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Abstract

Does the method of estimating plant-level productivity matter? We attempt to answer
this question in the context of key stylized facts and popular estimation methods. Using
plant-level manufacturing data for the U.S., we test the robustness of results on five
dimensions. First, we find non-trivial differences in estimated factor elasticities, especially
for capital, across commonly used methods. These differences yield considerable variation
in estimated returns to scale across methods. Second, the variation in elasticities maps
into differences in (total factor) productivity dispersion but does not invalidate the general
conclusion that productivity differences across establishments within the same industry are
large. In addition, the ranking of plants by productivity within industries is also sensitive
to method. Third, more productive plants are shown to be more likely to grow and survive,
no matter how we estimate productivity. However, outliers in factor elasticities that arise
more frequently from some methods non-trivially impact the quantitative marginal effects
of productivity on growth and survival. Fourth, all our productivity variants confirm the
main conclusions from the structural productivity decomposition literature: reallocation is
productivity enhancing, and variation in within-plant productivity seems more important
in terms of cyclical fluctuations of aggregate productivity by all methods considered.
However, here again there are non-trivial quantitative differences across methods in the
contribution of reallocation to aggregate productivity growth. Some methods imply that
all or even more than all of aggregate productivity growth is due to reallocation while
other methods imply only 25 percent is due to reallocation. Finally, we look at the
robustness of productivity dispersion and growth and survival results to imputation and
the assumption that elasticities are homogenous within industries. Dispersion is negatively
influenced by imputation and the homogeneity assumption. Growth and survival results
are also affected but the effect of these factors is more in line with the variation we found
in previous exercises.
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1 Introduction

A ubiquitous and influential finding in the empirical literature on firm dynamics is that there

is large dispersion in measured productivity across establishments within narrowly defined

industries. This finding has generated much analysis of the causes and consequences of such

dispersion. Explanations of possible causes include curvature in the profit function that prevents

the most productive firm from taking over an industry, frictions in adjustment of factors and

the entry and exit of plants, and distortions that drive wedges in the forces pushing towards the

equalization of marginal products across plants. In terms of consequences, there is a burgeoning

literature on the connection between reallocation dynamics, growth and productivity. Many

papers have found that more productive plants are more likely to grow and less likely to exit.

This implies the high pace of reallocation of inputs observed across plants has been found

to be productivity enhancing. In like fashion, there is increased attention to reasons why

these reallocation dynamics may vary over the business cycle and across countries and in turn

how these account for differences in economic performance across time and countries. In an

important related area of inquiry, a new theoretical and empirical literature has developed

that hypothesizes gains from opening markets to trade are due to the improved allocation of

resources across plants from the reallocation induced by trade.1

While there is considerable consensus that accounting for the dispersion of productivity

and its connection to reallocation are important for variation in economic performance across

countries, industries and time, there is not a consensus about the basics of estimating plant-

level productivity. One core issue that is still being debated is the most appropriate method

for estimating productivity – specifically, the method for estimating factor elasticities. One

common approach is to use growth accounting methods that are actively used by the statistical

agencies in official aggregate and industry-level productivity statistics. Such methods have ad-

vantages in terms of ease of computation but rely on strong assumptions. Another commonly

used approach by researchers is to use econometric estimation methods. Since OLS is problem-

atic given endogeneity of factor inputs, alternative estimation methods have been developed

to address this endogeneity. While instrumental variable methods are attractive in principle,

they are not commonly used given the lack of plausible instruments on a wide scale basis to

cover all industries over all time periods. Instead, methods have been developed that seek to

deal with the endogeneity issues by using proxies for the productivity residuals. Since this is an

indirect method, numerous alternative proxy estimation approaches have been developed with

a robust debate about the respective merits of the each approach. Different approaches make

alternative assumptions about the timing of input decisions with respect to the realization of

shocks and the relative importance of addressing the impact of selection on estimation.

1See the recent survey in Syverson (2011) for relevant cites to the findings in the literature and the theoretical
and empirical literature that has developed in light of the large dispersion in productivity and its relationship
to reallocation, growth and aggregate productivity.
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In this paper, we focus our attention on these estimation issues. Our objective is to as-

sess how sensitive the basic facts about productivity dispersion and the connection between

dispersion, reallocation, growth and productivity are to alternative methods for estimating

productivity. Our main findings are summarized as follows. First, we find that there are large

differences in estimated factor elasticities across methods. This variation is particularly evident

in capital elasticities which in turn yields much variation in estimated returns to scale. Dif-

ferences across methods are reflected in both the first and second moments of the distribution

of elasticities across industries. Second, in spite of these differences we find that basic facts

about productivity dispersion are largely robust across methods. All methods yield consider-

able within industry dispersion of productivity. However, there are quantitative differences and

since the precise estimate of productivity dispersion matters for some purposes this variation

is potentially quite important. A related finding is that the productivity rank of plants within

industries varies across estimation methods. Third, the relationship between growth, survival

and productivity at the establishment level is largely robust across methods. But even here

we find that some of the methods yield large outliers in elasticities for specific industries. For

example, some proxy methods yield negative factor elasticities for specific factors and industry

combinations. Not surprisingly the relationship between growth, survival and plant-level pro-

ductivity is sensitive to the treatment of these outliers. Fourth, all methods of estimation yield

a substantial contribution of reallocation to aggregate productivity growth using the structural

decompositions developed by Petrin and Levinsohn (2012). However, there is variation across

methods in terms of quantitative significance. Some methods yield that all or even more than

all of the aggregate productivity growth is accounted for by reallocation effects while other

methods yield that only about 25 percent is accounted for by reallocation. It is not surprising

that there is quantitative variation here since measuring the quantitative contribution of reallo-

cation relies on deviations of plant-level cost shares from estimated factor elasticities. Variation

in the latter yields variation in the contribution of reallocation.

We think the robustness of the core findings in the literature to these estimation methods has

not been settled. In his recent survey, Syverson (2011) discusses this debate and observes that

many papers in the literature explore the robustness of their findings to alternative estimation

methods. Our reading, like his, is that many papers report that results are reasonably robust

to alternative estimation methods. But most papers focus on a specific question often for a

narrow set of industries. It is less clear to us how robust core findings in the literature are

to these issues. The literature offers some guidelines, based on Monte Carlo evidence2, as to

which method is optimal in the presence of certain types of measurement and specification

error. Important examples include heterogeneity in input prices, technologies or measurement

2Van Biesebroeck (2007) explores the behavior of a number of estimators in the presence of measurement
error and parameter heterogeneity. Martin (2008) investigates a case when variable inputs are measured with
error.
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error in output, primary inputs, or some combination of these. These experiments tell us which

estimation method is optimal conditional on isolated factors. While such evidence is valuable,

in practice there may be a variety of sources of error. An equally important point is that

existing Monte Carlo studies do not take into account the wide disparities in sample size that

are available for empirical estimation. A limitation of our approach is that we cannot and do

not take a stand on the optimal method. Instead, our objective is to identify the nature of the

sensitivity of key results to these estimation issues.

A source of caution in interpreting our findings stems from common data limitations in this

literature. Our sample has no information about the quantities used in the production process.

We follow standard practice using industry-specific deflators to calculate the constant-dollar

values of revenues and input expenditures. This approach implies that we are focusing on what

have become known as revenue productivity measures in the literature. The interpretation

of revenue productivity measures is sensitive to the assumptions about the environment in

which establishments operate. The simplest but perhaps least likely case is for output to be

homogeneous within narrow sectors and plants to be price takers in output and input markets

so there is no output price heterogeneity. In this case, revenue productivity differences across

plants within industries can be interpreted as differences in technical efficiency. If plants are

price takers but there is output and input price heterogeneity reflecting exogenous quality

differences in outputs and inputs, then revenue productivity can be interpreted as differences

in technical efficiency adjusted for quality differences. But increasingly the evidence suggests

that output price heterogeneity within narrow sectors reflects both exogenous and endogenous

idiosyncratic demand side factors. Exploring the role of the latter has become an active area

of research in recent years (see, e.g., Foster, Haltiwanger, and Syverson (2008) and De Loecker

(2011)). This implies our revenue productivity measures reflect both technical efficiency and

demand side factors. In addition, the estimated factor elasticities should, as appropriate, be

considered to reflect both the technology and the demand structure. Exactly how these demand

side factors impact the interpretation of exercises resulting from a specific estimation method

will depend on the assumed demand structure including functional forms. Much of the literature

assumes some form of isoelastic demand structure which is readily tractable but involves very

strong assumptions. In what follows, we provide some limited discussion of the likely impact

of these issues on the intepretration of the results.

The paper is organized as follows. We discuss our methodology and data in Sections 2 and

3. Section 4 describes the effect of estimation method choice on the distribution of elasticity

estimates. Section 5 describes the implications of the differences in elasticity distributions on

TFP dispersion, plant growth and survival, and aggregate productivity growth decompositions.

Section 6 discusses the robustness of our dispersion and growth results to concerns about the

effect of imputated data and the restrictiveness of the homogeneity assumption. Finally, section

7 concludes.
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2 Methodology

2.1 Definition of TFP

As in most empirical studies, we start with a single-output production function:

Qit = KβK
it L

βL
it E

βE
it M

βM
it Ωit, (1)

where Q,K,L,E,M denote output, capital stock, labor, energy and material inputs, respec-

tively. i and t index plants and time periods. The β-s denote the elasticity of Q with respect

to the inputs. It is then straightforward to define total factor productivity (TFP) as a ratio of

output and an index of inputs: Ωit = Qit/(KβK
it L

βL
it E

βE
it M

βM
it ). The input index is a weighted

average of primary input factors where the weights are the elasticities of output with respect

to the appropriate input factor.

2.2 Estimation of elasticities

Elasticities are unobserved and therefore have to be estimated. There are various methods

available to researchers; table 1 summarizes the methods we use throughout the paper. We

discuss the strengths and weaknesses of the most popular methods from a practical point of

view.

Table 1: Production function estimation methods.
Method Description Dependent Proxy Estimator Numerical

variable procedure*

OLS Ordinary Least Squares Output LS

GA Foster, Haltiwanger, and Krizan (2001) Output Cost-shares

OP Olley and Pakes (1996) Output Investment LS NL

LPVA Levinsohn and Petrin (2003) Value Added Materials GMM GSS

LPNL Levinsohn and Petrin (2003) Output Materials GMM NL

LPGR Levinsohn and Petrin (2003) Output Materials GMM GR

LPGSS Levinsohn and Petrin (2003) Output Materials GMM GSS

WLPE Wooldridge (2009) Output Energy Efficient GMM**

WLPM Wooldridge (2009) Output Materials Efficient GMM

*The last column lists optimization procedures used in the paper. NL: gradient-based nonlinear technique, GSS: Golden Section

Search, GR: Grid Search. **Efficient GMM implements the two-step efficient GMM estimator which minimizes the GMM criterion

function Q = Nm′Wm, where N denotes sample size, m denotes the matrix of orthogonality conditions and W is an optimal

weighting matrix. In 2-step GMM, W is chosen to be the inverse of an estimate of the covariance matrix of moment conditions.

Ordinary least squares (OLS) is a straightforward but näıve method. OLS-based estimates

of the elasticities are inconsistent because TFP, unobserved by the econometrician, is a state

variable in the decision problem of plants. As first pointed out by Marschak and Andrews

(1944), an endogeneity problem emerges because unobserved TFP is incorporated in the error

term, which renders OLS estimates biased. In the case of endogenous plant-level prices, addi-

tional biases result from the error term including those prices and being correlated with the

factor inputs (Klette and Griliches (1996)).
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In addition to OLS, we look at the growth accounting method (GA) based on the seminal

work of Solow (1957). GA is a frequently used non-statistical method, which uses more explicit

assumptions about the environment in which the plant operates. We use the version of GA that

exploits the first order condition of a decision problem where the plant minimizes production

costs given output and input prices. The first order condition of this problem is used to rewrite

elasticities as respective shares of input factors in the plant’s total cost. The main advantages of

this procedure are: it allows for plant-level heterogeneity in elasticities, it is easy to implement

and is flexible about the exact shape of production technology, and it is accurate if the data are

not subject to much measurement error3. An important practical advantage is that GA is free

of statistical problems related to the sensitivity of estimates to sample size. Using the cost share

of total costs rather than of total value has the advantage that we do not require the assumption

of perfect competition. This implies that another advantage of the GA based factor elasticities

using cost shares of total costs is that they are robust to alternative demand structures. A

potential caveat is that elasticity estimates may be biased if the first order conditions are

violated. Since there are many frictions, it is likely the first order conditions do not hold at

all points in time at the plant level. Therefore, common factor elasticities across plants in

the same industry and/or common factor elasticities over time within the same industry are

frequently imposed (see Syverson (2011)). We discuss the implications of such homogeneity

assumptions further below. But we also note that most of the alternative estimation methods

assume common factor elasticties over time within the same industry.

The remainder of the methods we examine belong to a class of methods often referred to

as proxy methods. The original idea of using proxies in production function estimation was

developed in Olley and Pakes (1996) (OP hereafter) in order to analyze the dynamics of the

telecommunications equipment industry. OP take account of the previously mentioned endo-

geneity problem by including an investment proxy in the estimation process. Assuming that

investment is a monotonic and increasing function of productivity and that productivity is

the only unobserved state variable, including investment controls for unobserved TFP devel-

opments. Then the variation in investment can be used back out plant-level TFP shocks. OP

focus on the period between the early 1970s and the mid-1980s during which period the telecom-

munications equipment industry saw large changes in the size of plants and significant entry

and exit. Therefore they model plants’ entry and exit decisions which depend on productivity.

The algorithm consists of multiple steps. Under the assumption that investment is a mono-

tonic and increasing function of productivity and that productivity is the only unobserved state

variable, the first step provides consistent OLS estimates of variable input elasticities because

the proxy controls for plant-level TFP shocks during the estimation procedure. However, the

coefficient of capital is not identified in this step because TFP shocks are controlled for by in-

3See Van Biesebroeck (2007).
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cluding a polynomial of the proxy and capital. Hence the need for a second step. Once variable

input elasticities are obtained, the algorithm exploits a Markovian assumption about the plant-

level productivity process to extract the unanticipated TFP shocks. Since capital is assumed

to be predetermined4, its value is orthogonal to the innovation in TFP. The algorithm exploits

this condition to identify the elasticity of capital using lagged capital values as instrumental

variables.5

Proxy methods use polynomial series at two points of the estimation algorithm. First, a

polynomial of the state variables and the proxy is included in the first step to approximate

unobserved productivity. Second, to determine the expected component of TFP, its estimated

value is projected on a polynomial expansion of its past values6. While polynomial series provide

flexible approximations, the higher order terms are also likely to exacerbate measurement error

present in microdata.

