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Abstract

We provide the first measurement of knowledge spillovers from venture capital-

financed companies onto the patenting activities of other companies. These

spillovers are nine times larger than those generated by the corporate R&D of

established companies. The effects are heterogenous, depending on who generates

the spillover and who is the likely recipient. In general, complex product indus-

tries tend to be more conducive to spillovers than discrete product industries.

Spillovers are stronger for investments in a small set of start-ups that are char-

acterized by an inventor team with prior patenting experience and that have a

patented technology before receiving their first round of investment. This points

to a complementarity between the supply of venture capital on the one hand and

access to experience and technology on the other hand. The methodological con-

tribution of our paper is the development of a novel definition of the spillover pool

that combines elements of the citation-based and technological proximity-based

approaches.
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1 Introduction

There is a broad consensus in economics that corporate R&D spending generates pos-

itive knowledge spillovers.1 In a recent study, Bloom, Schankerman, and Van Reenen

(2013) find that the social return of R&D is around three times the private return of

R&D. They also find that the research of large companies (as measured by employees)

generates more spillovers than the research of small companies, presumably because

smaller firms tend to operate in technological niches. A certain type of small com-

panies, however, - venture capital-backed start-ups - are considered by policy makers

and researchers alike to be particularly innovative and important for economic growth.2

Yet there exists no empirical evidence on the knowledge spillovers generated by venture

capital-backed start-ups.

In this paper, we show that VC-financed firms generate positive knowledge spillovers

onto the patent production of other firms. Our estimations suggest that per dollar of

investment, the knowledge spillovers from venture capital are at least nine times larger

than the spillovers from corporate R&D. The estimated total social return of venture

capital is around three times as large as the social return of corporate R&D. These

magnitudes of the social return based on firm-level data are consistent with those found

in the study by Kortum and Lerner (2000) based on industry-level data.

Our analysis allows us to paint a nuanced picture of venture capital-induced spillovers.

The effects are heterogenous, depending on what type of start-up increases its VC in-

vestment and who is affected by the potential spillover. We find that spillovers are

stronger in industries that use a “complex” product technology as compared to a “dis-

crete” product technology. Complex products, such as computers, need the input of

numerous separately patentable elements, while discrete products, such as drugs, re-

quire only few of such inputs. Lower spillovers in discrete technology industries may be
1Hall, Mairesse, and Mohnen (2009)
2Based on the notion that venture capital stimulates innovation and growth, numerous governments

give subsidies and tax breaks to the venture capital industry. Venture capital funds are exempt from
taxation in France and in the UK, the Canadian Government acts directly as a venture capitalist
through the Business Development Bank of Canada and the European Union provides financing for
venture capital funds with the help of the European Investment Fund.
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due to the fact that patent protection is a more effective appropriation mechanism in

discrete technology industries than in complex technology industries (Cohen, Nelson,

and Walsh, 2000), thus limiting the potential for spillovers.

Moreover, the impact of venture capital on innovation seems to depend crucially on

the type of start-up receiving the investment. Spillovers are stronger for investments in

a small set of start-ups that are characterized by an inventor team with prior patenting

experience and start-ups with a patented technology before receiving their first round

of investment. This suggests that start-ups that commercialize existing technology

have large knowledge spillovers.

The data for our study come from two sources, Compustat and VentureXpert.

Compustat contains balance sheet data for all US publicly listed companies, including

R&D expenditures. As start-ups are small private companies, no data on their R&D

expenditures are available. Hence, a commonly used surrogate is the venture capital

invested in a particular start-up in a given year (Kortum and Lerner, 2000).3 We

take this information from VentureXpert, which is a prime source for venture capital

investment and fund-raising data.

We follow the literature in measuring innovation by the quantity and quality of

patents. The patent data are from the NBER US Patent Citations Data File and from

the data files of Lai, Amour, Yu, Sun, Torvik, and Fleming (2011). We match the

patent data to Compustat using the unique identifier provided by the NBER (Hall,

Jaffe, and Trajtenberg, 2001). For the venture capital data, we match the patent data

with the help of algorithms from the Apache Lucene Library and check the results by

hand.

Measuring spillovers is challenging because knowledge flows are unobserved and

non-rivalrous, i.e. they can affect many different companies. The lack of observability

implies that we have to infer spillovers indirectly from the observed co-movement of

venture capital investment in start-ups and the patenting behavior of other companies,

following inter alia Jaffe (1986) or Bloom, Schankerman, and Van Reenen (2013).
3While this measure may overestimate the actual amount of R&D carried out by the start-up

company, it means that the spillover effects are likely to be underestimated.
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One problem with such an indirect approach is that we might mistake such a co-

movement as evidence of spillovers between companies when it is in fact driven by

general technological progress that affects both venture capital or R&D investment and

patenting in other companies. To address this endogeneity problem, we instrument the

R&D expenditures of established companies with the level of R&D tax credit in a state,

as in Bloom, Schankerman, and Van Reenen (2013), and venture capital investment

with past fund-raising of private equity buyout funds (Nanda and Rhodes-Kropf, 2012).

As we cannot observe spillovers directly but have to infer them indirectly from the

data, we would like to estimate for each company pair at least one parameter governing

the co-movements between each and every company. Unfortunately, this is technically

infeasible because it would result in an excessive number of parameters to be estimated

(Azoulay, Graff-Zivin, Li, and Sampat, 2014). To address this problem, the approach

taken in the literature is to restrict the set of companies that can potentially influence

each other. This set of companies from which a company might learn is called the

“spillover pool” of a company.

We use three different definitions of the spillover pool to make sure that our results

are robust. For the first definition, we include all the companies whose patents are cited

by a particular company in its spillover pool (Azoulay, Graff-Zivin, Li, and Sampat,

2014). This is the most direct way to assess whether or not the research of one company

is influenced by the research of another company. The drawbacks are that it captures

only the knowledge flows that are acknowledged by a formal citation and that citations

might be endogenous to company characteristics.

The second definition includes all the companies in the spillover pool that patent

in the same technology classes as the company under consideration (Jaffe, 1986).4

The underlying assumption is that knowledge flows mainly within technological fields.

However, this assumption is at odds with the observation that successful innovations
4Bloom, Schankerman, and Van Reenen (2013) extend this concept by also including companies

that work in “similar” technologies and call this new measure the Mahalanobis proximity. According to
this measure, two technologies are characterized as similar if companies often hold patents of the two
corresponding patent classes together in their patent portfolio. Patents about robotics and artificial
intelligence, for example, are complementary and therefore collocated in companies.
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often recombine ideas across technological boundaries (Uzzi, Mukherjee, Stringer, and

Jones, 2013; Weitzman, 1998). Hence, while this measure known as the Jaffe measure

allows the capturing of knowledge flows without relying on direct evidence of citations,

it may be overly restrictive in its focus on knowledge flows within technological fields.

To address these drawbacks, we develop the third definition of the spillover pool,

which combines elements of the first two concepts. For this purpose, we calculate

a weighting matrix based on the citation propensities between different technology

classes. We then use this weighting matrix to augment the technological proxim-

ity measure of Jaffe (1986). This procedure enlarges the spillover pool by including

companies that are active not in the same technology but in related technologies, as

documented by backward citations. At the same time, we avoid the problem of con-

sidering only knowledge flows acknowledged by individual citations. As our measure

of a spillover pool is constructed using average citation propensities, not individual

citations, we avoid the endogeneity issues of the first measure. Another advantage of

this citation augmented measure over the Jaffe measure is that it allows the spillover

flows between companies to be asymmetric (as backward citations between two tech-

nology classes can be asymmetric), while the Jaffe proximity measure is symmetric

by construction. Thus, our new measure captures a more general and arguably more

realistic specification of knowledge flows between firms.

Using these three proximity metrics we estimate and compare the spillovers that

arise from venture capital investments in start-ups and from R&D expenditures in

established companies. Our estimates show that VC-financed start-ups generate sig-

nificantly positive spillovers onto other firms’ quantity and quality of patents. Our

results are stable when using different spillover pools, different estimation methods,

different subsamples or different outcome variables.

In sum, the contribution of our paper is threefold. First, we contribute to the litera-

ture on knowledge spillovers by providing the first measurement of innovation spillovers

generated by venture capital-financed firms.5 The availability of venture capital is well
5For recent summaries of the literature on venture capital see Da Rin, Hellmann, and Puri (2011),

Dessí and Yin (2012) and Lerner and Hall (2010).
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recognized as being crucial for translating scientific research into innovation as part

of the national innovative system (Furman, Porter, and Stern, 2002), yet the empiri-

cal literature on how venture capital-backed start-ups contribute to innovation in an

economy is limited.6

Our second contribution is to establish which industries are most likely to experience

and which inventors are most most likely to generate spillovers. We confirm that

complex technology industries tend to be more conducive to spillovers than discrete

technology industries. Furthermore, we document that these knowledge spillovers are

stronger for start-ups with an experienced inventor team and start-ups that have a

patented technology prior to receiving their first round of investment.

Third, the methodological contribution of our paper is the development of a new

measure for the spillover pool, combining elements of citation-based and technological

proximity-based approaches. Our measure avoids the endogeneity issues of individual

citation-based measures. Furthermore, it allows the spillover flows between companies

to be asymmetric, whereas the Jaffe proximity measure by construction is symmetric.

The paper proceeds as follows. In section 2, we explain the empirical strategy for

measuring the spillovers of R&D and venture capital. In section 3, we describe the

data and the variables used and provide summary statistics. In section 4, we present

our empirical results and section 5 concludes.

2 Data and Description of Variables

For our data set, we combine patent data with firm level data of venture capital-financed

companies and established companies in the US from 1979 to 1999.
6A recent paper by González-Uribe (2014) investigates how venture capital affects knowledge dif-

fusion by comparing patent citations before and after companies secure venture capital financing. She
argues that venture capital certifies the commercial value of an invention, thus facilitating spillovers
between companies. A major difference to our approach is that González-Uribe (2014) bases her
counterfactual calculations on a mechanical assumption how citations of VC patents translate into
the generation of new patents in other companies while we directly observe the patent production of
other companies.
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2.1 Patenting activity

The patent data are from the NBER Patent-Citation Data File and contain all the

utility patents filed in the US with the name of the applicant, year of application,

location, patents that this patent cites and a classification according to the 3-digit US

patent class. These patent data end in 2005. To identify additional patent citations in

our database, we complement it with the Harvard patent dataset of Lai, Amour, Yu,

Sun, Torvik, and Fleming (2011), which ends in 2010. The resulting dataset contains

around 3.86 million patents.

