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Abstract

This paper explores how state genetic privacy laws affect the diffusion of personal-
ized medicine, using data on genetic testing for cancer risks. State genetic privacy laws
take three alternative approaches to protecting patient privacy: Requiring informed
consent on the part of the individual; restricting discriminatory usage of genetic data
by employers, health care providers or insurance companies; or limiting redisclosure
without the consent of the individual or defining genetic data as the ‘property’ of the
individual. We find empirically that approaches to genetic and health privacy that
give users control over redisclosure encourage the spread of genetic testing, but that
the informed consent approach deters individuals from obtaining genetic tests. We
present some evidence that the latter reflects costs imposed on the supply of genetic
testing by hospitals. We find no effects of state or federal genetic anti-discrimination
laws on genetic testing rates.
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1 Introduction

Personalized medicine, where patients receive individually tailored health treatment based

on their unique genetic makeup, promises to revolutionize healthcare. Clinical applications

of genetic information can improve public health and medical care productivity by targeting

preventive care and interventions where they are most effective.1 At the same time, as more

links are uncovered between genes and personality traits and future health risks, individuals

may suffer from discrimination or other harms from having parts of their genetic information

revealed to others.2 Therefore, the spread of potentially revolutionary genetic tests that form

the basis of customized medicine may be stymied by privacy concerns.3

This research studies the effects of privacy regulations that are designed to protect genetic

privacy on the diffusion of personalized medicine. Strong privacy protection may increase

the value of genetic testing to consumers because it assures that they will not suffer harm in

future market interactions. However, privacy protection may sensitize consumers to privacy

concerns, increase costs to providers of genetic testing services and reduce the value to insur-

ance companies of covering the service. This makes the empirical effect ambiguous. Further,

since privacy protection is not a binary, all-or-nothing, choice, it is important to understand

which features of privacy regulations are most beneficial from the view of consumers and

which are most costly to producers. The study therefore explores the different provisions

within privacy laws to identify policies that are most favorable to the spread of personalized

medicine. We use variation in state laws over time in the United States to estimate the effect

1The potential value of personalized medicine is reflected President Obama’s Precision Medicine
Initiative, announced in his 2015 State of the Union Address, to which his 2016 bud-
get allocates $215 million. See http://www.whitehouse.gov/the-press-office/2015/01/30/

fact-sheet-president-obama-s-precision-medicine-initiative.
2Komarova et al. (2013) emphasizes the ability of firms to combine multiple different types of public data

to identify allegedly anonymous profiles.
3Indeed, for the case of cancer risks where genetic links are well-established, and for high-risk populations

and therefore genetic testing is most valuable, rates of adoption remain low. Data from the 2010 National
Health Interview Survey suggests that, even among individuals who have been advised by their physician to
obtain a genetic test for cancer, over 30% do not comply.
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of different kinds of genetic privacy laws on the use of genetic testing for cancer risks.

State genetic privacy laws, at a high level of generality, take three alternate approaches

to protecting patient privacy: First, requiring informed consent on the part of the individ-

ual; second, explicitly restricting the use of genetic data by health insurance, employers or

providers of long-term life care or insurance; third, limiting redisclosure without the consent

of the individual or defining genetic data as the ‘property’ of the individual.

Using individual-level panel data, we find that an approach which gives users control over

redisclosure encourages the spread of genetic testing, whereas an approach of informed con-

sent deters individuals from obtaining genetic tests. We find no effects of anti-discrimination

rules that limit the use of genetic information in particular contexts.

We check the robustness of these results in multiple ways. We show robustness to func-

tional form, different sets of controls, and different treatment of the federal genetic privacy

law. We also show that there are no similar effects of genetic privacy protection on non-

genetic opt-in health testing (for HIV status) or use of preventive health care (getting a

flu shot). We find larger effects for patients where the potential risks of genetic data being

misused are highest, such as those who already know they have an elevated risk due to a

family history of cancer (and individuals who show greater concern for their health privacy

in other ways), but no effects for individuals who have already received a cancer diagnosis

for one of the types predicted by genetic testing (breast, ovarian, colon or rectal). We show

that the magnitude of the effect of the laws is driven by that individual’s stated privacy

concerns.

We then evaluate whether these results are driven by individual responses to privacy

concerns, or by underlying changes in supply-side testing availability due to the laws. Genetic

consent laws appear to reduce testing availability, suggesting that part of their negative effect

stems from costs that complying with consent requirements impose on hospitals. However,

there is no positive effect on genetic testing availability as a result of redisclosure laws,
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suggesting that that particular kind of law derives its positive effect from its ability to

provide consumer-side reassurance.

This research has three major contributions.

The first contribution is to build on an existing academic literature on genetic testing and

relate it to privacy regulation. Building on theoretical models of the effects of genetic testing

on insurance markets such as Strohmenger and Wambach (2000), the empirical economics

literature on genetic testing aims to disentangle its inherent implications for asymmetric

information on outcomes in insurance markets (Zick et al., 2000, 2005; Armstrong et al.,

2003; Oster et al., 2010).4 Our paper complements these papers by asking how different

approaches to restricting sensitive genetic information flows affect genetic testing rates.

The second contribution of this work is to provide some of the first empirical evidence

about the need for ‘genetic exceptionalism.’ There has been substantial policy debate about

whether genetic health data are distinct and different from regular health data and therefore

needs a special class of protection (Yesley, 1998).5 Genetic information can reveal more

than a person’s current health status; it contains information about their future health

risks and traits that are unrelated to disease (Savitz and Ramesar, 2004). These concerns,

specific to genetic (or genomic) information, can complicate the legal and ethical issues

surrounding disclosure of personal information (Berry, 1997), and are the motivation for the

new, targeted laws. Reflecting this, the new genetic privacy regulations that we study are

explicitly incremental to existing state and federal laws protecting the privacy of personal

health information.6 Our research provides the first empirical evidence on how individual

4Oster et al. (2013) discusses a possible psychological motivation for individuals with elevated risks for
Huntington’s disease to decline genetic testing, namely that a positive result limits their ability to maintain
optimistic beliefs about their true risk.

5With respect to privacy, Washington is the only state that explicitly treats genetic information the same
as other health information by including genetic information in the definition of health care information
under the state health privacy law.

6Generally, the focus of these laws have been on data privacy rather than data security; see Miller and
Tucker (2011b) for a description of the role of data-breach notification laws on the spread of information
technology in healthcare.
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behavior responds to regulations that protect the privacy of genetic information rather than

general health data. Our finding that genetic privacy laws have distinct effects above and

beyond standard health data privacy laws provides some support for the need for separate

legislative action.

