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Abstract

We investigate the role of systemic financial instability in an empirical macro-
financial model for the euro area, employing a richly specified Markov-Switching
Vector Autoregression model to capture the dynamic relationships between a set
of core macroeconomic variables and a novel indicator of systemic financial stress.
We find that at times of systemic financial instability the macroeconomy functions
fundamentally differently from tranquil times. Not only the variances of the shocks,
but also the parameters that capture the transmission of shocks change regime,
especially around times of high systemic stress in the financial system. In particular,
financial shocks are larger and their effects on real activity propagate much more
strongly during regimes of high systemic stress than during tranquil times. We find
an economically important role of bank lending in the propagation of financial stress
to the macroeconomy. We also show that prospects for detecting high systemic stress
episodes appear promising, although we argue that more research is required. We
conclude that macroprudential policy makers are well advised to take these non-
linearities into account.
JEL Classification: E44, G01, C32, C11
Key words: financial stability, systemic risk, macro-financial linkages, Markov

switching VAR, non-linearities

∗We would like to thank Geert Bekaert, Kristoffer Nimark, Harald Uhlig, Dan Waggoner and Tao Zha for useful
discussions and participants of the European Economic Association Meetings 2012, German Economic Association
Conference 2013, Conference ’Systemic Risk, Financial Markets and the Post-Crisis Economy’Nottingham 2013,
Erasmus University Rotterdam Conference 2013, ’Financial Intermediation, Risk and Liquidity’Workshop and
the ’Time Series Analysis in Macroeconomics and Finance’Workshop at the Barcelona GSE Summer Forum 2014,
ESCB Macroprudential Research Network Conference 2014, the IAAE 2014 and seminars at the Central Bank
of Canada, the Central Bank of Mexico, the Offi ce of Financial Research and Stanford University for comments.
Vesela Ivanova and Cristina Manea provided excellent research assistance. The views expressed are only the
authors’and should not be associated with offi cial views of the European Central Bank, the Eurosystem or the
Federal Reserve Board.
†European Central Bank, Sonnemannstrasse 20, 60314 Frankfurt am Main, Germany, e-mail

philipp.hartmann@ecb.europa.eu, Erasmus University Rotterdam and Centre for Economic Policy Research
(CEPR), London, United Kingdom
‡European Central Bank, Sonnemannstrasse 20, 60314 Frankfurt am Main, Germany, tel. +49-69-1344-6358,

e-mail kirstin.hubrich@ecb.europa.eu
§European Central Bank, Sonnemannstrasse 20, 60314 Frankfurt am Main, Germany, tel. +49-69-1344-7065,

e-mail manfred.kremer@ecb.europa.eu
¶Federal Reserve Board, Washington, D.C., USA, e-mail robert.j.tetlow@frb.gov.



1 Introduction

Economic history has shown that financial crises are regular, if infrequent, occurrences, observed

over extended periods of time, across a range of countries, encompassing a variety of economic

systems (Kindleberger, 1978; Reinhart and Rogoff, 2009). Systemic financial crises– crises that

impair the overall functioning of financial systems– can have particularly serious implications

for economic growth and welfare; the recent financial crisis and the resulting great recession is

just the latest example. In a systemic crisis, an initial adverse shock affects market functioning

in broad classes of financial institutions and markets, so that it is propagated and amplified

in a manner atypical of ordinary business cycles.1 In particular, when financial instability

becomes widespread– that is, when it affects many different financial institutions and capital

markets– the financial and the real sector may enter into a pernicious feedback loop, aggravating

systemic stress. The resulting nonlinearities and the profession’s still limited understanding of

the underlying forces pose significant challenges for macroeconomic modeling, and for crisis

detection, at both the theoretical and empirical level. It is this notion of systemic stress that

underlines our thinking in this paper.

The theoretical literature has made progress recently in incorporating within macromodels,

financial instability and associated nonlinearities. One strand of the literature has investigated

the origins and mechanisms that can lead to the extraordinary amplification and propagation

of shocks through the economy; examples include He and Krishnamurthy (2014) and Archaya

et al. (2010) who analyze systemic risk with a focus on financial intermediaries.2

Empirical contributions to modelling financial instability and associated nonlinearities in the

interaction with the macroeconomy have been scarce to date. The aim of the present paper is

to provide empirical evidence on the dynamic interaction of systemic financial instability and

the macroeconomy in the euro area. To this end, we propose an empirical framework that is

designed to capture state-dependent changes in the joint dynamics of a core set of macroeconomic

variables and a broad-based measure of systemic financial instability.

A feature of what we do is make use of the Composite Indicator of Systemic Stress (CISS),

recently developed at the European Central Bank by Hollo, Kremer and Lo Duca (2012) as a

measure of the state of systemic financial instability in the euro area. The CISS is particularly

well suited for our purposes. It captures the systemic dimension of financial instability, first, by

1 Bekaert, Engstrom and Xing (2009) describe how reassessments of the vulnerability of market segments can
be one source of financial fragility.