OP propose using investment to proxy for unobserved productivity. There is ample evidence

that plant-level investment is lumpy.7 Lumpiness means bursts of investment activity are

followed by inactive periods where observed net investment is zero. It is a consequence of the

presence of non-convexities in capital adjustment. Unfortunately, zero investment observations

are not informative for OP and are dropped, which may negatively affect efficiency if truncation

significantly decreases sample size. In addition, OP works only if we observe entrants and

exiters.8 Therefore, OP cannot be used in industries without data on entrants and exiters. As

we will see in section 4, there may be a significant number of industries where these issues

become relevant.

In order to eliminate the efficiency loss caused by dropping zero-investment observations,

Levinsohn and Petrin (2003) (LP hereafter) advocate the use of intermediate input cost or

electricity instead of investment. LP discuss the conditions which must hold if the intermediate

input is to be used as a proxy. The basis of the argument is that if intermediate inputs are

less costly to adjust than investment, they are likely to respond more to productivity. This is

especially relevant in the presence of non-convexities in capital adjustment. LP also highlight

that firms almost always report positive use of these variables in their data implying truncation

4Time-to-build lags may justify this assumption.
5We note that available Stata routines were programmed to use different numerical techniques to estimate

βk. OP’s Stata commands are based on nonlinear least squares (NL). LP’s implementation offers three options
to minimize the GMM criterion function. The default setting assumes value added is the dependent variable
and uses the so-called golden section search algorithm (GSS). If the dependent variable is revenue, nonlinear
least squares (NL) or grid search (GR) can be requested. Both NL and GSS guarantee to find optimum points
if the objective function is unimodal. If the criterion function has multiple modes, GR can be used to confirm
global optimum. However, GR is more demanding computationally, especially if we are to estimate elasticities
for many industries.

6This exploits the assumption about plant-level TFP’s Markovian property.
7See for example, Cooper and Haltiwanger (2006).
8Recall, entry and exit was important in the telecommunications industry and therefore have a central role

in the OP model designed to analyze that industry.
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due to zero proxy values is less severe.9

As mentioned above, OP’s effort to control for selection was motivated by the fact that

plants’ entry and exit decisions depend on productivity in their model. By contrast, LP do not

focus on selection issues because their panel is unbalanced and is representative of the Chilean

Manufacturing sector. As we will discuss in more detail in section 3, our data is subject to some

degree of non-randomness because larger establishments are more likely to be sampled in the

survey data we use. If size and productivity are correlated, OP’s arguments about selection10

become relevant and we may expect that controlling for it has an effect on our results.

The identifying assumptions regarding the timing of plants’ input decisions have been crit-

icized by Ackerberg, Caves, and Frazer (2006) (ACF, not included in our analysis). ACF

highlight that the optimal labor allocation is also a deterministic function of TFP and there-

fore the elasticity of labor is not identified in the first step. They propose a hybrid approach

and offer structural assumptions on the timing of decisions concerning firms’ input choices.

They approach the identification problem by applying a two step procedure that does not try

to identify any of elasticities in the first stage. Wooldridge (2009) proposed to circumvent the

identification problem by estimating all the coefficients in a single GMM step and using earlier

outcomes of both capital and variable inputs as instrumental variables. His approach is advan-

tageous because it is robust to the ACF critique and because the efficiency loss due to two-step

estimation is eliminated.11

For all the proxy methods, if estimating the revenue function in the presence of endogenous

plant-level prices, the estimated coefficients are not factor elastiticities of the production func-

tion but rather of the revenue function. Extracting the production function elasticities requires

additional structure as in De Loecker (2011). Using the assumptions of the latter paper implies

that the revenue function elasticities are under-estimates of the the production function elastic-

ities. Likewise, estimated returns to scale of the revenue function under-estimate the returns to

scale of the production function. As we compare estimates across methods, these issues should

at least be kept in the background.

3 Data

3.1 Source data

Our industry-level data, including deflators, capital rental prices and depreciation rates, are

taken from the NBER-CES Manufacturing database12, the Bureau of Labor Statistics and the

9Their 8-year panel contains a census of Chilean manufacturing plants with at least 10 employees.
10See section 4 for more details.
11Two step estimators are inefficient because the correlations in the errors across equations and possible

heteroskedasticity are ignored.
12The NBER-CES Manufacturing Industry database is available at http://www.nber.org/nberces. An

earlier version is documented in Bartelsman and Gray (1996).
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Bureau of Economic Analysis. We use establishment-level information from the Annual Survey

of Manufactures (ASM), Census of Manufactures (CM) and the Longitudinal Business Database

(LBD).

The CM collects data every five years in years ending in ’2’ and ’7’ for roughly 180,000 -

240,000 manufacturing plants. Establishments with less the five employees are not sent forms.

Payroll and employment data for these very small plants are imputed using administrative

records.13 The ASM surveys 50,000-70,000 manufacturing establishments in non-Census years

and is part of the CM in Census years. It is a rotating panel re-defined two years after the latest

Census. The LBD contains the universe of non-agricultural business establishments with paid

employees and is based on both survey information and administrative records. Appendix A in

Foster, Grim, and Haltiwanger (2014) (FGH, hereafter) describes these data in more detail. Our

initial dataset includes approximately 3.5 million plant-year observations between 1972-2010.

We use the ASM and CM to construct plant-level measures of inputs and output. Output

is measured as a deflated value of total value of shipments, corrected for the change in finished

goods and work-in-process inventories. Labor input (total hours worked) is constructed as the

product of production worker hours and the ratio of salaries and wages to production worker

wages. Our intermediate input variable is given by the deflated sum of cost of parts, contracted

work and goods resold. The energy input consists of deflated electricity and fuel costs. We create

establishment-level capital stock measures using a version of the Perpetual Inventory Method,

which calculates current capital as a sum of the depreciated stock and current investment. We

set plants’ initial capital stock to a deflated book value taken from the ASM and CM. More

details on the construction of input and output measures can be found in appendix B of FGH.

The LBD serves two purposes in our analysis. First, high-quality longitudinal identifiers

help us determine the accurate time of establishments’ exit which is a necessary indicator to

estimate the relationship between productivity, growth and exit. Second, the LBD acts as a

universe file; we use employment and establishment age data from the LBD to construct inverse

propensity score weights that control for non-randomness in our sample.14

3.2 Analysis samples

The analyses in this paper exploit three different samples. For our analyses of distributions

of elasticities, TFP dispersion and plant growth and survival, we look simultaneously at two

samples, which we refer to as the 10 and 50 largest industry samples. These samples need to

fulfill two potentially contradicting requirements. First, the number of plant-year observations

within each 4-digit industry should be large enough so that elasticities can be estimated by

13We drop administrative records cases.
14Employment data is useful to determine the probability of size-based selection into the ASM and CM.

Establishment age is an important determinant of the probability that the TFP of an establishment is calculated
from imputed data.
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all reviewed methods. Second, industries should be defined narrowly enough so that we can

plausibly assume elasticities are constant among establishments.

Changes in industry classification systems over time make defining these samples more

complicated than simply choosing the 10 and 50 industries with the largest number of plant-

year observations.15 Since we estimate elasticities on an industry-by-industry basis, changes in

the classification system entail spurious breaks in plants’ time series and a drop in sample size.

In the first part of the analysis we address these issues by selecting multiple sets of 4-digit SIC

industries which were not affected by changes or which were mapped one-to-one into another

industry.16 There are 292 such industries of which we selected the first 10 and 50 industries

with the largest number of observations.

We create a third dataset to test whether the implications of the decomposition of aggregate

productivity growth described in Petrin, White, and Reiter (2011) (PWR hereafter) are sensitive

to the way TFP is estimated. Since we are attempting in part to replicate the results in PWR,

we create a roughly comparable dataset. PWR’s data spans the period between 1976-1996 so

the 1987 change in SIC classification is relevant. To correct for these breaks, we follow the

first step of PWR’s procedure and assign the SIC code to any establishment observed between

1987-1996. However, we deviate from their approach for cases only observed prior to 1987. If

a plant is not assigned an industry code in the previous step, we apply a random assignment

procedure based on the share of shipments mapped from the 1972 to 1987 SIC industry code.17

4 Distributions of elasticities

In this section, we attempt to gauge the effect of the estimation method on the basic charac-

teristics of elasticity distributions.18 We start by discussing differences in the distribution of

capital elasticities. Next, we check whether the ranking of industries by the ratio of the esti-

mated capital elasticity to the estimated labor elasticity varies with estimator choice. We then

examine the relationship between sample size and the plausibility of elasticities. We conclude

the section by looking at the implications of estimator choice on returns-to-scale.

Figure 1(a) plots the densities of the distribution of capital elasticities in the 50 most

populous industries and table 2 shows the corresponding descriptive statistics. There are non-

trivial differences in the mean, dispersion and general shape of the distributions. Most notably,

LPVA yields significantly larger elasticities. This is because, by construction, the elasticity of

value added with respect to capital and labor is inherently larger than the elasticity of gross

15Changes in SIC in 1987, and the change to NAICS in 1997.
16The NBER-CES 1972 SIC to 1987 SIC and 1987 SIC to 1997 NAICS concordances list list how much of

industry i’s total value of shipments should be mapped into industry j.
17See appendix 8.2 for more information on our random assignment procedure.
18Since population distributions of elasticities are unknown, the differences among empirical distributions

alone do not tell much about the magnitude of any bias. However, in light of what we know about the way these
methods address the bias in OLS estimates, the differences may give us clues to whether or not they correct it
in the right direction.
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output.19 We include the LPVA results in our analysis since it is a commonly used method, but

appropriate caution should be used in comparing the elasticities from gross output and value

added production functions.

Note that growth accounting-based elasticities are calculated using the cost shares of input

factors. If the economic assumptions underlying the method are satisfied, the resulting coeffi-

cients are valid measures of the elasticity of output with respect to inputs. There is no need

to estimate the coefficients in the econometric sense. Therefore, the elasticities under growth

accounting are free of the biases that may be present in elasticites estimated using statistical

methods.20 This fact implies that, ceteris paribus, we should expect to see differences between

the elasticity distributions under growth accounting and other methods.

The direction of the bias in OLS-based βk-estimates is determined by several factors. First,

since input demand functions are increasing in productivity we may expect OLS estimates to

be biased upward.21 If this is important in our data and proxy methods correct for it, then

we should see proxy-based β̂k distributions to the left of OLS. The distributions in figure 1(a)

suggest that only LPNL and LPGR are more likely to yield lower β̂k than OLS. Does the relative

position of these distributions indicate the expected bias-correction? The answer is no because

the direction of the bias depends on additional factors. For one, there may be an offsetting price

effect bias. In addition, LP show that positive correlation between capital and labor may cause

these estimates to be biased downward.22 This implies that the β̂k distribution may emerge

to the left of OLS not because LP corrects a positive bias but because it includes a downward

bias. A further complicating factor is selection. OP argue that since plants’ profit and value

functions are increasing in capital, larger establishments anticipate larger future returns and

therefore can operate at lower current productivity levels, which also entails a negative bias in

OLS. If OP corrects for such selection-induced negative bias, and this effect is important in our

data, then the OP-based β̂k distribution should be to right of OLS.

19See section 3 in Petrin and Levinsohn (2012) for more details.
20Other types of specification error may be present, see section 2 for details.
21But as discussed above there is a potential offsetting negative bias from neglecting endogeneous plant-level

prices.
22LP illustrate the effect of the covariance between inputs in the two-input case. If labor responds to produc-

tivity and capital and labor are uncorrelated, the bias in β̂l is positive and β̂k remains unbiased. In the more
likely case when capital and labor are correlated, both β̂l and β̂k may be biased downward. Further, if labor is
more correlated to productivity than capital, the bias in β̂l is positive while it is negative for β̂k. They point
out that the direction of the bias in OLS estimates is more difficult to determine with more variable inputs.
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Figure 1: Between-industry distributions of capital and labor elasticites. TFP estimators de-
scribed in table 1, sample is 50 largest industries.
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Table 2: Descriptive statistics of the between-industry distribution of β̂K under TFP estimator
variants.

N Mean Median IQR
50 largest industries

OLS 48 .13 .10 .10
OP 49 .19 .14 .10

LPVA 50 .34 .33 .28
LPNL 50 .11 .04 .18
LPGR 50 .09 .06 .09

LPGSS 50 .18 .13 .15
WLPE 47 .16 .15 .11
WLPM 33 .16 .12 .14

GA 50 .08 .07 .05
10 largest industries

OLS 10 .14 .12 .15
OP 10 .21 .15 .27

LPVA 10 .37 .33 .21
LPNL 10 .22 .09 .27
LPGR 10 .11 .06 .09

LPGSS 10 .17 .10 .14
WLPE 10 .17 .14 .07
WLPM 9 .15 .09 .14

GA 10 .09 .10 .06

See notes to table 1 for method definitions. 50 largest: 4-digit industries which were mapped 1-to-1 between
classification systems. Industries were ordered by the within-industry number of plant-year observations.

In practice, OP tends to result in higher β̂k than OLS suggesting that controlling for

selection-induced bias may be important. As for other proxy methods, WLPE and WLPM

are more likely to yield extreme β̂k even though the typical elasticities under these methods

are similar to those under OP. This finding indicates the choice of the estimation algorithm -

non-parametric two-step estimator versus efficient GMM - also affects the level of β̂k. These

results tell us that not only the choice of the proxy and addressing selection have important

consequences but the choice of the estimation algorithm also affect the level of capital elastici-

ties. Similar conclusions hold for the second moments of the β̂k distributions. The interquartile

range measures in the last column of table 2 suggest that differences in the dispersion of these

distributions are also non-trivial. For instance, although the means of GA and LPGR are very

close (.08 and .09 in the 50 largest industries) the difference in dispersion is almost twofold (.05

and .09). Finally, the elasticities of variable inputs show stronger clustering, especially β̂l (figure

1(b)). This is partly explained by the fact that proxy methods estimate βl in an OLS step. The

main conclusions about β̂e and β̂m are the same, (figure A1): there are numerical differences in

these distributions but they generally look more similar across estimation methods than capital

elasticity distributions.

