Stable Difficult NP-complete

PFDA Family-optimal Quasi-stable Only strategy-
proof under low
information

Polynomial

MRDA – Quasi-stable Strategy-proof Polynomial
if housing is
combinatorial

Table 1: Properties of different mechanisms for matching with multidimensional constraints
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on the information available to the social planner, but also on the structure of the problem:

(i) its size (the number of refugees, localities, and services), and (ii) the importance and

heterogeneity of locality priorities (Table 2).

For smaller problems (e.g., 50 refugees families arriving on one plane being matched to a

dozen localities), and without any information about preferences or priorities, the only option

is to solve the outcome-quality maximization problem. If preference information is available,

then it is possible to quickly find Pareto improvements upon a solution to the outcome-quality

maximization problem using the SMTTC algorithm. If priorities also matter, then stable

undominated outcomes can be found (whenever they exist) in a reasonable time using the

Top Choice algorithm. In small-size problems with little capacity for some services that are in

high demand (especially when a single family’s demand exceeds capacities in certain localities

where they have high priority), the PFDA and MRDA algorithms may perform poorly. This

points to a need for sensible priority design: localities that have certain services in very

limited supply should avoid prioritizing families that have a great need for those services.

When priorities are sufficiently homogeneous, the Top Choice and MTTC algorithms

would produce similar outcomes, and the MTTC algorithm is likely to be preferred for

computational reasons. However, when priorities are heterogenous and matter a great deal,

the social planner faces a stark choice. While the Top Choice algorithm can deal with small

instances, for large problems there is no way of knowing whether stable outcomes exist.

In larger matching markets, including those outside the refugee resettlement context (see

Section 9), the outcome-quality maximization problem and the Top Choice algorithm might

be too computationally demanding. If priorities are identical, there is no computational con-

cern as the serial dictatorship delivers a stable, Pareto-efficient outcome in a strategy-proof

way. However, if priorities are not identical but can be ignored, the sensible mechanism to

use is the MTTC algorithm. In fact, a hybrid mechanism that first quickly approximates a

reasonable solution to the outcome-quality maximization problem followed by the SMTTC

algorithm is might also be appealing in this case. Finally, in large problems in which priorities

must be fully respected, both PFDA and MRDA algorithms are good options: their out-

comes are close to stable ones, they have little waste, and they can be implemented quickly.

Selecting between two quasi-stable mechanisms—the PFDA and MRDA algorithms—creates

similar trade-offs to school choice settings: it comes a cost to strategy-proofness (Erdil and

Ergin, 2008; Kesten, 2010).
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Market size

Small Large

Priorities are
not important

MTTC,
Serial MTTC
(from OQMP)

MTTC,
Serial MTTC

(from any
endowment)

Priorities are
important

Top Choice
PFDA,
MRDA

Table 2: Comparing mechanisms for matching with multidimensional constraints

8 Applications to other resettlement contexts

The context of the British resettlement program for Syrian refugees is particularly interesting

because it is a comparatively new large-scale program—which will still evolve. However, as

we discuss below, our market design insights also apply in contexts where the resettlement

programs are more mature.

8.1 United States

The United States has resettled over 70,000 refugees annually between 2013 and 2015, 85,000

in 2016, and is committed to resettling at least 110,000 in the 2017 (White, 2016). The US

State Department conducts the security and background checks in conjunction with UNHCR.

Refugees are allowed to list family members (around a half do so) who live in the United

States and are almost certain to be reunited with them. Refugees can also list friends around

the US. Given that it is easy to report and conceal a friend, these indicators could be treated

as weak preferences. The job of matching refugees to local areas, however, is delegated to

nine Voluntary Agencies (VolAgs). VolAgs establish their own links to local communities

that are willing to take refugees. Often, this is done through religious institutions, such

as churches and synagogues. VolAgs consult the communities about which categories of

refugees they are interested in hosting and attempt to incorporate these priorities. Every

week, the agencies first distribute the arriving casework among themselves (using a priority

mechanism since agency preferences for the kinds of refugees they want to resettle are highly

correlated). The agency is then responsible for placing refugee families in communities. The

government provides support for refugees only for the first 90 days and the resettlement

agencies are evaluated on their success of getting refugees employed within that period.

In recent work, Feywerda and Gest (2016) find that the matching of refugees to local areas
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by one large American voluntary agency is almost random, despite an explicit incentive

to maximize the expected number of refugees in employment. This work suggests that

systematic matching could add a lot of value in the American resettlement process.

8.2 Canada

Canada operates three resettlement schemes: private sponsorship, government sponsorship,

and mixed private-government sponsorship.40 Our results could apply directly to the gov-

ernment and mixed schemes.41 The institutional context of Canadian resettlement is very

similar to the UK: the process is centralized, but operates in close cooperation to the fed-

eral provinces and territories. Moreover, Canada and the UK share similar welfare systems.

Most importantly, unlike its American counterparts, the Canadian resettlement authority

does not focus on a single metric for refugee success. Since the fall of 2015, Canada has

substantially stepped up its resettlement efforts for Syrian refugees. It keeps a live web-

site recording all the Syrian arrivals: Between November 2015 and October 2016, Canada

resettled 31,919 Syrian refugees into 316 communities.42 From a modeling perspective, the

Canadian resettlement system could be a larger-scale version of the British one.

9 Further applications of matching with multidimen-

sional constraints

9.1 Multidimensional diversity constraints

Many public institutions prefer a diverse membership and implement diversity targets or

affirmative action policies. Recently, a number of papers in matching theory has sought to

integrate diversity concerns analyzing a variety of reserve, quota, and balancing schemes

(Abdulkadiroğlu and Sönmez, 2003; Westkamp, 2013; Echenique and Yenmez, 2015; Komin-

ers and Sönmez, 2016). Most of the prior work has implicitly assumed that any agent fills

a quota for their specific unidimensional type. This ignores the fact thats some agents can

affect several quota dimensions. Our model allows public institutions to implement diversity

targets directly by allowing for multidimensional type constraints. For example, a student

could be represented by a vector of characteristics denoting their gender, socioeconomic sta-

tus, race, and ethnicity (in the same way as a refugee family has needs for multiple services).

40Québec runs a separate and independent resettlement scheme.
41There are interesting design issues to address in the private sponsorship scheme, such as the optimal

length of waiting time before matching.
42http://www.cic.gc.ca/english/refugees/welcome/milestones.asp
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A school could in turn implement multidimensional diversity quotas for these characteristics

(same as locality capacities). This could allow the same student to fill a college quota for

race and gender simultaneously.43

9.2 Daycare matching

Parents of children in daycare are often in part-time work. Hence, they only require daycare

on particular days or, indeed, for certain parts of the day. Daycare centers have capacity

constraints on staff that might also vary day-by-day. Our model allows parents to express

their preferences over particular days and times without modifying the priorities of the

daycare center (e.g. using neighborhood or sibling priority) and introduce flexible capacity

constraints over the course of the week. For example, a parent might wish to only send one

of their children to daycare for the morning of Monday and both children for the afternoon of

Thursday and Friday, while the daycare center may be able to accommodate twelve children

on Thursday morning and only eight children on Wednesday morning. Each “service” is then

a day and a time and the needs of families for each “‘service” are the numbers of children

they wish to send to daycare at that time.

10 Conclusion

This paper described matching problems that arise at different stages of refugee resettlement

and showed three ways in which systems for refugee resettlement can be enhanced using in-

sights from market design: by maximizing welfare based on observables, by using refugee

family preferences, or by using both preferences and locality priorities. First, we showed

how to maximize the overall efficiency of the match based entirely on a quality score esti-

mated without eliciting the preferences of refugees or the priorities of the localities. Then,

we adapted the classical Top Trading Cycles mechanism (i) to achieve a Pareto efficient out-

come from an empty endowment and (ii) to find Pareto improvements from any endowment

in a strategy-proof way. We showed that, unless priorities are identical, stable outcomes

may not exist and can be computationally hard to find. We then introduced another sta-

bility concept—quasi-stability—that fully respects the priorities of localities. We showed

that there was a tradeoff between reaching family-optimal and strategy-proof quasi-stable

outcomes. In general, different mechanisms we proposed would work well depending on the

43We do not require that the student necessarily take up a full race-slot and a full gender-slot. Aygün and
Bó (2016) consider a case of multidimensional privileges in Brazilian college admissions. In their case, the
preferences of colleges are constrained and reporting privileges is a strategic decision.
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size of the matching market and the importance of satisfying heterogeneous priorities. Pol-

icy work to implement our matching tools is already beginning in several countries.44 Our

framework for matching with multidimensional constraints has a number of possible applica-

tions from incorporating complex diversity constraints in school choice or college admissions

to designing new systems that would match children to daycare centers. While matching

with multidimensional constraints is structurally messier than more classical many-to-one

matching, it offers an exciting area of theoretical and applied research.

44See www.refugees-say.com.
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Appendix

A The running Example

• Families: F = {f1, f2, f3, f4, f5} Localities: L = {`1, `2, `3, `4}
• Houses: H`1 = {h11, h12}, H`2 = {h21}, H`3 = {h31, h32}, H`4 = {h41, h42}
• Service capacities: Service needs:

κ =


s1 s2

`1 4 2
`2 3 2
`3 2 2
`4 2 2

 ν =



s1 s2

f1 1 0
f2 2 1
f3 0 2
f4 1 1
f5 3 0


We could also say that (f1, h12), (f1, h21), (f1, h41), (f2, h12), (f3, h11), (f4, h11), (f4, h41)

and (f5, h11) are the only impermissible family-house pairs. Housing is combinatorial. Let us
suppose that there are two house and family sizes: {small, large} and three house features:
Θ = {θ1, θ2, θ3}. A small family can fit into a large house, but not vice versa.

Family needs

Family size type
f1 small θ1, θ2, θ3

f2 large θ2

f3 large ∅
f4 large θ1

f5 large ∅

Housing

House size type
h11 small θ1, θ2, θ3

h12 large θ1

h21 large θ1, θ2

h31 large θ1, θ2, θ3

h32 large θ1, θ2, θ3

h41 large θ2

h42 large θ1, θ2, θ3

Priorities of localities:
`1 : f2, f1, f4, f5, f3

`2 : f5, f1, f3, f4, f2

`3 : f5, f3, f2, f1, f4

`4 : f1, f5, f2, f4, f3

Preferences of families:
f1 : `3 � `4 � `1 � `2

f2 : `3 � `1 � `2 � `4

f3 : `4 � `3 � `1 � `2

f4 : `4 � `1 � `2 � `3

f5 : `1 � `2 � `4 � `3

Quality score: q((f, `))
`1 `2 `3 `4

f1 71 ∅ 23 38
f2 46 49 30 91
f3 52 68 43 20
f4 4 75 96 36
f5 92 41 ∅ ∅

• Outcome-quality maximization problem (OQMP) Example for Section 4

• Multidimensional Top Trading Cycles (MTTC) Example for Section 5.1

• Serial Multidimensional Top Trading Cycles Example for Section 5.2

• Priority-Focused Deferred Acceptance (PFDA) Example for Section 6.2.1

• Maximum Rank Deferred Acceptance (MRDA) Example for Section 6.2.3
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B Proofs

Proof of Proposition 1. First note that:

max
Y⊆X

∑
y∈Y

q(y) corresponds to: max
∑
`∈L

∑
f∈F

q(f, `)ι(f, `) ι(f, `) ∈ {0, 1}.