The third contribution is to help provide evidence for policymakers trying to determine

the best approach to regulating genetic privacy, given the perceived desirability of person-

alized medicine. This perceived desirability stems both from the fact that personal genetic

information may one day be used by individuals to anticipate their disease risks, select in-

vestment in preventive care, and when facing illness, to select the most effective treatment,

but there are also potentially large system-wide gains from analyzing personal genetic data

on a large scale.

Public health and consumer advocates have argued for strong genetic privacy protections

(Gostin, 1991; McEwen and Reilly, 1992; Natowicz et al., 1992; Ostrer et al., 1993). How-

ever, life insurance industry representatives have argued that all genetic information from

applicants should be made available to them and that genetic insurance might be a viable

solution (McEwen et al., 1993; Tabarrok, 1994). By measuring the effects of genetic privacy

on genetic testing rates and availability, this paper provides the first empirical evidence on

how public policy related to privacy affects the diffusion of genetic medicine. Generally, the

empirical literature on privacy regulation has documented largely negative effects of privacy

regulation for the spread and use of data-enriched technologies both in healthcare and else-

where (Miller and Tucker, 2009, 2011a; Goldfarb and Tucker, 2011, 2012a). This paper adds

to this literature by not only studying a context where privacy concerns are paramount but

also by emphasizing how different features of privacy regulation, in particular those that

emphasize rights over data, can have different effects from more commonly found consent

requirements, which previous studies have found to be associated with negative effects.
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2 Data

2.1 Healthcare Data

To study an individual’s likelihood of obtaining genetic testing, we use the National Health

Interview Surveys (NHIS) distributed by the National Center for Health Statistics (NCHS),

part of the Centers for Disease Control and Prevention (CDC). In particular, we use data

in the Cancer Control Modules. These modules include questions about genetic testing for

cancer risk, as well as a variety of other screening and preventive care measures and health

outcomes. To our knowledge, this is the only source of national data on genetic testing rates

for any medical purpose. Genetic testing data are available in 2000, 2005, and 2010, with

about 30,000 survey responses in each wave. After excluding observations with missing data,

our final sample size is 81,543. Table 1 lists summary statistics for these data. Following

NCHS guidance, summary statistics and regression coefficients are computed using person

weights from the NHIS.7

Genetic tests can be extremely valuable to individuals in certain sub-populations. Genetic

variations have been identified that predict increased risks of breast cancer, ovarian cancer,

colon cancer, cystic fibrosis, among other diseases. A negative result would imply a normal

cancer risk, while a positive result would be elevated. For example, the official guidance

for someone who has tested positive for the BRCA or BRCA2 mutation which elevates the

risk of breast or ovarian cancer is that they should be offered ‘enhanced screening’ to try

and detect breast cancer at an early stage.8 It also suggests they also should be offered

Prophylactic Surgery which removes as much ‘at-risk’ tissue as possible, this may involve

a double mastectomy and the removal of ovaries and fallopian tubes. There is also the

possibility of ‘Chemoprevention’ which is the use of drugs such as tamoxifen and raloxifene

7Weighting is used to adjust for non-random sample selection, survey non-response, and post-stratification
in order to compute values that are representative of the civilian noninstitutionalized population of the United
States.

8http://www.cancer.gov/cancertopics/factsheet/Risk/BRCA
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to try and reduce the risk of cancer. Though medical evidence is of an early-stage on

the effectiveness of such actions there is evidence that taking these aggressive measure can

greatly reduce the incidence of cancer. For example, studies suggest that Tamoxifen can

breast cancer incidence among healthy BRCA2 carriers by 62% (King et al., 2001). A

double mastectomy can reduce breast cancer incidence by 90% (Hartmann et al., 2001).

The main focus of our study is whether or not these survey respondents reported that they

had a genetic test to ascertain their cancer risk. The average testing rate is 0.54%. Over

the sample period, genetic testing rates did increase steadily, from 0.38% of respondents

responding positively in 2000 to 0.66% doing so in 2010. Nevertheless, given the progress

that has been made in personalized medicine, this low rate of penetration is striking.

The NHIS also contains individual-level information on a variety of health variables as well

as background economic and demographic information, which we use as controls. Because

the public use version of the NHIS files contain only limited geographic information at the

region level (Northeast, Midwest, South, West), in order to conduct our analysis relating

genetic testing to state privacy laws, we needed to use restricted geographic information

from the NHIS to merge with privacy laws at the state level. We accessed the restricted

NHIS data at the CDC’s NCHS Research Data Center.

The primary benefit of the NHIS data is that it uniquely allows us to observe actual

testing rates in the population. To the best of our knowledge, no other nationally represen-

tative datasets exist on genetic testing for the US population. The secondary benefits are

that we observe testing rates for a nationally representative sample of high-risk individuals,

and more generally, that we can link genetic testing information with a wide range of in-

dividual and geographic controls. One issue with our data is that it does not allow us to

address directly new markets that have opened up recently where genetic testing is offered by

non-local providers or direct-to-consumer testing companies that are not based at healthcare
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Table 1: Genetic Testing Information and State Laws: Summary Statistics
Mean Std. Dev.

Genetic Test 0.0054 0.073
Heard of Genetic Testing for Cancer Risk 0.43 0.50
Age 45.3 17.5
Female 0.52 0.50
White 0.82 0.39
Black 0.11 0.32
Private Insurance 0.68 0.47
No Insurance 0.17 0.37
Family Cancer 0.38 0.48
Ever Had Testable Cancer Diagnosis 0.019 0.14
State Uninsured 14.4 4.40
State Private Insurance 69.1 7.39
State Medicare 14.1 2.11
State Medicaid 13.0 3.75
State GDP (000) 41.2 7.54
Genetic Consent Law 0.29 0.45
Genetic Anti-Discrimination Law 0.89 0.31
Genetic Redisclosure Law 0.52 0.50
Health Privacy Disclosure Law 0.80 0.40
HIV Test 0.35 0.48
Flu Shot 0.23 0.42

81,453 observations. Individual information from the NHIS (2000, 2005, 2010). State health insurance from
the CPS and GDP from the BEA. Testable cancers are defined based on the most commonly reported genetic
tests for cancer risks: breast, ovarian, colon, and rectal cancer. Privacy laws described in the text. Means
and standard deviations computed using final person weights from the NHIS.

facilities.9

2.2 Privacy Laws

Most state legislatures have taken steps to safeguard genetic information beyond the pro-

tections provided for other types of health information. A survey of the current state of

genetic privacy regulation is provided in Pritts et al. (2009), which provides a useful starting

point but lacks the historical information needed for our analysis. To build on this initial

data, we investigated changes in genetic privacy laws in each state over time to construct a

panel database of state genetic privacy laws relating to the collection, distribution, or use of

9Examples of such companies include 23andme.com. The U.S. Food and Drug Administration (FDA)
regulates genetic testing for health risk and has intervened in the direct-to-consumer genetic testing market.
In November 2013, the FDA issued a warning letter to the company 23andMe and directed them to stop
marketing health-related genetic tests directly to consumers.
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genetic information.