To capture the quality of a patent, we use the number of citations that a patent

receives from other patents (“forward cites”, Hall, Jaffe, and Trajtenberg (2005). For

comparability reasons, we consider only forward citations in patents that were applied

for within three years after the patent to be cited was granted. One potential concern

is that the citing behavior might change from year to year and from technology to

technology. To account for these changes, we scale this measure by the average value

in a particular year and in a particular technology class, following Bernstein (2012).

For our outcome variables, we consider only patents that were applied for up to

1999. The reason for this early cut-off date is that we are interested not only in the

number of patents, but also in their quality, which is based on forward citations. This

cut-off date is determined as follows. To capture all forward cites, we need to make

sure that all the patents in which a patent can be cited are included in our database.

In the years 1979 to 1999, it took on average 2.08 years for a patent to be granted.

The 5% quantile was 1 year, while the 95% quantile was 4 years. Thus, if we want to

make sure that we are missing fewer than 5% of all the patents granted that could cite

a particular patent, we should consider only patents that were applied for up to 2006

(counting back from 2010). Furthermore, as stated above, we want to give patents

three years to accumulate citations. This implies that our investigation of forward

citations should be restricted to patents that were granted up to 2003.

Note, however, that we are interested in the number of patents by application date,

as this arguably represents the time of the actual innovative activity. Thus, to be
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Figure 1: Number of patents and citations per patent in the raw data

Note: This figure shows the number of patents in a particular application year and the number of
citations to these patents for all patents available in our database. In the analysis we use only the
subsample of patents assigned to established and venture capital-financed start-up companies from
1979 to 1999.

confident that we capture at least 95% of all the patents to be cited, we restrict our

database to patents that were applied for up to 1999. If anything, stopping so late is

too optimistic because in our raw data the pattern of a declining number in the citation

rates starts around 1997 and the declining number of patents begins in 2002 (Figure

1). Note that the downward trend in the number of patents is a feature of end-year

effects in our data and is not reflected in the published statistics of the USPTO.7

In robustness checks, we use the “generality” of a patent, its “originality” and indi-

cators of whether it is among the top 5% (“I(Best 5% of citations)”) or in the top 50%

of the citation distribution within a technology class and year (“I(Best 50% of cita-

tions)”). To calculate the generality measure, we determine for each patent one minus

the Herfindahl index across technology classes for the patents by which the patent is

cited (Trajtenberg, Henderson, and Jaffe, 1997). With this measure we capture the

dispersion across technology classes of patents using the patent. Similarly “original-

ity” is calculated as one minus the Herfindahl index across technology classes for the
7US Patent Statistics Chart Calendar Years 1963 - 2013:
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm

7



patents that are cited by the patent. This measure captures the extent of dispersion

of the information of which the patent draws.

2.2 R&D and venture capital investment

Our firm-level data source for established companies is the US Compustat file.8 It

contains yearly accounting data for publicly listed US companies with the company

name, fiscal year, state of the firm headquarters, the four-digit SIC code, sales and

R&D expenditures. We follow Bloom, Schankerman, and Van Reenen (2013) in the

data selection procedure by restricting our data set to companies for which we have

more than four years of R&D information and that do not exhibit very large jumps in

sales, employment or capital.9 Using the unique identifier provided by the NBER, these

data are matched to the NBER Patent Citation Data File (Hall, Jaffe, and Trajtenberg,

2001). Lastly, we restrict the data to companies that applied for at least one patent

in 1979 to 1999 and we drop all small industries with less than 10 companies over the

whole observation period. The resulting database contains 1230 companies with 93’416

patents.

Start-ups are small private companies and therefore no data on R&D expenditures

is available. Hence, a commonly used surrogate is the venture capital invested in a

particular start-up in a given year (Kortum and Lerner, 2000). The rationale is that

start-ups have no or little access to other sources of funding. Thus, using VC funds as

a measure for R&D expenditures of start-ups almost certainly overestimates the true

R&D expenses as part of the VC funds are used for other purposes like marketing.

The venture capital investment data for the US come from Thomson Reuters Ventur-

eXpert.10 Each record contains the name of the investee company, the investment date,
8Data from Compustat was accessed at the Institute for Innovation Research (INNO-tec) at the

University of Munich.
9In particular, we drop firms which never do R&D, are less than 5 years in the data, whose sales

fall by more than 66% or increase by more than 200% year over year, have less than 0.1 million Dollar
in assets per employee or more than 1 billion Dollar in assets, which have less than 2 million or more
than 2 billion dollar in sales per employees. Furthermore if the company history in the data has years
missing the company is deleted.

10Data from VentureExpert was accessed at the Institute for Innovation Research (INNO-tec) at
the University of Munich.
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Figure 2: Number of start-ups by year of first investment and share of start-ups with
patent

Note: This figure shows the number of start-ups (# start-ups) in our sample by the year of the first
investment. The grey line is the percentage of start-ups in the given first investment year for which
we can identify at least one patent.

a four-digit SIC code and the total investment.

We match these investment data by the company name, state and time period to

the patent data with the help of algorithms from the Apache Lucene library and check

the results by hand. We restrict the data to companies that have at least one patent

in the years between 1979 and 1999 and that have complete histories, that is their first

investment round is a “seed” or “early stage” round, following Nanda and Rhodes-Kropf

(2012). We do not start before 1979 because the number of start-ups in our database

is relatively small (79 in the US in 1979,60 for 1978, 27 in 1977) and we find even fewer

with at least one patent (28 in the US in 1979, 21 in 1978, 12 in 1977 - Figure 2) .

We use the data in the Harvard Citation File to determine for all start-ups the

inventors of their first patent. For each of these inventors we determine whether or

not she invented before and if so, at a university, at a start-up or at an established

company in our dataset. Thus we can measure the prior patenting experience of the

start-up inventor team.

In a last step, we drop all the patents that were applied for in the first year of

investment because it seems unlikely that these patents were indeed financed by venture
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capital. Our VC data often does not record the failure or success of a start-up correctly.

To mitigate this problem we drop observations for a company that are either later than

two years after the last investment in this company or observations that are later than

10 years after the first investment. To be able to identify the industry fixed effect we

drop industries with less than 10 companies in total. The resulting data set on VC-

financed firms contains 1130 companies with 9,485 patents. The summary statistics

for the dataset are shown in Table 1.

Table 1: Summary statistics

Established companies
mean sd min max p10 p90

Patent count 9.33 29.43 0 1033 0 22
Cite weighted patents 232.49 1240.38 0 42802 0 383
Scaled cite weighted patents 15.28 49.77 0 1327 0 38
Average complexity of companies’ patents 0.53 0.40 0 1 0 1
Average citation-augmented proximity (x
100)

2.20 1.17 0 8 1 4

Average R&D (mio. dollars) 44.22 108.78 0 2271 1 112
Average Sales (billion dollars) 1.03 2.51 0 39 0 3
Years in data 7.12 4.69 1 21 2 14
Number of companies 1230

Venture capital-backed start-ups
mean sd min max p10 p90

Patent count 1.68 3.39 0 62 0 4
Cite weighted patents 124.11 534.89 0 16394 0 249
Scaled cite weighted patents 4.30 11.06 0 176 0 11
# inventors 2.96 2.13 1 15 1 6
Inventors have prior patenting experience 0.62 0.49 0 1 0 1
Share with corporate patent 0.33 0.47 0 1 0 1
Share with academic patent 0.23 0.42 0 1 0 1
I(patent at first investment) 0.15 0.36 0 1 0 1
I(patent at first investment & prior
experience)

0.09 0.28 0 1 0 0

Average complexity of companies’ patents 0.69 0.42 0 1 0 1
Average citation-augmented proximity (x
100)

2.24 1.03 0 5 1 4

VC Investment (mio. dollars) 2.57 5.70 0 96 0 9
Years in data 4.82 2.81 1 11 2 10
Number of companies 1130
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2.3 Descriptive evidence on the innovation performance of VC-

financed start-ups and established firms

Start-ups produce more patents per dollar than established companies (Table 2). This

is in line with the findings of González-Uribe (2014) and Kortum and Lerner (2000).

Furthermore, patents of start-ups are much more innovative than the patents of estab-

lished companies both per patent and per invested dollar (Table 2). They receive more

citations from other patents, are more original and are more general.11 The higher

quality of start-up patents is not driven by a particular time period or by outliers:

the average number of ciations per patent are higher for the start-ups than for the

established companies in all years (Figure 3).

Table 2: Summary statistics of patents by company type

Per patent Per dollar

Estab-
lished

Ven-
ture

Diff P-
Value

Estab-
lished

Ven-
ture

Diff P-
Value

Forward Cites 22.37 55.84 33.47 0.00 7.17 89.41 82.24 0.00
Scaled Forward
Cites

1.30 1.81 0.52 0.00 0.49 3.35 2.86 0.00

Generality 0.17 0.24 0.07 0.00 0.06 0.42 0.36 0.00
Scaled Generality 0.15 0.21 0.06 0.00 0.05 0.36 0.31 0.00
Originality 0.21 0.26 0.04 0.00 0.08 0.45 0.38 0.00
Scaled
Originality

0.18 0.21 0.03 0.00 0.07 0.38 0.32 0.00

I(Best 50% of
Citations)

0.57 0.63 0.06 0.00 0.22 1.21 0.99 0.00

I(Best 5% of
Citations)

0.10 0.15 0.06 0.00 0.04 0.28 0.24 0.00

# Patents 0.29 1.43 1.14 0.00

Note: This table shows the summary statistics separately for start-ups and for established companies.
The different statistics in the first four columns are standardized by the number of patents and in
columns 5 to 8 they are standardized by the total amount of venture capital or R&D investment. The
unit of analysis is the company. The p-value refers to a t-test of difference of means of the two groups,
assuming unequal variance.

11Measured by the average citation-augmented proximity, they are also at least as central in tech-
nology space as established companies. This is in contrast with the finding of Bloom, Schankerman,
and Van Reenen (2013) who report that small companies usually work in technological niches.
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Figure 3: Number of scaled citations per patent over time

Note: This figure shows the average number of forward citations per patent scaled by the number
of forward citations in the technology class and application year of the considered patent ("scaled
forward citations") for the subsample of established companies (dark lines) and for the subsample of
start-ups (grey lines) by the application year of the patent.