While for the two feasibility constraints on Y , we have

|Y ∩Xf | = 1 for all f corresponds to:
∑
`∈L

ι(f, `) ≤ 1 ∀f ι(f, `) ∈ {0, 1},

τ(Y ) ≤ κ corresponds to:
∑
f∈F

∑
`∈L

νfs ι(f, `) ≤ κ`s ∀`, s ι(f, `) ∈ {0, 1}.

Since the any subset of families can be feasibly accommodated in the null locality, it does
not impose a constraint on the problem hence the outcome-quality maximization problem is
precisely the multiple multidimensional knapsack problem.

In order to apply the branch-and-bound algorithm, we first need to a determine an upper
bound on the value of the maximand. Here we cannot use standard greedy solutions to a
linear relaxation of the knapsack problem. We extend the approach of Song et al. (2008)
to our multidimensional case and decompose our problem into several standard knapsack
problems, which can all be independently linearly relaxed to obtain a tight upper bound for
the whole problem. The lower bound is, of course, zero, since all families can be unmatched.

First, let us identify each service constraint:

max
∑
`∈L

∑
f∈F

q(f, `)ι(f, `) (3)∑
f∈F

νfs1ι(f, `) ≤ κ`s1 ∀`

...∑
f∈F

νf|S|ι(f, `) ≤ κ`|S| ∀`∑
`∈L

ι(f, `) ≤ 1 ∀f

ι(f, `) ∈ {0, 1}.

Let us introduce dual variables λf for all f ∈ F and γ` for all ` ∈ L. Convert Problem
(3) into a problem with a one-dimensional constraint:
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max
ι
L(ι,λ,γ) (4)∑

f∈F

νfs1ι(f, `) ≤ κ`s1 ∀`

ι(f, `) ∈ {0, 1}

where: L(ι,λ,γ) =
∑
`∈L

∑
f∈F

q(f, `)ι(f, `)

−
∑
f∈F

λf (
∑
`∈L

ι(f, `)− 1)

−
∑

s∈S\{s1}

∑
`∈L

γ`s(
∑
f∈F

νfs ι(f, `)− κ`s).

Denote Õ as the optimum value of Problem (4), which is also an upper bound for the
outcome-quality maximization problem for any λf , γ` ≥ 0. For a tight upper bound, let us
minimize

min
λ,γ

L(ι,λ,γ)

and rewrite Problem (4) as:

L(ι,λ,γ) =
∑
`∈L

∑
f∈F

q(f, `)ι(f, `)−
∑
`∈L

∑
f∈F

λf ι(f, `)−
∑

s∈S\{s1}

∑
`∈L

∑
f∈F

γ`sν
f
s ι(f, `) (5)

+
∑
f∈F

λf +
∑

s∈S\{s1}

m∑
j=1

γ`sκ
`
s

=
∑
`∈L


∑
f∈F

q(f, `)− λf −
∑

s∈S\{s1}

γ`sν
f
s︸ ︷︷ ︸

q̃`

 ι(f, `)


+
∑
f∈F

λf +
∑

s∈S\{s1}

∑
`∈L

γ`sκ
`
s.

Let us define q̃` = q(f, `) − λf −
∑

s∈S\{s1} γ
`
sν

f
s as `th decomposed knapsack problems,
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namely

max
∑
f∈F

q̃`ι(f, `) (6)∑
f∈F

νfs1ι(f, `) ≤ κ`s1

ι(f, `) ∈ {0, 1}.

Now, let us find an upper bound for all |L| problems q̃` by the following linear relaxation
and a greedy algorithm for the upper bound (see Kellerer et al. (2004)):

max
∑
f∈F

q̃`ι(f, `) (7)∑
f∈F

νfs1ι(f, `) ≤ κ`s1

ι(f, `) ∈ [0, 1].

We denote the upper bound of the `th subproblem (6) as o`. The upper bound of the
outcome quality maximization problem is then:

∑
`∈L

o` +
n∑

f∈F

λi +
∑

s∈S\{s1}

∑
`∈L

γ`sκ
`
s

Once the upper bound has been determined, a standard branch-and-bound method can be
applied. Finding a heuristic that gives an approximation to this problem that is independent
of the number of services is an open problem and beyond the scope of this paper.

Proof of Proposition 2. First, we show how to determine the top-choice locality and the
highest-quality family that can be accommodated at each round. Given a current outcome
Y , consider a family f and a locality `. Consider the set of families that are permanently
matched to `, F `(Y ). We are interested in whether f /∈ F can be accommodated in ` along-
side F `(Y ). If housing is combinatorial, this is trivial: we simply check whether feasibility
constraints at ` are violated when Y ∪ f, ` is an outcome.

Without combinatorial housing, consider H`, the set of houses in locality `. The problem
is non-trivial if |H`| ≥ |F `(Y )∪{f}|. We have an instance of a maximum bipartite matching
problem. Construct a graph as follows: The nodes are partitioned into two subsets H`

and F `(Y ) ∪ {f} and any edge represents a permissible family-house pair (f, h) such that
f ∈ F `(Y ) and h ∈ H`. All edges are given a weight of one except edges adjacent to f ,
which have weight 1 + ε (s.t. ε < 1

|H`|
) in order to break ties. We solve this instance of

the maximum bipartite matching problem (e.g. using the Ford-Fulkerson algorithm) and see
whether f is included in the solution. If in the optimal solution every family, including f
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has an adjacent edge then f can point at ` (or ` can point at f).
Once any locality and any family is able to determine the next family it wants to point

at, it is straightforward to see that the proofs of efficiency and strategy-proofness in our
case follow proofs Proposition 3 and 4 in Abdulkadiroğlu and Sönmez (2003) with trivial
modifications (e.g. adjusting capacity of every service rather than adjusting the capacity of
the total school quota).

Proof of Proposition 3. We prove each property in turn.

Individual Rationality
At any stage in the algorithm when f has been made active but not yet permanently

matched, f points at top-choice locality while the locality it is endowed with, say `, points at
f . As ` is always accessible to f , f first points at either ` or a locality it prefers. Therefore
either f is permanently matched to a locality it prefers to ` or it ends up pointing at `. In
that case f is always matched to `. Consequently, f is always permanently matched to ` or
a locality it prefers to `.

Strategy-proofness
A family cannot impact its outcome before it is made active or after it is permanently

matched. Therefore an incentive to manipulate preferences exists if and only if at some point
between the round a family is made active and the round it is permanently matched, the
family can improve its outcome by pointing at a locality other than the one it prefers among
those where it can be feasibly matched. We complete the proof by showing that no such
deviation exists.

Consider any round of the algorithm where f has already been made active but not yet
permanently matched. Let `1, . . . , `n be the localities that are accessible for f , ordered by
preference. By construction, f can only point at one of these localities. It remains to show
that pointing at `1 is a (weakly) dominant strategy. Let `j (j = 1, . . . , n) be f ’s endowment.
(By definition, `j is always accessible.) `j points at f so, should f is matched to `j if it points
at it. A chain may exist such that a locality points at a family, which points at another
locality, that locality points at a family and so on until a family points at `j. In that case, a
cycle forms if f points at the first locality in that chain. Denote by Z the the set of localities
in this chain. Let `k (k = 1, . . . , j) be the locality f prefers among localities in Z. Then f is
permanently matched to `k if it points at `k. If k = 1, pointing at `k is clearly a dominant
strategy since it ensures f is matched to the best locality it can still possibly obtain. We
consider below the case where k > 1.

Family f has three possible strategies. First, it can point at `k and be permanently
matched to `k. Second, there may exist one or more locality in Z to which f would be
matched if it pointed at any of them. As f prefers `k to all these localities in Z, the first
strategy dominates the second. Third, f can points at any other locality. No matter which
of these localities f points at, the same cycles appear and f is not part of any of them.
Additionally, `k as well as the families and localities involved in the chain from `k to f do
not appear in a cycle either since f does not points at `k. After the cycles are carried out, f
faces a new (smaller) set of localities where it can be feasibly matched and is still matched to
`k if it points at it. The third strategy dominates the first since it ensures f can be matched
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to `k or a locality it prefers in later rounds of the algorithm. It follows that pointing at any
locality such that no cycle is formed is a (weakly) dominant strategy for f . Since `1 is among
these localities, pointing at `1 is a (weakly) dominant strategy.

Proof of Proposition 4. (⇒) Suppose, towards a contradiction, that for some outcome of the
serial dictatorship there is blocking pair (f, `). This means that (i) ` can accommodate f
(perhaps after removing another lower priority family (or families from that locality) (ii) f
could have claimed that a contract with that locality when its priority order was called and
not be removed in later rounds. Hence, family f must have preferred not to be at `. Hence,
there is no blocking pair. A contradiction.
(⇐) Now suppose, towards a contradiction, that there is a stable mechanism that produces
an outcome that is different from an outcome of a serial dictatorship. Consider a family f
that is highest in the priority order whose locality is different from the locality that it is
matched to by the serial dictatorship. But the serial dictatorship gives f its best outcome
given that all the families with a higher priority than it have the same allocation under
both mechanisms. Hence, the family prefers the serial dictatorship outcome to its current
outcome. Moreover, it has the highest priority in its top-choice locality, following families
before it whose outcome was identical. Hence, there is a blocking pair and the other outcome
is not stable. A contradiction.

Proof of Proposition 5. First, let us define the terms we use.

Definition 3. For any X, π, and �, we say that f receives a guarantee for ` if in every
stable outcome Y , we have (f, `′) ∈ Y for some `′ �f ` or `′ = `.