There is substantial variation in the timing and the content of state genetic privacy laws,

and we exploit this variation to define three categories of genetic privacy laws.

The first category of laws relate to consent for collecting and storing genetic information.

Specifically, laws in seventeen states require informed consent for a third party either to

perform or require a genetic test or to obtain genetic information. Consent rules for genetic

testing may reassure patients by providing clear information on costs and benefits of testing,

but could also increase privacy concerns by making them more salient.

The second category includes laws that are explicit anti-discrimination laws which pre-

vent the discriminatory use of genetic data. These laws can target employers or life, long-

term care, disability, or health insurers. Anti-discrimination laws will only increase test-

ing if patients are aware of them and believe that they will be effectively enforced. Anti-

discrimination laws limit how genetic information is used by certain types of organizations

that receive it (insurers or employers), but not whether or not they receive the information,

so such laws may provide less privacy assurance to consumers than do laws that limit redis-

closure and provide ownership rights to patients. On the other hand, since laws are targeted

at contexts where privacy fears are greatest, they prove effective at reassuring patients.

The third category consists of laws that give the individual explicit ownership rights over

their data by either requiring their consent any time data are disclosed to a third party, or

by giving them actual ownership rights over the data.10 Twenty-seven states require consent

to disclose genetic information later. Alaska, Colorado, Florida, Georgia, and Louisiana

explicitly define genetic information as personal property. Alaska is unusual in also extending

personal property rights to DNA samples. These laws are of interest to economists as they

extend a Coasian approach used for example to correct environmental externalities to the

10In this paper, we use the terms disclosure and redisclosure interchangeably. The former refers to sharing
of information by the original data creator or collector; the latter refers to sharing of data that was received
from another party (such as an insurance company sharing data received from a medical provider).
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privacy arena. Since there is debate over whether asserting property rights in general can

correct market failures in practice, there is ambiguity over how effective such laws will be.

In any empirical study based on panel data such as ours, an important question is where

these changes in state laws originate from and could the impulses that led to their enact-

ment also jointly determine medical genetic testing rates. In general, it is hard to identify

a common motivation for enactment of such laws even for those who are experts in the

field. For example, Sara Katsanis, a research associate at the Duke Institute for Genome

Sciences & Policy states, “The laws are all very sparse and random” (Gardner, 2014). Most

media reporting surrounding the enactment of new regulation emphasize fears of “genetic

McCarthyism” in general and often describe cases where police officers secretly collecting

genetic samples without the consent of other individuals (Green and Annas, 2008; Vorhaus,

2011) to give context to the laws. We found little discussion of medical treatment except

for passing reference to commercial genetic testing providers such as 23andme.com in the

discussion of the laws. Though this is very much anecdotal evidence, it certainly is not

positive evidence that there is a connection between the enactment of laws and underlying

medical demand for the kind of hospital-based genetic testing that we study.

In Table 1, we show summary statistics on these three broad categories of laws on the

NHIS sample we use for the genetic testing analysis. Summary statistics on these laws for

the sample of hospitals we use for the analysis of technology availability in Section 3.6 are

in Table A-2.

Though we focus on variation in regulation at the state level, there were changes at the

federal level in the time period we study. The 2008 Federal Genetic Information Nondiscrim-

ination Act (GINA) provides privacy protection that is specific to genetic information and

that covers all states. This Act strengthened the federal protection for genetic information in

place since 1996, when it became illegal to deny group health insurance coverage to someone
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based on their genetic information.11 GINA further restricts the use of genetic information

by health insurers and employers. In that case, state laws that offer additional protections

may reassure patients as to how their information will be used, and thereby increase de-

mand for genetic testing incrementally above the effects of GINA. We address the question

of GINA in a separate specification which incorporates how GINA may have changed the

baseline protections given at the state-level.

3 Analysis of Genetic Privacy Laws and Genetic Testing

3.1 Initial Results

Table 2 shows our initial results when we examine the effects of our three different categories

of laws as well as the effects of general health privacy laws that limit redisclosure. We first

examine each variation of law separately and then account for correlated adoption between

multiple laws and estimate our main model that includes all of the laws together. In each

case, the specification includes numerous individual and state-level controls as well as state

and year fixed effects.

In Column (1), we look at the category of regulation that mandates some form of informed

consent in isolation from other laws. There is a negative and significant effect on the decision

to undergo genetic testing.12 This is consistent with an economic model where the consent

requirement imposes a transaction cost on the provider or consumer. The negative reaction

to informed consent rules may also reflect that individuals may be overly optimistic about

the amount of their private information that is being collected and used by firms (Jolls,

2007).13

Column (2) investigates the effect the presence of an anti-discrimination law in isolation

11GINA affirms that genetic information is considered private health information and that protections
relating to confidentiality and security in the Health Information Portability and Accountability Act (HIPAA)
Privacy Rule apply equally to genetic data.