These descriptive statistics document that technologies created by start-ups are

cited more often by other companies and in a more diverse set of technologies than the

patented inventions of established companies. They cannot, however, provide causal

evidence on the spillovers originating from these patents or how citations are related

to patent production in other companies.

3 Empirical Strategy

The rationale for knowledge spillovers is that a firm may learn from other firms. Po-

tential channels might be that scientists from different companies meet and exchange

ideas, a firm hires scientists previously employed by another firm, or a firm learns via

scientific publication or by reverse engineering a product of another firm. These activi-

ties are typically non-observable. The challenge is therefore to find a way of measuring

these unobservable knowledge spillovers.
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3.1 The problem of quantifying knowledge spillovers

To quantify the impact of knowledge spillovers on patent production, one would ideally

proceed in two steps: first, estimate the knowledge creation in a company as a function

of its investment in R&D or venture capital; and second, estimate the impact of this

knowledge on the patent production of other companies. Consider for example a general

knowledge production function f(·) and a general patent production function g(·).

Then the knowledge spillovers originating from start-up i onto the patent production

of company j can be deduced by estimating the following system:

Knowledgei = f(V Ci, . . . , α) (1)

Patentj = g(Knowledgei, . . . , β) (2)

Unfortunately, the knowledge created in a firm cannot be observed, nor can we observe

the knowledge flows between companies. Thus, we can estimate only the reduced form

impact of investment on patent production instead:

Patentj = h(V Ci, . . . , γ) (3)

where the functional form h(.) is unknown.

To make our estimates comparable with the literature we use the same reduced

form function h(.) as Bloom, Schankerman, and Van Reenen (2013):

ln(Patentsj) = γ · ln(
∑
j 6=i

ωji · V Ci) + · · · + εi (4)

where ωji indicates whether and if so how intensively the knowledge of start-up i was

used in the production of the patent of company j. We call the set of all ωs the

knowledge flow graph Ω.

As we cannot observe the knowledge flows between companies, we do not know

which knowledge flow of which start-up influences the production of a particular patent.
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Consequently we do not know the true values of the ωjis. A priori, all ωjis could be

non-zero, since knowledge is non-rivalrous and hence the investment in every start-up

might influence every innovation in the economy. For a reasonably sized dataset of

500 companies receiving and 500 start-ups generating spillovers this would require the

estimation of 250’000 ω parameters, which is not possible. This curse of dimensionality

precludes us from estimating all the ωjis from the data (Azoulay, Graff-Zivin, Li, and

Sampat, 2014).

Instead, we follow the literature and address this problem by constructing the

knowledge flow graph from auxiliary data. For example Bloom, Schankerman, and

Van Reenen (2013) and Jaffe (1986) use patent data to calculate the technological

proximity between companies assuming that companies closer in technology space are

more prone to learn from each other. Azoulay, Graff-Zivin, Li, and Sampat (2014) use

citations as a direct indicator for knowledge flows, measuring which patents cite and

hence apparently benefit from knowledge created in academic articles sponsored by the

National Institutes of Health.

The choice of method is not innocuous. In this framework, the expected external

effect of an increase in venture capital, Γ , is given by

Γ = E

[
∂Patentsj
∂V Ci

]
= γ · E

[
ωji ·

Patentsj∑
j 6=i ωji · V Ci

]
(5)

and therefore a function of ω. As we do not know the true knowledge flow matrix (and

therefore have to assume a value for ωji), the parameter Γ should be quantitatively

and qualitatively robust to different plausible specifications of ωji. If this is not the

case we should be worried that our results could be mainly driven by our modeling

choices and that they are not a stable feature of the data. In the following, we describe

three different ways to construct the knowledge flow graph and discuss their respective

advantages and disadvantages.
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3.2 Constructing the knowledge flow graph

To construct the knowledge flow graph we need to determine which auxiliary data to

use, that is, which observables might serve as a good measure for knowledge flows.

For method 1, we use patent citations following Azoulay, Graff-Zivin, Li, and Sampat

(2014).12 For method 2, introduced by Jaffe (1986) and recently employed by Bloom,

Schankerman, and Van Reenen (2013), we use information on the technological prox-

imity between firms. Method 3 combines information on the technological proximity

and information on citation propensities.

Method 1: Using citations directly The most direct evidence for a knowledge

flow between, say, a start-up and an established company can be seen if the established

company’s patents cite the patents of the start-up as prior art. The idea is that a

patent citing another patent directly builds on the knowledge incorporated into this

prior patent (Azoulay, Graff-Zivin, Li, and Sampat, 2014; Jaffe and Trajtenberg, 2002).

To use citations to construct the knowledge flow graph, for each patent we use all the

patents cited (excluding self-citations). Then, we aggregate these citations at the

company level and standardize the number of citations by the total number of patents

of the cited company. The resulting knowledge flow measure is

ωCitationji =
#Citationsji
#Patentsi

(6)

where #Citationsji denotes how many times the patents of firm j cite patents of firm

i. For example, if an established company j cites one out of ten patents of a start-up

i, then the aggregated bilateral link is 10%, that is, we assume that company j uses

one tenth of the knowledge of company i.

Citations are the most direct and intuitive way to construct the knowledge flow
12Azoulay, Graff-Zivin, Li, and Sampat (2014) use patent to journal article citations while we use

patent to patent citations to link investment with outcomes.
A drawback of using patent citations is that many of them are added by the examiner (Alcacer

and Gittelman, 2006). Therefore they are difficult to interpret. However, the survey results of Jaffe,
Trajtenberg, and Fogarty (2000) show that around 50% of all backward citations correspond to some
form of interaction between the inventors. Thus citations seem to be a valid but noisy measure of
knowledge flows.
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matrix, yet, the measure also has two drawbacks: First, it might suffer from measure-

ment error because it does not capture knowledge flows that are not acknowledged by

citations and because citations are also added by the patent examiner. Second, the

measure suffers from a potential endogeneity issue because the knowledge flow may be

correlated with the quality of the researcher. A more knowledgeable researcher may

both produce more and better patents and at the same time be aware of a broader

range of related research that he can cite.

Method 2: Using the Jaffe proximity measure The second method is based on

the closeness of companies in “technology space.” The idea is that a company learns

more from another company if it is active in the same technology fields than if it is not.

This concept was first proposed by Jaffe (1986). It defines the proximity in technology

space as the uncentered correlation between the patent share vectors

ωJaffeji = s′jsi (7)

where si is the share of the patent stock Si,t of company i over various technology

classes, standardized by their firm patent share dot product si =
Si,t

(Si.tS′i,t)
1
2
. The patent

stock is the accumulated number of patents in the technology class up to t− 1. Com-

panies that have exactly the same patent share vector have a proximity of 1 while

companies that are active in completely different technologies have a proximity of 0.

The advantage of using information about technology classes rather than actual

patent citations is that current patenting behavior has no influence on the construction

of the knowledge flow matrix.13 However, a drawback of the Jaffe measure is that

it assumes companies to learn only from companies active in the same technology

classes. This assumption does not seem innocuous given that the literature suggests

that high-quality innovations often come from the recombination of ideas from different
13Furthermore our outcome variable is scaled within patent class and year, therefore there is no

bias if better researchers select into patent classes with more knowledge flows. In all specification we
employ company fixed effects controlling for the possibility that a company generally employs better
researchers influencing the technological position, e.g. by patenting in more diverse technological
classes.
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technological fields (Uzzi, Mukherjee, Stringer, and Jones, 2013; Weitzman, 1998).

Method 3: Using the Jaffe proximity measure augmented with citation

propensities To integrate cross-technology knowledge flows into the Jaffe proximity

measure, we introduce the matrix of citation flows between technology classes, WCites,

as a weighting matrix.14 The resulting citation-augmented proximity measure between

company i and company j is given by

ωCit.aug.ji = s′i,tW
Citessj,t (8)

where si, sj is the standardized patent share vector of companies i and j.

To construct the citation matrix WCites we calculate for each technology class A

the share of citations it receives from every other technology class:

wB,A =
#CitationsB,A∑
M #CitationsM,A

(9)

where #CitationsB,A is the number of citations in technology class B to patents in

technology class A. Then, we arrange these shares in a matrix, WCites.

The matrix WCites is plotted in Figure 4a.15 As assumed by the Jaffe metric, there

is indeed a strong tendency of patents in a particular technology class to cite patents

from their own technology subcategory, but around 39% of all backward citations

are drawn from other technology classes (Figure 4b).16 An example of this general

pattern is the subcategory “Computer Hardware and Software” which cites its own

technology class with a probability of 61 % and other technology subcategories such

as “Communications” or “Information Storage” with a probability of 25% (Figure 4c).
14Bloom, Schankerman, and Van Reenen (2013) modify the Jaffe proximity with a weighting matrix

based on collocation of patent classes.
15In contrast to our empirical measure, for visualization we only plot the cross citations between

broad technology subcategories. It is possible to use all 800 technological categories, but the graphical
representation in this very fine grained level is not instructive. Every technology subcategory comprises
several technology classes and the mapping is given in the appendix of Hall, Jaffe, and Trajtenberg
(2001).

16One can see “clusters” of patent citations between similar technologies, as for example in computer
hardware and software, comprising communication, computer periphery, and information storage.
Another such cluster is drugs with organic compounds, resins, medical instruments and coating.
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Figure 4: Citation patterns of technology classes

(a) Cross citation matrix

(b) Share of cites from other technological subcategories (c) Citations of Computer Hardware and Software

Note: Subfigure a) shows the share of cross citations between patents in broad technology subcate-
gories. We use these broad subcategories defined by Hall et al (2005) instead of the finer technology
classification of the USPTO (n-classes) to simplify visualization. The subcategory of the citing patent
is on the vertical axis while the subcategory of the cited patent is on the horizontal axis. The rows
therefore sum to 100%. Subfigure b) shows the share of patents that a patent in a particular sub-
category cites from other subcategories. Subfigure c) shows the share of patents that patents in the
subcategory "Computer Hardware and Software" cite from other technology subcategories.
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Figure 5: Citation-augmented proximity between companies

Note: This figure shows the pairwise citations-augmented proximity between companies for a 0.5%
sample of company pairs. The horizontal axis measures the proximity between a company j and
another company i. The vertical axis is the proximity between the same companies but from i to j.
In contrast to the Jaffe measure the citation-augmented proximity measure is not symmetric within
company-pairs. For companies whose proximity is different from zero, the average proximity is 0.023.
The average difference between the proximity from i to j (and vice versa) is 0.008 or 33%.