Next, we explore whether the choice of estimator affects the ranking of industries by β̂k/β̂l.
23

23Normalizing is useful because our prior on capital intensity may be stronger than on βL or βK .
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If the estimation method is not important then industries’ rank should not vary with the

estimation method. Our results suggest the opposite. Comparing the rankings across estimation

methods we find there is a positive probability that different estimators imply different industry

rankings (see table A2 for details).24

The distributions discussed above are based on elasticities from the 50 most populous 4-digit

industries. While 50 observations seem sufficient to estimate elasticity distributions, including

all 50 of them also means including estimates from industries with varying sample size. This

is important because the elasticities of smaller industries are more likely to be estimated less

efficiently.25

What is the consequence of such variation? Are some methods more likely to yield nonpos-

itive β̂-s than others? In order to answer these questions, we re-estimate the above elasticity

distributions using all 459 industries and count the cases with positive, zero, and negative elas-

ticities for every method.26 All methods result in positive β̂l and β̂m in most industries (table

A4, columns 6 and 9), while negative βk and βe estimates are generally more likely to occur

(smaller percentages in columns 3 and 12). There are differences across estimation methods, as

well. For example, LPGR always delivers positive β̂k, while using other methods yield negative

β̂k with a positive probability.27 OP’s algorithm stops in 18% of the industries (columns 2, 5,

8 and 11) due to the lack of information on exiters and LPNL yields zero β̂k in 16% of the

industries (column 2). We obtain negative β̂e-s with especially high probability when using

WLPE (column 10).

Can the variation in sample size explain these patterns? Comparing the average number

of plant-year observations in the problematic group (negative, zero or non-estimable) to that

of the positive group suggest the answer is at least partially ’yes’. Problematic industries

are generally smaller, their average size is between 26-70% of the positive group (see table

A5 for more details). For example, in the industries where OP stops the average number of

observations is less than half of that in the positive group. However, we find two distinct cases

where erratic estimates are unlikely to be related to sample size. First, the zero-β̂k group for

LPNL is of very similar size as the positive group (second entry in column 2 of table A5). It is

likely that LPNL’s gradient-based numerical procedure stops at a local optimum point at zero.

The second exception is the negative β̂e group for WLPE where average sample size is similar

24We compare rankings by quintiles. If an industry is belongs to the same quintile under different estimators,
then we can say results are generally not sensitive to the choice of estimation method. Table A2 describes the
changes in distributions as we move from LPGR to OP, GA and WLPE. The first entry in the table says that
half of the industries in the lowest quintile under LPGR are also classified in the lowest quintile under OP. If
two methods imply similar industry rankings, the (off-)diagonal elements of the corresponding matrix should
be close to one (zero). The table shows this is not the case.

25Table A3 sorts industries by sample size as measured by the number of plant-year observations. The first
entry in column 3 says the largest industry has about 39,000 plant-year observations. The sample size drops by
more than 50% in the 10th, and by 80% in the 50th industry.

26The sample for this exercise is described in more detail at the end of section 3.2.
27This is because LPGR searches over a pre-defined grid between .01 and .99.
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to that in the positive group (column 7 of table A5). These results suggest outliers may arise

more frequently from some methods than others.

In practice, what should be done with negative elasticity estimates that emerge from some

methods? One approach would be to exclude industries with negative elasticity estimates since

such estimates are implausible but that would raise issues of selection bias. An alternative

approach we explore below is to make stronger assumptions of homogeneity - for example

assuming plants within 3-digit SIC industries share the same factor elasticities. We show later

that this approach leads to more plausible elasticity estimates and implied firm dynamics in

many cases.

In the last exercise of this section we look at the implications of estimation method choice

for returns-to-scale (RTS). For reasons outlined in section 1, we measure RTS as the sum of

estimated revenue elasticities. It is a useful metric because it concisely captures the various

effects estimation methods may have on elasticities.28 For purposes of exposition, we choose

the interval [.7, 1.3] to illustrate which methods yield more observations in this range. This

range is arbitrary but is consistent with profit shares between −25% and +25%, which does

not seem too restrictive.29 Our results can be summarized as follows (see table A6 for more

details). First, all methods except for LPVA yield more than 75 percent of the industries with

RTS in the specified range. There is, however, considerable variation across methods with only

the LPGR method yielding more than 90 percent of the industries within this range. Second,

the proxy methods are more likely to differ from 1 on the low side rather than on the high side.

This follows from the entries in columns 5-7 of Panel B being greater than those in Panel A,

and more so for LPVA). Estimated RTS more likely being below 1 using the proxy methods is

consistent with the predicted relationship between revenue and production function elasticities.

5 Implications of the differences in elasticity distributions

In the last section, we showed the choice of estimation method matters for answering questions

that rely heavily on elasticity estimates. Here we investigate whether or not such differences

in elasticities matter for core findings in the productivity literature. Specifically, we examine:

TFP dispersion; the relationship between productivity, growth and survival; and structural

decompositions of aggregate productivity growth (APG).

5.1 TFP dispersion

Does the choice of estimator affect the second moment of the within-industry TFP distribution?

The answer is yes and no. The interquartile range (IQR) and standard deviation, averaged over

industries and time, suggest that differences in dispersion are nontrivial (table 3, more details

28Note that growth accounting-based elasticities are calculated assumping constant returns to scale, and
therefore RTS = 1 by construction. For this reason, GA-based results are not shown in these calculations.

29It can be shown that RTS can be written as a function of the revenue share of profits.
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in table A7). Ignoring LPVA because it is intrinsically different from the other methods, the

average IQR of the log-TFP distribution varies between .24 (GA) and .4 (WLPM) across meth-

ods. These values mean the plant at the 75th percentile generates approximately 27-49% more

revenue with the same amount of inputs than the plant at the 25th percentile. The differences

suggest one must exercise caution when using results for economic analysis where small changes

in magnitudes may make a big difference. The differences notwithstanding, these results also

confirm that productivity dispersion is invariably large no matter how we measure it. TFP

dispersion varies also with industries.30 Taking GA-based TFP as an example, productivity

dispersion in the industry one standard deviation above (below) the sample mean is .35 (.13)

indicating that the effect of industry differences are at least as important as estimation meth-

ods. Additionally, table 4 shows the productivity rank of plants within industries is impacted

by estimation methods. Both the Pearson and Spearman rank correlations are substantially

smaller than 1 implying that where plants sit in the productivity distribution is sensitive to

choice of estimation method. The WLPM method yields especially low correlations with other

methods.

Table 3: Descriptive statistics of TFP distributions. TFP estimators described in table 1,
sample is 50 largest industries.

N (1000) IQR SD
50 largest industries

OLS 455 0.26 0.26
OP 380 0.32 0.38

LPVA 458 0.68 0.57
LPNL 457 0.30 0.38
LPGR 457 0.29 0.31

LPGSS 455 0.27 0.27
WLPE 457 0.34 0.36
WLPM 457 0.40 1.88

GA 433 0.24 0.22
10 largest industries

OLS 185 0.22 0.20
OP 152 0.31 0.39

LPVA 191 0.65 0.52
LPNL 188 0.30 0.37
LPGR 188 0.29 0.28

LPGSS 188 0.27 0.25
WLPE 187 0.31 0.28
WLPM 188 0.33 0.35

GA 177 0.23 0.21

See notes to table 1 for method descriptions. Statistics are calculated using the deviation of plant-level
log-TFP from industry- and time-specific means. All results shown were calculated using non-outlier
observations only (pre-, post-estimation). A version including pre-estimation outlier observations can be found
in the appendix (table A7), results barely change.

30Results not shown in this paper indicate the cross-method correlation between within-industry dispersion
and its dispersion across industries is positive. This means that if an estimation method implies greater disper-
sion within industries then between-industry differences in dispersion are also greater.
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Table 4: Correlations among within-industry TFP distributions, sample is 50 largest industries.
OLS OP LPVA LPNL LPGR LPGSS WLPE WLPM GA

Pearson
OLS 1
OP 0.51 1

LPVA 0.69 0.43 1
LPNL 0.64 0.33 0.68 1
LPGR 0.82 0.43 0.8 0.84 1

LPGSS 0.81 0.54 0.76 0.73 0.88 1
WLPE 0.51 0.46 0.49 0.49 0.52 0.63 1
WLPM 0.02 0.02 -0.16 -0.12 -0.15 -0.05 0.15 1

GA 0.79 0.46 0.57 0.56 0.68 0.71 0.51 0.09 1
Spearman

OLS 1
OP 0.68 1

LPVA 0.79 0.62 1
LPNL 0.78 0.56 0.73 1
LPGR 0.87 0.61 0.81 0.88 1

LPGSS 0.82 0.69 0.76 0.8 0.87 1
WLPE 0.59 0.61 0.55 0.52 0.56 0.69 1
WLPM 0.35 0.36 0.19 0.23 0.26 0.38 0.49 1

GA 0.81 0.63 0.61 0.66 0.7 0.73 0.6 0.43 1

Correlations reflect distributional differences discussed above: proxy methods show greater similarity, while
WLPM seems more different. Rank correlations confirm. Including pre-estimation outliers barely changes
correlations (see table A8).

So what determines within-industry TFP dispersion from a measurement perspective? Does

it depend positively on the estimated level of elasticities? Are elasticities more important than

input-output characteristics? Equation (1) implies within-industry TFP dispersion depends

on elasticities (βj), output and factor variances (σq, σxj) and the covariances between them

(σqxj , σxjxi).
31 In particular, the relationship between βj and TFP dispersion depends on σqxj ,

σ2
xj

, σxjxi , and the βj.
32 However, analytical expressions become difficult to evaluate if one

intends to assess the relative importance of elasticities and input-output characteristics for two

reasons. First, βj and the previously mentioned covariances are endogenous because those

covariances are exploited to estimate the βj. Second, the expressions are not informative about

the effect of empirical issues such as measurement error. We carried out counterfactual exercises

in order to assess the relative importance of these factors (see table A11 for more details).

The results suggest that measured productivity dispersion is increasing in both β̂k and σq.

Specifically, TFP dispersion approximately doubles after a one-standard-deviation increase in

31Applying the definition of the variance to log TFP we can write σ2
ω = var[q −

∑
j βjxj ] = σ2

q +
∑
j β

2
jσ

2
xj

- 2
∑
j βjσqxj

+ 2
∑
j

∑
i 6=j βjβiσxjxi

.
32The partial derivatives of σ2

ω with respect to σq and βj are given by
∂σ2

ω

∂σq
= 2σq and

∂σ2
ω

∂βj
= 2βjσ

2
xj

-

2σqxj + 2
∑
i 6=j βiσxjxi .

∂σ2
ω

∂σq
= 2σq. The former expression implies we may expect TFP dispersion to be

positively associated with output dispersion. The condition for the sign of
∂σ2

ω

∂βj
is given by:

∂σ2
ω

∂βj
Q 0 iff. βj Q

σqxj
−
∑

i6=j βiσxjxi

σ2
xj

, which shows the relationship depends on σqxj
, σ2

xj
, the βiσxjxi

terms and βj itself.
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β̂k. A similar change can also be achieved by increasing σq. However, the required increase in

σq is relatively large33, which indicates that typical changes in β̂k may have larger effects on

TFP dispersion than typical changes in σq.

In closing this section, we note that the available evidence (see, e.g., Foster, Haltiwanger,

and Syverson (2008)) is that revenue productivity dispersion is lower than physical productivity

dispersion. This reflects the inverse correlation between productivity and prices. But Foster,

Haltiwanger, and Syverson (2008) also highlight that demand shocks exhibit high dispersion

relative to physical productivity dispersion. As such, dispersion in revenue productivity likely

reflects both dispersion in physical productivity and in demand shocks but this is tempered

by the inverse correlation between prices and productivity. Many other factors are potentially

important sources of revenue productivity dispersion over and above physical productivity dis-

persion. Hsieh and Klenow (2009) highlight the role of distortions in generating dispersion in

revenue productivity. Others highlight the role of frictions such as overhead factor costs (see,

e.g., Bartelsman, Haltiwanger, and Scarpetta (2013)) and adjustment frictions (see, e.g., Asker,

Collard-Wexler, and De Loecker (2014)).

5.2 Growth and survival

In this section, we explore whether one of the most important predictions from standard models

of firm dynamics is robust to the way TFP is estimated. The most influential theories of firm

dynamics are described in the classic models by Jovanovic (1982), Hopenhayn (1992), Ericson

and Pakes (1995). These models all share an important common ingredient: firms decide on exit

or growth upon learning their ex ante uncertain productivity level. That is, firm dynamics are

determined endogenously and firms’ decisions are based on a firm-specific productivity shock.

A common prediction of these models is that more productive firms are more likely to grow and

survive than their less productive competitors.34 Empirical work on the connection between

growth and productivity also relies on the results of these models. A study by Foster, Grim,

33The necessary increase in σq is unusually large in the sense that it amounts to approximately 3.5-standard-
deviations.

34These models also have implications for the behavior of aggregate variables. At first sight, they seem different
in the way they look at the relationship between microeconomic and aggregate behavior. Hopenhayn (1992)
studies competitive equilibria with an infinite number of small firms, where equilibrium conditions are a result
of asymptotic approximations and assuming a constant industry state. In contrast, Ericson and Pakes (1995)
analyze a small (finite) number of firms because calculating equilibrium becomes computationally challenging
when this number is infinite. As shown in Weintraub, Benkard, and Roy (2011), these seemingly different
frameworks are asymptotically equivalent if the firm size distribution satisfies a certain light-tail condition. If
this condition is satisfied, i.e. firms in the right tail of the distribution are not large enough to exert influence
on the aggregate industry state, then firms only have to take the aggregate industry state into account and we
are free to assume a constant industry state. Although other literatures offer important conclusions about why
distributional characteristics matter for aggregate dynamics (see, for example, Caballero, Engel, and Haltiwanger
(1997) on nonlinear labor adjustment, or Gabaix (2011) on the granular origins of aggregate fluctuations), these
studies offer consistent analytical frameworks to understand the role of distributional characteristics using
canonical models of firm dynamics.
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and Haltiwanger (2014) (FGH hereafter) is a recent example of the research in this context.35

A comprehensive survey of the literature from the past decade can be found in Syverson (2011).

We now turn to our own empirical analysis of the relationship between productivity, growth

and survival. Our discussion is centered on whether the most commonly found patterns hold

across TFP estimators. As mentioned above, canonical models of firm dynamics describe growth

and survival as functions of idiosyncratic productivity shocks. The main prediction from these

models is that plants with positive shocks expand while plants with negative shocks shrink

and/or exit. We build upon the existing literature concerning the properties of productivity

dynamics and test the robustness of these predictions using simple regression models linking

a set of outcomes to productivity and plant-level controls. We follow FGH when considering

the relationship between productivity and growth of all establishments, exiters and incumbents

separately. This approach is justified by theoretical and empirical considerations. First, the

basic models of firm dynamics themselves analyze these margins separately. Second, earlier

empirical research found that there are differences in the productivity levels of continuers,

entrants and exiters.36

Equation (2) describes our empirical specification, analogous to that in FGH:

Yi,t+1 = γ1θstate + γ2θyear + γ3θsize + γ4ωit + γ5us,t+1 + εi,t+1, (2)

where Yi,t+1 is the outcome of interest such as growth between t and t + 1, ω and u denote a

plant-level measure of TFP and state-level measure of change in unemployment from t to t+ 1.