2 See also, e.g., Bianchi (2011), Brunnermeier and Sannikov (2013), Martinez-Miera and Suarez (2012), Bois-
say, Smets and Collard (forthcoming), Adrian and Boyarchenko (2013), Goodhart et al. (2012) and He and
Krishnamurthy (2011). The article by de Bandt and Hartmann (2002) reviews the topic of systemic risk, while
de Bandt, Hartmann and Peydro (2010) updates the earlier article, but with a focus on banking.
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encompassing the main classes of financial markets and intermediaries in a systematic fashion

and, second, by capturing time-varying dependence of stress between these major segments of

the financial system.3 Of note is the inclusion within the CISS of financial intermediation, which

is likely to be important because of the more bank-centered financial system in the euro area,

as compared to the United States where capital markets have a more prominent role.

We embed the CISS– together with a selection of macroeconomic variables– in a richly

specified Markov-switching Vector Autoregression (MS-VAR) model. Our specification allows

for independent regime shifts in the coeffi cients of the model, and in the variances of the model

shocks. With this framework we explore five central issues. First we uncover whether switching,

as a driver of episodes of systemic stress, is confined to the variances of shocks, or whether

something more fundamental takes place, namely switching in model coeffi cients and thus the

transmission of shocks. The answer to this question is important for policy purposes, among

other things, because it speaks to whether or not policy interventions should be directed toward

apprehending the source of "exogenous" shocks, or whether inducing changes in the transmission

mechanism need to be considered. Second, we analyze whether any statistically significant

nonlinearities we find are also economically important. Third, we explore the origins of our

results; in particular, we investigate whether certain features of our systemic stress indicator

stand out as important for our results, which then casts light on whether particular channels in

the financial system are critical for spread of systemic distress. Fourth, we delve into the critical

role of bank lending as either the source of, or the propogation mechanism for, fluctuations in

output. And fifth, we assess whether our model could prove to be useful for tracking systemic

stress episodes in real time.4

We summarize our conclusions regarding these five central issues as follows. First, the

macroeconomy functions fundamentally differently in what we refer to as periods of high sys-

temic stress, as compared to more tranquil times. Both the coeffi cients and the variances of

the identified shocks exhibit switching phenomena. It follows from this observation that the

standard, constant-coeffi cient constant-variance model would likely yield misleading results in

these situations. Second, this regime switching is economically important: the effects of finan-

cial stress shocks on output are much larger, more persistent, and more consequential for the

real economy in regimes of high systemic stress than during tranquil times. Third, as part

of an investigation of the contribution of the CISS, we find that alternative measures of finan-

3 See Illing and Liu (2006) and Kliesen, Owyang and Vermann (2012) for overviews of the construction of
financial stress indexes as applied, in these cases, to the United States.

4 MS-VAR models have been used to assess structural changes in US monetary policy by Sims and Zha (2006),
and to examine the effectiveness of monetary policy in periods of high financial stress by Hubrich and Tetlow
(2015). See also Baele et al. (2012) and F. Bianchi (2014).
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cial stress, in particular stock market volatility and corporate bond spreads, produce regimes

that do not track known systemic stress episodes as well, and render dynamic properties that

are less plausible than our baseline results. We also show that the inclusion of cross-market

correlations and the financial intermediation sector in the CISS are important. We conclude

that these findings show the value added of several of the features of our measure of systemic

financial stress. Fourth, we show that bank lending has an independent role for real activity

during episodes of high systemic stress. In particular, during such periods, exogenous identified

shocks to loan growth have important consequences for the rest of the economy, whereas in

tranquil times they do not. We argue that this result likely reflects binding credit constraints

during high-stress periods. Fifth, as an initial test of the effi cacy of the CISS as a possible aid

to macroprudential policy, we also compute the state probabilities for the regimes in real time,

and find few false positives. This suggests to us that the model has at least some potential

for nowcasting systemic instability although further investigation using real-time data would be

welcome.

This paper is related to the empirical literature on the real effects of financial distress and

crises. Early contributions on the Great Depression and the 1990s US credit crunch include

Bernanke (1983) and Bernanke and Lown (1991), respectively. More recently, Barkbu, Eichen-

green and Mody (2012), and Schularick and Taylor (2014) measure, among other things, the

output cost of crises for a set of countries, taking a longer-term historical perspective. These

previous contributions employ linear models, in contrast to the nonlinear model framework that

we use here. Studies that investigate the predictive power of systemic stress measures for eco-

nomic activity, also using linear models, include Allen, Bali and Tang (2012), and Giglio et al.

(2012). Dovern and van Roye (2014) use a financial stress index to examine some of the same

issues as we do here, but confine themselves to linear vector autogressive models. Apart from

the nonlinear framework that we employ here, we also investigate the role of bank lending in

the connection between financial shocks and real activity.

The rest of the paper is structured as follows. Section 2 describes the econometric methodol-

ogy behind our model and details the main features of the systemic stress indicator as well as the

macroeconomic variables used. Section 3 presents the empirical results, including the smoothed

probabilities of states in shock variances and coeffi cients, impulse responses to a financial stress

shock, counterfactual analyses, explorations of the role of bank lending in the episodes of sys-

temic stress, and the estimated real-time state probabilities. Section 4 compares our main results

with those obtained with alternative measures of financial stress such as aggregate stock market
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volatility and corporate spreads, as well as results using different variants of the CISS. Section

5 offers some summary remarks as well as our conclusions.