First, we describe how to find guarantees algorithmically. Let F `(Y ) ≡ {f ∈ F | ` =
`f (Y )} be the set of families that have ` as their top choice.45 For any f ∈ F , let F̂(f,`) be

the set of families that have a higher priority for ` than f . We also define Ĝ(f,`) ⊆ F̂(f,`) as
the set of families with a higher priority at ` than f who have received a guarantee at `.
According to Definition 3, families in F ` ∩ Ĝ(f,`) will be matched to ` in any stable outcome

(for any f). Families in F̂(f,`) \ (F ` ∩ Ĝ(f,`)) may or may not be matched to ` in some stable
outcome. Family f therefore receives a guarantee if it can be accommodated alongside every
feasible subset of F̂(f,`) that contains F ` ∩ Ĝ(f,`). Formally, f receives a guarantee if for all

feasible F ′ such that F ` ∩ Ĝ(f,`) ⊆ F ′ ⊆ F̂(f,`), F
′ ∪ {f} is feasible. Intuitively, a family f

receives a guarantee from its top-choice locality ` if ` has enough capacity to accommodate it
with any subset of the set of families for which ` is top choice and which have higher priority
in ` (taking into account that some of these families also have guarantees).

Definition 4. For any X, π, and �, we say that f receives a rejection for ` if in every stable
outcome Y , we have (f, `) /∈ Y .

Second, we describe how to find rejections algorithmically. f is then rejected if there is
no subset F ′ such that F ` ∩ Ĝ(f,`) ⊆ F ′ ⊆ F̂(f,`) and

• F ′ ∪ {f} is feasible, and

• For every f ′ ∈ (F ` ∩ F̂(f,`)) \ F ′ we have that (F(f,`) ∩ F ′) ∪ {f ′} is infeasible.

45We drop argument Y when it is clear what the relevant outcome is.
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The intuition behind this rejection rule is the following: f is rejected from ` if there is no
subset of families with a higher priority than him that includes all families with a top choice
and a guarantee for that locality which (i) can accommodate f and (ii) is not blocked by
any family with a higher priority than f who has ` as top choice (but no guarantee for `).

Artificial guarantees and rejections
Let’s define GA ⊆ F×L and RA ⊆ F×L as the sets of artificial guarantees and rejections.

Artificial guarantees and artificial rejections induce the same actions within the algorithm
as guarantees and rejections. Given an artificial guarantee of family f for locality `, we
remove all the contracts for the localities that are preferred less by the f to `. Given an
artificial rejection of family f for locality `, we remove all contracts between f and `. Because
artificial guarantees and rejections are tentative i.e. not final, a family can have: an artificial
guarantee and a rejection for a given locality, or an guarantee and an artificial rejection, or
an artificial guarantee and an artificial rejection.

Lemma 1. The TDBU and the ATDBU algorithms do not remove any contracts that could
be part of a stable outcome.

Proof. See technical descriptions of the algorithms in Section C.1. First, if a family f can
be accommodated in a locality ` alongside any subset of families that have a higher priority
in that locality, then if it is matched to a locality `′ that is prefers less, then in any stable
outcome, it would be able to block with ` since (i) it prefers ` (ii) it will not affect the match
of any family with a higher priority in `. Therefore, any contract (f, `′) for any ` �f `′
can be removed without affecting the stable outcome. Second, any set of families that has
a guarantee for ` (Ĝ(f,`)) and which has ` as its top-choice locality (F `) must be matched
to ` in any stable outcome. Third, if a family f cannot be accommodated in ` alongside
F ` ∩ Ĝ(f,`) and any subset of families without a guarantee that has a higher priority that
f in `, then f cannot be part of a stable outcome because (f, `) can never be a blocking
pair. Hence, (f, `) can be removed without affecting any stable outcome. Since none of
the possible stable outcomes have been affected by the TDBU algorithm, if all the families
receive their top-choice locality among the remaining contracts and this outcome is feasible,
then the TDBU algorithm produces a unique (because each family’s top choice locality is
unique given any remaining set of contracts), stable (because every family get its top choice
and does not wish to block), and family-optimal (because among the remaining contracts
that can be part of a stable outcome, this one gives each family its top choice).46 Finally,
note that the ATDBU algorithm runs in exactly the same way as the TDBU algorithm
except that it checks for consistency between guarantees and rejections as well as artificial
guarantees and artificial rejections.

Define a solution tree as a directed graph. Each node represents a set of artificial guar-
antees. The root of the tree has no artificial guarantees. Nodes in the first level contain
artificial guarantees for all localities for f1, nodes in the second level contain artificial guar-
antees for all localities for f2 given artificial guarantee for f1 and so on. The bottom of

46Note that it may not be Pareto-efficient because contracts were removed according to the stability
criterion and some of these could have led to a Pareto improvement.
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the solution tree has artificial guarantees for all localities for family f|F | given the artificial
guarantees of all the other families. DFS searches through this solution tree.

Lemma 2. DFS reaches the bottom of the solution tree with the ATDBU algorithm at the
final step reporting a non-empty outcome if and only if there is stable outcome.

Proof. (⇒): If DFS reaches the bottom of the solution tree, then every family has an artificial
guarantee. Moreover, the ATDBU algorithm has not rejected any artificial guarantees. The
outcome must be feasible otherwise infeasible contracts would necessarily be rejected. The
outcome is stable because at each step of the algorithm every family’s artificial guarantee
was its top choice conditional on the remaining contracts. Since contracts are only removed
as DFS moves towards the bottom of the solution tree, no new blocking opportunities can
arise.
(⇐): Suppose there is a stable outcome. Let us make a trivial observation. Any stable
outcome can be constructed in the following way: For every family f matched to locality `,
remove all contracts that include localities that f prefers to ` and give each family its top-
choice locality (e.g. as artificial guarantee). Therefore, if an attempt to give every family
its top choice at any step of DFS results in a feasible outcome, it must be stable because
the ATDBU algorithm never removes contracts that could be part of a stable outcome.
Therefore, any stable outcome is a sequence of artificial guarantees for every family that are
not rejected. This sequence only occurs at the bottom of the solution tree.

Lemma 3. There is no stable outcome if and only if for any family an artificial guarantee
for every L ∪ {∅} is rejected.

Proof. (⇐): If family f ’s artificial guarantee for locality ` has been rejected, then, by defi-
nition, f cannot be placed in ` in any stable outcome. Let us artificially reject f from ` i.e.
remove (f, `). If the ATDBU algorithm returns an empty outcome, that means in any stable
outcome f cannot be placed in any outcome other than ` (including being unmatched). This
means that f cannot placed in any locality or be unmatched in any stable outcome.
(⇒): Suppose, towards a contradiction, there is no stable outcome, but there is a family f1

for which an artificial guarantee has not been rejected for some ` ∈ L ∪ {∅} in DFS. Start
DFS by giving f1 an artificial guarantee of ` and making it the first family in the general
priority. But note that DFS either stops at the bottom of the solution tree or returns to f1.
We have assumed that this artificial guarantee cannot be rejected therefore DFS can only
stop at the bottom of the solution tree. Hence, since DFS only stops at the bottom of the
solution tree if it finds a stable outcome, we have a contradiction.

Lemma 4. DFS finds a stable undominated outcome if a stable outcome exists.

Proof. Since a stable outcome exists, DFS must stop at the bottom of the solution tree.
Since DFS can access any outcome in the solution tree, the general priority order is not
relevant for whether a stable outcome is found. Index families in general priority with:
f1, f2, . . .. Note that DFS artificially guarantees f1’s top choice locality for a long as possible
and only rejects it when it shows that f2 cannot be matched to any locality givenf1’s top
choice. Then DFS gives every fi its best possible choice as artificial guarantee conditional
on all subsequent fj not having their best possible artificial guarantee rejected. Hence, for
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any family any stable outcome found by DFS must be at least as another outcome found
when this family is lower in the general priority order. Therefore, any outcome found by
DFS cannot be Pareto-dominated by another stable outcome found by DFS.

Housing assignment does not affect the stability or undominatedness of the outcome.
(⇒) part of the Proposition follows from Lemma 4. The (⇐) part of the Proposition follows
from Lemma 3 and Lemma 2 and the fact that DFS either stops at the bottom of the solution
tree or rejects the artificial guarantee of the least preferred locality of f1, the first family in
the general priority.

Proof of Proposition 6. By construction, in each round of the PFDA algorithm, a family is
rejected if another family with a higher priority is rejected or has been rejected before. It
follows that by the time the algorithm ends, any family matched to a given locality has a
higher priority for that locality than any family that was previously rejected. The outcome
Y ∗ reached by the time the algorithm ends is consequently quasi-stable. It remains to show
that Y ∗ dominates all other quasi-stable outcomes.

Suppose that there exists a quasi-stable outcome Y ′ such that, for some f , we have
f ∈ F `′(Y

′) and f ∈ F `(Y
∗) with `′ �f `. By construction, f was rejected by `′ in some

Round r of the PFDA algorithm.
Suppose now the existence of a family fi and a locality `i such that fi ∈ F `i(Y

∗) and `i
rejected fi in Round 1 ≤ ri ≤ r of the PFDA algorithm. Consider all families that proposed
to `i in at least one round between 1 and ri and have a higher priority for `i than fi. The
fact that fi was rejected in Round ri implies that it cannot be accommodated at `i alongside
all these families. Feasibility then dictates that at least one of them, say fi+1, be matched to
another locality: fi+1 ∈ F `i+1

(Y ′) with `i+1 6= `i. Because fi+1 π`i fi, quasi-stability in turn
dictates that `i+1 �fi+1

`i, which implies that fi+1 proposed to `i+1 in the PFDA algorithm
before he proposed to `i. It follows that `i+1 rejected fi+1 in Round ri+1 < ri.

By induction, there exists a family fj and a locality `j such that fj ∈ F `j(Y
′) and `j

rejected fj in Round 1. Family fj cannot be accommodated at `j alongside all families
proposing to `j in Round 1 who have a higher priority. Quasi-stability then dictates that at
least one of these families be matched to a locality they prefer to `j, a contradiction since
families propose to their top choice in Round 1.