12In separate estimation, we decomposed this result and found that, while both requiring explicit consent
for testing and consent for retaining genetic information have negative effects on genetic testing, it is the
requirement to collect informed consent in general that has the most statistically significant relationship
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Table 2: Initial Results
(1) (2) (3) (4) (5)

Genetic Consent Law -0.0039** -0.0045***
(0.0017) (0.0013)

Genetic Anti-Discrimination Law 0.0010 0.00084
(0.0019) (0.0014)

Genetic Redisclosure Law 0.000057 0.0037**
(0.0013) (0.0016)

Health Privacy Disclosure Law 0.0033*** 0.0030***
(0.00085) (0.00081)

Age 0.0000078 0.0000077 0.0000076 0.0000082 0.0000082
(0.000016) (0.000016) (0.000016) (0.000016) (0.000016)

Female 0.0027*** 0.0027*** 0.0027*** 0.0027*** 0.0027***
(0.00062) (0.00062) (0.00062) (0.00062) (0.00062)

White 0.00098 0.0010 0.00100 0.00094 0.00095
(0.00093) (0.00093) (0.00093) (0.00092) (0.00092)

Black 0.0024** 0.0024** 0.0024** 0.0024** 0.0024**
(0.0010) (0.0010) (0.0010) (0.0010) (0.0010)

Family Cancer 0.0051*** 0.0051*** 0.0051*** 0.0051*** 0.0051***
(0.00085) (0.00085) (0.00085) (0.00085) (0.00085)

Private Insurance -0.0011 -0.0011 -0.0011 -0.0011 -0.0011
(0.00082) (0.00082) (0.00082) (0.00082) (0.00082)

No Insurance -0.0020* -0.0020* -0.0020* -0.0020* -0.0020*
(0.0011) (0.0011) (0.0011) (0.0011) (0.0011)

State Uninsured 0.000086 -0.00022 -0.00017 -0.000089 -0.000020
(0.00057) (0.00058) (0.00059) (0.00057) (0.00058)

State Private Insurance -0.000053 -0.00030 -0.00025 -0.00021 -0.00019
(0.00042) (0.00048) (0.00047) (0.00040) (0.00042)

State Medicare 0.00034 0.00020 0.00021 0.00020 0.00034
(0.00047) (0.00043) (0.00043) (0.00041) (0.00046)

State Medicaid 0.00033 0.000084 0.00013 0.00017 0.00026
(0.00043) (0.00046) (0.00046) (0.00041) (0.00041)

State GDP (000) 0.00022 0.00026 0.00026 0.00026 0.00020
(0.00023) (0.00026) (0.00025) (0.00025) (0.00024)

State Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
Observations 81543 81543 81543 81543 81543
Log-Likelihood 97399.8 97397.8 97397.7 97401.1 97403.3

OLS estimates. Dependent variable is decision to take genetic test for cancer risks. Omitted race category
includes Asian, Native American, Other and Multiple. All regressions use NHIS final person weights. Robust
standard errors clustered at the state level. * p < 0.10, ** p < 0.05,*** p < 0.01
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on genetic testing rates. This is a law that prohibits discrimination by employers, life in-

surance companies or health insurance companies based on genetic information. We find

no statistically significant relationship.14 The general lack of an effect of anti-discrimination

laws is consistent with several possibilities. It could be that the laws are too limited in

scope or enforcement to assuage consumer concerns. Or, it could be that consumers are

already able to effectively protect the privacy of their genetic test results from employers or

insurers by paying out of pocket for testing. It is also possible that the laws have offsetting

effects that lead to zero overall effect. Anti-discrimination rules may increase the willingness

of consumers to undergo testing while at the same time decrease the willingness of health

insurers (or employers in the case of employment-based self-insured health plans) to cover

the tests.

Column (3) investigates the relationship between genetic testing and the presence of a

law that requires consent to be given if the data are ever to be shared again. We find a

very small and imprecise effect. Column (4) examines the baseline effects of the presence

of a general health privacy law. We find a positive and statistically significant relationship

between genetic testing and the presence of a general health privacy law that limits disclosure.

Column (5) of Table 2 reports the main estimates in which we study the effects of each of

the laws in a single model. For the genetic laws, we find that it is still the case that informed

consent requirements have a negative effect, and that anti-discrimination laws have little

measurable effect. The positive coefficient on granting property rights over redisclosure is

now substantially larger and statistically significant in this specification. The reason for this

change is likely the positive correlation between genetic consent and redisclosure laws; not

with genetic testing.
13Jolls (2007) discusses this as a possible market failure around workplace privacy that could justify privacy

regulation. She notes that these concerns are increasing in importance as information and communication
technologies become more widespread.

14Separate estimation of different types of anti-discrimination laws relating to health, long-term care
insurance and employment again shows no statistically significant relationships.
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Table 3: Genetic Privacy Laws and Latent Demand for Genetic Privacy
Consent Law Anti-Discrimination Law Redisclosure Law
(1) (2) (3) (4) (5) (6)

GINA Filed Per Pop. -0.042 0.018 0.033
(0.031) (0.020) (0.033)

GINA Resolved Per Pop. -0.048 0.017 0.019
(0.035) (0.023) (0.038)

Constant 0.42*** 0.41*** 0.86*** 0.87*** 0.36*** 0.41***
(0.10) (0.096) (0.068) (0.062) (0.11) (0.10)

Observations 51 51 51 51 51 51
Log-Likelihood -32.3 -32.3 -10.1 -10.2 -36.3 -36.6

OLS estimates. State level unit of observation. Dependent variables are indicators for having a genetic pri-
vacy law of each type in place in 2008. Explanatory variables are the total numbers of genetic discrimination
cases filed or resolved by the EEOC between 2010 and 2012, scaled to state population.
* p < 0.10, ** p < 0.05, *** p < 0.01

accounting for the negative effects of consent rules was biasing the estimate for redisclosure

rules downward. As in the previous column, redisclosure limits for health information that

are not specific to genetic data are associated with more genetic testing.

When we look at the controls across the columns, in general the estimates are reasonably

consistent. Being female, black, or having a family history of cancer positively affect the

decision to have a genetic test. Having no insurance (weakly) negatively affects the decision,

perhaps because of cost concerns, but there is no significant difference between public and

private insurance coverage. State characteristics and the linear age control have no precisely

measured effects.

An obvious question for any paper that relies on a panel data setting such as ours is

whether there are underlying changes in that state that could explain both the enactment of

certain types of genetic privacy law and a change in cancer testing rates, that would not be

controlled for using our controls. Such a source of time-varying heterogeneity can provide

an alternative explanation of our results. One potential source of bias that would lead us to

under-estimate the effect of anti-discrimination rules is if states where discrimination is more

likely (more precisely, at the time when discrimination risk is increasing) are more likely to

pass rules banning genetic discrimination.
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We explored this possibility using a cross-sectional measure of state-level latent “demand”

for anti-discrimination rules based on enforcement of the federal anti-discrimination law,

GINA. To conduct this analysis, we obtained data from the Equal Employment Opportunity

Commission (EEOC) on counts of discrimination charges filed and resolved under GINA for

fiscal years 2010 to 2012. We found no significant relationships between these measures of

privacy demand (measured as charges filed or resolved per population) and the presence

or timing of any of the genetic privacy rules we study. Table 3 shows the insignificant

correlations for having a law by 2008. Estimates are also insignificant if earlier years are

used or if the total share of years with a law in place between 1998 and 2008 is used (see Table

A-1). The general lack of significance, combined with the inconsistent direction of the point

estimates (where GINA claims are positively associated with anti-discrimination and re-

disclosure laws but negatively with consent laws), is supportive evidence that the variation

in state genetic privacy laws we study is not motivated by the populations’ underlying

privacy preferences towards genetic testing. This is consistent with anecdotal evidence on

the “randomness” of the laws discussed in Section 2.2.