Thus, the advantage of this citation-augmented proximity measure is two-fold. (i)

It allows capturing of knowledge flows that occur between companies that are not

necessarily close in technology space, but that have a (backward citation) proven record

of learning from each other. (ii) It allows the spillover flows between companies to be

asymmetric, as backward citations between two companies can be asymmetric while by

construction the Jaffe measure is symmetric. In Figure 5 we plot the proximity between

companies pairwise for a 0.5% sample of our data, the proximity from company 1 to

company 2 on the vertical and the proximity from company 2 to company 1 on the

horizontal axis. The proximities are positively correlated, but not perfectly so.

3.3 The estimation equation

In the estimation of (4) we consider the spillovers of venture capital separately for the

sample of established companies and for the sample of VC-backed start-ups. As control
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variables we include first the spillover term of venture capital

SpilloverV Cj,t =
∑
j 6=i

ωj,i · V Ci,t−1. (10)

In addition, we include a spillover term for R&D investment

SpilloverR&D
j,t =

∑
j 6=i

ωj,i ·R&Di,t−1. (11)

Furthermore, we use the direct effect of venture capital or R&D investment, depending

on which sample of firms we investigate. As companies might differ in their unobserved

research productivity, we use pre-sample mean scaling to account for firm-fixed effects.

In robustness checks we also use de-meaning to control for firm fixed effects. In addition

we include a complete set of year and industry dummies. The resulting estimation

equation for a venture capital-financed company j at time t is:

ln(Patentsj,t + 1) = β0 + β1 · ln
[
SpilloverV Cj,t−1 + 1

]
+ β2 · ln

[
SpilloverR&D

j,t−1 + 1
]

+ β3 · ln[V Cj,t−1 + 1] + Controls+ εj,t (12)

where V Cj,t−1 is the stock of venture capital investment of company j at time t−1. In

the case of an established company, V Cj,t−1 is replaced by R&Dj,t−1, i.e.the stock of

R&D investment of company j at time t− 1. In robustness checks we repeat the main

part of our analysis with a negative binomial model with control functions.

3.4 Identification

A potential endogeneity issue arises if the venture capital investments or R&D ex-

penditures react to technological progress, which at the same time facilitates patent

production.17 Therefore we instrument the two spillover terms with instruments whose
17For example, Gompers, Kovner, Lerner, and Scharfstein (2008) showed that VC investors react

to signals of the public market and this reaction is stronger for experienced investors.
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construction we describe in turn.18

We use fundraising of leveraged buyout funds lagged by eight quarters as an in-

strument for venture capital investment, following Gompers and Lerner (2000) and

Nanda and Rhodes-Kropf (2012). Venture capital funds receive most of their funds

from institutional investors such as pension funds or university endowments. Insti-

tutional investors usually do not allocate capital to venture capital per-se but to the

broader class of “private equity,” a category encompassing venture capital and lever-

aged buyout funds. This mechanically results in an increase in investment in VC and

in buyout funds and in a strong correlation between the two (Figure 6a). Thus, we

can use buy-out fundraising as an instrument to isolate exogenous supply-side shocks

in VC investment.

These supply-side shocks are exogenous to technological progress in the start-up

market for three reasons. First, an institutional investor with private knowledge about

future venture capital returns would invest in venture capital only instead of in private

equity as a whole. Second, a shock to the demand for buy-out funds is most likely to be

uncorrelated with the market for start-ups because leveraged buy-out funds are in the

business of buying and improving mature companies. In contrast, start-ups receiving

venture capital are concerned with creating innovative new products in industries with

rapid technology progress and large growth potential. Thus, it is unlikely that demand

shocks to these two types of funds are correlated. Third, it usually takes six to eight

quarters between the commitment of the institutional investor and the first investment.

This time lag makes the prediction of future technological progress by the institutional

investor difficult.

To convert fundraising data into a start-up-specific instrument, we follow two more

steps. First we weight the fundraising in a state with a matrix of fund flows between

states. Funds are often not invested where they are raised. The offices of venture

capital funds and financed start-ups are usually co-located because VC managers in-

tensely supervise their investee companies.19 Fundraising often takes place where the
18We follow Bloom, Schankerman, and Van Reenen (2013) in only instrumenting the spillover terms.
19For example, Chen, Gompers, Kovner, and Lerner (2010) document that venture capital funds
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Figure 6: Venture capital instrument

(a) Correlation between VC and Buyout Fundraising

(b) Fund-flows between US states

Note: Subfigure a) shows the correlation between the natural logarithm of buyout fundraising and
the natural logarithm of venture capital fundraising in million USD in a state-year sample. Subfigure
b) shows the distribution of venture capital fundraising (measured by the state of the investment
fund) in million USD and the state of venture capital investment between selected states for our
sample period. 22



institutional investor is located. Therefore, to predict how much funding is available in

each state, we weight the buyout-fundraising with the historical fund-flows in venture

capital. Figure 6b depicts the absolute fund flows in the sample period for a selected

number of states. In the second step, we follow Bloom, Schankerman, and Van Reenen

(2013) and weight the available funds in a state according to the locations of the venture

capital investee companies.20

Consequently, the instrument ZV C
i,t for the venture capital investment in start-up i

at time t is calculated in the following way:

ZV C
i,t = P ′i,σX

′
σ,σ′Fundraisingσ′,t−2 (13)

where Pi,σ is the patent share vector across states, Xσ,σ′ is the historical share of fund

flows from state σ′ to state σ and Fundraisingσ′,t is the fundraising of buyout-funds.

The instrument is therefore the pool of funding available at a particular location.

To isolate exogenous variation in R&D expenditures, we use local supply-side shocks

caused by the staggered introduction of R&D tax credits across states in the US.

These tax credits lower the cost of conducting R&D and therefore in equilibrium

should increase its optimal level. The literature surveyed by Bloom, Schankerman,

and Van Reenen (2013) suggests that there is a degree of randomness in the introduc-

tion and the level of R&D tax credits across states and therefore it is plausible that a

change in the instrument is exogenous to technological progress. The R&D tax credits

are again weighted with patent shares across different states of a company.

We use these fundraising and the tax policy instruments to predict the venture

capital and R&D investment. Then, following Bloom, Schankerman, and Van Reenen

(2013), we use these predicted values weighted by the different proximity measures as

instruments for the two spillover variables in the second stage equations. Table 3 shows

and investment companies are highly concentrated in the US.
20From the patent data we can observe in which locations a start-up is active and therefore in which

states it might search for funding. We then multiply the share of patents a company applied for in
a particular state with the funds available in these states to arrive at a company specific instrument.
The idea is that the location of patent application is related to the location of economic activity.
The transformation is parallel to the instrumental variable strategy of Bloom, Schankerman, and
Van Reenen (2013) and to the instrument for R&D spending below.
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Table 3: Regression of VC and R&D expenditure on instruments

ln(VC Investment+1) ln(R&D+1)

VC Fundraising 3.56∗∗∗
(1.24)

Buy-out 2.04
(1.48)

Buy-out / Cross-state 4.91∗∗∗
(0.98)

Buy-out / Cross-state / Firm specific 5.52∗∗∗
(1.26)

R&D Costs -4.80∗∗∗
(1.51)

F-Value 8.31 1.90 24.99 19.19 10.13
R2 0.14 0.14 0.14 0.14 0.80
N 1753 1343 1880 1881 10010

Note: This table shows the results of estimating the first stage regression. The first four columns
exhibit the first stage for venture capital investment and the last column is the first stage for R&D
investment. On the first line, the instrument is venture capital fundraising in a state and year. On
the second line, we use the fundraising of buyout funds. On the following two lines we weight buyout
fundraising with the distribution of fund flows across states and with the distribution of states where
a company produces its patents. On the last line, we use the costs for R&D as an instrument. All
the standard errors are clustered on the four-digit industry level. ***, ** and * indicate statistical
significance at the 1%, 5%, and 10% level, respectively. To increase the readability of the table we
multiply each estimate by 100.

the regressions of venture capital and R&D expenditure on the two instruments. In the

first column we use the fundraising of venture capital funds as an explanatory variable.

The coefficient is large and significant. In the subsequent columns, we use buy-out

fundraising, buy-out fundraising weighted by cross-state flows and buy-out fundraising

additionally weighted by the location of the company. The last column shows the

first stage for R&D investment. The F-values are above 10 in the last two columns,

suggesting that the instruments used in the analysis are suitable for the estimation.21

21As instruments, we use the cumulative predicted R&D and VC stocks. Therefore, the F-values
are not directly comparable with the critical values tabulated for example by Stock and Yogo (2005).
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4 Results

4.1 Spillovers of venture capital

In this section we provide causal evidence that the spillovers of start-ups are larger

than the spillovers of corporate R&D. We estimate the patent production function in

equation (12) with three different knowledge flow measures. The results for established

companies are reported in Table 4 and those for VC-financed start-ups are presented

in Table 5. The first three columns of each table report OLS results, using citations

directly, using the Jaffe proximity measure and using the Jaffe proximity measure

augmented with citation propensities. In columns four to six we report the results of

the instrumental variable regression for the three different specifications.