The θ-s denote state-, year- and establishment size-class effects and i, t and s index plants,

time periods and states, respectively.37 It is important to note that this specification relates

growth and survival outcomes from t to t+ 1 based on productivity in period t.38

Table 5 shows γ̂4 from equation (2) using our sample of the 50 largest industries. Each row

lists the effect of productivity on the outcome shown in the first column. The three outcomes are:

employment growth among all establishments, exit, and employment growth among continuers.

The columns correspond to the TFP estimator variants. For example, the first entry in column

1 shows a plant is estimated to grow .16% faster if it is 1% more productive when we measure

TFP as an OLS residual. All other entries are analogous. Point estimates suggest there are non-

trivial differences in the measured effect of TFP. For example, the first entry in column 2 shows

35They investigate the relationship between productivity and reallocation in their paper by associating job
creation and destruction with reallocation. We use the term growth and survival instead of reallocation but
essentially mean the same thing.

36See, for example, Baily, Hulten, and Campbell (1992), Foster, Haltiwanger, and Krizan (2001), Foster,
Haltiwanger, and Krizan (2006).

37This specification differs from the one in FGH in that age effects, the Great Recession dummy and its
interactions are omitted for simplicity.

38We follow FGH by using the integrated LBD with the ASM data for this analysis. The ASM data provides
the distribution of plant-level productivity in any given year and the LBD provides the growth and survival
outcomes for the full set of plants in the ASM in that year between t and t+1.
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using OP-based TFP among all establishments implies the growth-effect of productivity is less

than half of that of OLS-based TFP. The difference between the results of these two estimators

encompasses the variation in coefficients, ignoring for now WLPE and WLPM. Despite the non-

negligible differences, our estimates support the earlier finding that more productive plants grow

significantly faster than their less productive competitors. The estimates in row 3 show that exit

is significantly more likely for low-productivity establishments compared to high-productivity

establishments.

Table 5: The effect of TFP on outcomes, sample is 50 largest industries. Outcomes are:
employment growth among all establishments (row 1), exit (row 3), employment growth among
continuers (row 5).

OLS OP LPVA LPNL LPGR LPGSS WLPE WLPM GA

4-digit elasticities

overall growth 0.163*** 0.072*** 0.09*** 0.089*** 0.139*** 0.129*** 0.06*** -0.006*** 0.190***
(0.015) (0.012) (0.006) (0.008) (0.01) (0.011) (0.007) (0.002) (0.014)

exit -0.05*** -0.018*** -0.028*** -0.035*** -0.046*** -0.047*** -0.02*** 0.002** -0.064***
(0.006) (0.005) (0.003) (0.004) (0.004) (0.005) (0.004) (0.001) (0.006)

conditional growth 0.068*** 0.039*** 0.037*** 0.022*** 0.053*** 0.04*** 0.022*** -0.003*** 0.067***
(0.007) (0.004) (0.005) (0.005) (0.006) (0.006) (0.006) (0.001) (0.006)

3-digit elasticities

overall growth 0.19*** 0.155*** 0.101*** 0.126*** 0.152*** 0.154*** 0.1*** -0.017*** 0.183***
(0.015) (0.015) (0.007) (0.015) (0.012) (0.016) (0.01) (0.006) (0.014)

exit -0.066*** -0.048*** -0.03*** -0.036*** -0.044*** -0.054*** -0.03*** 0.005** -0.062***
(0.007) (0.006) (0.003) (0.005) (0.006) (0.006) (0.004) (0.002) (0.006)

conditional growth 0.061*** 0.065*** 0.045*** 0.06*** 0.071*** 0.05*** 0.043*** -0.008*** 0.064***
(0.006) (0.007) (0.005) (0.007) (0.008) (0.007) (0.007) (0.003) (0.006)

3-digit elasticities, industries with negative or non-estimable elasticities dropped

overall growth 0.197*** 0.153*** 0.101*** 0.123*** 0.164*** 0.152*** 0.104*** 0.076*** 0.183***
(0.017) (0.015) (0.007) (0.015) (0.013) (0.016) (0.013) (0.018) (0.014)

exit -0.069*** -0.044*** -0.03*** -0.033*** -0.048*** -0.05*** -0.036*** -0.028*** -0.062***
(0.007) (0.005) (0.003) (0.006) (0.005) (0.006) (0.005) (0.006) (0.006)

conditional growth 0.064*** 0.072*** 0.045*** 0.063*** 0.074*** 0.056*** 0.035*** 0.023** 0.064***
(0.008) (0.009) (0.005) (0.011) (0.009) (0.009) (0.009) (0.011) (0.006)

Estimates are taken from regressions (equation (2)) of three outcomes (employment growth among all establishments, exit, and
employment growth among continuers) on a plant-level measure of TFP (columns), a state-level measure of unemployment growth, year-,
sizeclass- and state-fixed effects. Standard errors (in parentheses) are clustered at the state level. All regressions are based on trimmed
TFP distributions. Sample size information can be found in table A12. Results for two additional industry sets can be found in tables
A13-A14.

The results in the middle and lower panels highlight the sensitivity of some methods to

changes in sample definition. The middle panel of the table shows results when elasticities

are estimated pooling data from all 4-digit industries within the same 3-digit industry. In

theoretical terms, pooling amounts to maintaining stricter assumptions about the homogeneity

of elasticities. But, as we will demonstrate, it may be necessary in order to use more data

for estimation. Comparing estimates between the top and middle panels suggests that some

methods are sensitive to such changes. For instance, the absolute values of OP-based coefficients

of all three regressions increase. This suggests pooling data may be beneficial because if there is

no statistical association between two variables, their partial correlation coefficient would tend

towards zero. Estimates for other methods change somewhat but most of them remain in a

comparable range.

WLPM yields the counter-intuitive results that more productive plants are less likely to
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grow and more likely to exit. Increasing sample size by pooling data does not reverse this

result. However, if we drop industries with negative elasticities (see the bottom panel), the

signs appear to be more in line with other results. In addition, the absolute values of point

estimates also increase and/or standard errors decrease, despite the decrease in sample size.39

These findings are intuitive. The OP example highlights a case where there is better chance

of estimating plausible elasticities by pooling data from neighboring industries. In such cases,

sacrificing heterogeneity and pooling data amounts to replacing less informative TFP observa-

tions with more informative ones. WLPM is an example where only pooling and also dropping

3-digit implausibles help exclude observations which are less informative. We carried out similar

exercises using other samples from our default industry set. Without discussing them in detail,

we note that a combination of using 3-digit elasticities and dropping industries with implausible

elasticities yields expected growth and exit coefficients under all estimation methods in all the

samples we considered.40

To sum up, our estimates show positive (negative) and significant association between TFP

and growth (exit), irrespective of how TFP is estimated. Some methods yield implausible (neg-

ative) factor elasticities that weaken the estimated relationship between productivity, growth

and survival. If we use larger sample sizes from broader industry definitions to overcome im-

plausible elasticity estimates we find results for the relationship between productivity, growth

and survival that line up better across methods.

Finally, we return to the consequences of using revenue productivity as opposed to phys-

ical productivity in these exercises. Foster, Haltiwanger, and Syverson (2008) find that the

marginal response of exit to revenue productivity is actually larger than that for physical pro-

ductivity. They show that this is because revenue productivity includes both the effects of

physical productivity and demand effects. We anticipate that similar remarks likely hold in

this context.

5.3 Structural decompositions of aggregate productivity growth

In this section, we examine whether choice of method affects structural decompositions of

aggregate productivity growth. Productivity decompositions are identities that parse aggregate

productivity growth (APG) into components that are assumed to capture different sources of

growth. Numerous papers explore how APG is tied to the behavior of microeconomic agents;

some examples are Olley and Pakes (1996), Baily, Bartelsman, and Haltiwanger (2001), Petrin,

White, and Reiter (2011) (PWR hereafter), Petrin and Levinsohn (2012). These decompositions

are different in many respects, but there is a common thread: they are all based on the general

39More information about the sample size can be found in table A12.
40See tables A13-A14 for more details. We also note there is some sensitivity to outliers (pre- and post-

estimation), but this variation does not invalidate the main point. The latter results are not included in the
paper for brevity.
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idea that APG sources either from the productivity gains within plants or the more efficient

allocation of factor inputs between plants.

We use a recent decomposition proposed by PWR primarily because the role of factor

elasticities is made explicit in their model. They show that the contribution to APG by the

reallocation of each factor input is a weighted average of input growth rates where the weights

are determined by the difference between the marginal revenue product of inputs and their

marginal cost. The elasticities affect this difference, and therefore reallocation, via the marginal

products of inputs. Another nice feature of PWR’s approach is that the measure of APG itself

does not depend on the way TFP is estimated. This is because APG is defined as the growth

in final demand in excess of capital and labor growth.41

Our main results are shown in table 6. The first four lines contain the elements of PWR’s

APG definition, the rest of the table summarizes the details of decomposing this growth into

contributions by reallocation, within-plant productivity growth and fixed costs. All the entries

in the table are calculated as averages of the yearly contributions between 1977-1996.

Since the definition of APG does not depend on elasticities, lines 1-4 are identical across

our estimation methods (columns 1-10). Our annual average growth rate for labor (-.3%) is

similar to that in PWR (-.2%, last column42) but our value added and capital growth rates are

shown to be somewhat smaller. These differences are due partly to measurement differences

and partly to an issue with PWR’s source data for implicit deflators.43 We note our value

added growth growth measure is closer to the PWR measure if we ignore the first years of ASM

panels (shown in the lower panel of table 6). Calculating aggregate growth in these years is

problematic because we do not observe growth rates for smaller establishments which were not

included in the previous ASM panel. As a consequence, average growth rates in the first year

of an ASM panel will reflect the growth rate of the largest plants only.

Table 6, lines 5-11 describe the decomposition of APG into reallocation and within-plant

growth. The contribution of fixed costs is obtained as a residual. These components depend on

the estimation method and we see nontrivial differences. The implications of the such differences

are substantial. Considering the entire sample (upper panel of table 6), our estimate of the

41Since final demand is not observed, they measure its growth using value added. This approximation is
exact only at the level of the total economy. It is therefore important to realize that when implementing the
decomposition for a subset of plants we compute the contribution of that subset to APG, not the APG of the
subset. To calculate the subset’s exact APG, we would have to observe final demand for that subset.

42The last column repeats the results from tables 1,2 and 3a in PWR for convenience.
43The ASM includes information on hours worked for production workers only. PWR generate nonproduction

worker hours data using variation in the average number of nonproduction workers and assuming a 40-hour
working week and 50 weeks: Hnp = (Etotal −Eprod) 50∗40

1000 = 2(Etotal −Eprod) = 2Enp. Our approach estimates
total hours as a function of the number of production worker hours and the ratio of the total wage bill to the
wages of production workers: Htotal = Hprod

SW
WW . The difference in capital growth is explained by a labeling

mistake in PWR’s source data for implicit deflators. As a last point, we note there is a small difference in the
way we calculate value added. While we use energy deflators to calculate constant-dollar energy costs, PWR
deflate energy costs together with other intermediate inputs using material deflators, which may affect aggregate
growth rates.
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Table 6: Time-averages (1977-1996) of weighted contributions to aggregate productivity growth,
in percentage points. The sample contains only ASM continuers.

OLS OP LPNL LPGR LPGSS WLPE WLPM WLPE* WLPM* GA PWR

1 2 3 4 5 6 7 8 9 10 11

VA growth 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 2.3

Capital growth 0 0 0 0 0 0 0 0 0 0 0.3

Labor growth -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.2

APG= dVA-dK-dL 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

Total reallocation 1 0.8 0.7 0.9 1.1 1 4.9 1.4 1.5 0.7 2.1

Capital reallocation 0.2 0.2 0.1 0.3 0.5 0.8 -3.6 0.8 0.6 0.1 0.4

Labor reallocation 0 0 0 0 0 0 0 0 0 0.1 0.4

Materials reallocation 0.6 0.4 0.5 0.5 0.5 0.6 8.3 0.6 0.8 0.5 0.7

Energy reallocation 0.2 0.2 0.1 0.1 0.1 -0.3 0.1 0 0.1 0 0.2

Technical efficiency ter 0.9 1 1.3 1.4 0.8 0.4 -3 0.2 0 1.2 0.2

Fixed cost residual term -0.2 -0.3 -0.2 0.1 -0.3 -0.8 -0.3 -0.5 -0.6 -0.3 0.1

σRE 0.9 0.6 0.8 0.8 0.9 3.8 13 1 1.4 1.4 1.7

σWithin 2.2 2.7 2.7 2.9 2.6 6.4 8.6 2.4 2.3 2.4 2.7

N̄** (1000) 4.1 3.5 2.3 2.3 2.3 1.9 1.9 1.5 1.5 4.1 n.a.

Time-averages ignoring first years of ASM panels: 1979, 1984, 1989, 1994***

VA growth 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.6

Capital growth 0 0 0 0 0 0 0 0 0 0 0.4

Labor growth -0.4 -0.5 -0.5 -0.5 -0.4 -0.5 -0.4 -0.5 -0.5 -0.5 -0.4

APG= dVA-dK-dL 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.6

Total reallocation 0.8 0.7 0.6 0.7 0.9 1.1 3.9 1.3 1.3 0.5 2

Capital reallocation 0.2 0.2 0.1 0.3 0.5 0.7 -3.4 0.8 0.6 0.1 0.9

Labor reallocation 0 0 -0.1 -0.1 0 -0.1 0.1 0 0 0.1 0.4

Materials reallocation 0.4 0.4 0.4 0.4 0.3 0.4 7 0.5 0.5 0.3 0.4

Energy reallocation 0.2 0.1 0.1 0.1 0.1 0 0.1 0 0.1 0 0.3

Technical efficiency ter 0.8 0.7 1.3 1.4 0.7 -0.7 -0.6 -0.1 -0.1 1.1 -0.1

Fixed cost residual term -0.3 -0.5 0 0.2 -0.4 -1.5 1.4 -0.8 -0.7 -0.3 0.2

σRE 0.8 0.5 0.7 0.7 0.7 3.8 13.3 0.9 0.8 1.2 1.7

σWithin 2.3 2.8 2.7 3.1 2.8 6.6 6.1 2.5 2.5 2.4 2.7

*Instrument set as in PWR: second and third lags. **Average number of plant-year observations per industry (in thousands).***

First years of ASM panels are problematic: weighted growth rates are based on only large plants since growth rates do not exist

for establishments just rotated in.

annual contribution of reallocation is between .7-1.5 percentage points, which amounts to 30-

70% of the average annual aggregate productivity growth. The contribution by within-plant

productivity growth is at most 1.4 percentage points, about 64%. Note these ranges do not

include WLPM (column 7), which we will discuss later in more detail. Method-related variation

is further illustrated by the results which ignore the first years of ASM panels (lower panel).