3.2 Robustness Checks

Table 4 presents a series of robustness checks for Table 2. Columns (1) and (2) report

robustness checks to different sets of controls. Column (1) shows that our results hold when

we do not use any state or demographic controls. Column (2) adds non-linear age controls.

Column (3) of Table 4 explores whether explicitly incorporating the changes in federal

law resulting from GINA affects our estimates. GINA explicitly prohibited discrimination

in health insurance coverage and employment based on genetic information. Therefore, we

modified our indicator variable to reflect this blanket federal coverage for the 2010 sample.

However, the general pattern of these laws not appearing to have a statistically significant

relationship with genetic testing decisions continues.
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Table 4: Robustness Checks
Controls GINA Probit

(1) (2) (3) (4)
Genetic Consent Law -0.0038*** -0.0045*** -0.0046*** -0.33***

(0.0013) (0.0013) (0.0014) (0.089)
Genetic Anti-Discrimination Law 0.00091 0.00083 0.00014

(0.0015) (0.0014) (0.13)
Genetic Redisclosure Law 0.0032** 0.0037** 0.0047** 0.39**

(0.0013) (0.0016) (0.0017) (0.16)
Genetic Anti-Discrimination (GINA) -0.0020

(0.0018)
Health Privacy Disclosure Law 0.0030*** 0.0030*** 0.0029*** 0.17**

(0.00089) (0.00081) (0.00086) (0.068)
Age 35-50 -0.00015

(0.00072)
Age > 50 0.00054

(0.00070)
Female 0.0027*** 0.0027*** 0.19***

(0.00062) (0.00062) (0.044)
White 0.00093 0.00093 0.075

(0.00092) (0.00092) (0.074)
Black 0.0024** 0.0024** 0.18**

(0.0010) (0.0010) (0.076)
Family Cancer 0.0051*** 0.0051*** 0.32***

(0.00087) (0.00085) (0.038)
Private Insurance -0.0010 -0.0011 -0.068

(0.00081) (0.00082) (0.044)
No Insurance -0.0019* -0.0020* -0.14**

(0.0010) (0.0011) (0.069)
State Uninsured -0.000021 0.000095 0.036

(0.00058) (0.00056) (0.049)
State Private Insurance -0.00019 -0.000062 0.0051

(0.00042) (0.00040) (0.036)
State Medicare 0.00034 0.00043 0.033

(0.00046) (0.00042) (0.034)
State Medicaid 0.00026 0.00035 0.029

(0.00041) (0.00041) (0.031)
State GDP (000) 0.00020 0.00019 0.013

(0.00024) (0.00023) (0.018)
Age 0.0000081 0.00080

(0.000016) (0.0011)
State Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Observations 81543 81543 81543 80817
Log-Likelihood 97329.9 97403.8 97404.1 -2611.2

OLS estimates except for final columns which presents results from a Probit specification. Dependent
variable is decision to take genetic test for cancer risks. All regressions use NHIS final person weights.
Robust standard errors clustered at the state level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Column (4) of Table 4 shows robustness to a probit functional form that reflects explicitly

the binary nature of the decision. The sample size is smaller because some states are dropped

(for lack of variation in the outcome). The results are qualitatively unchanged. The table

reports probit coefficients. Marginal effects on the laws have the same sign and statistical

significance.

3.3 Falsification and Behavioral Checks

We now return to explore further the concerns that motivated the analysis in Table 3 - that

there is time-varying heterogeneity that may jointly determine state genetic privacy laws and

genetic testing in that state. In this section, we use variation in the NHIS data to show that

the effects of privacy laws are larger when we focus on populations for whom genetic testing

is more relevant. We also show no effects of genetic privacy for opt-in health actions that

are not genetic tests. This provides some reassuring evidence that the effect we are studying

is driven by the laws themselves, rather than something else. These tests are particularly

useful in our setting because the limited time variation (with only 3 survey waves) precludes

a traditional falsification test based on pre-trends in outcomes.

Columns (1) and (2) of Table 5 explore what happens when we restrict our sample to

subsamples for whom genetic testing may be of greater interest. The first population is those

who report that they are aware of genetic testing. Testing rates are 1.4% overall for those

who report having heard of genetic tests, increasing from 1.1% to 1.7% over the period; they

are zero for those who have not heard of the tests. The second is a subsample of females.

We look at this sub-population simply because of the fact that the genetic test for breast

cancer is one of the most prevalent. In both of these subpopulations, where there should

be more awareness of the benefits of testing, the effect of the genetic privacy laws appears

strengthened. The effect of general health privacy laws is larger for the sub-population that

is aware of genetic testing but is negligible for the female sample.
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Table 5: Mechanism and Falsification Checks
Heard Female Falsification

(1) (2) (3) (4)
Genetic Test Genetic Test HIV Test Flu Shot

Genetic Consent Law -0.011*** -0.0036** -0.023 0.020
(0.0028) (0.0014) (0.022) (0.018)

Genetic Anti-Discrimination Law 0.0013 0.0025 -0.020 0.011
(0.0034) (0.0016) (0.015) (0.020)

Genetic Redisclosure Law 0.0081** 0.0066*** 0.036 0.016
(0.0035) (0.0020) (0.034) (0.025)

Health Privacy Disclosure Law 0.0082*** 0.00073 0.024** -0.0067
(0.0024) (0.0014) (0.0095) (0.011)

Age 0.000057 -0.0000021 -0.0070*** 0.0071***
(0.000044) (0.000028) (0.00017) (0.00013)

Female 0.0046*** 0.055*** 0.031***
(0.0014) (0.0046) (0.0033)

White -0.0011 0.00069 0.0032 -0.0083
(0.0029) (0.0018) (0.012) (0.0071)

Black 0.0063** 0.00015 0.17*** -0.040***
(0.0031) (0.0022) (0.015) (0.0068)

Family Cancer 0.0082*** 0.0065*** 0.035*** 0.0070
(0.0017) (0.0012) (0.0040) (0.0043)