Proof of Proposition 7. Let us set up the technical machinery following Roth and Rothblum
(1999) and (Ehlers, 2008). Recall that �f is the set of all preference profiles of family f
and �≡ ×f∈F �f is the preference domain. For a f ∈ F , denote �−f≡ ×f∈F\{f} �f . A
random preference profile is a probability distribution �̃−f over �−f . A random outcome
Ỹ is a probability distribution over the set of all feasible outcomes Y . Let Ỹ (f) denote the
distribution which Ỹ induces over the set of all f ’s feasible contracts {Yf |Y ∈ Y}. Given a
mechanism φ and �f∈�f , each randomized preference profile �̃f induces a random outcome
φ(�f , �̃−f ) in the following way: for all Y ∈ Y

Pr{φ(�f , �̃−f ) = Y } =
∑

�−f∈�−f :φ(�f ,�−f )=Y

Pr{�̃−f =�−f}
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Given f ∈ F , �f ,�′f ,�′′f∈�f , and a random preference profile �̃−f , we say that a
strategy �′f stochastically �f -dominates the strategy �′′f if for all ` ∈ L ∪ {∅}, denoted

`(φ(�′f , �̃−f )f ) >�f
`(φ(�′′f , �̃−f )f )

we have

Pr{`(φ(�′f , �̃−f )f ) ≥�f
`} ≥ Pr{`(φ(�′′f , �̃−f )f ) ≥�f

`}

Given f ∈ F , �f∈�f and `, `′ ∈ L, let �`↔`′f denote the preference list that changes the
positions of ` and `′ and leaves the other positions in �f unchanged. Also, for any �∈�,
let �`↔`′= (�`↔`′f ,�`↔`′−f ). Given an outcome Y ∈ Y , let Y `↔`′ be the outcome in which `
and `′ exchange the families matched to it under Y .

Definition 5 (Anonymity). For all �∈�, all Y ∈ Y , and all `, `′ ∈ L, if φ(�) = Y , then
φ(�`↔`′) = Y `↔`′ .

Definition 6 (Positive association). For all �∈�, f ∈ F , and all `, `′ ∈ L, if `(φ(�)f ) = `,
and `′ >�f

`, then `(φ(�`↔`′f ,�−f )f ) = `.

We then say that family f ’s information �̃−f is {`, `′}-symmetric if for every profile �−f ,
both �−f and �`↔`′−f are equally probable. Family f ’s information is completely symmetric
if �̃−f is symmetric for any two localities.

Lemma 5. PFDA algorithm satisfies positive association.

Proof of Lemma 5. Consider a family f that is matched to locality ` (not its top choice,
otherwise the result is trivial) under �f . This means that it can be accommodated alongside
other families that proposed to ` before it and it had a high enough priority to ensure it
was not rejected because a higher priority family than f was rejected. Now for some `′ such
that `′ �f `, consider submitting list �`↔`′f . All proposals before f applies to ` are the same.
Consider what happens when f proposes to `. Clearly, it can be accommodated since in
this round fewer families had proposed to `. Moreover, since fewer families had proposed, no
family with a higher priority who has been rejected from ` could have proposed. Therefore,
f will not be rejected. But in later rounds, there will be weakly fewer higher priority families
that apply to `. Therefore, f cannot be rejected from ` before the end of the algorithm.

Since in addition to positive association PFDA algorithm also satisfies anonymity, the
Proposition 7 holds as a corollary of Theorem 3.1 in (Ehlers, 2008).

Proof of Proposition 8. First, we prove a lemma that establishes important properties of the
algorithm.

Lemma 6. Given a locality ` and a subset of families F̃ that are tentatively accepted by `
after some round of the MRDA algorithm and a family f that is the only family other than
those in F̃ to propose to ` in the same round.

(i) If f is rejected, then it has a lower priority than all families in F̃ and all families in
F̃ continue proposing.
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(ii) If f is not rejected, at most one family in F̃ is rejected. That family has a lower
priority than f and than any other family in F̃ .

(iii) If f is not rejected without triggering a rejection, then all families in F̃ would continue
proposing if any other family were to propose to ` instead of f .

Let us define the Current Rank of family f for locality ` in Round k, denoted CRk
f,`, to

be the number of families with a higher priority than f proposing to ` in Round k plus 1.
The current rank then corresponds to the family’s relative priority among those proposing
to ` in Round k. Let us abbreviate Maximum Rank to MR.

Proof of Lemma 6. (i) If f is rejected in some Round k, then CRk
f,` > MRf,`. Any other

proposing family f ′ with a lower priority is such that CRk
f ′,` > CRk

f,` > and MRf ′,` < MRf,`

and is also rejected.
(ii) The result is trivial if |F̃ | ≤ 1. Otherwise, again let f ′ and f ′′ be the families with

respectively the lowest and nth (2 ≤ n ≤ |F̃ |) lowest priority among all families in F̃ . Before f
proposes, CRf ′,` ≤MRf ′,` since f ′ is not rejected. As f ′′ has n−1 less proposing family with
a higher priority than f ′ does, CRf ′′,` = CRf ′,`−(n−1) ≤MRf ′,`−(n−1) ≤MRf ′′,`−(n−1).
When f proposes, f ′′’s current rank goes up by one if f π` f

′′ and remains the same otherwise,
therefore it does not exceed MRf ′′,` − (n − 2) ≤ MRf ′′,` and f ′′ is tentatively accepted. It
follows that no family other than f ′ is rejected. As CRf ′,` ≤MRf ′,`, f

′ may only be rejected
if f π` f

′.
(iii) The result is trivial if |F̃ | = 0. Otherwise again let f ′ be the family with the lowest

priority among all families in F̃ . Before f proposes, CRf ′,` ≤ MRf ′,` since f ′ is accepted.
If CRf ′,` = MRf ′,`, f is rejected unless f π` f

′ but in that case f ′’s current rank goes up by
one so f ′ is rejected. Therefore if f is tentatively accepted without triggering a rejection,
CRf ′,` ≤ MRf ′,` − 1. Then if any family proposes to `, f ′’s current rank reaches at most
MRf ′,`. Family f ′ is not rejected and, by Part (ii), neither is any other family in F̃ .

We now prove each property in turn.

Quasi-stability
Suppose that the outcome is infeasible. Then, in the last round, there is a locality that

tentatively accepts a subset of n families that it cannot accommodate. Consider the family
with the last priority among that subset. That family’s current rank is n but its marginal
rank is at most n − 1 since there exists a subset of n − 1 families with which it cannot be
accommodated. That family could not have been tentatively accepted in the last round of
the algorithm, a contradiction.

Suppose now that the outcome Y allows a blocking pair, that is there exists f ∈ F `′(Y )
and f ′ ∈ F `(Y ) such that ` �f `′ and f π` f

′. By construction, MRf,` ≥ MRf ′,`. Since f
prefers ` to `′ and is matched to `′, it proposes to and is rejected by ` in some round k. In
that round at least MRf,` families with a priority higher than f (and hence f ′) propose to
`. If f ′ is already proposing to `, it is rejected. The fact that f ′ ∈ F `(Y ) implies that f ′

proposes to ` for the first time in some round t > k and that, in this round, strictly less
than MRf ′,` families propose to `. This requires that strictly less than MRf ′,` families with
a priority higher than f ′ are tentatively accepted by ` in Round t − 1. It follows that for
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some k ≤ k′ < t, ` tentatively accepts strictly less families with a higher priority than f ′ in
Round k′ + 1 than in Round k. We next show by contradiction that this is impossible.

Suppose that n ≥MRf ′,` families with a higher priority than f ′ are tentatively accepted
by ` in Round k′. In Round k′ + 1, m ≥ 0 new families propose to ` so that in total m + n
families with a higher priority than f ′ propose to ` but only p < n are accepted. Let f̃
be the family with the p + 1 − st priority among these m + n proposing families. Then
CRk′+1

f̃ ,`
= p + 1 > MRf̃ ,` since f̃ is rejected. Let f̂ be the family with the p + 1st priority

among the n families proposing to ` in Round k′. Then CRk′+1

f̂ ,`
= p + 1 ≤ MRf̂ ,` since

f̂ is tentatively accepted. It follows that MRf̂ ,` > MRf̃ ,`, however since the n families

tentatively accepted in Round k all propose again in Round k′, either f̃ = f̂ or f̃ π` f̂ hence
MRf̂ ,` ≤MRf̃ ,`, a contradiction. As the outcome is feasible and does not allow any blocking
pair, it is quasi-stable.

Strategy-proofness
We begin by proving two lemmas that, combined, yield the desired result.

Lemma 7. Fix the capacity constraints, priorities and reports by other families and let
` ∈ L∪ {∅} be the locality to which family f is matched if it reports �f . If instead f reports
�′f where ` is listed as its first preference, then f is still matched to ` and all other families
are weakly better-off.

Proof of Lemma 7. Let Y and Y ′ be the outcomes generated by the MRDA algorithm when
f reports �f , respectively �′f . Y respects Maximum Ranks when f reports �′f since the
only difference is that f no longer reports preferring any locality to `. By Lemma 6, Y ′

dominates Y given f ’s new report. Since f listed ` first it remains matched to ` and since
all other families kept the same report, they are all matched to either the same locality or
one they prefer.

Letting ` ∈ L∪{∅} be the locality to which f is matched if it reports its true preferences,
an important consequence of Lemma 7 is that f can successfully misrepresent its preferences
if and only if there exists `′ �f ` such that f is matched to ` if it reports `, ∅.

For ease of exposition of the second lemma, we consider a slightly altered but equivalent
algorithm to the MRDA algorithm. First, we run the MRDA algorithm pretending that f
reported all localities to be unacceptable. Once an outcome is reached, f proposes to the
locality listed first on its actual report. If the proposal is rejected, f proposes to its second
choice. If it is accepted and no family is rejected as a result, the algorithm ends and the
tentative outcome becomes final. If it is accepted and another family is rejected, a rejection
chain starts. The rejected family proposes to other localities until one accepts it. Another
family may be rejected as a result and so on until either a family is accepted by a locality
without triggering a rejection or a family is accepted by the locality to which f proposed and
f is rejected as a result. In the former case, the algorithm ends and the tentative outcome
becomes final. In the latter case, f proposes to its second choice. The same process is
followed for each of f ’s choices, the algorithm always eventually ends as f proposes to the
null object if it has been rejected by all acceptable localities. Any locality that rejects f in
the MRDA algorithm rejects f in this alternative MRDA algorithm and vice versa so that

63



same outcome is reached. Letting f propose after everyone allows isolating the impact that
f has on the outcome. We are now in a position to present the result.

Lemma 8. Suppose f proposes to some family ` in the second part of the alternative MRDA
algorithm and is matched to it. Then if f proposes to `′ instead, but it is rejected from `′

and subsequently proposes to `, then it is matched to `.

Proof of Lemma 8. Consider first the case where f proposes to `. By assumption, f is
accepted and the rejection chain that follows ends when a family is accepted by a locality
without triggering an additional rejection. The rejection chain is displayed below:

f0, `0, f1, `1, f2, `2, f3, `3, ..., fn, `n, where f0 ≡ f and `0 ≡ ` and n = 0, 1, 2, ....

f proposes to ` and is tentatively accepted. If no rejection is triggered the rejection chain
ends here (in that case n = 0). If a rejection is triggered, Lemma 6 implies that only one
family, say f1, is rejected. Family f1 proposes to its next choices in order of preferences
until a locality, say `1, accepts it. Again another family, f2 may be rejected and so on until
a family fn proposes to `n and is tentatively accepted without triggering a rejection. The
algorithm ends and the tentative outcome becomes final. It is the outcome that would have
been found, had the MRDA algorithm been run with f reporting ` as its first preference.
Observe that some families and localities may appear more than once in the rejection chain,
however f does not appear again since by assumption ` does not reject it.