2 The model and data

Several choices have to be taken at the initial stage of model specification. First, we need

a flexible econometric model framework that can accommodate systemic stress episodes and

allow for discrete shifts in economic dynamics. Second, we need a measure of systemic financial

instability that ably captures the spreading of financial stress across markets and institutions.

Third, the variables that fill out the rest of the model have to be representative of macroeconomic

dynamics in general and interactions between the macro economy and financial stability in

particular. And fourth, the model needs to be identified. We discuss each of these topics, in

turn, in the next four subsections.

2.1 Non-linear multivariate model framework

An important feature of our analysis is the application of an econometric framework that allows

to investigate empirically whether the macroeconomy fundamentally changes its functioning

when systemic financial stress emerges or disappears. In particular, we ask whether specific

non-linearities, in the form of regime switches in the dynamics of and the relationships between

key macroeconomic variables, can be empirically identified. For this purpose we apply a richly

specified Markov-switching VAR model that can estimate discrete changes in the economic

dynamics. Our specific MS-VAR framework distinguishes between two independent sources of

regime switching, namely, shifts in the variances of shocks and shifts in the economic structure

that transmits those shocks.

There are alternatives to using an MS-VAR model; the two that come immediately to mind

are time-varying parameter (TVP) models and threshold models. TVP models, like MS-VAR

models, allow for time variation in parameters or shocks, or both, but typically model that

variation as drifting coeffi cients. Our use of the MS-VAR modeling framework reflects our

understanding of the nature of systemic financial stress and its effects on macroeconomic dy-

namics; systemic financial stress, almost by definition, tends to involve discretely nonlinear or

non-Gaussian effects, either in the financial sector itself, or in their macroeconomic consequences,

or both.5 As such, the MS-VAR framework seems like a natural choice. Threshold models, like

5 Sims, Waggoner and Zha (2008) note that by expanding the number of Markov states in coeffi cients the
MS-VAR model can approximate, at least in principle, a TVP model.
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MS-VAR models, can allow for discrete shifts in parameters (or in the distributions of shocks),

but the researcher is obliged to prespecify a threshold variable. Given the wide range of stories

that have been advanced concerning the origins and propagation of financial events, it seems

reasonable to us to avoid such prespecification. Our modeling choices notwithstanding, we

would not argue that there are no insights to be gleaned from TVP or threshold models in this

context, although the particular questions under study might differ in some ways.

Estimation of and statistical inference from the MS-VAR model rests on recently developed

Bayesian methods that have made feasible the estimation and inference for richly parameterized

models; see Sims and Zha (2006) and Sims, Waggoner and Zha (2008). Some details on the

relevant techniques are provided in the Appendix B.

We consider (possibly) non-linear vector stochastic processes of the following form:

y
′
tA0(s

c
t) =

l∑
j=1

y
′
t−lAj(s

c
t) + z

′
tC(sct) + ε′tΞ

−1(svt ), t = 1, 2...T. (1)

where yt is an n × 1 vector of endogenous variables; smt , m = v, c are unobservable (latent)

state variables, associated with different regimes for error variances, v, and for intercepts and

slope coeffi cients, c. l is the VAR’s lag length. zt is a matrix of exogenous variables, which we

are setting to a column vector of constants 1n, i.e. one intercept per equation. A0(sct) is an

n× n matrix of parameters6 describing contemporaneous relationships between the elements of

yt, C(sct) is an 1×n vector of parameters of the exogenous variables and Aj(sct) is a n×n matrix

of parameters of the endogenous variables and T is the sample size. εt is the n × 1 vector of

the random shocks. The diagonal n× n matrix Ξ−1(svt ) contains the standard deviations of εt.

ε′tΞ
−1(svt ) represents the structural shocks. The values of smt are elements of {1, 2, ...hm} and

evolve according to a first-order Markov process with the following state probabilities:

Pr(smt = i|smt−1 = k) = pmik, i, k = 1, 2, ...hm.

Let us designate Yt = {y0, y1, ...yt} as the vector y stacked in the time dimension. We assume

that εt is conditionally standard normal:

p(εt|Yt−1, St, Aj) ∼ N(0n×1, In).

The variance-covariance matrix Σ(smt ) of the correlated reduced-form regression errors can

6 Note that we impose identifying restrictions such that A0 is triangular.
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be recovered as follows:7

Σ(smt ) = (A0(s
c
t)Ξ

2(svt )A
′
0(s

c
t))
−1. (2)

Since the matrix A0 varies across coeffi cient regimes sct , the number of regimes of the corre-

lated shocks obtains as a multiple of the number of variance regimes of the structural shocks svt

since coeffi cients and variances are assumed to switch independently of each other.

2.2 Systemic stress indicator

To be suitable, a systemic stress indicator must have several attributes. First, as the word stress

suggests, it needs to capture not just activity or even disruption in the financial sector, but

stresses that might be of concern to market participants and policy makers. Second, as the word

systemic indicates, it should ideally distinguish between stress that is germane to a single or

small subset of markets– and thus not of concern to the system as a whole or its regulators– and

stress that has the potential to spread through the entire system. It is presumably when stress

is widespread that it has implications for the broader macroeconomy. Indeed, a conventional

definition of systemic risk is that it is “the risk that financial instability becomes so widespread

that it impairs the functioning of a financial system to the point where economic growth and

welfare suffer materially” (ECB, 2010). Third, as the word indicator suggests, the candidate

measure of systemic stress needs to be timely in the marking of stress episodes, reliably iden-

tifying events of potential concern to market participants and policy makers, preferably in real

time.