For the subsample of established companies, we find the expected positive effect of

R&D expenditures, as well as the expected positive spillover effects from other estab-

lished companies. In addition, we find for all three knowledge flow measures that the

spillovers from venture capital investment have a measurable influence on patent pro-

duction. The results are similar for both OLS and IV specifications. All the estimated

elasticities are significantly different from zero at the 10% level or higher. Compared

with the OLS specification in the study of Bloom, Schankerman, and Van Reenen

(2013), our estimated elasticity of 0.15 for the spillover of established companies with

the Jaffe metric is smaller than their elasticity of 0.49, while our R&D elasticity of 0.41

is larger than their estimate of 0.22. Other estimates for the R&D elasticity in the

literature range from 0.2 to 0.9 (Hall, Jaffe, and Trajtenberg, 2001; Hausman, Hall,

and Griliches, 1984).22

For the subsample of VC-financed start-ups, we again find the expected positive

effect of venture capital investment on the patent outcomes of start-up firms. Further-
22The main difference between the Bloom, Schankerman, and Van Reenen (2013) study and our

study is that we do not control for product market spillovers and we use linear regressions instead
of a negative binomial model. Furthermore Bloom, Schankerman, and Van Reenen (2013) do not
control for the spillovers of start-ups. In Table 14 in the Appendix we re-estimate our model with a
negative binomial model and control functions. For this specification we estimate the elasticity for the
spillovers of established companies to be 0.5, which is alsmost the same as in Bloom, Schankerman,
and Van Reenen (2013). We still find a larger direct effect of R&D spending.
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more, we confirm the expected positive spillover effects of established companies. The

spillover effects of venture capital investment on other start-ups are not significantly

different from zero for either proximity measure.

There could be several reasons why the spillover effects are not so large for VC-

financed firms. First, it could simply be that they are not as precisely measured

as they are for established firms. Second, smaller VC-financed firms may not have

the absorptive capacity to take advantage of knowledge flows from other VC-financed

firms. Another reason why VC-financed firms may have a lower inclination to absorb

(potentially) patent-protected knowledge from other companies may be that small firms

in general do not have patent portfolios that can serve as threat in a patent dispute

or that can be useful to strike cross-licensing agreements. Hence they are less able to

resolve patent disputes without resorting to the courts (Lanjouw and Schankerman,

2001).

As elasticities are hard to interpret quantitatively, we use equation (14) to calculate

the average effect of a counterfactual increase in VC (R&D) by 1 million dollars, Γ, on

the number of scaled forward-citation weighted patents. The results are presented in

Table 6.

Γ = E

[
∂Patentsi
∂V Cj

]
= β2 · E

[
ωij ·

Patentsi∑
j 6=i ωij · V Cj

]
. (14)

The average direct effect of venture capital investment on the own patent (Table

6, column 1) is larger than the average direct impact of R&D investment. The results

imply that increasing the venture capital investment by 1 million dollars yields directly

in between 0.12 and 0.15 patents with the average number of citations. This translates

to costs per patent between 6.5 and 8.1 million dollars in venture capital funding. The

comparable number for established companies is around 12 million dollars.

The estimates for the external effect vary more widely: 1 million dollars more

venture capital yields in between 0.02 and 0.19 patents of average quality. Therefore

it requires between 5 and 60 million dollars in venture capital to generate a patent

in another company while it requires between 47 and 588 million dollars investment
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Table 4: Results for scaled forward citation-weighted patents - Subsample: Established
companies

Scaled Forward Citation-Weighted Patents

OLS IV
Direct Jaffe Citation Direct Jaffe Citation

citations proximity augmented citation proximity augmented

Ln(Spillover Est.) 7.4∗∗∗ 15.4∗∗∗ 31.9∗∗∗ 8.2∗∗∗ 18.6∗∗∗ 37.8∗∗∗
(0.9) (3.2) (6.5) (1.0) (3.4) (6.6)

Ln(Spillover VC.) 15.3∗∗∗ 6.0∗∗∗ 7.9∗∗ 7.4∗ 5.7∗∗∗ 7.3∗∗
(4.7) (1.7) (3.5) (4.4) (1.9) (3.6)

ln(R&D Stock) 40.7∗∗∗ 41.4∗∗∗ 39.5∗∗∗ 40.5∗∗∗ 41.0∗∗∗ 38.8∗∗∗
(2.6) (2.4) (2.3) (2.6) (2.4) (2.3)

Pre-sample FE 3.2∗∗∗ 3.3∗∗∗ 3.2∗∗∗ 3.2∗∗∗ 3.2∗∗∗ 3.2∗∗∗
(0.5) (0.5) (0.5) (0.5) (0.5) (0.5)

F-Value . . . 195.69 154.83 156.01
R2 0.46 0.45 0.46 0.46 0.45 0.45
N 10010 10010 10010 10010 10010 10010

Note: This table shows the results of estimating equation (12) for the subsample of established
companies and for the three definitons of the spillover pool (Direct citations, Jaffe proximity and
citation- augmented). The first three columns show the OLS results, while the second three columns
show the instrumental variable results. All the standard errors are clustered on the four-digit industry
level. ***, **, and * indicate statistical signicance at the 1%, 5% and 10% level, respectively. To
increase the readability of the table we multiply each estimate by 100.

in R&D. If we take these results at face value, the spillovers of venture capital are in

between 9 to 18 times larger than the spillover of corporate R&D.

In our main estimation we only consider start-ups that have at one point in their

lifecycle applied for a patent because otherwise we cannot calculate the Jaffe techno-

logical proximity measure. To make sure that this sample selection does not drive our

results we do the following robustness check: we multiply venture capital investment

by a correction factor such that the total investment matches the investment in our

sample. Then we repeat the estimation of the patent production function in equation

(12) (the regression table is Table 15 in the appendix) and recalculate the marginal

effects. On the basis of these marginal effects, we recalculate equation (14) to calculate

the average effect of a counterfactual increase in VC (R&D) by 1 million dollars. The

results are reported in the last section of Table 6. They are similar to the results for
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Table 5: Results for scaled forward cite-weighted patents - Subsample: Start-ups

Scaled Forward Cite-Weighted Patents

OLS IV
Direct Jaffe Citation Direct Jaffe Citation

citations proximity augmented Citation proximity augmented

Ln(Spillover Est.) 0.9∗ 19.1∗∗∗ 58.4∗∗∗ 1.1∗ 23.7∗∗∗ 70.3∗∗∗
(0.5) (3.0) (7.6) (0.6) (3.4) (8.5)

Ln(Spillover VC.) -1.4 1.3 2.6 -3.7 -0.2 -0.1
(2.7) (1.9) (3.5) (2.9) (2.1) (4.3)

ln(VC Stock) 17.7∗∗∗ 15.5∗∗∗ 14.3∗∗∗ 17.7∗∗∗ 15.5∗∗∗ 14.2∗∗∗
(2.9) (3.0) (2.8) (2.9) (3.0) (2.9)

Pre-sample FE 3.6∗∗∗ 3.8∗∗∗ 3.7∗∗∗ 3.7∗∗∗ 3.8∗∗∗ 3.7∗∗∗
(0.6) (0.7) (0.7) (0.6) (0.7) (0.8)

F-Value . . . 32.09 48.96 78.29
R2 0.03 0.05 0.08 0.03 0.05 0.08
N 5650 5650 5650 5650 5650 5650

Note: This table shows the results of estimating equation (12) for the subsample of venture capital
financed start-ups and for the three definitons of the spillover pool (Direct citations, Jaffe proximity
and citation-augmented). The first three columns show the OLS results while the second three columns
show the instrumental variable results. All the standard errors are clustered on the four-digit industry
level. ***, **, and * indicate statistical signicance at the 1%, 5% and 10% level, respectively. To
increase the readability of the table we multiply each estimate by 100.

all other proximity measures.

There are no estimates in the literature for the external effect of venture capital with

which to compare these results. However, these estimates appear to be of a sensible

magnitude since they imply that the total return of venture capital is between 1.91 and

3.28 larger than the total return of R&D. This is about the same size as that found by

Kortum and Lerner (2000) and Popov and Roosenboom (2012) who report that venture

capital results in around 3 times more equally weighted patents than corporate R&D.

These numbers should be interpreted with caution as we are estimating average

marginal effects as shown in equation (14). Average effects can mask a considerable

heterogeneity in the strength of the spillovers across start-ups and established compa-

nies. This is why in the next sections, we investigate more closely which subsamples

of start-ups generate relatively more knowledge spillovers and which subsamples of

companies benefit most from spillovers.
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Table 6: Counterfactual increase in forward citation-weighted patents when spending
1 million dollars more on...

Direct citations Own company Other companies Total Multiplier
R&D 8.52 0.17 8.68
Venture Capital 15.27 1.65 16.92 1.91
Jaffe proximity Own company Other companies Total Multiplier
R&D 8.62 1.00 9.63
Venture Capital 13.38 18.20 31.58 3.28
Citation-augmented Own company Other companies Total Multiplier
R&D 8.16 2.12 10.28
Venture Capital 12.25 19.11 31.36 3.05
Citation-augmented - adjusted Own company Other companies Total Multiplier
R&D 8.16 2.12 10.28
Venture Capital 12.51 12.01 24.52 2.38

Note: This table shows the expected increase in scaled forward citation-weighted patents if we were
to increase the investment in R&D or venture capital of one company by 1 million USD at random.
For the calculation of this counterfactual we use the estimated coefficients in Table 4 and 5 and the
equation (15) in the text. In the first column, we display the effect of the increase on the patents of
the company that increases its spending. In the second column we show the spillover effect, i.e. the
increase in patents of other companies. In column three, we add these two effects to obtain the total
increase. In the last column, we divide the total effect of an increase in R&D with the total effect of
an increase in venture capital. To increase the readability of the table, we multiply each estimate by
100.

4.2 Spillovers in complex and discrete product industries

In the patent literature it is well recognized that patents are a more effective mechanism

to appropriate returns of R&D in “discrete” as compared to “complex” product indus-

tries. An industry is complex if the products need the input of numerous separately

patentable elements, while it is discrete if products require only few of such inputs

(Cohen, Nelson, and Walsh, 2000). Effective appropriation of returns in an industry

implies that a company can exclude another company from the using a patented inven-

tion. As a consequence spillovers should be weakly smaller in discrete than in complex

product industries.23

We test this hypothesis by measuring separately the spillovers originating from
23Cohen, Nelson, and Walsh (2000) find that in discrete product industries firms seem to use their

patents effectively to block cumulative innovation by their rivals. In complex technology industries,
such as telecommunication or semiconductors, firms instead are more likely to use patents as a bargaing
chip for negotiations with their rivals.
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start-ups from both types of industries and by measuring the spillovers experienced by

companies in both types of industries. We follow Galasso and Schankerman (2015) in

characterizing the technology categories Computer and Communication (NBER Cate-

gory 2), Electrical and Electronics (NBER Category 4), Medical Instruments (NBER

subcategory 32), and Biotechnology (NBER subcategory 33) as complex. We classify

a company as producing complex products if 50% or more of its patents are in complex

technology categories.24

The results for established companies are displayed in Table 7, columns (1) to (4).