For example, OLS, OP, LP variants and GA result in .5-.9 percentage point average annual

contributions by reallocation (columns 1-5 and 10) implying that reallocation accounted for

33-64% of aggregate productivity growth between 1977-1996.

WLPM-based results highlight a more technical point related to the sensitivity of GMM-

based estimators to the choice of the instrument matrix. The growth rates in column 7 are

based on elasticities estimated using instrument sets containing only the most recent values of

hours (t−1), energy (t−1) and materials (t−2).44 Using these instruments implies reallocation

44This instrument set is smaller than the one PWR used in their paper. A smaller instrument set may be
justified by the fact that using earlier lags leaves less variation for estimation due to the loss of observations at
the beginning of plants’ time series.
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and within-plant contributions 3-4 times larger (4.9% and -3%) compared to other methods.

Increasing the size of the instrument matrix by including earlier lags (1-3), as in in PWR

makes the extreme contributions disappear (column 9). With both WLPE and WLPM, the

measured contributions by reallocation are 1.3 percentage point (columns 8-9) indicating that

reallocation explains almost 70% of average annual productivity growth. This finding indicates

that, at least in the case of WLPM, the benefits of using more lags outweigh the costs due to

the loss of observations at the beginning of plants’ time series. Repeating this exercise using

energy costs to control for TFP (columns 6 and 8) suggests the energy proxy is not as sensitive

to the choice of the instrument matrix.

With these qualifications in mind, we conclude that all estimators imply positive average

contributions for reallocation indicating that reallocation was productivity-enhancing in U.S.

Manufacturing industries between 1977-1996. This is in line with both existing theories of firm

dynamics and our intuition about well functioning market economies.45 As a final point, we

note the time series standard deviation of the total reallocation contribution is small relative to

the within-plant productivity contribution reinforcing previous findings (last rows of the panels

in table 6). This indicates time series variation in within-plant growth is more important for

aggregate (cyclical) fluctuations than reallocation.

To sum up, we find sensitivity in terms of the relative importance of reallocation and within-

plant productivity growth. However, our overall results suggest core results of the decomposition

literature are robust to the way TFP is estimated. Reallocation is shown to be productivity

enhancing and within-plant growth proves more important than reallocation for aggregate fluc-

tuations. We also find choosing materials as a proxy yields additional sensitivity to the choice of

the instrument matrix while choosing energy costs as a proxy does not have such implications.

We refrain from speculating on the impact of using revenue functions to estimate factor

elastities in this context because we think the issues are not yet well understood. In applying

this decomposition empirically, we follow PWR and Petrin and Levinsohn (2012) by estimating

revenue factor elasticities when using proxy methods. However, as discussed above, revenue

factor elastities will not in general be equal to production factor elastiticies. PWR and Petrin

and Levinsohn (2012) argue that some of the factors that might prevent marginal products from

being equal to marginal costs at all moments in time are markups and adjustment frictions. It is

such wedges between marginal products and marginal costs that underlie the reallocation terms

in their structural decomposition. But if it is markups driving the wedges it is not clear that the

reallocation terms in the decomposition have been correctly estimated. Further investigation

of these issues seems warranted.

45Table A15 lists the time series underlying columns 8-9 of table 6. The contribution of reallocation is positive
in the majority of years which reinforce what our aggregate results suggest.
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6 Robustness

We next examine the robustness of our results about TFP dispersion and growth and survival to

concerns about imputation methods used in the underlying microdata and our assumption that

elasticities are homogeneous within industries. Our approach in this section is different from

earlier sections. Here we compare the same TFP measure across completed and non-imputed

samples rather than different TFP measures in the same sample.

6.1 Imputation, dispersion and growth

U.S. Manufacturing data collected by the Census Bureau is subject to item nonresponse where

respondents answer some questions but not others. Such missing values are imputed by the

Census Bureau. Recent research found that certain imputation methods can impact analyses

that use such completed data because imputation is non-random (see White, Reiter, and Petrin

(2012), WRP hereafter). Some of the imputation methods employed use industry level data

or fitted values from regression models implying that the variation in completed data can be

assumed to be smaller relative to what observed responses would imply. One consequence

of this is that within industry dispersion statistics based on completed data may be biased

downward (see WRP for an example). The direction of bias is less clear for the relationship

between productivity, growth and survival.

One may address imputation in a variety of ways. One approach is to drop imputed obser-

vations, but this results in selection bias if the probability of imputation instances is correlated

with establishment characteristicts. We take this approach below, correcting for selection bias

by using inverse propensity score weights. Another option is to use multiple imputation meth-

ods (e.g., the classification and regression tree method (CART) used by WRP) to improve on

the methods that have been used to impute the plant-level data. Calculating our results in this

manner is beyond the scope of this paper but we do compare the patterns of our findings to

those in WRP.

To account for nonrandom imputation, we measure the relationship between the probability

of imputation and plant characteristics. If we can successfully quantify this relationship, the

probability weights from these regressions can be used to control for non-randomness when

calculating dispersion statistics and regression coefficients using only non-imputed observations.

The weighting scheme is simple: weights are inversely proportional to the probability that the

plant’s TFP is calculated using non-imputed data. More details about the probability models

can be found in appendix 8.3.

We carry out two exercises. First, we compare weighted and unweighted statistics of within-

industry dispersion which are based either on completed data or only non-imputed observations.

Second, we assess whether accounting for imputation affects our results on the relationship

between productivity, growth and survival.
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We consider three dispersion measures (standard deviation (SD), interquartile range (IQR),

90th-10th percentile range (9010)) in four different samples. Figure 2 summarizes our results.46

Solid and dotted lines denote statistics which are calculated using either completed or non-

imputed data. Weighted statistics are denoted by marks on the corresponding graphs. In the

completed sample, weighted statistics are based on weights (ipw1) which account for the fact

that selection into the ASM and CM is non-random.47 In the non-imputed sample, the weights

are a composite of ipw1 and a weight that is inversely proportional to the probability that the

plant’s TFP is calculated using non-imputed data (ipw2). The graphs on the right-hand-side

panels of the figures are based on ASM observations only.

We find the standard deviation is not very very sensitive to imputation, while the quantile-

based dispersion measures are affected. The interquantile-range and the 90-10 range in non-

imputed data appear generally smaller relative to those calculated using completed data in

non-census years. In figures 2(b)-2(c) the unmarked dotted line tends to be below the marked

solid line. The reverse holds in census years: using the entire CM in census years yields smaller

dispersion in 2002 and 2007 than using only ASM plants. This is shown in figure 2 by the lack

of dips in the solid lines in 2002 and 2007 in the right-hand-side charts.48 If we weight non-

imputed observations by ipw1 × ipw2, measured dispersion is higher (marked and unmarked

dotted lines in figures 2(b)-2(c)). This is an important finding because results using the CART

multiple imputation method in WRP suggest dispersion measures based on imputed data tend

to be smaller than those that take imputation into account.49 If imputation causes a downward

bias in dispersion, our weighting scheme corrects it in the right direction.

We find imputation has a negative effect on within-industry dispersion. Does it affect the

relationship between productivity, growth and survival? Our second exercise sheds light on this

question by re-estimating the growth and exit regressions using data between 2002 and 2010.

The empirical model is the same as what we described in section 5.2.50 We focus on three cases.

In the first one, we use all observations from the CM. In the second case, only non-imputed

observations are included but our non-impute weighting scheme is not applied. In the last

regressions we weight non-imputed observations by ipw1× ipw2. In the last set of regressions,

we repeat calculations excluding non-ASM cases in Census years. Table 7 summarizes our

results. The effect of productivity on growth among all establishments (column 1) and on the

probability of exit (column 2) seems less in the non-imputed sample, regardless of weighting.

Point estimates of the effect on growth (exit) in the non-imputed sample are about half (third)

46The dispersion estimates underlying figure 2 are shown in table A16 in the appendix.
47We address this issue by weighting observations with a propensity score weight where the propensity scores

are inversely proportional to the probability that a plant is selected into the ASM-CM. More details about this
selection issue and the technique we use to address it can be found in FGH.

48This reflects the effect of smallest plants which are not selected into the ASM.
49See columns 1 and 2 of table 4 in their paper.
50Note that as the estimates in section 5.2 were calculated using ipw1 weights, all regressions in this exercise

- based on either completed or non-imputed observations - are also weighted by ipw1.
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Figure 2: Time series of average within-industry dispersion measures (table A16) in various
samples, ASM/CM 2002-2010, all industries. 27



the size of those in the completed data. We do not detect such attenuation among continuers

(column 3). Such variation in the coefficients is by no means negligible, particularly for economic

analyses where differences in magnitudes may matter a lot. But it is not unfamiliar either.

Similarly to the results in section 5.2 our last exercise offers evidence that, at least in terms of

sign and order of magnitude, this relationship is robust to imputation issues.

Table 7: The effect of TFP on outcomes between 2002-2010 in the ASM/CM, various samples
within the ASM/CM, growth accounting based TFP.

sample overall growth exit conditional growth
(1) (2) (3) (4)

ASM-CM
Complete data [ipw1]† 0.165*** -0.065*** 0.04***

(0.0152) (0.0077) (0.0054)
Non-imputed data [ipw1]†† 0.083*** -0.019*** 0.047***

(0.0088) (0.0035) (0.0049)
Non-imputed data [ipw1×ipw2]††† 0.079*** -0.021*** 0.041***

(0.0108) (0.0036) (0.0079)

ASM cases
Complete data [ipw1] 0.149*** -0.06*** 0.035***

(0.0141) (0.0071) (0.0059)
Non-imputed data [ipw1] 0.086*** -0.022*** 0.044***

(0.0094) (0.0033) (0.006)
Non-imputed data [ipw1×ipw2] 0.086*** -0.024*** 0.041***

(0.011) (0.0035) (0.0084)

Sample size (in thousands)
ASMCM

Complete data [ipw1] 594 594 570
Non-imputed data [ipw1] 263 263 258
Non-imputed data [ipw1×ipw2] 263 263 258

ASM cases
Complete data [ipw1] 400 400 386
Non-imputed data [ipw1] 218 218 214
Non-imputed data [ipw1×ipw2] 218 218 213

Standard errors are in parentheses. †Weighted Census data [pw1]: All observations, propensity score weighted,
where the weight is inversely proportional to the probability that the plant is selected into the ASM/CM (see
FGH). ††Non-imputed[pw1]: non-imputed subset of the same sample. †††Non-imputed [pw1,pw2]:
non-imputed subset of the sample, where observations are weighted by a composite propensity score, where
pw2 is inversely proportional to the probability that a plant’s TFP is calculate using non-imputed data.
Probabilities were estimated separately for each year and are based on industry-, size-, age-class and
payroll-decile fixed effects. See appendix for more details.
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6.2 Homogeneity, dispersion and growth

Throughout this paper, we assume elasticities are homogeneous within industries and constant

over time. In this section, we look at the effects of the homogeneity assumption on our results

on TFP dispersion and plant growth and survival.

Whether or not such homogeneity assumptions are restrictive depends on at least two prop-

erties: the underlying within-industry differences in technology and sample size. If there are

within-industry differences in plants’ technologies then pooling the data from an entire industry

of plants may be too restrictive. In this case, allowing for plant-level heterogeneity in the β-s,

empirical feasibility aside, better accounts for within-industry differences in factor intensities.51

On the other hand, pooling data may in general be necessary to increase sample size in order

to reduce finite-sample bias and increase precision.52 Some of the estimators reviewed in this

paper require more data than others meaning that for these methods pooling is not a question

of bias and precision but feasibility.53 A more general but equally important point in this regard

is that pooling also implies results are less likely to be sensitive to measurement error, which is

typically present in microdata.

We assess the consequences of allowing for plant-level heterogeneity in the elasticities by

comparing TFP dispersion statistics which are based on industry- and establishment-specific

β̂-s. We use the growth accounting framework because calculating measures of plant-level

elasticities is straightforward in this approach. Figure 3 shows our main result. We find that

dispersion54 is substantially higher if we use establishment-level cost shares to calculate TFP

compared to when it is based on industry-level shares. In particular, plant-specific shares

increase the interquartile range by a factor of almost two (see the difference between the thin

and thick solid lines in the figure). Our results also indicate that allowing for time series

variation in the β̂-s is more likely to affect the volatility than the level of dispersion. Moreover,

such an effect is quantitatively significant only if TFP is based on establishment-level shares

(thin dashed and dotted lines). The overall conclusion is that the effect of time series smoothing

is dwarfed by that of cross-section smoothing.

Both theory and earlier research55 indicate that at least part of this increase in dispersion is

spurious. Our own analysis also offers indirect evidence that the increased variation is at least

partly noise. Table 8 shows results from growth and exit regressions based on growth accounting

TFP variants. Columns 1-2 show that using time-varying instead of constant industry-level

51Unfortunately, testing for the true degree of heterogeneity is not straightforward because the results on
which we base inference about heterogeneity are endogenous to both the estimation method and the homogeneity
assumption. In principle, the optimal way would be to carry out our own taxonomy, which is beyond the scope
of this paper.

52We saw in section 5.2 that for some estimation methods even cross-industry pooling may be necessary.
53See section 4 for examples.
54All statistics are based on the deviation of log TFP from its industry- and year-specific mean.
55For example, Syverson (2004).
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Figure 3: Within-industry interquartile range measures of growth accounting based log-TFP, 10
largest industries. Thin and thick lines denote dispersion measures based on shares calculated
at the establishment- and industry-levels, respectively. t.c. and m.a. label cases where statistics
are based on time-averages of share. t.c. denotes a case where the average is taken over all
available time-periods, i.e. it is constant. m.a. is based on the moving average of periods t and
t-1.

shares leaves the effect of productivity virtually unchanged. In contrast, using plant-level

shares (columns 3-5) reduces the magnitude of estimates - although they remain statistically

significant. The consequence of using plant-level shares is that the growth effect of productivity

drops by almost 50% (columns 1 and 4) among all establishments (first row) or continuers (last

row). Among continuers, an additional 25% of this effect disappears if we also allow for time

series variation in the shares (columns 3 and 5). The effect on the exit probability is smaller,

about 33%. We interpret this attenuation as a sign that the data contains more noise with

respect to the relationship between productivity and growth. Note that constant plant-level

shares imply a higher point estimate among continuers (0.032∗∗∗ in column 4 relative to 0.018∗∗∗

in columns 3 and 5) suggesting there may be noise not only in the cross-section but also in the

time series variation of establishments.