Consider now the case where f proposes to `′. By assumption, f is rejected, which can
happen in one of two ways. First, f may be rejected by `′ when it proposes to it. In that
case f ’s proposal has not modified the outcome. If f proposes next to ` the same rejection
chain occurs and f is matched to `. Second, f is tentatively accepted but the rejection chain
that follows ends with `′ rejecting f . By Lemma ??, `n cannot appear in that rejection chain
because if any family proposes to `n it is accepted without triggering a rejection. In that
case the rejection chain ends without `′ rejecting f .

After f is rejected by `′, it proposes to `. Suppose it is accepted at first but triggers
a rejection chain that ends with ` rejecting f . Then `n is not part of that rejection chain
otherwise the chain ends without ` rejecting f . Therefore, whether f is rejected straight
away or after a rejection chain, `n has not received any proposal following f ’s proposals to
` and `′. It follows that fn has not proposed to fn and is tentatively matched to a locality
it prefers to `n. Therefore if f reports `, ∅, fn is matched to `n but if f reports `′, `, ∅, fn is
matched to a locality it prefers, contradicting Lemma 7.

We finally combine Lemmas 7 and 8 in order to obtain the desired result. Let f ’s true
preferences be f 1, f 2, ..., fn with fn ≡ ∅ and let `i (i = 1, ..., n) be the locality to which f
is matched if it reports truthfully. Suppose f can successfully misrepresent its preferences.
Then, by Lemma 7, there exists ` �f `i such that f is matched to ` if it reports `, ∅. (This
implies that i ≥ 2 and ` 6= ∅.) Let j be the index of the locality f prefers among those it
can obtain by successfully misrepresenting its preferences. That is, the best f can do by
misrepresenting its preferences is obtain `j and this can be achieved by reporting `j, ∅.
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If instead f reports `j−1, `j, ∅, Lemma 8 implies that f is matched to `j if it is rejected by
`j−1. Lemma 7 implies that f is rejected by `j−1 since by assumption it cannot be obtained
by any successful misrepresentation. Consequently, f is matched to `j if it reports `j−1, `j, ∅.
Suppose that, for some k < j, f is matched to `j when it reports `k, ..., `j, ∅. If f instead
reports `k−1, `k, ..., `j, ∅, Lemma 7 implies that `k−1 rejects f since, by assumption, it cannot
be obtained by any successful misrepresentation. Lemma 7 also implies that `k, ..., `j−1 all
reject f since they do when f reports `k, ..., `j, ∅. Lemma 8 implies that `j accepts any
proposal of f since it does when f reports `k, ..., `j, ∅. It follows that f is matched to `j if it
reports `k−1, `k, ..., `j, ∅. By induction, f is matched to `j when it reports `1, `2, ..., `j, ∅. As
every family only proposes to the locality to which it is matched and the ones listed higher
on its report, the localities f lists below `j do not have any impact on the outcome. Then f
is matched to `j when it reports its true preferences `1, `2, ..., `j, ..., ∅, a contradiction.

C The Top Choice algorithm

C.1 The Top-Down Bottom-Up (TDBU) algorithm

Example

In addition to the set-up of the Example and family preferences in the Example for Section
5.1, we use the priorities of localities introduced in the Example for Section 6.2.1

The Top-Down Bottom-Up algorithm reduces the size of the problem by eliminating
contracts that are cannot be part of any stable outcome. This process is summarized in
Table 3. Families are initially listed in order of priority for each locality, as can be seen in
the top panel of Table 3. The second column indicates how the family ranks the locality. Of
primary importance is whether the family considers this locality to be its top choice, which
is denoted by “T”.
Round 1 : The TDBU algorithm starts in locality `1. (This is arbitrary, the order in which
localities are considered does not have any impact.) f2 gets a guarantee thanks to its first
priority and the fact that it can be accommodated, which is denoted by a “G” in the third
column. This allows eliminating all contracts involving f2’s third and fourth preferences:
(f2, h21), (f2, h41) and (f2, h42) are eliminated and f2 stops contesting `2 and `4. This is
denoted by a “7” in the fourth columns of the rows devoted to f2 and `2, respectively `4.
`1’s capacities for both services are sufficient to accommodate both f1 and f2, however both
families can only be assigned h11. As a result, it is impossible to match both f1 and f2 to
locality `1 and f1 does not get a guarantee. f1 does not get rejected either since `1 is not f2’s
top choice. In contrast, f4 does get a guarantee since it is possible to give h11 to either f2

or f1 and h12 to f4 without violating `1’s capacity constraint. f4 stops contesting `2 and `3,
its third and fourth choices, as a result. f5 does not get a guarantee since both houses will
be used in the case both f2 and f4 are matched to `1. It does not get a rejection either as
it may be that none of f2, f1 and f4 end up matched to `1, in which case f5 would. f3 does
not get a guarantee since it cannot be matched to `1 alongside f5. In fact, f3 gets rejected
from `1 due to f5 having `1 as its top choice. To see this, observe that f5 will be matched to
`1 unless at least one of f2 or f4 is. As f3 cannot be matched to `1 alongside either of these
families, there is no situation where f3 ends up in `1 without violating stability. f3 stops
contesting `1 and `2 becomes its third choice.
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Algorithm 6: Top-Down Bottom-Up algorithm

Remove unacceptable contracts: Y(1,1) := {(f, `) ∈ F × (L∪{∅}) | ` �f ∅}. Arbitrarily
label the localities such that L ≡ {`1, `2, ..., `|L|}.

Round i ≥ 1 (Locality round): We use subscripts modulo |L|.

Step 0:

If i > |L| and Y(i,j) = Y(i−|L|,j), the algorithm terminates and yields φ(Y ) := Yi.

Otherwise, consider locality `i.

Step j ≥ 1 (Family round):
Given Y(i,j), let F`i be the set of families which can be accommodated in `i.

If F`i \
⋃
k∈{1,...,j−1}{f(i,k)} 6= ∅, let f(i,j) be the family with the highest priority

for `i within that set.

If f(i,j) receives a guarantee for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `) ∈ Y(i,j) | ` ∈ L ∪ {∅} s.t. ` ≺f(i,j)
`i}

Else if f(i,j) receives a rejection for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `i)}

Else maintain Y(i,j+1) := Y(i,j).

The algorithm continues to Step j + 1.

Else update Y(i,j+1) := Y(i+1,1) and go to Round i+ 1.
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Round 2 : Families are removed from the list of localities they no longer contest and the
algorithm continues in Round 2, which focuses on `2. f5 gets a guarantee since it can be
accommodated, consequently it will no longer contest `3 and `4. f1 is rejected because it
cannot be assigned the unique house of `2. f3 receives neither a guarantee nor a rejection
since h21 may or may not be assigned to f5. f5 is removed from `3 and `4’s list and f1 is
removed from `2’s list, the algorithm continues in Round 3, which focuses on `3.
Round 3 : f3 gets a guarantee at `3 but f2 does not since accommodating both families
requires three units of Service 2 and `3 only has two units available. f2 is however not
rejected since f3 may give up its priority for `3 if it is matched to `4. f1 can be accommodated
alongside f3 but not f2, as a result f1 will be matched to `3 if and only if f3 is. f3 is removed
from `2’s list and the algorithm continues in Round 4, which focuses on `4.
Round 4 : This is similar to the previous round, f1 gets a guarantee while f4 and f3 neither get
a guarantee nor a rejection because f1 can be accommodated alongside f3 but not alongside
f4. As a result, f1 gets a guarantee while f3 and f4 neither get a guarantee nor a rejection.
This leads to f1 being removed from `1’s list. Going through all localities again in Rounds
5-8, no additional contract can be eliminated. The TDBU algorithm ends with the following
set of contracts:

Y TDBU = {(f1, `3), (f1, `4), (f2, `1), (f2, `3), (f3, `3),

(f3, `4), (f4, `1), (f4, `4), (f5, `1), (f5, `2)}

Since f1 and f2 cannot be accommodated together at `3 and the same is true for f3 and f4

at `4, matching all families to their top-choice locality is infeasible. The search for a stable
outcome requires eliminating additional contracts. We do so by using a pre-determined
general priority over families in Phase 2.
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Round 1
`1 `2 `3 `4

f2 2nd G f5 2nd f5 4th f1 2nd

f1 3rd f1 4th f3 2nd f5 3rd

f4 2nd G f3 4th f2 T f2 4th 7

f5 T f4 3rd 7 f1 T f4 T
f3 3rd R 7 f2 3rd 7 f4 4th 7 f3 T

Round 2
`1 `2 `3 `4

f2 2nd f5 2nd G f5 4th 7 f1 2nd

f1 3rd f1 4th R 7 f3 2nd f5 3rd 7

f4 2nd f3 3rd f2 T f4 T
f5 T f1 T f3 T

Round 3
`1 `2 `3 `4

f2 2nd f5 2nd f3 2nd G f1 2nd

f1 3rd f3 3rd 7 f2 T f4 T
f4 2nd f1 T f3 T
f5 T

Round 4
`1 `2 `3 `4

f2 2nd f5 2nd f3 2nd f1 2nd G
f1 3rd 7 f2 T f4 T
f4 2nd f1 T f3 T
f5 T

Rounds 5-8
`1 `2 `3 `4

f2 2nd G f5 2nd G f3 2nd G f1 2nd G
f4 2nd f2 T f4 T
f5 T f1 T f3 T

Table 3: The TDBU algorithm: Example.
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C.2 The Augmented Top-Down Bottom-Up (ATDBU) algorithm

Algorithm 7: The Augmented Top-Down Bottom-Up (ATDBU) algorithm

Let Y(1,1) := Ỹ . Define the sets of artificial guarantees GA and artificial rejections RA. Let
RA

(1,1) := RA.
Round i ≥ 1 (Locality Round): We use subscript modulo |L|.
Step 0:

If i > |L|, RA(i,1) = RA(i−|L|,1) and Y(i,j) = Y(i−|L|,j), the algorithm terminates and yields

φ̃(GA, RA, Ỹ ) := (GA, RA(i,1), Y(i,1))
Otherwise, consider locality `i and continue to Step 1.

Step j ≥ 1 (Family Round)
Given X(i,j), let F`i be the set of families which can be accommodated in `i.