For expositional convenience we report only the results for the IV estimations, and only

for the citation-augmented proximity measure. Column (1) reproduces the estimation

of Table 4, Column (6). In column (2) we separately include a venture capital spillover

term for venture capital investment in start-ups that have more than 50% of its patents

in complex technologies (“complex”) and for venture capital investment in start-ups

which have less (“discrete”). We find that established firms experience larger spillovers

from VC-firms in complex industries.

We then repeat our baseline regression for the subsamples of companies in complex

and in discrete product industries. As expected, we find that established companies in

complex technology industries benefit more from spillovers than established companies

in discrete product industries (columns 3 and 4). Furthermore, we find that they

experience higher spillovers from VC-financed start-ups in complex product industries

than from those in discrete product industries.

In columns (5) to (8) we present the results for VC-financed start-ups. Like es-

tablished companies, start-ups experience higher spillovers from other VC-financed

start-ups in complex product industries than from those in discrete product industries

(column 6). We do not find a significant spillover effect experienced by start-ups in

complex or discrete product industries although the mean estimate is larger in complex

product industries.

To summarize, the results support that in general, complex product industries are
24Thus, we classify 702 established company and 809 start-ups as active in complex product indus-

tries, whereas 528 established companies and 321 start-ups are active in discrete product industries.
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more conducive to spillovers than discrete product industries. Established compa-

nies in complex technology industries experience larger spillovers from VC-firms than

established companies in discrete product industries and the spillovers generated by

VC-firms in complex product industries are larger than those generated by VC-firms

in discrete product industries.

4.3 Spillovers depending on characteristics of the start-up

Next we investigate whether or not the strength of knowledge spillovers varies system-

atically with ex-ante characteristics of the start-ups. Prior research suggests that the

founder team may play an important role for the success of a venture (Kaplan, Sensoy,

and Stroemberg, 2009; Gompers, Kovner, Lerner, and Scharfstein, 2010).

Founders may differ in a number of characteristics. One characteristic studied in the

literature is experience from previous employments. The literature on entrepreneurial

spawning for example emphasizes that a prior affiliation with a start-up may help

entrepreneurs learn how entrepreneurship works (the “Fairchild view” of entrepreneurial

spawning). In addition, individuals with lower risk aversion might be more likely to

be a serial entrepreneurs, consistent with the sorting processes hypothesized e.g. by

Jovanovic (1979).

Entrepreneurs with prior experience in a large corporation may instead have access

to a technology the established company is reluctant to commercialize (the “Xerox view”

- e.g. Gompers, Lerner, and Scharfstein (2005); Klepper and Sleeper (2005)). Similarly,

entrepreneurs with a prior affiliation to a university may be able to commercialize

technology developed at universities (e.g. Di Gregorio and Shane, 2003; Nerkar and

Shane, 2003). Experience may thus improve the entrepreneurial skills of the founders

(skills hypothesis) or it may give them access to technologies to be commercialized at

the new start-up firm (commercialization hypothesis).

As we are interested in innovation we focus on the inventors, not the founders of

the start-ups, bearing in mind that these are often the same persons. For this purpose,

we use the information on the inventors of the first recorded patent of the start-up. We
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do not have a complete curriculum vitae of each inventor so we cannot directly observe

experience from previous employments. Thus, we follow the literature by using prior

patenting as an indicator for a movement between employers (Marx, Strumsky, and

Fleming, 2009). We check whether the inventor of this first patent already patented

prior to joining the start-up, and if she did so at an established company or a start-

up or at a university. In Table 8 we cross tabulate the number of start-ups with the

different experience profiles.

Table 8: Number of start-ups by experience profile

Corporate experience in
none start-ups established both Total

No academic experience 541 80 299 46 858
Academic experience 163 35 69 16 255
Total 708 116 368 62 1130

Note: This table shows the number of start-ups with at least one inventor with prior patenting
experience. E.g. column 2 presents all start-ups with at least one inventor with prior patenting
experience in another start-up, but no academic experience (line 1) or with at least one inventor who
patented before for a university ("academic experience" - line 2). The sum in column 5 is calcuated
by adding columns 1 to 3 and substracting column 4 as start-ups with prior experience in both are
double counted in columns 2 and 3.

To investigate the role of experience, we split the spillover generating start-ups in

two groups, companies with experienced inventors and companies without experienced

inventors, and re-calculate the venture capital spillover measure. The results for these

splits are reported in Tables 9 and 10. For expositional convenience we only report the

results for the IV estimations, and only for the citation-augmented proximity measure.

In columns (1) to (3), we split spillover generating start-ups in inventors with prior

experience (either as a corporate or as an academic inventor) and inexperienced inven-

tors. In columns (4) to (6), the split is between inventors with experience as a start-up

inventor and no such experience. In columns (7) to (9), the split is between inventors

with experience in an established company and no such experience. In columns (10)

to (12) experience means experience as an academic inventor.

Start-ups with experienced inventors generate significantly more spillovers onto

established firms in complex product industrie (Table 9). For established firms the

33



Ta
bl
e
9:

Sp
lit

by
in
ve
nt
or

te
am

-
Su

bs
am

pl
e:

E
st
ab

lis
he
d
co
m
pa

ni
es

Sc
al

ed
Fo

rw
ar

d
C

it
at

io
n-

W
ei

gh
te

d
P
at

en
ts

-
IV

Sp
lit

by
P

ri
or

ex
pe

ri
en

ce
St

ar
t-

up
in

ve
nt

or
E

st
ab

lis
he

d
in

ve
nt

or
A

ca
de

m
ic

in
ve

nt
or

Fu
ll

D
is

cr
et

e
C

om
pl

ex
Fu

ll
D

is
cr

et
e

C
om

pl
ex

Fu
ll

D
is

cr
et

e
C

om
pl

ex
Fu

ll
D

is
cr

et
e

C
om

pl
ex

sa
m

pl
e

te
ch

no
lo

gi
es

te
ch

no
lo

gi
es

sa
m

pl
e

te
ch

no
lo

gi
es

te
ch

no
lo

gi
es

sa
m

pl
e

te
ch

no
lo

gi
es

te
ch

no
lo

gi
es

sa
m

pl
e

te
ch

no
lo

gi
es

te
ch

no
lo

gi
es

ln
(S

pi
llo

ve
r

E
st

.)
37

.3
∗∗
∗

28
.2
∗∗

46
.2
∗∗
∗

37
.8
∗∗
∗

29
.2
∗∗
∗

47
.9
∗∗
∗

37
.5
∗∗
∗

28
.0
∗∗

47
.4
∗∗
∗

35
.9
∗∗
∗

24
.7
∗∗

43
.6
∗∗
∗

(6
.7

)
(1

1.
2)

(7
.6

)
(6

.5
)

(1
1.

2)
(7

.4
)

(6
.6

)
(1

1.
6)

(7
.8

)
(6

.5
)

(1
1.

3)
(7

.1
)

ln
(S

pi
llo

ve
r

V
C

)

w
o

ex
pe

ri
en

ce
3.

9
7.

8
-1

.2
6.

3
3.

9
6.

6
2.

6
6.

9
-3

.5
8.

4∗
19

.8
∗

1.
9

(5
.4

)
(1

0.
9)

(6
.6

)
(4

.3
)

(6
.4

)
(6

.2
)

(5
.1

)
(1

0.
4)

(5
.2

)
(4

.6
)

(1
0.

9)
(5

.3
)

w
ex

pe
ri

en
ce

4.
3

-0
.9

13
.4
∗∗

1.
5

1.
8

4.
7

5.
7

-0
.8

15
.4
∗∗

1.
8

-8
.6

14
.4
∗∗
∗

(6
.4

)
(9

.8
)

(6
.7

)
(4

.6
)

(6
.5

)
(6

.8
)

(6
.3

)
(1

0.
2)

(6
.3

)
(4

.9
)

(9
.0

)
(4

.9
)

ln
(R

&
D

st
oc

k)
38

.7
∗∗
∗

37
.1
∗∗
∗

39
.4
∗∗
∗

38
.8
∗∗
∗

37
.2
∗∗
∗

39
.2
∗∗
∗

38
.7
∗∗
∗

37
.2
∗∗
∗

39
.2
∗∗
∗

38
.6
∗∗
∗

36
.7
∗∗
∗

39
.5
∗∗
∗

(2
.3

)
(3

.6
)

(2
.7

)
(2

.3
)

(3
.7

)
(2

.6
)

(2
.3

)
(3

.6
)

(2
.6

)
(2

.3
)

(3
.6

)
(2

.7
)

P
re

-s
am

pl
e

F
E

3.
2∗
∗∗

2.
9∗
∗∗

4.
1∗
∗∗

3.
2∗
∗∗

3.
0∗
∗∗

4.
1∗
∗∗

3.
2∗
∗∗

3.
0∗
∗∗

4.
1∗
∗∗

3.
2∗
∗∗

3.
0∗
∗∗

4.
1∗
∗∗

(0
.5

)
(0

.6
)

(1
.1

)
(0

.5
)

(0
.6

)
(1

.1
)

(0
.5

)
(0

.6
)

(1
.1

)
(0

.5
)

(0
.6

)
(1

.1
)

In
du

st
ry

F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
ea

r
F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

F
-V

al
ue

13
4.

64
75

.0
4

12
5.

44
13

2.
06

75
.3

0
10

8.
23

13
9.

04
78

.8
1

11
3.