Private Insurance -0.0100*** -0.00080 -0.047*** -0.016***
(0.0026) (0.0014) (0.0073) (0.0055)

No Insurance -0.0073** -0.00087 -0.049*** -0.10***
(0.0032) (0.0018) (0.0089) (0.0057)

State Uninsured 0.00027 -0.0012 -0.0069 -0.0014
(0.0013) (0.00090) (0.0076) (0.0057)

State Private Insurance -0.00022 -0.00091 -0.0034 0.0011
(0.00095) (0.00070) (0.0052) (0.0045)

State Medicare 0.00097 0.00051 0.00058 -0.00017
(0.0010) (0.00080) (0.0048) (0.0036)

State Medicaid 0.00091 -0.00013 -0.0034 0.00026
(0.00092) (0.00071) (0.0044) (0.0043)

State GDP (000) 0.00059 0.00027 0.0017 -0.0025
(0.00056) (0.00038) (0.0028) (0.0020)

State Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Observations 33167 45814 81543 81543
Log-Likelihood 25968.7 49315.5 -51597.5 -39597.2

OLS estimates. Dependent variable is decision to take genetic test for cancer risks in Columns (1) and (2),
decision to take HIV test in Column (3) and decision to get a flu shot in Column (4). All regressions use
NHIS final person weights. Robust standard errors clustered at the state level. * p < 0.10, ** p < 0.05, ***
p < 0.01

18



Columns (3) and (4) of Table 5 present falsification checks. We first consider testing for

HIV status as a dependent variable. This is another opt-in test that could reveal sensitive

and private information but that should not be affected by genetic privacy rules, since

contracting HIV is not predicted by genetics. The results in Column (3) show that, while

genetic testing laws are not significantly related to rates of HIV testing, general health privacy

rules tend to increase HIV testing rates. This test addresses the concern that the passage of

genetic privacy state laws is connected with underlying state patient preferences for taking

health tests rather than a direct causal effect from genetic privacy regulation to the decision

to take a genetic test. Column (4) of Table 5 reports the estimates when the dependent

variable is having a flu shot. We use this test because having a flu shot and having a genetic

test may be similarly motivated in terms of underlying demand for preventative medical

measures. For this outcome, neither form of health privacy protection (genetic or general)

has a significant effect on use. This placebo check provides evidence against concerns that

changes in genetic privacy rules are related to underlying changing in population preferences

for health protection or use of preventive care.

3.4 Different Risk Profiles before Genetic Testing

We then turn to consider the extent to which a consumer’s knowledge about their risks ex

ante affects the way that genetic privacy laws influence their demand for testing.

In Table 6, we estimate separate effects of genetic privacy for individuals with different

underlying risk profiles. The mutations being tested for are relatively rare, and genetic

testing is most informative for individuals with elevated cancer risks. Though there are

no established medical criteria for deciding exactly when testing is appropriate, the usual

practice is to recommend testing for individuals with a higher chance of possessing the

mutation or of being at risk for the disease. For example, testing for genetic mutations such

as BRCA1 and BRCA2, which predict breast and ovarian cancer frequency, is recommended
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to individuals with a family history of cancer. This greater value is reflected in higher testing

rates, positive and significant across all specifications in the previous tables, for individuals

who report a family history of cancer (which we define as having a parent or sibling who

ever received a cancer diagnosis).

Although it increases the expected informational content of genetic testing, an elevated

cancer risk can also increase the expected harm from genetic testing (assuming that the harm

occurs if the test result is positive). For that reason, we should expect that individuals with

higher self-reported cancer risk to also be more sensitive to the privacy regime. We exploit

data collected by the NHIS that categorizes individuals into below average, average, and

above average risks for cancer. Comparing the point estimates across the first three columns

of Table 6 shows steady increases in effect sizes for people informed about their lower-than-

average cancer risk in Column (1), to normal risk in Column (2), to higher than average risk

in Column (3). Across the three columns, the effect of genetic consent laws goes from−0.0045

to −0.0066 to −0.014.15 The effect of genetic redisclosure laws is only positive for the higher

risk group (though not precisely estimated on the small sub-sample) and general health

privacy laws go from negative to positive 0.0084 to 0.015 as risk increases. Although these

estimates are not generally statistically distinguishable, the consistent pattern is suggestive.

A similar pattern emerges in Columns (4) and (5) of Table 6, when we split the sample

into individuals with and without any immediate family members (parents or siblings) who

have been diagnosed with cancer from one of the four types of cancer risks that individuals

in our sample received genetic testing for (breast, ovarian, colon or rectal). Estimates for

the sub-sample of individuals with no family history of “testable” cancers are in Column (4).

These individuals face lower baseline cancer risk for these cancer types than individuals with

such family histories, the sub-sample used in Column (5). The larger point estimates for

15This is similar to the pattern of increasing rates of genetic across the columns, going from under 1% for
the low and normal risk groups to almost 2% for the high risk group.
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genetic consent and genetic redisclosure laws for individuals in the higher risk group (both

in absolute terms and relative to the baseline testing rates for the sub-sample) again suggest

that individuals with higher risks from genetic tests are more sensitive to genetic privacy

rules in their genetic testing decisions.

Column (6) of Table 6 shows that the pattern of increasing responsiveness with increasing

cancer risk is no longer present when the risk has been realized and the individual has already

received a cancer diagnosis for one of the four testable types of cancer (breast, ovarian,

colon or rectal). For this sub-sample, the coefficients on the privacy laws are reversed in

sign and not statistically significant (though the small sample size surely contributes to the

imprecision of the estimates). In Column (6), age is a negative and significant predictor of

genetic testing. This may be because, among individuals with diagnosis, the value of genetic

testing is larger when they are younger. Column (7) shows that our overall results from

Table 2 are all present on the sub-sample of individuals who have not been diagnosed with

a testable form of cancer.
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3.5 Demand for Privacy

We then move away from individual fears about what the genetic test may reveal as a

potential moderator of the effect, to considering how individual demand for privacy might

moderate our results. The NHIS do not explicitly ask about privacy demand, so we use

two proxies. The first is based on engaging in privacy-protective behavior in the context

of HIV testing. Specifically, we identify a group of individuals that show high demand

for health privacy based on their refusing to answer the NHIS question about HIV testing

or reporting to the NHIS that they did not provide their complete name when receiving

an HIV test. In the first two columns of Table 7, we split the same into those who have

engaged in such privacy protective behavior in Column (1) and those who have not in Column

(2). The estimated effects of privacy laws are substantially larger for the privacy-protective

individuals, by as much as an order of magnitude. This provides suggestive evidence that

the effects we measure are driven partially by individual privacy concerns, though in section

3.6 we will show that the consent law effect may also be driven by the supply side.