We will argue that the Composite Indicator of Systemic Stress (CISS) developed by Hollo,

Kremer and Lo Duca (2012) ably fulfills the roles of a good systemic stress indicator, as just

described. Our discussion of the CISS will be brief by necessity; readers interested in more

details are invited to consult Appendix A or Hollo, Kremer and Lo Duca (2012).

First of all, the scope of the CISS is broad, comprising five aggregate market segments cov-

ering the main channels by which the funds of savers are reallocated to borrowers, whether

those funds are channeled directly through capital markets or indirectly through financial inter-

mediaries. These segments include: (1) financial intermediaries; (2) money markets; (3) bond

markets; (4) equity markets; and (5) foreign exchange markets. Each of the five market seg-

ments is populated with three representative stress indicators that are generally recognized as

excellent proxies of fundamental risks and market disruptions, such as spreads, volatilities and

7 See Sims, Waggoner and Zha (2008), p. 265.
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market return correlations (see Table 4 in Appendix A for a precise description of the data).

Aggregation of each set of three constituent stress measures– after appropriate transformation

to harmonize their scale and variances– results in five segment-specific subindexes of financial

stress.

The way the subindexes are aggregated into a composite indicator is the main innovative

feature of the CISS. In the same way that portfolio risk is computed from individual asset

risks, the subindexes are aggregated by taking into account the time-varying (rank)-correlations

between them. This time variation in the correlations means that relatively more weight is

applied to components during periods in which stress prevails in several market segments at

the same time. Thus, the CISS is designed to capture what might be called the epidemiology

of risk, meaning the way in which instability in one market infects other markets, leading to

widespread and possibly severe financial instability with systemic implications.

The aggregate index, as constructed from euro area data, is plotted in Figure 1. As can be

seen, the largest spikes in the indicator coincide with well-known financial stress episodes, such

as the 1987 stock market crash, the 1992 crisis of the European exchange rate mechanism, the

1998 Russian debt default and associated Long Term Capital Management crisis, as well as the

financial stress around the terrorist attacks on 11 September 2001.8 More recently, the financial

crisis stands out in comparison with previous stress events in terms of both the level reached, in

the wake of the September 2008 bankruptcy of Lehman Brothers, and in the duration of high

readings.

2.3 Other variables and data sources

Since MS-VAR models allowing for regime changes in all coeffi cients and shock variances even

with a moderate number of different regimes require estimation of a large number of parameters,

we opt for a model with five endogeneous variables. Three of them represent standard variables

in the macro VAR literature, namely industrial production growth as a measure of economic

activity, consumer price inflation and a short-term interest rate, where the latter may capture

short-term funding costs in the economy but also proxies for conventional monetary policy. These

variables form the backbone of any stylized empirical representation of standard macroeconomic

models (for an overview see, e.g., Christiano, Eichenbaum and Evans, 1999).

The set of endogenous variables is completed by adding the CISS and the growth rate in

nominal bank loans to the private sector. The latter choice can be generally motivated by the
8 See Hollo, Kremer and Lo Duca (2012) for a more extensive coverage of historical stress events which coincide

with peaks in the CISS. The review article by de Bandt and Hartmann (2002) describes methods for measuring
systemic risk.
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Figure 1: Composite Indicator of Systemic Stress (“CISS”) for the euro area and specific financial
stress episodes, January 1987 to December 2010

strong role that bank lending played in the most severe financial crises in history; e.g. Schularick

and Taylor (2012). It can also be justified by the relatively large share of bank loans in the

overall financing of the euro area economy.

The data sample runs from January 1987 to December 2010. Industrial production (∆IP),

consumer price inflation (based on the Harmonised Index of Consumer Prices, HICP; ∆P ) and

nominal bank loans to the private sector (∆Ln) are expressed in year-on-year percentage log

changes of seasonally-adjusted monthly data for the euro area as a whole. The short-term

interest rate (R) is represented by the three-month Euribor (Euro InterBank Offered Rate) and

measured as monthly averages of daily data. All four series are taken from ECB data bases.

The CISS data (S) are monthly averages of weekly data and are taken from Hollo, Kremer and

Lo Duca (2012).

2.4 Structural model identification

The contemporaneous relationships between the endogenous variables – as reflected in the

Matrix A0 – are identified on the basis of a triangular representation analogue to the well-

known Choleski decomposition often used in structural VAR applications.9

The conventional ordering in the macro VAR literature places the short-term interest rate

last, implicitly assuming that monetary policy may react simultaneously to shocks in the other

9 In triangular identification schemes the ordering of the variables determines the contemporaneous causality
structure. For instance, the variable ordered first is assumed to be contemporaneously uncorrelated to all other
variables.
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variables while no other variable is allowed to respond contemporaneously to monetary policy

shocks.10 In our structural identification setup, we maintain this basic assumption and place

the short-term interest rate right after industrial production growth and inflation. However,

we order the short-term rate before loan growth assuming that banks can adjust their lending

activity quickly to monetary policy innovations. Finally, we order the CISS last such that output,

inflation, interest rate and loan shocks can all have contemporaneous effects on financial stress,

while systemic financial instability (CISS) shocks are restricted to affect the rest of the economy

only with a lag. This ordering reflects the conventional practice in the recent VAR literature

of allowing asset price variables to respond instantaneously to shocks in usually more sluggish

macro variables such as output and inflation. The variables thus enter the model in the following

order: output growth (∆IP ), inflation (∆P ), interest rate (R), loans (∆Ln) and the CISS (S).