Our overall conclusion is that calculating cost shares at the plant level is unlikely to be opti-

mal. Although plant-level shares may better capture within-industry differences in technology,

they are also prone to measurement error. This is reflected in the smaller partial correlations

between productivity, growth and the survival probability of establishments.
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Table 8: The effect of growth accounting TFP variants on outcomes, 50 largest industries.
Outcomes are: employment growth among all establishments (rows 1-2), exit (rows 3-4), em-
ployment growth among continuers (rows 5-6).

Industry-level shares (1-2) Plant-level shares (3-5)
(1) (2) (3) (4) (5)

constant time-varying time-varying constant time-varying

[s̄j] [
sjt+s

j
t−1

2 ] [sjit] [s̄ji ] [
sjit+s

j
it−1

2 ]

overall growth 0.190*** 0.193*** 0.1*** 0.114*** 0.096***
(0.014) (0.014) (0.008) (0.01) (0.007)

exit -0.064*** -0.066*** -0.041*** -0.042*** -0.039***
(0.006) (0.005) (0.003) (0.004) (0.004)

conditional growth 0.067*** 0.067*** 0.018*** 0.032*** 0.018***
(0.006) (0.006) (0.003) (0.006) (0.004)

These estimates are based on the same 50 largest industries used to generate the results in table 5. The entries
in column 1 above are identical to the last column of the first panel in table 5.
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7 Concluding remarks

Does the method of estimating productivity matter for the main conclusions of the productivity

literature? The answer is yes and no, depending on the question being asked.

The choice of estimation method affects elasticity distributions, especially that of capital.

This in turn yields substantial variation in returns to scale across methods. One needs to take

this variation into account when answering questions related to the magnitude of elasticities.

The differences in elasticities map into differences in within-industry productivity dispersion.

We estimate that a plant at the 75th percentile generates between 25%-50% percent more

revenue with the same amount of inputs than a plant at the 25th percentile. This is an

average calculated over industries and time, which suggests one must exercise caution when

using industry-specific dispersion measures for economic analyses where small changes may

make a big difference. However, these results also confirm that there is enormous heterogeneity

in establishments’ productivity levels, which is in line with what recent microeconomic research

found.

Canonical models of firm dynamics describe growth and survival decisions of plants’ as

functions of idiosyncratic productivity shocks. The main prediction from these models is that

plants with positive shocks expand while plants with negative shocks downsize and/or exit. We

test this prediction and find that more productive establishments grow significantly faster and

are more likely to survive than their less productive competitors. We find that some estimation

methods yield outliers including negative factor elasticities and that quantitative results are

sensitive to the treatment of these outliers.

Does the choice of estimation method have implications for the relative importance of the

sources of aggregate productivity growth? We find that although some methods seem to be

more sensitive than others and the relative importance of reallocation and within-plant growth

depends on the estimator, the main conclusions of the decomposition literature hold under

different estimator variants. Reallocation is productivity enhancing and within-plant growth

seems to be more important for cyclical fluctuations. However, the quantitative details differ

substantially. Some methods imply virtually all of the aggregate productivity growth is due to

reallocation while others yield that only 25 percent is due to reallocation.

Recent research found that dispersion analyses based on imputed data may underestimate

true productivity differences. Our results confirm that accounting for imputation implies greater

dispersion. As for the growth effect of productivity, imputation seems to have some attenuating

effect, but the general conclusions hold.

Since pooling data is necessary for the econometric estimation methods, we have to be

willing to accept homogeneity assumptions on factor elasticities. This implies elasticities are

interpreted as within-industry averages of plant-level elasticities. One can argue that plant-

specific elasticities better capture technological differences between establishments and also
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affect productivity differences across plants. We find that TFP dispersion is about two times

higher if we allow for such heterogeneity. Using this more dispersed TFP in growth and exit re-

gressions implies weaker relationships between productivity, growth and survival. This suggests

some of the increase in dispersion is due to measurement error, which implies using plant-level

shares is unlikely to be optimal.

In sum, it is important to understand when the devil is in the details. Finally, one devil that

may remain in the details that we have not directly investigated is the impact of heterogeneous

and endogenous plant-level prices. We have commented on the likely impact of endogenous

demand side factors throughout but it would be of interest to consider this issue in more depth.

We think that exploring the role of endogenous demand side factors in the current context will

require comparing and contrasting approaches that include direct measurement of prices and

quantities (for the limited number of products with such information) vs. methods that impose

strong functional form assumptions (i.e., isoelastic demand structures) to deal with these issues.
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8 Appendix

8.1 Remarks on proxy methods

The two-step procedure described in Levinsohn and Petrin (2003) has become widely used

among practitioners in the past decade. Its advantages and caveats have been discussed in

the literature, see for example Ackerberg, Caves, and Frazer (2006) and easy-to-use routines

have been developed to implement it in Stata. The available versions of the algorithm differ

according to the production function type and the numerical procedure used to minimize the
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GMM criterion function. If the production function is defined in terms of value added then

the criterion function is minimized using the ’golden section search’ algorithm (GSS).56 For

output-based functions, the user may choose between a non-linear gradient-based (NL) routine

and a grid search (GR).

Our results suggest these choices entail non-trivial differences in the distributions of elas-

ticities. This is because while GSS and NL guarantee finding the optimum points of unimodal

functions they may get stuck at local optima. GR searches over the state space on a pre-defined

grid, which is safe if the grid is not too coarse. However, GR may also require long computing

time depending on the scale of estimation.57

8.2 Random assignment of industry codes

As described in Section 3.2, we correct for the 1972 to 1987 SIC change in our third analysis

sample by following PWR by assigning the observed 1987 SIC code to the 1976-1986 observation

for any establishment observed between 1987-1996. However, we deviate from their approach

for cases only observed prior to 1987. If a plant is not assigned an industry code in the first

step, we apply a random assignment procedure. The basic idea of the random assignment

procedure is to choose from among plants such that the share of reassigned plants matches

the appropriate share in the concordance. Randomness is necessary to ensure the procedure

is not dominated by a few large establishments. As an illustration, suppose the mapping says

10% of industry i’s (SIC 1972) total value of shipments should be mapped into industry j (SIC

1987). First, we compute the time-average of each plant’s share in the shipments of industry i

and then we randomly sort them by these averages. Next, we calculate the cumulative sum of

shares and find the first n plants for which the sum does not exceed 10%. These establishments

are classified in industry j. Table A1 shows frequency counts from the assignment. Panel 1

summarizes the initial sample. About 66% of establishments show up in the years between

1987-1996, the remaining observations need industry assignment (about 34%). Panel 2 shows

statistics about instances where we observed a switch in the industry identifier. Our assignment

procedure implies that approximately 29% of the 130 thousand original switching instances

disappear. As a cross-check, we compared the average shares our procedure implies to those

in the crosswalk. The results of this latter exercise, not shown here, suggest that random

assignment approximately replicates the NBER-CES mappings.

56The idea of GSS is successively narrowing the range of values inside which the extremum is known to exist.
The name of the algorithm sources from the fact that the procedure maintaings the function values for triples
of points whose distances form a golden ratio.

57Estimating the 459 LPGR β-sets for the APG comparisons of section 5.3 took about 28 days given our
computing resources.
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8.3 Imputation and plant characteristics

Evidence in White, Reiter, and Petrin (2012) (WRP hereafter) suggests dispersion measures

based on imputed data tend to underestimate true productivity dispersion. The effect of im-

putation on growth coefficients is less obvious for reasons we will outline shortly.

The effect of imputation on dispersion is easiest to illustrate by considering the results of

regression-based imputation, which also happens to be one of the most frequently used methods

at the Census Bureau to impute the components of TFP. See table A18 for more details.58

Regression-based imputation amounts to substituting fitted values of a regression for values of

the underlying distribution. That is, using the regression line, E(yi|xi), instead of draws from

the conditional distribution of yi. This essentially means a collapse in variation in the data.

How can we approximate the unobserved conditional distribution of yi? One way is to use

a known distribution to simulate data from it. Another is to draw from the set of non-imputed

observations with similar characteristics to the ones in the imputed sample, which is what clas-

sification and regression tree (CART) methods do (see WRP). Yet another approach is to use

non-imputed observations only, which works if imputation is random. However, if the prob-

ability of imputation is correlated with plant characteristics, excluding imputed observations

generates selection issues.

Both earlier evidence and our analysis - as we will see shortly - indicate that imputation

is not random in our data. Consequently, empirical models based on non-imputed data must

take this issue into account otherwise selection renders results biased.

We address imputation in two steps. First, we use a logistic regression to describe the

relationship between plant characteristics and the probability that TFP is calculated using

non-imputed data. Next, we use inverse propensity scores to weight observations in the non-

imputed sample to calculate dispersion statistics and growth coefficients. To be specific, we

estimate the following equation separately for each year between 2002 and 2010:

log
p(Xit)

1− p(Xit)
= Xitθt + εit,

which amounts modeling the probability Pr(Iit = 1|Xt) = E[Iit|Xit] = F (Xitθt) + εit, where

F (x) = 1
1+e−x and Iit denotes an indicator variable equal to 1 if any of the components of

plant-level TFP is non-imputed. The main components are: plants’ total value of shipments

(TVS), production hours (PH), salaries and wages (SW), production workers wages (WW),

cost of parts (CP). Xit and θt denote a vector of controls and coefficients. Control variables Xit

are included to capture plant characteristics: industry effects, employment size class, payroll

deciles and age class fixed effects. We have 86 4-digit NAICS industries. To control for size, we

defined 10 size classes based on employment (1-9, 10-109, 20-29, 30-49, 50-99, 100-149 150-249,

58We do not discuss individual imputation models further but more details are available upon request.
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250-499, 500-999, 1000+) in addition to the payroll deciles. Finally, we classify establishments

into 9 age classes (births, 1, 2, 3, 4, 5, 6-10, 11-15, 16+ years). As mentioned in the main

text, data for these variables source from the LBD. We use the Census Bureau’s impute flags to

determine whether an item is imputed. More details on imputation procedures at the Bureau

are available from the authors. See also table A1 in WPR.

Imputation rates differ across variables. The upper panel of table A17 shows that from

among the main components of TFP, PH and CP are imputed the most, and SW the least

frequently. Imputation rates vary not only with variables but also sample definition.59 The last

row in the upper panel indicates imputation tends to be less frequent among ASM establish-

ments. Overall, less frequent imputation implies almost 10-percentage-point smaller imputation

rate for TFP (last column in the lower panel). This suggests it may be worth exploring the

effects of restricting ourselves to ASM cases when estimating propensity scores. Therefore, we

present results also for a scenario where only ASM establishments are included in the analysis.

Comparing size-, age-, and payroll distributions across non-imputed and completed samples

suggests imputation instances are correlated with plant characteristics.60 TFP components are

more likely to be imputed for smaller and younger establishments with less payroll. These

three characteristics give a multitude of possible regressor sets for the probability model. We

experimented with six of those ([1] employment size; [2] payroll; [3] employment size, payroll;

[4] employment size, age; [5] payroll, age; [6] employment size, payroll, age) and found that

the basic implications do not change. However, we also found that including all three variables

provides a somewhat better fit61 than any of the remaining five. Therefore, we present results

based on propensity scores from a model with establishment size, payroll and age.

Figure A2 plots the point estimates from this model. We conclude that TFP data for smaller

and younger plants with less payroll are significantly more likely to be imputed.62 In section 6.1,

when calculating weighted dispersion measures and regression coefficients, we use the inverse of

probabilities implied by these models as weights. As a final point, we mention that diagnostics

indicate logistic regressions fit ASM establishments better than ASM/CM establishments.63

The difference in the AIC is about a factor of 3 and 2 in 2002 and 2007, respectively.

59We can measure imputation rates in the entire ASM/CM (row 1), restricting ourselves to using observations
for which there exists size and age information in the LBD (row 2), in the ASM only (row 3).

60These are undisclosed results and not shown here.
61As measured by the AIC, not shown here.
62Point estimates are precise enough such that we can confirm the positive relationship between plant-size,

-age and the probability of TFP being non-imputed. More details on point estimates and standard errors are
available upon request.

63Available upon request.
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9 Appendix Tables

Table A1: Descriptive statistics on industry assigment.
Panel 1. Distribution of plants, by year.

Observed year Frequency (1000) Percent
1987 1156 51.3
1988 5.1 0.2
1989 7.6 0.3
1990 9.8 0.4
1991 3.5 0.2
1992 230 10.2
1993 20.8 0.9
1994 30.3 1.3
1995 19.4 0.9
1996 15.1 0.7
1987-1996 1499 66.5
1972-1986 (random assignment) 754 33.5
Total 2252 100

Panel 2. The effect of industry assignment on switchers.
Assigned industry

Original industry no switch switch Total

frequency (1000) 38 92 130
percent 29 71 100

Panel 1. shows frequency counts of time periods which were used to assign plants into industries. Panel 2.
breaks down switching instances (plants with 2 or more SIC codes in their time series) under the original
classification. The first entry in the last row says that 29% of the switching instances in the original
classification system disappear under random assignment.

Table A2: Conditional probabilities of an industry moving from quintile i (row) to quintile j
(column) of the β̂K/β̂L-distribution, 50 largest industries.

OP 1 2 3 4 5

LPGR 1 0.5 0.2 0.1 0.1 0.1
2 0.3 0.3 0.2 0.2 0
3 0.1 0.3 0.3 0.1 0.2
4 0.1 0.1 0.3 0.2 0.3
5 0.1 0.1 0.4 0.3 0

GA 1 2 3 4 5

LPGR 1 0.1 0.2 0.3 0.2 0.2
2 0.3 0.2 0.3 0.2 0
3 0.3 0.2 0.2 0.2 0.1
4 0.2 0.3 0.1 0.3 0.1
5 0.1 0.1 0.1 0.3 0.4

WLPM 1 2 3 4 5

LPGR 1 0.4 0.3 0.1 0.1 0
2 0.2 0.1 0.3 0.2 0.1
3 0.3 0.2 0.3 0.1 0.1
4 0.1 0.3 0.2 0.2 0.2
5 0.1 0.3 0.6 0 0

Each entry shows the fraction of industries which moved from a quintile under LPGR (row) to a quintile under another
estimator (column). See notes to table 1 for legends. The entries in each row sum to 1, except rounding.
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Table A3: Descriptive statistics of 50 largest industries ordered by the within-industry number
of plant-year observations between 1976-1996. The industry classification contains SIC 1987
industry codes concorded 1-to-1 SIC 1972 and NAICS 1997.