The second split meant to capture privacy tastes is based on age of the respondent.

We find that older individuals react far more negatively to genetic consent laws and react

somewhat less positively to redisclosure laws for either genetic or general health informa-

tion. Speculatively, this pattern would be consistent with older individuals caring more

about privacy but at the same time being either more skeptical about the effectiveness of

redisclosure rules to protect their privacy or having concerns about both private sector and

government reuse of their data. The finding that older individuals care more about privacy

reflects findings in other domains (Goldfarb and Tucker, 2012b).
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Table 7: Privacy Demand
Private HIV None HIV Under 40 40+

(1) (2) (3) (4)
Genetic Test Genetic Test Genetic Test Genetic Test

Genetic Consent Law -0.046*** -0.0031*** -0.0013 -0.0067**
(0.013) (0.0010) (0.0019) (0.0028)

Genetic Anti-Discrimination Law -0.0092 0.00094 -0.0010 0.0021
(0.021) (0.0015) (0.0015) (0.0022)

Genetic Redisclosure Law 0.016 0.0044*** 0.0048* 0.0030
(0.022) (0.0016) (0.0027) (0.0030)

Health Privacy Disclosure Law 0.019** 0.0024*** 0.0051** 0.0014
(0.0077) (0.00079) (0.0022) (0.0019)

Age 0.0000024 0.000013 0.000081 0.0000023
(0.00014) (0.000016) (0.000070) (0.000039)

Female -0.0021 0.0028*** 0.0017** 0.0033***
(0.0046) (0.00061) (0.00071) (0.0010)

White 0.0037 0.00085 0.00088 0.00100
(0.0054) (0.00086) (0.00087) (0.0015)

Black 0.00060 0.0025** 0.0030** 0.0017
(0.0049) (0.0011) (0.0012) (0.0014)

Family Cancer 0.0070 0.0050*** 0.0064*** 0.0045***
(0.0057) (0.00083) (0.0018) (0.00087)

Private Insurance -0.017 -0.00050 -0.0031* -0.00032
(0.013) (0.00071) (0.0016) (0.00090)

No Insurance -0.021 -0.0013 -0.0034** -0.0020
(0.015) (0.00090) (0.0015) (0.0015)

State Uninsured 0.0020 -0.000073 0.0012 -0.00086
(0.0025) (0.00058) (0.00087) (0.00086)

State Private Insurance -0.00060 -0.00015 0.00063 -0.00074
(0.0017) (0.00042) (0.00056) (0.00063)

State Medicare 0.00084 0.00033 0.00096* -0.00014
(0.0035) (0.00047) (0.00054) (0.00068)

State Medicaid 0.0035 0.00018 0.00089 -0.00016
(0.0025) (0.00043) (0.00058) (0.00061)

State GDP (000) 0.00040 0.00015 0.00033* 0.00011
(0.00083) (0.00025) (0.00018) (0.00044)

State Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Observations 2993 78550 32183 49360
Log-Likelihood 2601.1 95166.4 42071.2 55715.7

OLS estimates. Dependent variable is decision to take genetic test for cancer risks. Robust standard errors
clustered at the state level. * p < 0.10, ** p < 0.05, *** p < 0.01
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3.6 Genetic Testing Availability

So far, this paper has focused on how different genetic privacy testing regimes affect consumer

decisions to pursue a genetic test. However, the ability of an individual to pursue a genetic

test is limited by the supply-side availability of genetic testing. Privacy regulations might also

lower the supply of genetic testing by imposing additional compliance costs on healthcare

providers that make investment in genetic testing facilities less profitable. Furthermore,

restrictions on redisclosure can also lower the financial value to hospitals and laboratories of

collecting patients’ genetic information and may limit availability. In this section, we ask if

the changes in genetic testing rates associated with changes in genetic privacy laws in the

NHIS data are coming from changes in testing rates for given levels of availability, or instead,

if changes in genetic testing availability at hospitals is the underlying mechanism which can

explain our measured effects.

We measure genetic testing availability using hospital-level data from annual surveys

compiled by the American Hospital Association (AHA). The AHA data contain information

on a variety of services and technological investments. Previous studies that have used AHA

data to study hospital technology adoption include Ciliberto (2006), Baker (2001), and

Baker and Phibbs (2002). Our research uses information in the AHA survey on the presence

of genetic testing and counseling facilities within each individual hospital and within the

same health system for our outcome measures. We also use AHA data about the hospital

size (staffed beds and inpatient days), revenue sources (share of inpatient days covered

by Medicare and Medicaid), and managed care contracts (indicators for having PPO or

HMO contracts) to create time-varying hospital-level controls for factors that could affect

technology adoption.

The main limitation of the AHA data for our purposes is that genetic testing information

is only available starting in 2003. This means that the sample period for this analysis
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(2003 − 2010) includes only part of the period of analysis using NHIS data (2000 − 2010).

Because of this mismatch, we study testing availability separately rather than estimating a

joint model of supply and demand.

The results are reported in Table 8. The estimates in Column (1) are from a hospital-year

level regression of genetic testing availability on genetic and other privacy laws, year fixed ef-

fects to capture national trends in adoption, and state fixed effects for cross-state differences.

The estimated effects are consistent as we build up to a more saturated specification which

includes hospital fixed effects and hospital characteristic controls in Column (3). The pattern

is also consistent when we consider a hospital system rather than an individual hospital in

Column (4).

The main similarity between Table 2, which studies testing rates, and Table 8, which

studies genetic testing facility adoption, is that the estimated effect of genetic consent laws

is negative and significant. Quantitatively, the estimated effect of consent laws is to decrease

availability of genetic testing at hospital systems by 1.6%, which is about a 10% drop relative

to the average availability. The same laws were found in Table 2 to decrease genetic testing

by 0.45%, which is 83% lower than the sample mean rate. This is consistent with lower

availability of genetic testing at local hospitals being part of the mechanism for the decrease

in testing rates that we observe among consumers when such a law is present. This lower

availability may reflect additional compliance costs for hospitals considering offering testing

services or lower anticipated demand when consent rules are in place. The estimate for

non-genetic health privacy laws is positive for both testing and availability and the anti-

discrimination laws had no significant effect on either outcome.