Our main results turn out to be qualitatively robust to different variable orderings, however.11

In what follows we thus present results only for the above ordering which constitutes the most

conservative estimates for the issue we are most interested in, namely the link between systemic

financial instability and the real economy.12

3 Systemic stress, regimes and financial crises

3.1 Model estimation and evaluation

The five-variable structural MS-VAR model in equation (1) is estimated using three lags with

Bayesian methods.13 We employ a blockwise optimization algorithm to estimate the posterior

mode. In a first step, parameters are divided into blocks and the resulting initial guesses for the

parameters are used in a hill-climbing quasi-Newton routine. At candidate maximum points, we

subject the estimator to random perturbations thus generating starting values from which the

optimization process is restarted in order to assure that the estimated posterior mode we obtain

10 See e.g. Christiano, Eichenbaum and Evans (1999).
11 In particular, when placing the CISS first in the order (followed by interest rates, output growth, inflation

and loan growth) such that all shocks in financial stress become exogenous to the contemporaneous shocks in
the other model variables (assuming, e.g., that output and monetary policy can react simultaneously to surging
financial stress), the impulse response functions still convey the same basic messages. The same robustness result
holds true when switching the order between bank loan growth and the interest rate (allowing short-term rates
to react immediately to lending innovations).
12 We also carried out several other sensitivity analyses, which again turned out immaterial for our main

findings. For instance, we replaced the three-month Euribor by the monthly average EONIA (Euro OverNight
Index Average) rate, where the latter substitution takes account of the fact that banks’liquidity and counterparty
risk considerations drove a large wedge between both rates during certain episodes of the recent crisis. Results
not displayed in the paper are available from the authors upon request.
13 A model with a lag length of 12 provides similar results in terms of the real effects of a financial stress shock

reported later.
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is indeed the most likely estimate.14

Our modeling framework allows for two independent Markov chains, one governing the struc-

tural error variances, and the other determining the dynamic interactions between the model

variables as reflected in the model parameters. To determine our preferred specification, we

employ a mixture of criteria, two statistical and one economic. Our first and most important

statistical criteria is goodness of fit as determined by comparison of the logarithm of marginal

data densities (MDDs) of candidate specifications. This is the method usually employed for

ranking models in Bayesian econometrics.15 In addition, however, we use another recently devel-

oped statistical criteria, the regime classification measure (RCM) pioneered by Ang and Bekaert

(2002) and subsequently extended by Baele (2005). This metric evaluates the relative perfor-

mance of the models according to their ability to sharply distinguish one regime from another.

We particularly focus on the RCM for the coeffi cient regimes since those are most central to our

investigation; in effect, the RCM penalizes the addition of variance regimes that do not lead to a

sharper regime distinction for the coeffi cient regimes than the more parsimonious specifications.

Finally, we also assess our candidate models on economic criteria: models should make sense in

terms of the dates of regime switches, the duration of regimes, and their model properties. As

we show below, the ranking of the models based on these three criteria are mostly pointing in

the same direction.

The standard modified harmonic mean (MHM) method for computing MDDs of Gelfand

and Dey (1994) has been found to be unreliable when the posterior distributions are very non-

Gaussian as is likely to be the case here. To overcome numerical problems that arise in this

context, and to better approximate the posterior density function, we are using an elliptical

distribution as a weighting function to calculate MDDs (Waggoner and Zha 2012, Appendix

C3).16

We employ two sets of priors for estimating our model, one for the VAR parameters, the other

for the transition matrix. Following Sims, Waggoner and Zha (2008) we use standard Minnesota

priors for the VAR parameters; for the transition matrix, we use the Dirichlet prior.17

14 To ensure that solutions are robust, and likely to be global, candidate solutions are perturbed using 5 large
random perturbations and 5 random perturbations in the neighbourhood of each of the resulting peaks.
15 The Bayesian counterpart to frequentist hypothesis testing is to compare MDDs, or equivalently, to assess

Bayes factors, across models.
16 In the Markov Chain Monte Carlo (MCMC) algorithm we use 100000 proposal draws and 5 million posterior

draws with a thinning factor of 10, so retaining 500000 posterior draws. The burn-in period is 10%.
17 For more details on the priors, see Appendix B.

11



Table 1: Goodness-of-fit statistics, selected model regime specifications
[1] [2] [3] [4] [5] [6]

Regime combination 1v1c 2v1c 3v1c 2v2c 3v2c 4v2c

log(MDD) -6.05 92.4 131.9 126.1 147.4 170.7
- difference. from 1v1c 0 98.4 138.0 132.1 153.4 177.2
RCM n.a. 20.9 12.4 14.8 6.0 7.5
Notes: Log MDDs are calculated as in Sims, Waggoner and Zha (2008);
{i}v{j}c where i = no. of variance and j = no. of coeffi cient regimes; RCM
is the Regime Classification Measure (Ang and Bekaert, 2002, Baele 2005).