1 2 3 4 5
rank SIC 1987 N MeanL Nplants

1 2711 39 9.9 3.9
2 3273 37 10.1 3.7
3 2411 37 4.8 7.6
4 3441 32 11.8 2.6
5 2653 30 22.1 1.3
6 3471 29 10.1 2.8
7 2051 26 16.1 1.6
8 3451 23 10.7 2.1
9 2951 22 12.8 1.7

10 3442 16 12.4 1.3

20 3231 12 11.9 1

50 3613 8 18 0.4
1-50 total 710 11 67

Column 1: rank; column 2: SIC 1987 code; column 3: number of plant-year observations in
thousands; column 4: average number of observations per plant; column 5: number of plants in
thousands.

Table A4: Industries with positive, negative and non-estimable elasticities, in percent of the
total number of industries. Results are based on 459 4-digit industries between 1972-2010,
described in more detail at the end of section 3.

1 2 3 4 5 6 7 8 9 10 11 12
- 0* or n.e.** + - 0* or n.e.** + - 0* or n.e.** + - 0* or n.e.** +

β̂k β̂L β̂M β̂E
OLS 2 98 2 98 100 4 96
OP 3 18* 79 2 18* 80 18* 82 3 18* 79
LPVA 4 96 3 97
LPNL 16** 84 4 96 100 6 94
LPGSS 8 92 4 96 100 6 94
LPGR 100 4 96 100 6 94
WLPE 10 90 6 94 100 32 68
WLPM 16 84 7 93 2 98 11 89

0* or n.e.**: β̂ is zero or could not be estimated. *: The first entry in column 2 says OP delivers error in 18%
of industries. This happens because the algorithm stalls in industries with insufficient information on exit (or

investment). **: The second entry in column 2 says gradient-based optimization in LPNL yields β̂K = 0 in
16% of the industries.

40



Table A5: Average number of within-industry observations by groups, as in table A4.
1 2 3 4 5 6 7 8
- 0 or n.e.* - 0 or n.e.* - 0 or n.e.* - 0 or n.e.*

β̂k β̂L β̂M β̂E
OLS 0.59 0.46 0.32
OP 0.56 0.39 0.58 0.39 0.4 0.42 0.39
LPVA 0.26 0.29
LPNL 0.96 0.55 0.42
LPGSS 0.35 0.55 0.42
LPGR 0.55 0.42
WLPE 0.4 0.56 0.14 0.93
WLPM 0.7 0.52 0.61 0.44

All entries are calculated respectively as N̄−/N̄+ and N̄0 or n.e./N̄+, where N̄−, N̄0 or n.e. and N̄+ denote the

average number of observations in industries with negative, zero or non-estimable and positive β̂j .

Table A6: Fraction of industries with returns to scale measures (RTS) in alternative ranges,
by estimation method, as in table A4. RTS is defined as RTS ∈ [L,H], RTS =

∑
j β̂j, where

[L,H] are as shown in the table.
1 2 3 4 5 6 7

Panel A. H = 1.3
L

0.7 0.75 0.8 0.85 0.9 0.95 average
OLS 1 1 1 1 1 0.94 0.99
OP 0.76 0.75 0.72 0.69 0.58 0.39 0.65
LPVA 0.53 0.46 0.37 0.31 0.23 0.15 0.34
LPNL 0.85 0.78 0.7 0.62 0.53 0.4 0.65
LPGR 0.92 0.89 0.85 0.78 0.66 0.54 0.77
LPGSS 0.89 0.82 0.72 0.6 0.48 0.32 0.64
WLPE 0.83 0.81 0.79 0.75 0.69 0.62 0.75
WLPM 0.83 0.81 0.78 0.73 0.68 0.61 0.74
all* 0.27 0.22 0.15 0.09 0.04 0.02 0.13

Panel B. L = 0.7
H

1.3 1.25 1.2 1.15 1.1 1.05 average
OLS 1 1 1 1 0.99 0.95 0.99
OP 0.76 0.74 0.72 0.71 0.69 0.64 0.71
LPVA 0.53 0.52 0.5 0.48 0.47 0.45 0.49
LPNL 0.85 0.85 0.83 0.8 0.76 0.68 0.8
LPGR 0.92 0.9 0.85 0.81 0.74 0.65 0.81
LPGSS 0.89 0.88 0.87 0.85 0.82 0.78 0.85
WLPE 0.83 0.78 0.7 0.62 0.52 0.41 0.64
WLPM 0.83 0.78 0.72 0.64 0.55 0.44 0.66
all* 0.27 0.24 0.19 0.14 0.09 0.04 0.16

Each entry in the table shows the fraction of industries with RTS falling into the interval as defined by the
upper (H) and lower (L) bounds in the header of the panels. This widest interval ([.7, 1.3] in column 1) is
consistent with the average revenue-share of profits being between [−25%,+25%], which does not seem to be
too restrictive. Columns 2-6 in Panel A show RTS intervals as we increase the lower bound while holding
H = 1.3. Panel B shows intervals as we decrease the upper bound while holding L = .7. *all: this line counts
industries where all methods simultaneously imply RTS in the specified range; the small numbers highlight
the differences in elasticity distributions, and quantify the qualitative differences in the elasticity distributions
mentioned in section 4.
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Table A7: Descriptive statistics of TFP distributions. TFP estimators described in table 1,
sample is 50 largest industries, pre-estimation outliers included.

N (1000) IQR SD
50 largest industries

OLS 568 0.29 0.28
OP 567 0.35 0.41

LPVA 569 0.77 0.66
LPNL 572 0.34 0.44
LPGR 572 0.33 0.35

LPGSS 569 0.3 0.31
WLPE 575 0.37 0.41
WLPM 575 0.46 2.21

GA 561 0.25 0.24
10 largest industries

OLS 230 0.23 0.21
OP 233 0.34 0.41

LPVA 236 0.73 0.60
LPNL 235 0.34 0.41
LPGR 235 0.32 0.31

LPGSS 234 0.30 0.28
WLPE 236 0.34 0.30
WLPM 236 0.37 0.39

GA 231 0.25 0.22

Table A8: Correlations among within-industry tfp-distributions, 50 largest 4-digit industries.
Pre-estimation outliers included.

OLS OP LPVA LPNL LPGR LPGSS WLPE WLPM GA
Pearson

OLS 1
OP 0.52 1

LPVA 0.68 0.44 1
LPNL 0.61 0.31 0.66 1
LPGR 0.8 0.42 0.78 0.83 1

LPGSS 0.8 0.56 0.74 0.71 0.87 1
WLPE 0.49 0.47 0.48 0.47 0.5 0.62 1
WLPM 0.01 0.02 -0.15 -0.12 -0.15 -0.05 0.15 1

GA 0.77 0.47 0.55 0.52 0.63 0.68 0.49 0.09
Spearman

OLS 1
OP 0.67 1

LPVA 0.77 0.62 1
LPNL 0.77 0.55 0.71 1
LPGR 0.86 0.6 0.79 0.87 1

LPGSS 0.81 0.69 0.75 0.79 0.86 1
WLPE 0.58 0.61 0.55 0.51 0.55 0.68 1
WLPM 0.34 0.36 0.2 0.23 0.25 0.37 0.48 1

GA 0.8 0.62 0.59 0.64 0.67 0.71 0.58 0.42 1

This table differs from table 4 in that we computed correlations including pre-estimation outlier observations.
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Table A9: Correlations among within-industry tfp-distributions, 10 largest 4-digit industries.
OLS OP LPVA LPNL LPGR LPGSS WLPE WLPM GA

Pearson
OLS 1
OP 0.48 1

LPVA 0.61 0.44 1
LPNL 0.53 0.15 0.41 1
LPGR 0.71 0.43 0.88 0.48 1

LPGSS 0.8 0.5 0.85 0.5 0.96 1
WLPE 0.71 0.54 0.78 0.25 0.8 0.86 1
WLPM 0.52 0.27 0.44 0.13 0.41 0.54 0.66 1

GA 0.88 0.42 0.59 0.51 0.68 0.72 0.66 0.5 1
Spearman

OP 0.71 1
LPVA 0.61 0.64 1
LPNL 0.66 0.39 0.62 1
LPGR 0.71 0.65 0.89 0.72 1

LPGSS 0.79 0.7 0.85 0.71 0.96 1
WLPE 0.71 0.73 0.77 0.48 0.79 0.85 1
WLPM 0.6 0.49 0.52 0.28 0.51 0.58 0.69 1

GA 0.88 0.63 0.6 0.63 0.68 0.72 0.67 0.56 1

Including pre-estimation outliers barely changes correlations.

Table A10: Correlations among within-industry tfp-distributions, 10 largest 4-digit industries.
Pre-estimation outliers included.

OLS OP LPVA LPNL LPGR LPGSS WLPE WLPM GA
Pearson

OLS 1
OP 0.51 1

LPVA 0.59 0.45 1
LPNL 0.53 0.16 0.44 1
LPGR 0.69 0.43 0.85 0.53 1

LPGSS 0.79 0.52 0.83 0.54 0.95 1
WLPE 0.69 0.57 0.76 0.28 0.78 0.85 1
WLPM 0.5 0.27 0.42 0.12 0.37 0.5 0.64 1

GA 0.85 0.43 0.57 0.5 0.64 0.68 0.63 0.48 1
Spearman

OLS 1
OP 0.7 1

LPVA 0.6 0.64 1
LPNL 0.66 0.39 0.63 1
LPGR 0.71 0.63 0.87 0.74 1

LPGSS 0.78 0.68 0.84 0.73 0.96 1
WLPE 0.7 0.73 0.77 0.49 0.78 0.84 1
WLPM 0.58 0.48 0.5 0.28 0.47 0.54 0.67 1

GA 0.86 0.61 0.58 0.62 0.66 0.7 0.65 0.54 1

This table differs from table A9 in that we computed correlations including pre-estimation outlier observations.
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Table A11: The effect of industry characteristics and βk on TFP dispersion.

σq iqr(ω)

Panel 1. Effect of β̂k
baseline β̂K = 0.26 0.81 (min) 0.19

cf 1
¯̂
βK = 0.17 0.81 (min) 0.15

cf 2 β̂K + sd(β̂K) = 0.53 0.81 (min) 0.42

cf 3 max(β̂K) = 0.75 0.81 (min) 0.52

Panel 2. Effect of inputs and output

cf 4 βj = β̂j , j = {K,L,E,M} 1.68 (max) 0.34

σq denotes the within-industry dispersion of output, βj denotes the value of elasticity used in the
exercise. TFP is based on LPGR in the group 10 largest industries. Row ”baseline” represents the
minimum output-dispersion industry where the estimated value of βK was used to calculate TFP
and its dispersion. Row ”cf 1” represents counterfactual 1, where input/output data are taken from
the minimum output-dispersion industry but βK is set to its sample mean. Rows ”cf 2” and ”cf 3”
represent industries where βK is set to 1 standard deviation above its estimated value and the
sample maximum, respectively. Row ”cf 4” represents an industry where input and output data are
taken from the maximum output-dispersion industry and all elasticities are taken from the minimum
dispersion industry. Since σσq

= 0.25, this change amounts to increasing σq by about 3.5 standard
deviations ((1.68− 0.81)/0.25 = 3.48).

Table A12: Sample size in the specifications shown in table 5. Sample size is measured as the
total number of plant-year observations used in a regression (in thousands).

OLS OP LPVA LPNL LPGR LPGSS WLPE WLPM GA
4-digit elasticities
N1 410 415 411 413 413 410 414 414 405
N2 410 415 411 413 413 410 414 414 405
N3 393 398 395 396 396 394 397 397 388
Total N 440 440 440 440 440 440 440 440 440
3-digit elasticities
N1 405 413 413 413 414 411 413 413 405
N2 405 413 413 413 414 411 413 413 405
N3 389 396 396 396 398 395 396 396 388
Total N 440 440 440 440 440 440 440 440 440
3-digit elasticities, industries with negative or non-estimable elasticities dropped
N1 391 406 413 352 408 405 289 310 405
N2 391 406 413 352 408 405 289 310 405
N3 375 390 396 337 391 388 277 298 388
Total N 440 440 440 440 440 440 440 440 440

N1-N3 denote the number of plant-year observations used in the three regressions. Total N denotes the
original number of plant-year observations before estimation and post-estimation outlier trimming.

44



Table A13: The effect of TFP on outcomes, all (292) largest industries. Outcomes are: em-
ployment growth among all establishments, exit and employment growth among continuers

OLS OP LPVA LPNL LPGR LPGSS WLPE WLPM GA

4-digit elasticities

dlnE 0.183*** 0.001 0.086*** 0.093*** 0.128*** 0.119*** 0.004** -0.004*** 0.203***

(0.013) (0.003) (0.004) (0.007) (0.007) (0.008) (0.002) (0.001) (0.011)

exit -0.066*** 0.001 -0.027*** -0.029*** -0.041*** -0.044*** -0.002* 0.001** -0.068***

(0.005) (0.001) (0.002) (0.004) (0.003) (0.004) (0.001) (0.001) (0.004)

dlnEcont 0.055*** 0.002*** 0.037*** 0.038*** 0.05*** 0.035*** 0.001 -0.001* 0.071***

(0.007) (0.001) (0.003) (0.004) (0.005) (0.005) (0.001) (0.001) (0.006)

3-digit elasticities

dlnE 0.202*** 0.115*** 0.098*** 0.13*** 0.15*** 0.162*** 0.001 -0.012*** 0.193***

(0.011) (0.012) (0.006) (0.011) (0.008) (0.013) (0.001) (0.002) (0.01)

exit -0.072*** -0.037*** -0.03*** -0.041*** -0.045*** -0.058*** 0 0.004*** -0.066***

(0.005) (0.005) (0.003) (0.005) (0.004) (0.005) (0) (0.001) (0.004)

dlnEcont 0.062*** 0.046*** 0.043*** 0.053*** 0.067*** 0.051*** 0 -0.005*** 0.066***

(0.006) (0.006) (0.003) (0.005) (0.005) (0.005) (0) (0.002) (0.006)

3-digit elasticities, industries with implausible or non-estimable elasticities are dropped

dlnE 0.207*** 0.159*** 0.1*** 0.124*** 0.169*** 0.154*** 0.078*** 0.06*** 0.193***

(0.013) (0.011) (0.006) (0.01) (0.009) (0.011) (0.008) (0.012) (0.01)

exit -0.073*** -0.05*** -0.03*** -0.037*** -0.05*** -0.052*** -0.031*** -0.022*** -0.066***

(0.005) (0.004) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

dlnEcont 0.065*** 0.065*** 0.045*** 0.054*** 0.075*** 0.054*** 0.017*** 0.017*** 0.066***

(0.006) (0.006) (0.003) (0.006) (0.006) (0.006) (0.005) (0.005) (0.006)

Estimates are taken from equations of three outcomes on plant-level measure of TFP, state-level measure of unemployment

growth, and year-, sizeclass- and state-fixed effects. Standard errors (in parentheses) are clustered at the state level.