If F`i \
⋃
k∈{1,...,j−1}{f(i,k)} 6= ∅, let f(i,j) be the family with the highest priority for `i within

that set.

If f(i,j) receives a guarantee for `i, then

If f(i,j) also receives an artificial rejection for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `) ∈ Y(i,j) | ` ∈ L ∪ {∅} s.t. ` ≺f(i,j)
`i or ` = `i}

RA(i,j+1) := RA(i,j) ∪ {(f(i,j), `i)}

Otherwise update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `) ∈ Y(i,j) | ` ∈ L ∪ {∅} s.t. ` ≺f(i,j)
`i}

RA(i,j+1) := RA(i,j)

Else if f(i,j) receives a rejection for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `i)}

RA(i,j+1) := RA(i,j)

Else if f(i,j) receives an artificial rejection for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `i)}

RA(i,j+1) := RA(i,j) ∪ {(f(i,j), `i)}

Else maintain Y(i,j+1) := Y(i,j) and RA(i,j+1) := RA(i,j)
If Y(i,j+1) ∩ ({f(i,j)} × (L ∪ {∅})) = ∅, the algorithm terminates and yields

φ̃(GA, RA, Ỹ ) := (GA, RA(i,j+1),∅).
Else continue to Step j + 1.
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Augmented Top-Down Bottom-Up (ATDBU) algorithm
(cont.)

Else if (RA
(i,j) ∩ (F ×{`i})) \

⋃
k∈{1,...,j−1}{f(i,k)} 6= ∅, let f(i,j) be the family with the

highest priority for `i within this set.

If f(i,j) receives a guarantee for `i, then update

Y(i,j+1) := Y(i,j) \ {(f(i,j), `) ∈ Y(i,j) | ` ∈ L ∪ {∅} s.t. ` ≺f(i,j)
`i}

RA
(i,j+1) := RA

(i,j) \ {(f(i,j), `i)}

Else if f(i,j) receives a rejection for `i, then maintain Y(i,j+1) := Y(i,j) and update
RA

(i,j+1) := RA
(i,j) \ {(f(i,j), `i)}.

Else maintain Y(i,j+1) := Y(i,j) and RA
(i,j+1) := RA

(i,j)

If Y(i,j+1) ∩ ({f(i,j)} × (L ∪ {∅})) = ∅, the algorithm terminates and yields

φ̃(GA, RA, Ỹ ) := (GA, RA
(i,j+1),∅).

Else continue to Step j + 1.

Else let Y(i+1,1) := Y(i,j) and RA
(i+1,1) := RA

(i,j). The algorithm continues in Round
i+ 1.

C.3 Depth-First Search (DFS)

DFS is described in the main text and below we show how it applies to our Example and
state it formally.

Example

In addition to the set-up of the Example and family preferences in the Example for Section
5.1, we use the priorities of localities introduced in the Example for Section 6.2.1

We now illustrate how the DFS algorithm finds a stable undominated outcome in our
Example using the ATDBU algorithm at each step. We only use contracts remaining from
running TDBU in order to initialize the process. We will show that the outcome depends
on the general priority order of families.

First Stable Undominated Outcome
Suppose first that f1 is at the top of the general priority (for example, the general priority

could be f1, f2, f3, f4, f5). We give f1 an artificial guarantee for its top choice, that is we
look for a stable outcome where f1 is matched to `3. We run the Augmented Top-Down
Bottom-Up algorithm to identify additional contracts that can be eliminated as a result.
The algorithm is summarized in Table 4. The artificial guarantee is denoted by “AG” in the
fourth column of the relevant row. Nothing of interest occurs in the first two rounds, f2 and
f5 receive a guarantee for `1 and `2, respectively, but this does not allow eliminating any
contract.
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Algorithm 8: Depth-First Search

Round 0:

Run the TDBU algorithm to obtain Y1 = φ(F × (L∪{∅})). Let the families be ordered
from 1 to |F | so that F ≡ {f1, f2, ..., f|F |}. Let GA

1 := ∅ and RA
1 := ∅. Additionally,

initialize the family index k = 1 and the state c1 := artificial guarantee.

Round i ≥ 1:

If ci = artificial guarantee:

Run the ATDBU algorithm to obtain φ̃(GA
i ∪ {(fk, `fk)}, RA

i , Yi).

If φ̃(GA
i ∪ {(fk, `fk)}, RA

i , Yi) = (·, ·,∅), then let GA
i+1 := GA

i , RA
i+1 := RA

i , Yi+1 :=
Yi and ci+1 := artificial rejection. Proceed to Round i+ 1.

Else let (GA
i+1, R

A
i+1, Yi+1) := φ̃(GA

i ∪ {(fk, `fk)}, RA
i , G

A
i ).

If k = |F |, the algorithm terminates and yields ψ(Y ) := Y ∗i .

Else increase k by 1 and set ci := artificial guarantee. Proceed to Round i+1.

Else ci = artificial rejection:

Run the ATDBU algorithm to obtain φ̃(GA
i , R

A
i ∪ {(fk, `fk)}, Yi \ {(fk, `fk)}).

If φ̃(GA
i , R

A
i ∪ {(fk, `fk)}, Yi \ {(fk, `fk)}) = (·, ·,∅), then

If k > 1, let (GA
i+1, R

A
i+1, Yi+1) := (GA

j , R
A
j , Yj), where j is the last round dealing

with family fk−1. Set ci+1 = artificial rejection. Proceed to Round i+ 1.

Else k = 1, the set of stable outcomes is empty. The algorithm terminates and
yields ψ(Y ) := ∅.

Else let (Gi+1
A , Ri+1

A , X i+1) := φ̃(GA
i , R

A
i ∪{(fk−1, `fk−1

)}, Yi\{(fk−1, `fk−1
)}). Set ci+1 :=

artificial guarantee. Proceed to Round i+ 1.
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Round 3 : The action begins in Round 3, which focuses in `3. As a consequence of f2’s
artificial guarantee, f2 receives an artificial rejection.

The difference between a rejection and an artificial rejection is a subtle yet important
one. A family f receives a rejection if the families with a higher priority will necessarily take
enough capacity from the locality to prevent f from being matched there. A family that
receives a rejection could never receive a guarantee later on and stops contesting the locality
that rejected it. Observe that the rejection decision only depends on families with a higher
priority. An artificial rejection occurs when a family is does not receive a normal rejection
but cannot be matched to a locality because families with a lower priority have received an
artificial guarantee. In the second panel of Table 4, f2 is not rejected since it is possible that
f3 will be matched to `4, however f2 can only be matched to `3 if f1 is not. Matching f2 to `3

contradicts the artificial guarantee given to f1. Everything works as if f2 had been rejected,
its top choice will move to `1 in the next round and it will no longer be taken into account
when assessing f1 for a guarantee or a rejection, however f2 remains in `3’s list. The reason
for this is that it could still get a guarantee if f3 was to be matched to `4. It is important to
keep track of this to identify cases where a stable matching may not exist.

Because f2 receives an artificial rejection, only f3 is relevant to determine whether f1

receives a guarantee. Since f1 and f3 can be accommodated together, f1 does receive a
guarantee, which means it will no longer require the artificial guarantee in the following
rounds. f1 is removed from `4’s list due to its (artificial) guarantee at `3 and `1 is not f2’s
top choice after the latter was artificially rejected from `3.
Round 4 : Family f4 receives a guarantee for `4 and is removed from `1’s list. f3 receives
a rejection since it cannot be accommodated at `4 alongside f4 and the latter will now be
matched to `4 in any stable matching. f3 is removed from `4’s list and `3 becomes its top
choice.
Round 5 : The algorithm continues in Round 5, which focuses on `1. f2 receives a guarantee
and, because `1 cannot accommodate both families, f5 receives a rejection. `2 becomes f5’s
top choice as a result.
Round 6 :The algorithm continues in Round 6, which does not yield any additional elimina-
tion: f5 receives a guarantee for `2 but does not contest any other locality.
Round 7 : Family f3 receives a guarantee for `3, which is its top choice. As a result, it will
be matched with `3 in any stable matching. Since f3 and f2 cannot be both matched to
`3, f2 receives a rejection. We can now be certain that the artificial rejection is received
earlier does not lead to any contradiction. In contrast, f1 receives a guarantee since it can
be accommodated in `3 alongside f3.
Rounds 8-11 : Only top choices remain and now additional rejections can be found, the
algorithm ends. Since these top choices can all be accommodated, a stable undominated
outcome has been found: f1 and f3 are matched to `3, f2 in `1, f4 in `4 and f5 in `2. Hence:

Y TCA = {(f2, `1), (f5, `2), (f1, `3), (f3, `3), (f4, `4)}

Second Stable Undominated Outcome If f4 is at the top of the general priority,
the ATDBU algorithm operates in an almost analogous way. f4’s artificial guarantee for `4

means that f3 is rejected and `3 becomes its new top choice. f2 is rejected from `3 as a
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Rounds 1-2
`1 `2 `3 `4

f2 2nd G f5 2nd G f3 2nd f1 2nd

f4 2nd f2 T f4 T
f5 T f1 T AG f3 T

Round 3
`1 `2 `3 `4

f2 2nd f5 2nd f3 2nd f1 2nd 7

f4 2nd f2 T AR f4 T
f5 T f1 T G AG f3 T

Round 4
`1 `2 `3 `4

f2 T f5 2nd f3 2nd f4 T G
f4 2nd 7 f2 AR f3 T R 7

f5 T f1 T

Round 5
`1 `2 `3 `4

f2 T G f5 2nd f3 T f4 T
f5 T R 7 f2 AR

f1 T

Rounds 6-7
`1 `2 `3 `4

f2 T f5 T G f3 T G f4 T
f2 R 7

f1 T G

Rounds 8-11
`1 `2 `3 `4

f2 T G f5 T G f3 T G f4 T G
f1 T G

Table 4: DFS algorithm with f1 on Top of the General Priority.

result and its top choice moves to `1, leading to the rejection of f5. As before, f1 and f3 are
matched to `3, f2 in `1, f4 in `4 and f5 in `2.

If f2 is at the top of the general priority, its artificial guarantee implies the rejection of
f1 from `3. In turn, f4 is rejected from `4 and f5 from `1, yielding an outcome where f1 and
f3 are matched to `4, f2 in `3, f4 in `1 and f5 in `2. Compared to the other outcome, f2 and
f3 are better-off while f1 and f4 are worse-off. Unsurprisingly, the same outcome is found if
f3 is at the top of the general priority.
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Y †TCA = {(f4, `1), (f5, `2), (f2, `3), (f1, `4), (f3, `4)}

Non-existence of other stable outcomes and irrelevance of general priority
The two outcomes found above are in fact the only two stable ones in this matching

problem. This can be shown in two steps. First, observe that when one of f1, f2, f3 or
f4 is at the top of the priority list, only top choices remain when the ATDBU algorithm
terminates, hence only one stable matching exists with one of these families receives its top
choice. Second, if none of them obtains its top choice, f1 forms a blocking pair with `3 and
f3 forms a blocking pair with `4. Finally, we need to follow what happens when f5 is at the
top of the list, as we do now. The algorithm is summarized in Table 5.