3.2 Determining and interpreting regimes

3.2.1 Model selection

Before turning to the results, a few words on notation are useful in order to interpret the

table to follow. In table headings and elsewhere, a v indicates the Markov chain associated with

switching in shock variances, while a c refers to the chain governing model coeffi cients. A number

preceding either v or c indicates the number of regimes allowed in the Markov chain governing

shock variances or coeffi cients, as applicable. So, for example, 3v2c indicates a specification that

allows for three regimes in the variances of shocks and two regimes in coeffi cients.

Table 1 presents the log MDDs for several combinations of the two types of regimes. For

ease in interpretation, the log MDDs are shown both in absolute terms in the first row of

numbers and relative to a standard constant-coeffi cient Gaussian VAR model– that is, the 1v1c

specification– as a benchmark, in the second row.

According to Jeffreys (1961), differences in log MDDs of 10 or more can be taken as strong

evidence that one model is more likely than the other. As can be seen, the results provide

strong evidence against a constant-coeffi cient (1v1c) model. The difference between the constant-

coeffi cient model, column [1], and any of the models with regime switching is at least 98 in terms

of log MDDs, and in most cases much above 100. Restricting the number of coeffi cient regimes

to one, and allowing for two or three regimes in shock variances, as in columns [2] and [3], shows

that the models with several regimes in shock variances outperform the constant coeffi cient

model: the 3v1c specification is the preferred one among the three specifications that allow only

switching in variances. Consider, however, starting with two regimes in shock variances– that

is, the 2v1c specification– whether the addition of a third variance state (3v1c) or a second

coeffi cient state (2v2c) improves the model fit. Columns [3] and [4] suggest that there is no

strong reason to prefer one of these models over the other. Lastly, the specification with three

variance regimes and two coeffi cient regimes– 3v2c, column [5]– is shown to outperform the
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other, simpler models.18 Indeed, on the basis of log MDD comparison, a model allowing even

more states in shock variances, the 4v2c model in column [6], is favored.19 However, these more

elaborate models might not be very different from each other. The RCM evaluates the abililty of

the different models to sharply distinguish one regime from another. Lower readings of the RCM

indicate sharper regime classification. Regarding the distinction between the 2v2c, the 3v2c and

the 4v2c,the RCM effectively penalizes the addition of variance regimes that do not lead to a

sharper regime distinction for the coeffi cient regimes than the more parsimonious specifications.

According to the RCM the 3v2c specification is preferred. Finally, our review of the economic

properties of the 3v2c specification of the model suggests to us that this specification is at least

as good as the alternative candidates, based on the criterion of economic plausibility.20 On this

basis, we select the 3v2c specification as our preferred model. In the next subsection, we turn to

the economic characterization of the different regimes of our preferred model in the following.

3.2.2 Economic characterization of regimes

Table 2 shows the estimated standard deviations of the structural shocks across the three iden-

tified variance regimes, normalized such that the volatilities of the first regime are unity. For

reasons that will only become clear a bit later on, we will call our three variance regimes "low"

(vL), "medium" (vM), and "high" (vH) regimes; similarly, we will refer to the two regimes for

VAR-equation coeffi cients as cL and cH. Several noteworthy conclusions arise from the table.

First, switching in shock variances is consequential, at least statistically, as can be seen by the

substantial differences in (normalized) standard deviations from regime to regime. Second,

there is no uniform pattern in the ranking of standard deviations across all variables in that the

standard deviations of shocks do not rise or fall uniformly from regime to regime. Third, for

the shock of principal interest for this paper, namely the CISS (S) shock, the variance of the

shock in vH state clearly stands out. Finally, while the S shock and also the inflation shock,

(∆P ), rises substantially, in vH relative to vL, the pattern is the opposite for shocks to loans,

(∆Ln), and the interest rate (R),while there is little difference across states in the variances of

shocks to industrial production, (∆IP ). Precisely what to make of the lack of uniformity in

shock variances across regimes is not entirely clear from these particular statistics, but it does

suggest that shocks to financial stress play a more important role in driving dynamics in vH

18 Marginal data density computations do penalize non-parsimony of models. Kass and Raftery (1995) show
that the Schwarz criterion (or BIC) gives a rough approximation to the logarithm of the Bayes factor.
19 Models with additional coeffi cient regimes could not be estimated given the high number of parameters.
20 Our results, in particular the smoothed probabilities and impulse responses for the different models, show

that the extra variance regime of the 4v2c specification captures only a few outliers at the beginning of the sample.
Details are available from the authors, on request.
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Table 2: Relative standard deviations of structural shocks by regime
∆IP ∆P R ∆Ln S

Low-variance regime (vL) 1.00 1.00 1.00 1.00 1.00
Medium-variance regime (vM) 0.91 1.53 0.29 0.74 0.62
High-variance regime (vH) 0.85 1.99 0.65 0.56 2.98
Notes: Entries are normalized for each variable to unity for the first regime.

than do shocks to loan growth and real activity, operating independently of financial stress. In

short, the suggestion is that in the vH regime, it is stress shocks that dominate.