36
13

1.
02

76
.4

0
11

4.
21

R
2

0.
45

0.
46

0.
45

0.
45

0.
46

0.
45

0.
45

0.
46

0.
45

0.
46

0.
46

0.
45

N
10

01
0

46
37

51
52

10
01

0
46

37
51

52
10

01
0

46
37

51
52

10
01

0
46

37
51

52

N
ot

e:
T
hi
s
ta
bl
e
sh
ow

s
th
e
in
st
ru
m
en
ta
l
va
ri
ab

le
re
su
lt
s
of

es
ti
m
at
in
g
eq
ua

ti
on

(1
2)

fo
r
th
e
su
bs
am

pl
e
of

es
ta
bl
is
he
d
co
m
pa

ni
es

an
d
th
e
ci
ta
ti
on

-a
ug

m
en
te
d

pr
ox
im

it
y
m
ea
su
re
.
In

th
e
fir
st

th
re
e
co
lu
m
ns

w
e
sp
lit

th
e
sp
ill
ov
er

ge
ne
ra
ti
ng

st
ar
t-
up

s
ac
co
rd
in
g
to

th
e
pr
io
r
pa

te
nt
in
g
ex
pe

ri
en
ce

of
th
e
in
ve
nt
or
s
on

th
e
fir
st

pa
te
nt
.
In

th
e
fo
llo

w
in
g
th
re
e
co
lu
m
ns

w
e
co
ns
id
er

fo
r
th
e
sa
m
pl
e
sp
lit

on
ly

th
e
pa

te
nt
in
g
ex
pe

ri
en
ce

in
a
st
ar
t-
up

.
In

co
lu
m
ns

(7
)
to

(9
)
w
e
sp
lit

by
ex
pe

ri
en
ce

in
an

es
ta
bl
is
he
d
co
m
pa

ny
.
In

th
e
la
st

th
re
e
co
lu
m
ns

w
e
sp
lit

by
th
e
pa

te
nt
in
g
ex
pe

ri
en
ce

at
a
un

iv
er
si
ty
.
A
n
in
ve
nt
or

is
co
ns
id
er
ed

to
ha

ve
ex
pe

ri
en
ce

if
he
r

na
m
e
is

m
en
ti
on

ed
on

a
pa

te
nt

be
fo
re

sh
e
jo
in
s
th
e
st
ar
t-
up

.
A

co
m
pa

ny
is

cl
as
si
fie
d
as

ac
ti
ve

in
a
co
m
pl
ex

pr
od

uc
t
in
du

st
ry

if
m
or
e
th
an

50
%

of
it
s
pa

te
nt

ar
e
in

C
om

pu
te
r
an

d
C
om

m
un

ic
at
io
n
(N

B
E
R

C
at
eg
or
y
2)
,
E
le
ct
ri
ca
l
an

d
E
le
ct
ro
ni
cs

(N
B
E
R

C
at
eg
or
y
4)
,
M
ed
ic
al

In
st
ru
m
en
ts

(N
B
E
R

su
bc

at
eg
or
y
32
),

an
d

B
io
te
ch
no

lo
gy

(N
B
E
R

su
bc

at
eg
or
y
33
).

O
th
er
w
is
e
it

is
cl
as
si
fie
d
as

be
in
g
in

a
di
sc
re
te

pr
od

uc
t
in
du

st
ry
.
A
ll
st
an

da
rd

er
ro
rs

ar
e
cl
us
te
re
d
on

th
e
fo
ur

di
gi
t

in
du

st
ry
-y
ea
r
le
ve
l.

**
*,

**
an

d
*
in
di
ca
te

st
at
is
ti
ca
ls

ig
ni
ca
nc
e
at

th
e
1%

,
5%

,
an

d
10
%

le
ve
l,
re
sp
ec
ti
ve
ly
.
T
o
in
cr
ea
se

th
e
re
ad

ab
ili
ty

of
th
e
ta
bl
e
w
e
m
ul
ti
pl
y

ea
ch

es
ti
m
at
e
by

10
0.

34



Ta
bl
e
10

:
Sp

lit
by

in
ve
nt
or

te
am

-
Su

bs
am

pl
e:

V
C

ba
ck
ed

st
ar
t-
up

s

Sc
al

ed
Fo

rw
ar

d
C

it
at

io
n-

W
ei

gh
te

d
P
at

en
ts

-
IV

Sp
lit

by
P

ri
or

ex
pe

ri
en

ce
St

ar
t-

up
in

ve
nt

or
E

st
ab

lis
he

d
in

ve
nt

or
A

ca
de

m
ic

in
ve

nt
or

Fu
ll

D
is

cr
et

e
C

om
pl

ex
Fu

ll
D

is
cr

et
e

C
om

pl
ex

Fu
ll

D
is

cr
et

e
C

om
pl

ex
Fu

ll
D

is
cr

et
e

C
om

pl
ex

sa
m

pl
e

te
ch

no
lo

gi
es

te
ch

no
lo

gi
es

sa
m

pl
e

te
ch

no
lo

gi
es

te
ch

no
lo

gi
es

sa
m

pl
e

te
ch

no
lo

gi
es

te
ch

no
lo

gi
es

sa
m

pl
e

te
ch

no
lo

gi
es

te
ch

no
lo

gi
es

ln
(S

pi
llo

ve
r

E
st

.)
69

.5
∗∗
∗

91
.5
∗∗
∗

64
.3
∗∗
∗

71
.7
∗∗
∗

92
.7
∗∗
∗

67
.3
∗∗
∗

69
.2
∗∗
∗

92
.2
∗∗
∗

65
.2
∗∗
∗

70
.9
∗∗
∗

84
.5
∗∗
∗

66
.1
∗∗
∗

(8
.9

)
(1

3.
1)

(1
0.

9)
(8

.0
)

(1
2.

4)
(9

.4
)

(8
.5

)
(1

3.
8)

(9
.9

)
(9

.0
)

(1
0.

9)
(1

1.
0)

ln
(S

pi
llo

ve
r

V
C

)

w
o

ex
pe

ri
en

ce
-5

.3
3.

7
-3

.1
-6

.2
∗

1.
8

-3
.7

-6
.4

-2
.4

-1
.5

4.
3

15
.7

2.
0

(4
.3

)
(1

1.
3)

(5
.9

)
(3

.7
)

(8
.4

)
(5

.8
)

(4
.0

)
(1

1.
9)

(5
.8

)
(3

.8
)

(1
4.

2)
(5

.4
)

w
ex

pe
ri

en
ce

5.
0

-4
.5

8.
1

6.
9∗
∗

-6
.6

8.
6∗

7.
6∗

1.
6

6.
8

-4
.1

-1
0.

4
2.

8
(4

.6
)

(8
.5

)
(6

.1
)

(3
.3

)
(9

.5
)

(4
.4

)
(4

.2
)

(1
1.

3)
(4

.6
)

(3
.7

)
(1

0.
3)

(4
.9

)
ln

(V
C

st
oc

k)
14

.3
∗∗
∗

8.
5∗
∗∗

16
.7
∗∗
∗

14
.2
∗∗
∗

8.
9∗
∗∗

16
.6
∗∗
∗

14
.3
∗∗
∗

8.
4∗
∗∗

16
.6
∗∗
∗

14
.0
∗∗
∗

8.
2∗
∗∗

16
.7
∗∗
∗

(3
.0

)
(3

.0
)

(4
.2

)
(2

.9
)

(3
.1

)
(4

.1
)

(2
.9

)
(3

.0
)

(4
.1

)
(2

.8
)

(3
.0

)
(4

.2
)

P
re

-s
am

pl
e

F
E

3.
7∗
∗∗

8.
2∗
∗∗

2.
7∗
∗∗

3.
7∗
∗∗

8.
1∗
∗∗

2.
7∗
∗∗

3.
7∗
∗∗

8.
2∗
∗∗

2.
6∗
∗∗

3.
6∗
∗∗

8.
2∗
∗∗

2.
6∗
∗∗

(0
.7

)
(0

.8
)

(0
.8

)
(0

.7
)

(0
.8

)
(0

.8
)

(0
.8

)
(0

.8
)

(0
.8

)
(0

.7
)

(0
.8

)
(0

.8
)

In
du

st
ry

F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
ea

r
F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

F
-V

al
ue

66
.0

4
33

.4
8

38
.9

4
64

.9
1

30
.9

9
43

.1
1

62
.5

9
32

.8
6

37
.0

6
80

.5
5

43
.3

2
38

.9
3

R
2

0.
08

0.
09

0.
08

0.
08

0.
10

0.
09

0.
08

0.
10

0.
08

0.
08

0.
10

0.
08

N
56

50
16

57
38

50
56

50
16

57
38

50
56

50
16

57
38

50
56

50
16

57
38

50

N
ot

e:
T
hi
s
ta
bl
e
sh
ow

s
th
e
in
st
ru
m
en
ta
l
va
ri
ab

le
re
su
lt
s
of

es
ti
m
at
in
g
eq
ua

ti
on

(1
2)

fo
r
th
e
su
bs
am

pl
e
of

ve
nt
ur
e
ca
pi
ta
l
ba

ck
ed

st
ar
t-
up

s
an

d
th
e
ci
ta
ti
on

-
au

gm
en
te
d
pr
ox
im

it
y
m
ea
su
re
.
In

th
e
fir
st

th
re
e
co
lu
m
ns

w
e
sp
lit

th
e
sp
ill
ov
er

ge
ne
ra
ti
ng

st
ar
t-
up

s
ac
co
rd
in
g
to

th
e
pr
io
r
pa

te
nt
in
g
ex
pe

ri
en
ce

of
th
e
in
ve
nt
or
s

on
th
e
fir
st

pa
te
nt
.
In

th
e
fo
llo

w
in
g
th
re
e
co
lu
m
ns

w
e
co
ns
id
er

fo
r
th
e
sa
m
pl
e
sp
lit

on
ly

th
e
pa

te
nt
in
g
ex
pe

ri
en
ce

in
a
st
ar
t-
up

.
In

co
lu
m
ns

(7
)
to

(9
)
w
e
sp
lit

by
ex
pe

ri
en
ce

in
an

es
ta
bl
is
he
d
co
m
pa

ny
.
In

th
e
la
st

th
re
e
co
lu
m
ns

w
e
sp
lit

by
th
e
pa

te
nt
in
g
ex
pe

ri
en
ce

at
a
un

iv
er
si
ty
.
A
n
in
ve
nt
or

is
co
ns
id
er
ed

to
ha

ve
ex
pe

ri
en
ce

if
he
r
na

m
e
is

m
en
ti
on

ed
on

a
pa

te
nt

be
fo
re

sh
e
jo
in
s
th
e
st
ar
t-
up

.
A

co
m
pa

ny
is

cl
as
si
fie

d
as

ac
ti
ve

in
a
co
m
pl
ex

pr
od

uc
t
in
du

st
ry

if
m
or
e
th
an

50
%

of
it
s

pa
te
nt

ar
e
in

C
om

pu
te
r
an

d
C
om

m
un

ic
at
io
n
(N

B
E
R

C
at
eg
or
y
2)
,E

le
ct
ri
ca
la

nd
E
le
ct
ro
ni
cs

(N
B
E
R

C
at
eg
or
y
4)
,M

ed
ic
al

In
st
ru
m
en
ts

(N
B
E
R

su
bc

at
eg
or
y
32
),

an
d
B
io
te
ch
no

lo
gy

(N
B
E
R

su
bc

at
eg
or
y
33
).