The main difference between Tables 2 and 8 is that positive and significant effects of

laws that give control over redisclosure are not present for testing availability. One possible

explanation is that supply of genetic testing (measured by number of hospitals offering the

service) does not increase in response to the redisclosure laws because, by preventing resale
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Table 8: Genetic Testing Availability
(1) (2) (3) (4)

Genetic Hospital Genetic Hospital Genetic Hospital Genetic System
b/se b/se b/se b/se

Genetic Consent Law -0.013*** -0.0093** -0.0070* -0.016***
(0.0048) (0.0036) (0.0037) (0.0047)

Genetic Anti-Discrimination Law 0.014 0.025 0.024 0.031
(0.014) (0.017) (0.017) (0.027)

Genetic Redisclosure Law 0.00030 -0.0017 -0.0051 -0.0029
(0.0072) (0.0079) (0.0081) (0.016)

Health Privacy Disclosure Law 0.038*** 0.045*** 0.042*** 0.059***
(0.0055) (0.0040) (0.0038) (0.0043)

Beds (00) 0.026*** 0.019**
(0.0057) (0.0082)

Inpatient Days (000) -0.000078 0.00023
(0.00018) (0.00026)

Medicare Share Inpatient 0.000025 0.00027**
(0.000079) (0.00013)

Medicaid Share Inpatient 0.00016 0.00020
(0.00011) (0.00016)

PPO 0.0093* 0.015***
(0.0049) (0.0057)

HMO -0.00078 0.012*
(0.0050) (0.0071)

State Fixed Effects Yes No No No
Hospital Fixed Effects No Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Observations 36717 36717 36717 36717
Log-Likelihood -7671.9 20781.2 20832.4 15130.5

OLS estimates with hospital fixed effects. Each observation is a hospital-year between 2003 and
2010. Dependent variable is decision to have genetic testing facility, either at the hospital (in the first three
columns) or within the same hospital system (last column). Robust standard errors clustered at the state
level. * p < 0.10, ** p < 0.05, *** p < 0.01

or redisclosure of test results, those laws reduce the value to hospitals of offering genetic

tests. This indicates that greater availability is not a mechanism for the positive effect we

observe for consumers who are contemplating genetic testing. Instead, it seems to come

directly from the reassurance that such data ownership laws give to consumers.

4 Implications

This paper explores how state genetic privacy laws affect the diffusion of personalized

medicine, using the case of genetic testing for predispositions for certain types of cancer.
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State genetic privacy laws take three alternative approaches to protecting patient privacy:

(1) Requiring informed consent on the part of the individual; (2) Restricting discriminatory

usage of genetic data by employers, health care providers or insurance companies, including

providers of long-term care or life insurance; or (3) Limiting redisclosure without the consent

of the individual or defining genetic data as the ‘property’ of the individual.

We find empirically that an approach that gives users control over redisclosure encourages

the spread of genetic testing, whereas an approach of informed consent deters individuals

from obtaining genetic tests. We also find that there is little effect, either positive or negative,

from regulation that prevents discriminatory use of this data.

These findings are important, partly because the spread of personalized medicine which

is based on genetic testing has the potential to revolutionize healthcare. They are also

important because there is the possibility that these results can help illuminate desirable

features of privacy protection in different arenas than genetics, such as online data, financial

data or health data more broadly. Our finding that non-genetic health privacy laws that limit

redisclosure are associated with more genetic testing and HIV testing provides additional

support for this interpretation. Our results in general appear to support privacy regimes

that focus on establishing rules of data ownership rather than merely informing on the

consumer how their data will be used and focusing on obtaining upfront consent. It also

suggests that there are only weak effects from privacy regimes that focus on restricting usage

of data. Strikingly, it is this least effective form of privacy protection that has been the focus

of EU, OECD and US lawmaking over privacy.

One potential limitation of our findings is our heavy focus on early adopters of genetic

testing and their response to early genetic privacy regulations. Although the mapping of

the human genome and the identification of millions of mutations has already advanced

science, the full potential of the genetic revolution for medical care has not yet been realized.

However, at the same time, the progress of genetic science will also increase the risks to
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individuals stemming from damaging uses of genetic information and so our results reflect

considerable uncertainty over how these technologies and corresponding privacy concerns

will develop. In particular, it is not clear how our results apply to new direct-to-consumer

genetic testing services. These limitations are in addition to the normal caveats that apply to

any study that uses variation in state laws to identify the effect of interest. Notwithstanding

these limitations, we believe that this study provides a useful first attempt to understand

how different types of privacy regulations affect the diffusion of technologies that create very

sensitive data.
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Table A-1: Genetic Privacy Laws and Latent Demand for Genetic Privacy
Consent Law Anti-Discrimination Law Redisclosure Law
(1) (2) (3) (4) (5) (6)

GINA Filed Per Pop. -0.021 0.0016 0.032
(0.024) (0.021) (0.028)

GINA Resolved Per Pop. -0.029 -0.000039 0.015
(0.027) (0.024) (0.032)

Constant 0.29*** 0.29*** 0.78*** 0.78*** 0.29*** 0.35***
(0.085) (0.079) (0.076) (0.070) (0.10) (0.094)

Observations 51 51 51 51 51 51
Log-Likelihood -21.8 -21.6 -16.1 -16.1 -30.1 -30.6

OLS estimates. State level unit of observation. Dependent variables are the share of years between 1998
and 2008 in which the state had in place a genetic privacy law of each type. Explanatory variables are the
total numbers of genetic discrimination cases filed or resolved by the EEOC between 2010 and 2012, scaled
to state population. * p < 0.10, ** p < 0.05, *** p < 0.01

Table A-2: Genetic Testing Availability and State Laws: Summary Statistics
(1)

Mean Std. Dev. Obs.
Genetic Hospital 0.11 0.31 36717
Genetic System 0.16 0.36 36717
Genetic Consent Law 0.23 0.42 36717
Genetic Anti-Discrimination Law 0.89 0.31 36717
Genetic Redisclosure Law 0.41 0.49 36717
Health Privacy Disclosure Law 0.86 0.35 36717
Beds (00) 1.63 1.83 36717
Inpatient Days (000) 40.2 52.2 36717
Medicare Share Inpatient 48.3 22.9 36717
Medicaid Share Inpatient 18.8 18.5 36717
PPO 0.73 0.44 36717
HMO 0.62 0.49 36717

Hospital level information from the AHA Annual Survey (2003− 2010). Privacy laws described in the text.
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