Table 3, which shows descriptive statistics for endogenous variables conditional on each of

the six possible combinations of our independent variance and coeffi cient regimes, sheds some

light on the economic characterization of regimes from the viewpoint of financial stability.21

For ease of comparison, the regimes are ordered such that regimes with v = vL and c varying

from cL to cH are presented in the first two rows of the table, while regimes with v = vM

and v = vH are displayed in the subsequent four rows with the respective coeffi cient regimes.

Several interesting observations arise with regard to the interpretation of these data. First, and

most obviously, as one moves down the rows of Table 3 from row [1] to [3] and [5], or from row

[2] to [4] and [6], the regime-dependent means of the CISS rise.22 It would appear, therefore,

that at least a portion of elevated levels of stress, when applicable, stem from stress shocks

themselves. Second, as demonstrated by lines [5] and [6], the vHcL regime and the vHcH

regime are periods of extremely high levels of financial stress– at least twice as high as in other

states– but are relatively rare, as judged by their sample shares of 5 and 7 percent, respectively.

Third, while growth in loans, ∆Ln, and growth in real activity, ∆IP , rise as one goes from vL

to vH when c = cL, they both fall sharply and montonically with v when c = cH. Evidently,

periods of financial stress also feature reduced lending activity and deterioration in real economic

performance. And clearly, shifts from regime cL to cH are economically consequential, although

in precisely what way depends a great deal on the prevailing variance regime as we will explore

in more detail in section 3.2.3.

For ease of presentation, it is useful to give names to our identified regimes, as well as to

certain combinations of those regimes. These names are summarized in the third column from

21 These summary statistics compute the moments, conditional on regime, for each variable over all months in
which a given regime dominates. The dominant regime is the one with the highest smoothed regime probability
in the respective month. As we show below in the analysis of the smoothed probabilities in Section 3.2.3, regime
dominance is rarely ambigious in our model.
22 There is an element of arbitariness in designating a variance regime as "high" or something else. In the

present case, our assignment of labels reflects how the regimes coincide with the level, on average, of financial
stress as measured by the CISS, shown in the table. So, for example, the vL regimes shown in rows [1] and [2]
of the table have the lowest levels of S, as noted in the column second from the right, and the vM states in rows
[3] and [4] have larger average levels of S than their counterparts in vL states, and so on.
Similar logic follows for cL and cH where for any state for v it can be seen that the average level of S is higher
in what we call cH than it is in cL.
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Table 3: Descriptive statistics, by regime
Line regime specification conditional means shares
# label characterization ∆IP ∆P R ∆Ln S (%)

[1] vLcL tranquil 0.54 2.26 5.85 5.97 0.071 16.1
[2] vLcH tranquil 3.39 3.01 6.13 8.43 0.092 17.8
[3] vMcL tranquil 2.78 1.96 3.22 6.33 0.081 35.3
[4] vMcH elevated stress 1.16 2.83 5.85 6.11 0.110 18.9
[5] vHcL systemic fragility 3.96 2.43 4.18 9.66 0.260 5.2
[6] vHcH systemic crisis -11.3 1.57 2.88 4.66 0.520 6.6
Notes: v{i} var. regime, i = L,M,H. c{j} coeff. regime, j = L,H ; the union
of [4] (vMcH) and [6] (vHcH) is referred to as regimes of "high systemic stress"

the left in Table 3, as well as in one of the notes to the table. The vLcL, vLcH and vMcL regimes

are associated with periods of relatively low levels of financial stress. Inasmuch as these three

regimes collectively prevail in about 70 percent of the sample period and they are periods where

the economy behaved in a manner that could be regarded as "normal," we will refer to as tranquil

times. Even so, these normal periods do include episodes of occasional, short-lived spikes in

financial stress. One way to think about this collection of regimes is that they feature either

shocks of modest magnitude (the vLcL and vLcH regimes) or weak propagation of shocks as

will be demonstrated below is the case when c = cL (vMcL), or both (vLcL). The vMcH

regime, shown on line [4] of the table, might be labelled elevated stress in part because, as we

show below, it occurs during the first two years of the bursting of the dot-com bubble– during

which, according to the CISS, financial stress persisted at an elevated, though not extremely

high level– and it occurs over the roughly half a year immediately after the failure of Lehman

Brothers in August 2008 (see Figure 1).

Tables 2 and 3 showed that, in general, no uniform ranking exists in terms of regime-

dependent shock volatilities or conditional means; nevertheless, all of the series exhibit their

"worst" readings in terms of conditional means in the vHcH regime, shown in row [6] of Table

3. That is, these were the periods where stress levels were at their highest, and were also

associated with negative growth in industrial production and the lowest levels in each of loan

growth, inflation and interest rates. Consequently, we label this regime the systemic crisis

regime. Lastly, as shown in row [5], the vHcL regime, which involves a substantial degree

of shock-driven volatility, but as we demonstrate below, little propagation of those shocks, is

labelled the systemic fragility regime.

Regime probabilities Time series of the (smoothed) probabilities are presented in Figure 2.