O
th
er
w
is
e
it

is
cl
as
si
fie
d
as

be
in
g
in

a
di
sc
re
te

pr
od

uc
t
in
du

st
ry
.
A
ll
st
an

da
rd

er
ro
rs

ar
e
cl
us
te
re
d
on

th
e
fo
ur

di
gi
t

in
du

st
ry
-y
ea
r
le
ve
l.

**
*,

**
an

d
*
in
di
ca
te

st
at
is
ti
ca
ls

ig
ni
ca
nc
e
at

th
e
1%

,
5%

,
an

d
10
%

le
ve
l,
re
sp
ec
ti
ve
ly
.
T
o
in
cr
ea
se

th
e
re
ad

ab
ili
ty

of
th
e
ta
bl
e
w
e
m
ul
ti
pl
y

ea
ch

es
ti
m
at
e
by

10
0.

35



spillover effect seems to be mostly driven by inventors with a background in established

companies and in academia, whereas for VC-financed firms the effect is strongest for

inventors with a corporate background, in start-ups or in established companies. These

observations are consistent with both the skills and the commercialization hyptheses.

To dig deeper into this question of whether any of the two hypotheses has particular

merit we use the information whether or not the start-up has a patent application before

the year of its first investment. The reasoning is as follows: If the skills hypothesis

holds, i.e. experience matters because it improves the inventor’s skills we would expect

experience to matter independent of prior patenting. If instead the commercialization

hypothesis is relevant, i.e. experience matters because it provides access to a technology

which the inventor then commercializes in the new start-up company, then experience

should not matter over and above a patent application prior to obtaining funding.

To investigate these different hypotheses we split the spillover generating start-ups

in two groups: start-ups that had at least one patent before they received the first

investment round and start-ups that had not. Table 11 gives descriptive statistics on

the numbers of start-ups with and without prior patents.

The results are presented in Table 12. Again, we report only the results for the

IV estimations, and only for the citation-augmented proximity measure. According

to Table 12, start-ups that already have a patent at the time of the first investment

generate significantly more spillovers than start-ups without such a patent, both onto

Table 11: Number of start-ups by prior patent

Experience in
None Start-up Established Academic Total

No prior patent 432 72 253 225 942
At least one prior patent 109 9 46 30 188
Total 541 81 299 255 1130

Note: This table shows the number of start-ups that have at least one patent before the first invest-
ment split by the experience of the inventors. E.g. 18 start-ups have both an inventor who patented
before joining the start-up and a patent before the first investment (column 2, line 2). The sum in
column 5 gives the total number of start-ups with or without prior patent, taking into account double
counting in the previous columns.

36



established and onto VC-financed firms. Furthermore, if we split the sample of start-

ups in four categories with regard to patent holding and experience, we find that in

complex product industries spillovers are significantly stronger for start-ups that have

an experienced inventor team and that have a patented technology prior to receiving

their first round of investment. This supports the commercialization hypothesis, as it

seems that prior experience is valuable mostly by giving access to existing technologies

that are commercialized in the new start-up. In discrete product industries the results

are inconclusive.

To summarize, we find that in complex product industries spillovers are stronger

for start-ups with an experienced inventor teams and start-ups that have a patent at

the time of the first investment. Overall, this suggests that the commercialization

hypothesis has particular merit. An increase in venture capital has the biggest impact

if it goes to a firm that already has a patent. This points to a complementarity

between the supply of venture capital on the one hand and the supply of technology

and experience on the other hand. For policy makers this implies that promoting just

one of these factors may be less effective than expected if the other factors are not

available as well.

4.4 Robustness

As a robustness check we investigate whether the mechanism described above is stable

with respect to other observable characteristics, such as the sample period or the geo-

graphic location. Suppose, for example, that the measured average effect were driven

by companies in the San Francisco area between 1980 and 1985. Then we should be

cautious in drawing conclusions for today’s policies in Massachusetts.

The robustness checks are visualized in Figure 7. For expositional simplicity we

report only the results for the citation-augmented proximity measure and we plot only

the coefficient of the venture capital spillover measure for established companies. All

the other figures are available from the authors on request.

The sample period does not seem to matter, the spillover effect is - except for a dip
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in the mid 1980s - stable over time. Yet taking each period separately the coefficient

is mostly not significant on the 5% level (Figure 7a). The spillover effect is stable if we

use different patent related outcome measures (Figure 7b).

For the the geographic classification we report both, spillovers originating from

start-ups residing in a particular state and spillovers received by companies in that

state (Figure 7c). For the sample split we only consider the subsamples of California

and Massachusetts because for all other states we have less than 50 venture capital

financed start-ups in our data.

Figure 7: Robustness Checks

(a) Time-Pattern (b) Alternative Outcomes

(c) Spillovers of VC by State of Start-Up

Note: This figure shows various robustness checks for the main regression for the subsample of
established companies. In all the subfigures we plot the coefficient of the venture capital spillover
measure for the established companies. In subfigure a) we calculate the coefficient of the spillover
measure for each year in the sample separately. In subfigure b) we use various patent based outcome
measures. In subfigure c) we split the sample by state of the start-up ("originating") and by state
of the established company ("receiving"). The 95% confidence intervals displayed in each picture are
derived from s.e. errors clustered on the four digit SIC code level.

39



We find that start-ups in California seem to have more spillover potential, but

the coefficients are very imprecisely estimated The effect on established companies is

relatively homogenous in California and Massachusetts, i.e. established companies all

over the US benefit from venture capital spillovers (Figure 7c).

In the Appendix we repeat the main part of our analysis using two other estimation

methods, a version of firm fixed effects based on de-meaning and a negative binomial

model with control functions. We find that the results are largely robust to these

different specifications, though the estimates are less precise.

5 Conclusion

Knowledge spillovers and their contribution to innovation and growth are the primary

justification for government R&D support policies. In this paper, we show that VC-

financed firms generate significant and positive spillovers on other firms’ patent quality.

Counterfactual calculations suggest that the external effect of venture capital is around

nine times larger than the external effect of R&D spending.

As the channel of the spillovers cannot be observed directly, we employed three

different ways to construct the spillover pool, including a novel construction that com-

bines elements of both a citation-based and a technological proximity based approach.

All three approaches lead to similar results, even though the magnitudes may differ.

This confirms that our findings are robust to different specifications.

Our analysis allows us to paint a nuanced picture of venture capital-induced spill-

overs. The effects are heterogenous, depending on what type of start-up increases

its VC investment and who is affected by the potential spillover. In general, com-

plex technology industries tend to be more conducive to spillovers than discrete tech-

nology industries: established companies in complex technology industries experience

larger spillovers than established companies in discrete technology industries and the

spillovers generated by VC-firms in complex industries are larger than those generated

by VC-firms in discrete industries.

Overall, our results are consistent with the commercialization hypothesis. Experi-
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ence and access to technology seem to matter: Spillovers are significantly stronger for

investments in a small set of start-ups that are characterized by an inventor team with

prior patenting experience and start-ups that have a patented technology before receiv-

ing their first round of investment. This complementarity between supply of venture

capital on the one hand and supply of technology and experience on the other hand

should be kept in mind when drawing policy conclusions on how to boost spillovers.

One measurement problem we encounter in our analysis is that we cannot observe

whether or not firms renumerate the spillover they experience through licensing fees.

Thus, parts of the spillovers may be in fact internalized through licensing agreements.

This is an issue the spillover literature in general has not been able to tackle yet, due

to lack of data on licensing, and that has to be left for future research.
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A Appendix: Estimation Methods.

In the main specification we use pre-sample mean scaling to adjust for fixed effects

and we use linear instrumental variable estimation. Both choices deserve discussion.
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Pre-sample mean scaling uses pre-sample periods to calculate the fixed effects. For

the subsample of start-ups this is the appropriate choice since a lot of start-ups are

observed only for a few periods as shown in (Figure 8). For the subsample of established

companies instead we have a sufficiently long time series in the data to use de-meaning

for fixed effects. We present the fixed effect results based on de-meaning for both

subsamples in Table 13. The main difference to our results in the main section is that

the results for the established companies are less significant. This might be due to

sample selection as we lose around a thousand observations. For the start-ups the

same pattern of spillovers (more spillovers for experienced teams, more spillovers with

a patent prior to investment) emerges as in the case of pre-sample mean scaling.

Figure 8: Number of Companies by Years in Data

,

The obvious alternative to linear instrumental variables regression is to use control

functions and negative binomial models. We show the results for this specification

in Table 14. The results are qualitatively similar to the linear instrumental variable

model.

Finally, Table15 presents the estimation of the patent production function with
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Table 15: Results for adjusted VC spending

Scaled Forward Citation-Weighted
Patents

Established Start-ups
companies

OLS IV OLS IV

Ln(Spillover Est.) 31.4∗∗∗ 37.4∗∗∗ 59.3∗∗∗ 71.3∗∗∗
Ln(Spillover VC.) 8.3∗∗∗ 7.9∗∗ 1.6 -1.9
ln(R&D Stock) 39.4∗∗∗ 38.6∗∗∗
ln(VC Stock) 14.4∗∗∗ 14.5∗∗∗
Pre-sample FE 3.2∗∗∗ 3.2∗∗∗ 3.7∗∗∗ 3.7∗∗∗

F-Value . 159.31 . 77.71
R2 0.46 0.46 0.08 0.08
N 10010 10010 5650 5650

Note: This table shows the results of estimating Equation (12) with the citation-augmented proximity
measure. Venture capital spending is multiplied for a correction factor such that the total investment
matches the investment in our sample in every year and industry. The first and third third column
show the OLS results, while the second and fourth column show the instrumental variable results. All
the standard errors are clustered on the four-digit industry level. ***, **, and * indicate statistical
signicance at the 1%, 5% and 10% level, respectively. To increase the readability of the table we
multiply each estimate by 100.

adjusted venture capital investment such that the total investment matches the invest-

ment in our sample, as discussed in Section 4.1.
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