Round 1
`1 `2 `3 `4

f2 2nd G AR f5 2nd 7 f3 2nd f1 2nd

f4 2nd AR f2 T AG f4 T
f5 T AG f1 T f3 T

Rounds 2-3
`1 `2 `3 `4

f2 7 f3 2nd G AR f1 2nd

f4 AR f2 T AG f4 T
f5 T AG f1 T R 7 f3 T AG

Round 4
`1 `2 `3 `4

f4 AR f3 AR f1 T G
f5 T AG f2 T AG f4 T R 7

f3 T G AG

Round 5
`1 `2 `3 `4

f4 G AR f3 AR f1 T
f5 T G AG f2 T AG f3 T

Table 5: DFS algorithm with f5 on Top of the General Priority.

Round 1 : f5’s artificial guarantee yields an artificial rejection for f2 and f4 since neither of
them can be matched to `1 alongside f5. Recall that f2 and f4 receive an artificial rejection
rather than a regular one because they are rejected due to a family with a lower priority.
They could still receive a guarantee, in fact this happens to f2 since it is at the top `1’s
priority list. The fact that f2 receives both a guarantee and an artificial rejection means
that f5’s artificial guarantee violates f2’s priority for `1. f2 and `1 will form a blocking pair
unless f2 is matched to a locality it prefers to `1. In the Example, `3 is the only option. This
means that f2 must be matched with `3 in any stable matching that respects f5’s artificial
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guarantee. The ATDBU algorithm accounts for this by giving f2 an artificial guarantee for
`3. This guarantee is artificial because f2 could still be rejected by `3 later on. Notice finally
that f5’s artificial guarantee allows removing f5 from `2’s list.
Round 2 : Nothing occurs in Round 2 since `2 does not have any family listed.
Round 3 : Family f2’s artificial guarantee yields an artificial rejection for f3 since the pair
cannot be accommodated together in `3 and f3 has a higher priority than f2. Since f3 also
gets a guarantee, it receives an artificial guarantee for `4. f1 receives a rejection from `3

since it has a lower priority than f2 and the two families cannot both be matched to `3. `4

consequently becomes f1’s top choice. Finally, f2’s artificial guarantee for `3 allows removing
f2 from `1’s list.
Round 4 : Family f1 receives a guarantee and, since `4 is its top choice, the fact that f1 and
f4 cannot both be matched to `4 means that f4 is rejected. f3 then gets a guarantee since it
can be accommodated alongside f1.
Round 5 : Family f4 gets a guarantee for `1 while it already has an artificial rejection. This
means that f5’s artificial guarantee for `1 violates f4’s priority for `1 unless it can be matched
to a location it prefers. Since f4 is no longer contesting any other locality, this is impossible.
We can then conclude that f5’s artificial guarantee contradicts stability, in other words there
does not exist any stable matching where f5 is matched to `1.

The search continues by going back to the outcome of the TDBU algorithm and removing
f5 from `1’s list. f5 is then guaranteed its second choice, `2. As this fails to remove any of f1,
f2, f3 or f4 from their top choice, the second family of the general priority must be given an
artificial guarantee. By an argument analogous to the one developed above, the first stable
undominated outcome is found if either f1 or f4 is second on the general priority list and
the second stable outcome is found if it is either f2 or f3.

D Additional examples of PFDA and MRDA algorithms

There are eight families, three localities and two services. The preferences, priorities and
service requirements and provisions are displayed below.

D.1 Another example to compare PFDA and MRDA algorithms

Families Localities
Preferences s1 s2 Preferences s1 s2 Priorities s1 s2

f1 `2, `1, ∅ 2 1 f5 `1, `3, `2, ∅ 3 1 `1 f1, f2, f3, f4, f5, f6, f7, f8 4 5
f2 `3, `1, `2, ∅ 2 0 f6 `1, `2, ∅ 1 1 `2 f5, f2, f6, f8, f3, f4, f1, f7 6 5
f3 `2, `3, ∅ 0 2 f7 `1, `2, ∅ 3 3 `3 f2, f3, f6, f1, f7, f8, f5, f4 8 7
f4 `3, `2, `1, ∅ 2 3 f8 `1, `3, `2, ∅ 1 0

FPDA algorithm
The FPDA algorithm lasts three rounds, which are displayed below:
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Round 1 Round 2 Round 3
f1 → `2 3 f1 → `2 3 f1 → `2 3

f2 → `3 3 f2 → `3 3 f2 → `3 3

f3 → `2 3 f3 → `2 3 f3 → `2 3

f4 → `3 3 f4 → `3 3 f4 → `3 3

f5 → `1 3 f5 → `1 3 f5 → `1 3

f6 → `1 3 f6 → `1 3 f6 → `1 3

f7 → `1 7 f7 → `2 7 f7 → ∅ 3

f8 → `1 7 f8 → `3 3 f8 → `3 3

In Round 1, `1 tentatively accepts f5 and f6 since they jointly require (4, 2). Adding f7

increases the total requirement to (7, 4), which `1 cannot provide. f7 and f8 are consequently
rejected. `2 and `3 do not reject any family since f3 and f1 jointly require (2, 3) whilte f2 and
f4 jointly require (4, 3). In Round 2, `1 does not receive any new proposal and tentatively
accepts f5 and f6. `2 receives a proposal from f7 as well as f3 and f1. Overall these families
require (5, 6), which exceeds the locality’s provision of service 2. f7 is rejected. `3 receives
a new proposal from f8 so that the total requirement of families proposing to it to (5, 3).
All families are tentatively accepted. In Round 3, all families propose to the same locality
except for f7, which has run out of acceptable localities and does not make any proposal.
As a consequence, all localities receive the same proposals as in Round 2 and no family
is rejected. The algorithm terminates and yields the following outcome: {(f1, `2), (f2, `3),
(f3, `2), (f4, `3), (f5, `1), (f6, `1), (f7, ∅), (f8, `3)}.

MRDA algorithm

Phase 1
The Maximum Ranks are displayed below:

`1 `2 `3

f1 ∞ f5 1 f5 ∞ f3 3 f2 ∞ f7 ∞
f2 ∞ f6 1 f2 ∞ f4 2 f3 ∞ f8 4
f3 ∞ f7 1 f6 ∞ f1 2 f6 ∞ f5 3
f4 2 f8 1 f8 3 f7 1 f1 ∞ f4 2

At `1, f1, f2 and f3 jointly require (4, 3). (That is, 4 units of the first service and 3
units of the second.) As `1 can provide (4, 4), all three families get a Maximum Rank of
∞. f4 cannot be accommodated along these three families as these would require (6, 6). A
subset of {f1, f2, f3} containing two families may require up to (4, 3). (This is calculated
as follows. f1 and f2 are the two families requiring the most units of s1. They require 2
units each, hence a total of 4. f1 and f3 are the two families requiring the most units of s2.
They require respectively 2 and 1 unit, hence a total of 3. Therefore f4 could have to be
accommodated alongside a subset of size 2 that requires up to 4 units of s1 or to one that
requires up to 3 units of s2.) Adding the requirement of f4 yields (6, 6), which exceeds the
provision of `1. We conclude that there exists a subset of size 2 alonside which f4 cannot be
accommodated, hence its Maximum Rank is at most 2. A subset of size 1 may require up
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to (2, 2). (f1 has the highest requirement of s1 with 2 units and f3 the highest requirement
of s2 with 2 units.) Adding f4’s requirement yields (4, 5), which lies withing `1’s provision.
It follows that f4’s Maximum Rank is 2. f5’s Maximum Rank can be at most 2 since it
cannot be larger than the one of a family that has a higher priority. As f4 and f5 cannot be
accommodated together (they would require (5, 4), which exceeds `1’s provision of s1), f5’s
Maximum Rank is 1. The Maximum Rank of f6, f7 and f8 can be at most 1. Since all these
families can be individually accommodated at `1, they all get a Maximum Rank of 1.

At `2, f5, f2 and f6 all get a Maximum Rank of∞ as they can be accommodated together.
f8 cannot as this would require 7 units of s1. A subset of {f5, f2, f6} containing two families
would require at most (5, 2). Adding f8’s requirement yields (6, 2), which lies within `2’s
provision. f8 can therefore be accommodated alongside any subset of size 2 and its Maximum
Rank is 3. Any subset of {f5, f2, f6, f8} containing two families again requires at most (5, 2).
Adding f3’s requirement yields (5, 4), hence f3’s Maximum Rank is also 3. Any subset of
{f5, f2, f6, f8, f3} containing two families requires (5, 3). As f4 requires (2, 3) its Maximum
Rank is at most 2. It is in fact exactly 2 since any individual family in {f5, f2, f6, f8, f3}
requires at most 3 units of s1 and 2 units of s2. Adding f4’s requirement yields (5, 5), which
does not exceed `2’s provision. The same can be said of f1, however the fact that f7 requires
3 units of s2 means it cannot be accommodated alongside f4, consequently its Maximum
Rank is 1.

At `3, all families in {f2, f3, f6, f1, f7} together requires (8, 7), which is exactly the local-
ity’s provision. All five families get a Maximum Rank of ∞. Clearly, no other family can be
accommodated alongside them so f8’s Maximum Rank will be finite. A subset of size 4 may
require up to (8, 7) as well, consequently f8’s Maximum Rank is at most 4. A subset of size
3 may on the other hand only require up to to (7, 6), as a result f8 can be accommodated
alongside all of them and its Maximum Rank is 4. Subsets of {f2, f3, f6, f1, f7, f8} contain-
ing three families also requires at most (7, 6), however f5’s demand is (3, 1), which means
`3 cannot provide enough units of s1 to guarantee that f5 can be accommodated alonside
any such subset. Subsets containing two families may however only require up to (5, 5),
which means that f5 can be accommodated alongside all of them. f5’s Maximum Rank is
3. Finally, any subset of {f2, f3, f6, f1, f7, f8, f5} containing three families may require up
to (6, 5). Adding f4’s requirement yields (8, 8), which exceeds `3’s provision of s2. f4 can
however be accommodated alongside any other individual family, hence its Maximum Rank
is 2.