Table A14: The effect of TFP on outcomes, 10 largest industries. Outcomes are: employment
growth among all establishments, exit and employment growth among continuers

OLS OP LPVA LPNL LPGR LPGSS WLPE WLPM

4-digit elasticities

dlnE 0.206*** 0.051*** 0.088*** 0.088*** 0.154*** 0.136*** 0.099*** -0.027**

(0.022) (0.018) (0.01) (0.011) (0.015) (0.021) (0.015) (0.014)

exit -0.067*** -0.002 -0.025*** -0.043*** -0.046*** -0.044*** -0.022*** 0.014***

(0.01) (0.007) (0.003) (0.005) (0.007) (0.007) (0.005) (0.005)

dlnEcont 0.076*** 0.054*** 0.042*** -0.001 0.066*** 0.051*** 0.06*** 0.003

(0.013) (0.006) (0.007) (0.006) (0.012) (0.014) (0.011) (0.01)

3-digit elasticities

dlnE 0.208*** 0.158*** 0.089*** 0.112*** 0.164*** 0.142*** 0.109*** 0.016

(0.023) (0.021) (0.010) (0.019) (0.016) (0.022) (0.015) (0.018)

exit -0.068*** -0.032*** -0.025*** -0.029*** -0.049*** -0.047*** -0.026*** 0.002

(0.010) (0.008) (0.004) (0.006) (0.007) (0.008) (0.005) (0.006)

dlnEcont 0.075*** 0.102*** 0.042*** 0.058*** 0.07*** 0.051*** 0.061*** 0.023*

(0.013) (0.012) (0.007) (0.015) (0.013) (0.014) (0.012) (0.012)

3-digit elasticities, industries with negative or non-estimable elasticities dropped

dlnE 0.208*** 0.158*** 0.089*** 0.113*** 0.164*** 0.142*** 0.13*** 0.061***

(0.023) (0.021) (0.010) (0.021) (0.016) (0.022) (0.019) (0.021)

exit -0.068*** -0.032*** -0.025*** -0.034*** -0.049*** -0.047*** -0.043*** -0.018***

(0.010) (0.008) (0.004) (0.007) (0.007) (0.008) (0.008) (0.007)

dlnEcont 0.075*** 0.102*** 0.042*** 0.047*** 0.07*** 0.051*** 0.046*** 0.027*

(0.013) (0.012) (0.007) (0.014) (0.013) (0.014) (0.013) (0.014)

Estimates are taken from equations of three outcomes on plant-level measure of TFP, state-level measure of unemployment

growth, and year-, sizeclass- and state-fixed effects. Standard errors (in parentheses) are clustered at the state level.
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Table A15: Time series of the contribution of reallocation (RE) and within-plant productivity
growth, in per cent. These numbers were used to calculated averages in columns 8 and 9 in
table 6.

WLPE WLPM PWR WLPE WLPM PWR WLPE WLPM PWR

1 2 3 4 5 6 7 8 9

Total RE (1-3) Capital RE (4-6) Labor RE (7-9)

1977 2.2 2.4 4.6 0.4 0.2 0.9 0.2 0.2 0.9

1978 1.8 1.9 2.4 0.8 0.5 0.2 0.2 0.2 0.6

1979 0.9 1.6 1 0.8 0.5 0.6 0.2 0.1 0.3

1980 0.3 -0.4 -0.3 1.3 0.8 1.1 -0.1 -0.2 -0.4

1981 1.5 1.8 1.4 1.2 0.8 0.7 0.3 0.2 0

1982 0.1 -1.1 -1.4 1 0.6 -0.4 -0.3 -0.3 -0.4

1983 1.4 2.1 1.6 0.9 0.7 -0.3 0 -0.1 0.5

1984 4 5.3 4.9 1.2 0.8 0.1 0.2 0.1 0.6

1985 2.1 1.8 3.5 1 0.7 1.3 0.3 0.2 0.2

1986 1.4 0.5 3.9 0.6 0.5 1.7 0.1 0.2 0.4

1987 1.3 2.1 2.9 0.7 0.6 1.2 -0.1 0 0.4

1988 1.7 2 2.4 0.6 0.5 0 0.3 0.3 0.6

1989 0.9 1.2 1.7 0.7 0.5 0.5 0.1 0.1 0.7

1990 -0.2 -0.5 -1.1 0.5 0.5 1.5 -0.7 -0.7 0.9

1991 0.2 -0.7 1.9 0.5 0.5 2 0.2 0.7 0.7

1992 1.3 1.9 1.2 0.6 0.5 0.5 0 0.1 0.5

1993 1.9 1.3 2.6 0.9 0.5 1.3 -0.1 -0.1 0.6

1994 2 2.6 3 0.7 0.6 0.8 0 0 0.1

1995 1 1.9 2.4 1.2 1.1 1.3 -0.3 -0.4 0.2

1996 2.6 3 3.2 1 0.8 1.2 -0.1 -0.2 0

mean(77-96) 1.4 1.5 2.1 0.8 0.6 0.4 0 0 0.4

std(77-96) 1 1.4 1.7 0.2 0.2 0.5 0.2 0.3 0.5

Materials RE (1-3) Energy RE (4-6) Within-plnat growth (7-9)

1977 1.5 1.9 2.2 0 0 0.6 -0.8 0.6 -0.5

1978 1 1.3 1.5 -0.1 -0.2 0 1.4 1.1 1

1979 0.7 0.9 0.5 -0.7 0.1 -0.4 3 2.1 3.1

1980 -0.2 -1 -0.5 -0.8 0 -0.4 -4.3 -3.4 -3.9

1981 0.3 0.4 -0.1 -0.3 0.4 0.8 0.4 -0.2 -0.1

1982 -1.2 -2 -2 0.6 0.5 1.4 -3.7 -4.3 -2.9

1983 0.7 1.5 0.2 -0.2 0 1.2 4.9 3.2 4.2

1984 2.6 4 3.4 0 0.3 0.7 0.6 -0.7 1.9

1985 0.6 0.7 0.9 0.3 0.1 1.1 -1.8 -3.5 -3.5

1986 0.1 -0.4 0.7 0.5 0.2 1.1 -2.2 -1.9 -4.3

1987 0.8 1.4 1 -0.2 0.1 0.3 3.6 3.1 3.1

1988 0.9 1.2 1.2 -0.1 0 0.6 1.5 2.5 2.1

1989 0.5 0.7 0.4 -0.3 -0.1 0.1 0.4 -1.7 -2.3

1990 -0.3 -0.4 -1.8 0.3 0.1 -1.7 -1.4 -1.5 -0.4

1991 -0.7 -1.8 -0.7 0.2 0 -0.1 -1.7 -0.7 -2.7

1992 0.7 1.1 0.9 0 0.2 -0.6 -0.4 1.8 3

1993 0.2 0.8 0.2 0.8 0.1 0.4 0.9 2.5 0.1

1994 1.1 1.8 1.9 0.1 0.2 0.2 3 1.8 3.9

1995 0.9 1.2 1.3 -0.9 0 -0.3 2.1 1.1 2.2

1996 1.9 2.3 2.1 -0.1 0 -0.1 -0.8 -1.7 0.6

mean(77-96) 0.6 0.8 0.7 0 0.1 0.2 0.2 0 0.2

std(77-96) 0.9 1.4 1.3 0.4 0.2 0.7 2.4 2.3 2.7
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Table A16: The effect of imputation on within-industry dispersion in the ASM/CM between
2002-2010, by dispersion measures and samples. See figure 2 for visualizations.

year SD IQR 9010 SD IQR 9010
[1] [2] [3] [4] [5] [6]

Panel 1. ASM-CM
Completed data, unweighted* Completed data, weighted [ipw1]**

2002 0.2264 0.2458 0.5596 0.2194 0.228 0.5378
2003 0.2712 0.2976 0.638 0.2776 0.3129 0.6658
2004 0.2605 0.2899 0.6139 0.268 0.2974 0.6401
2005 0.2657 0.2915 0.6192 0.2662 0.3045 0.6416
2006 0.2651 0.2849 0.6179 0.2633 0.289 0.6303
2007 0.2405 0.263 0.5874 0.232 0.2365 0.5617
2008 0.2816 0.3039 0.6529 0.3043 0.3303 0.7183
2009 0.2959 0.3278 0.694 0.303 0.3485 0.7356
2010 0.2881 0.3127 0.6682 0.3086 0.3395 0.7413

Non-imputed data, unweighted Non-imputed data, weighted [ipw1×ipw2]***
2002 0.2398 0.2949 0.597 0.2523 0.3155 0.633
2003 0.2655 0.2944 0.6267 0.2754 0.3175 0.6662
2004 0.2631 0.295 0.6179 0.2768 0.3186 0.6796
2005 0.2663 0.2928 0.6198 0.2714 0.3153 0.6412
2006 0.2667 0.2916 0.617 0.2723 0.3164 0.6553
2007 0.2483 0.2969 0.6056 0.2594 0.3207 0.6428
2008 0.2676 0.2961 0.6232 0.2814 0.3164 0.6687
2009 0.284 0.3151 0.6655 0.3039 0.3378 0.7065
2010 0.279 0.305 0.6465 0.2838 0.3143 0.6734
Panel 2. ASM cases

Completed data, unweighted Completed data, weighted [ipw1]
2002 0.2722 0.3098 0.6524 0.2798 0.3306 0.6888
2007 0.2607 0.2867 0.6196 0.2607 0.2843 0.6314

Non-imputed data, unweighted Non-imputed data, weighted [ipw1×ipw2]
sd iqr 9010 sd iqr 9010

2002 0.2652 0.3004 0.6288 0.2771 0.3257 0.6726
2007 0.256 0.2926 0.6086 0.2591 0.3114 0.6221

*Unweighted data: the entire sample including both imputed and non-imputed observations, first and second
moments are unweighted.
**Weighted data [ipw1]: propensity score weighted observations, where the weight ipw1 is inversely
proportional to the probability that the plant is selected into the ASM/CM.
***Non-imputed, weighted data [pw1,pw2]: observations in the non-imputed sample, weighted by a composite
propensity score ipw1*ipw2 where ipw2 denotes a weight inversely proportional to the probability that the
plant’s TFP is calculated using non-imputed data. We calculate the probability using a logistic regression of
TFP being non-imputed on industry fixed effects, employment size and age classes and payroll deciles.
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Table A17: Imputation rates of the main components of TFP in the ASM/CM, as a per cent
of plant-year observations between 2002-2010.

Average imputation rates (2002-2010)
TFP TVS PH SW WW CP CM

ASM/CM* 59.1 28.1 42.6 14.2 29.2 42.6 37.5
ASM/CM/LBD** 58.3 27.6 42 14.1 28.5 41.7 36.3
ASM/LBD*** 48.9 25.5 35.3 13.2 25.1 34 31.9

Yearly imputation rates of TFP, per cent of plant-year observations
2002 2003 2004 2005 2006 2007 2008 2009 2010 Total

ASM/CM 68.8 45.8 42.6 43.8 49.9 69.2 53.2 52.4 53.9 59.1
ASM/CM/LBD 68 45.1 41.5 42.8 49.1 68.1 52.7 52 53.7 58.3
ASM/LBD 48.1 52.8 48.9

TFP is considered imputed if at least one of its components is imputed by the Census Bureau. Components:
total value of shipments (TV S - changes in inventories are not considered here); total hours, calculated as a
product of production worker hours (PH) and the ratio of salaries and wages (SW ) and production worker
wages (WW ); cost of materials (CM), calculated as a sum of the cost of parts (CP ), resales (CR) and
contract work (CW ), but only CM and CP are included in the table. We excluded capital from the analysis
because plants’ time series on capital are created using the perpetual inventory method.
*ASM/CM: ASM and CM combined. **ASM/CM/LBD: observations in ASM and CM for which we observe
employment in the LBD. ***ASM/LBD: observations in ASM for which observe employment in the LBD.

Table A18: Estimated rates of imputation models within the most frequent impute types, as
a percentage of the total number of observations, ASM-CM 2007. The most frequent impute
types are based on linear regressions (flagged ”B”) and/or historical (flagged ”H”) information.

tvs ph cm
ASM CM
Overall imputation rate (fact) 28.5 58.8 41.1
Types: B or H flags (fact) 20.6 55.1 33.3

Models (estimate)*
multivariate regression 4.1 12.4 6.3
univariate regression 15 44.8 26.6
historical 0.9 5.8 0.5
total 20 62.9 33.4

ASM cases only
Overall imputation rate (fact) 24.1 39 34.3
Types: B or H flags (fact) 18.2 36.1 25.7

Models (estimate)*
multivariate regression 10.5 14.4 14.4
univariate regression 8.1 13.5 11.6
historical 1 9.7 1.4
total 19.6 37.6 27.4

*Census data indicates the impute type but not the model and there are more than one impute models within
a type. For example, within type-B imputes, both univariate and multivariate regression models are used. We
estimate impute model instances by evaluating the restriction each impute model implies. These results show
regression-based imputes are most common. In the ASM-CM, imputes are typicall based on univariate
regressions, while ASM imputes are much more likely to be based multivariate regressions.

48



10 Appendix Figures
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(a) β̂M , similar general shape but differences exist
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Figure A1: Between-industry distributions of elasticities under TFP estimator variants, 50
largest 4-digit industries.
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Figure A2: Point estimates from a logistic regression of TFP being non-imputed on industry
fixed effects, employment-, payroll-size and age classes. ASM cases only. We defined 10 size
classes based on employment (1-9, 10-109, 20-29, 30-49, 50-99, 100-149 150-249, 250-499, 500-
999, 1000+) in addition to the payroll deciles. Finally, we classified establishments into 9 age
classes (births, 1, 2, 3, 4, 5, 6-10, 11-15, 16+ years).
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