Phase 2
The second phase of the MRDA algorithm lasts two rounds, which are summarized below:
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Round 1 Round 2 Round 3 Round 4
f1 → `2 3 f1 → `2 7 f1 → `1 3 f1 → `1 3

f2 → `3 3 f2 → `3 3 f2 → `3 3 f2 → `3 3

f3 → `2 3 f3 → `2 3 f3 → `2 3 f3 → `2 3

f4 → `3 3 f4 → `3 7 f4 → `2 7 f4 → `1 3

f5 → `1 3 f5 → `1 3 f5 → `1 7 f5 → `3 3

f6 → `1 7 f6 → `2 3 f6 → `2 3 f6 → `2 3

f7 → `1 7 f7 → `2 7 f7 → ∅ 3 f7 → ∅ 3

f8 → `1 7 f8 → `3 3 f8 → `3 3 f8 → `3 3

The outcome generated by the MRDA algorithm is {(f1, `1), (f2, `3), (f3, `2), (f4, `1),
(f5, `3), (f6, `2), (f7, ∅), (f8, `3)}.

Five families, f1, f4, f5, f6, and f7 are better-off under the PFDA algorithm compared
to their outcomes under the MRDA algorithm.

D.2 Two examples of manipulability of the PFDA algorithm

We now present two examples of manipulation of the PFDA algorithm, which will indicate
sufficient conditions for the construction of a quasi-stable, strategy-proof mechanism.

First example of manipulability of the PFDA algorithm
Consider a matching problem with three families f1, f2 and f3 and three localities `1, `2

and `3. Preferences and priorities are as follows:

f1 : `1 � `2 � `3 � ∅ f2 : `1 � `2 � `3 � ∅ f3 : `1 � `2 � `3 � ∅
`1 : f1, f2, f3 `2 : f1, f3, f2 `3 : f1, f3, f2

There is only one service, of which families f1 and f2 require two units and f3 one unit. `1

provides three units and each of `2 and `3 provides two. The matrices of service requirements
and provisions are displayed below:

ν =

2
2
1

 κ =

3
2
2


The PFDA algorithm lasts three rounds, which are summarized below:

Round 1 Round 2 Round 3
f1 → `1 3 f1 → `1 3 f1 → `1 3

f2 → `1 7 f2 → `2 7 f2 → `3 3

f3 → `1 7 f3 → `2 3 f3 → `2 3

In Round 1, all families propose to `1 as it is their first preference. f1 is at the top of `1’s
priority list and is tentatively accepted as it requires two units and three are available. `2

requires two units, which brings the total demand to four, as only three units are available,
f2 is rejected. f3 is also rejected since its priority is lower than f2’s. In Round 2, f1 continues
to propose to `2 and is tentatively accepted. f2 and f3 both propose to `2 and since two
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units are available, only the family with the higher priority, f3, is tentatively accepted. f2 is
rejected and proposes to `3 in Round 3. All families propose to a different locality and are
accepted, the algorithm ends. The outcome is Y ∗ ≡ {(f1, `1), (f2, `3), (f3, `2)}.

Suppose now that f2 changes its report to `2, `1, `3, ∅ (or equivalently to `2, ∅). In the
first Round, f2 is the only family to propose to `2 and is tenatively accepted. f1 and
f3 propose to `1 and are both tentatively accepted since `1 can provide three units. As
no family is rejected, the algorithm ends and yields X ′ ≡ {(f1, `1), (f2, `2), (f3, `1)}. By
misrepresenting its preferences, f2 clinches `2, which it prefers to `3. The problem that
occurs in the counterexample presented is that a family can trigger the rejection of another
family while being itself rejected. In Round 1, f2 is rejected by `1 but a consequence of its
proposal is that f3 is also rejected. In Round 2, `2 rejects f2’s proposal because f3 is also
proposing. f2 could have avoided this situation by proposing to `2 first.

Second example of manipulability of the PFDA algorithm
We conclude this section by presenting another counterexample to illustrate another

instance where a a missrepresentation may also be beneficial. Consider a matching problem
with five families and four localities. The preferences and priorities are as follows:

f1 : `1 � `4 � ∅ `1 : f4, f1, f2, f3, f5

f2 : `1 � `3 � ∅ `2 : f3, f4, f1, f2, f5

f3 : `1 � `2 � ∅ `3 : f2, f5, f1, f3, f4

f4 : `2 � `1 � ∅ `4 : f5, f1, f2, f3, f4

f5 : `3 � `4 � ∅

There is only one service. The requirement of each family and provision of each locality are
as follows:

ν =


2
1
1
1
1

 κ =


2
1
1
2


That is, family f1 requires two units and all other families require one unit each. Localities
`1 and `4 can provide up to two units each while `2 and `3 can provide at most one unit each.
The PFDA algorithm last five rounds, which are displayed below.

Round 1 Round 2 Round 3 Round 4 Round 5
f1 → `1 3 f1 → `1 3 f1 → `1 7 f1 → `4 7 f1 → ∅ 3

f2 → `1 7 f2 → `3 3 f2 → `3 3 f2 → `3 3 f2 → `3 3

f3 → `1 7 f3 → `2 3 f3 → `2 3 f3 → `2 3 f3 → `2 3

f4 → `2 3 f4 → `2 7 f4 → `1 3 f4 → `1 3 f4 → `1 3

f5 → `3 3 f5 → `3 7 f5 → `4 3 f5 → `4 3 f5 → `4 3

In Round 1, f1 takes up two units of capacity at `1, which means that any family with
a lower priority is rejected. This affects f2 and f3. In Round 2, f2 takes up one unit
of capacity at `3, which means that f5 is rejected. Similarly, f3 takes up one unit of ca-
pacity at `2 and f4 is rejected. In Round 3, f5 proposes to `4 where it does not have
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any competition. f4 proposes to `1, resulting in f1 being rejected. f1 proposes to `4 in
Round 4 and is again rejected, this time because of f5. f1 finally proposes to the null ob-
ject in Round 5, resulting in everyone else being accepted. The algorithm ends and yields
Y ∗ ≡ {(f1, ∅), (f2, `3), (f3, `2), (f4, `1), (f5, `4)}. Suppose now that f1 misrepresents its pref-
erences and reports f1 : `4, ∅. Every family is accepted in Round 1 and thus matched to its
first (reported) preference. f1 is now matched to `4. In this example, no family triggers a
rejection without being tentatively accepted, however f1 triggers two rejections by proposing
to `1. The rejection chain that follows evolved into two branches. The first one, initiated by
f3, leads to f1 being rejected by `1. The second one, initiated by f2, leads to f5 proposing
to `4. This prevents f1 from getting its second choice after being rejected by `1.

D.3 Example of MRDA algorithm producing a family-optimal outcome

There are three families f1, f2 and f3 and three localities `1, `2 and `3. Preferences and
priorities are as follows:

f1 : `1 � `2 � `3 � ∅ f2 : `1 � `2 � `3 � ∅ f3 : `1 � `2 � `3 � ∅
`1 : f1, f2, f3 `2 : f1, f3, f2 `3 : f1, f3, f2

There is only one service, of which families f1 and f2 require two units and f3 one unit. `1

provides three units and each of `2 and `3 provides two. The matrices of service requirements
and provisions are displayed below:

ν =

2
2
1

 κ =

3
2
2


We now run the MRDA algorithm. The Maximum Ranks are displayed below:

`1 `2 `3

f1 ∞ f1 ∞ f1 ∞
f2 1 f3 1 f3 1
f3 1 f2 1 f2 1

As every family can be accommodated at every locality all Maximum Ranks will be at least
1. f1 has the highest priority for all localities and therefore gets a Maximum Rank of ∞ for
all of them. At `1, f2 cannot be accommodated alongside f1 since both families require two
units and `1 can only provide 3. f2’s Maximum Rank for `1 is 1 and, consquently, so is f3’s.
At `2 and `3, f1 and f3 cannot be accommodated together so the Maximum Rank of both
f2 and f3 is 1.

Phase 2 lasts three rounds, which are summarized below:

Round 1 Round 2 Round 3
f1 → `1 3 f1 → `1 3 f1 → `1 3

f2 → `1 7 f2 → `2 7 f2 → `3 3

f3 → `1 7 f3 → `2 3 f3 → `2 3
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All families propose to `1 in Round 1. f1 is tentatively accepted but f2 and f3 are rejected
since both of their marginal ranks are 1. f2 and f3 propose to `2 in Round 2. Again their
marginal ranks are 1 so f3, which has a higher priority, is tentatively accepted and f2 is
rejected. f2 proposes to `3 in Round 3 and is tentatively accepted. The algorithm ends and
yields {(f1, `1), (f2, `3), (f3, `2)}.

Phase 2 is identical to the PFDA algorithm and consequently both algorithms generate
the same outcome. Recall however that the PFDA algorithm allowed f2 to obtain `2 by
reporting `2, `1, `3, ∅. This is now longer possible in the MRDA algorithm. Given this report,
the three rounds of Phase 2 are displayed below:

Round 1 Round 2 Round 3
f1 → `1 3 f1 → `1 3 f1 → `1 3

f2 → `2 3 f2 → `2 7 f2 → `3 3

f3 → `1 7 f3 → `2 3 f3 → `2 3

In Round 1, f2 is tentatively accepted by `2 since it is the only family to propose. f1 is
tentatively accepted by `1 as its Maximum Rank is ∞, however `3 is rejected since it has a
lower priority than f1 and a Maximum Rank of 1. This is the key difference between the two
algorithms in this example. The PFDA algorithm allows f3 to be tentatively accepted since
it can be accommodated alongside f1, this means that f3 is rejected if f2 also proposes but
not otherwise. f2 then has an incentive not to propose to `1 so that `3 does not compete for
`2. This incentive no longer exists in the MRDA algorithm as f3 is rejected whether or not
`2 proposes to `1. In Round 2, as before, f2 and f3 propose to `2 and the former is rejected.
f2 proposes to `3 in Round 3 and the algorithm ends. The outcome produced is the same
as before: {(f1, `1), (f2, `3), (f3, `2)}. The outcome generated by the PFDA algorithm in this
problem is {(f1, `1), (f2, `2), (f3, `1)}. This example illustrates the trade-off between family
welfare and strategy-proofness: f2’s incentive to misrepresent is removed by ensuring that
the outcome obtained under this misrepresentation is less attractive than it could be.
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Abdulkadiroğlu, A. and T. Sönmez (1999). House allocation with existing tenants. Journal
of Economic Theory 88 (2), 233–260.
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Åslund, O., P.-A. Edin, P. Fredriksson, and H. Grönqvist (2011). Peers, neighborhoods, and
immigrant student achievement: Evidence from a placement policy. American Economic
Journal: Applied Economics 3 (2), 67–95.
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