In general, the regime probabilities are either very close to one or very close to zero, indicating
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that the model classifies regimes rather sharply. The five panels in the figure show the periods

that contribute to estimates of the parameters of the variance and coeffi cient regimes. As can

be seen, the estimation of the two coeffi cient regimes is supported by data spanning several

elongated periods. It follows that these periods are comfortably suffi cient for estimating the

parameters of the coeffi cient regimes.23

In the next subsection we demonstrate that the coeffi cient regime cH features much stronger

transmission of financial stress to the broader economy than does coeffi cient regime cL. Building

on this assertion, Figure 3 shows the probability of high systemic stress, which we will define

as regimes where there are relatively large shocks and where the propagation of those shocks is

substantial– that is, the elevated stress (vMcH) and the systemic crisis (vHcH) regimes. These

are, as we already noted, periods in which absolute the level of the CISS, (S), is high. These

two regimes are also periods in economic history that are associated with demonstrable financial

turmoil, as can be seen by comparing panels of Figure 2 with the events shown in Figure 1.

Episodes captured by these regimes include the aftermath of the 1987 stock market crash; the

Gulf war in 1990; the run-up to the crisis in the European Exchange Rate Mechanism (ERM)

in the early 1990s; the bursting of the dot-com bubble in the early 2000s; the US terrorist

attacks in September 2001; the global financial crisis of 2008 and the associated meltdown of the

euro area economy; and finally a time period in 2009 when the financial crisis was moderating

until the euro area sovereign debt crisis emerged in early 2010.24 As line [6] of Table 3 notes,

there were only two periods that are associated with vH regimes: a short episode immediately

following the US terrorist attacks in September 2001, and the culmination of the global financial

crisis, including the large decline in output growth, the "meltdown" as it were, of the euro

area economy. Interestingly, the initial stages of the recent global financial crisis are associated

with a systemic fragility regime, vHcL. While not itself a state of high systemic stress, this

regime might be considered a precursor to such states; it shares the large shocks of the systemic

crisis regime but lacks the strong propagation of those shocks. Thus, according to the model,

the initial stages of the subprime crisis had not yet reached the point of being systemic stress

and thus did not immediately bring about large-scale output losses. The full, systemic crisis

developed - according to our model - in early in the summer of 2008– that is, a few months

prior to the bankruptcy of Lehman Brothers.

23 The small number of parameters associated with each variance regime– five in our base-case specification– is
simpler to estimate.
24 We note that the level of the CISS index itself was not elevated in 1991-92, a period when the Eurosystem

came under stress following German reunification. And yet Figure 3 indicates that this was a period of systemic
stress. This observation demonstrates the fact that the (unobservable) regimes representing systemic stress are
functions of all the variables in the system, and cannot be inferred solely by the values of the systemic stress
index.
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Figure 2: CISS and regime probabilities (dominant regime shaded)
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Figure 3: Smoothed state probabilities; systemic stress regime (vMcH and vHcH)

3.2.3 Transmission of financial shocks

We now explore the properties of the various regimes through comparisons of their regime-

specific impulse response functions (IRFs).25 While the three shock-variance regimes differ in

the magnitude of one-standard-deviation shocks, but their propagation will differ only to the

extent that the coeffi cient regime differs. Because the main purpose of our paper is to study

state dependencies in the transmission of systemic financial instability to the real sector, we focus

on the IRFs describing the dynamic effects of structural shocks to the CISS. Figure 4 plots the

impulse responses to shocks in the CISS (S) for two starkly different regimes, the vHcH regime

(solid red lines) and the vLcL regime (blue dashed lines). To aid in the interpretation, the figure

also includes the IRFs for a constant-coeffi cient Gaussian VAR model (the 1v1c specification).26

The differences in IRFs between systemic crisis and tranquil times are striking. In the

vLcL regime, industrial production growth (as well as all other variables) displays hardly any

response at all to a CISS shock. It thus appears that financial stress shocks are effectively

irrelevant in tranquil periods, an observation that accords well with the fact that the CISS aims

to measure systemic stress and not general financing conditions. By contrast, in the vHcH

regime, a positive shock in financial stress leads to a quick, severe and protracted contraction in

economic activity. On this evidence, we conclude that the cL coeffi cient regime implies weak

financial-real linkages– which is to say, weak propagation of financial stress shocks– while the

cH coeffi cient regime implies very strong ones. These findings ratify our designation of the

vHcH regime, featuring the largest CISS shocks and the strongest financial-real linkages, as a

25 Note that the impulse responses presented here are computed at the posterior mode.
26 The IRFs are calculated for a positive one-standard-deviation shock to the CISS for the two most different

regimes, the systemic crisis regime (vHcH) and in the tranquil regime (vLcL). Up to a scaling factor, similar
conclusions arise for comparisons of the systemic crisis regime (vHcH) to the systemic fragility regime (vHcL).
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Figure 4: Impulse responses to financial stress shock, one standard deviation shock; responses
in output growth (∆IP ) inflation (∆P ), interest rate (R), loan growth (∆Ln) and systemic
financial stress (S); comparison constant parameter model with systemic crisis (vHcH) and
tranquil regime (vLcH) of our two coeffi cient and three variance regime model (3v2c)
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regime of systemic crisis.27

The lower-right panel of Figure 4 shows a relatively strong, gradual and persistent effect of

a CISS shock on loan growth in the systemic crisis regime. This suggests that bank lending

may also play a role in amplifying the transmission of financial stress to the real economy in

times of financial turbulence. The gradual decline in loan growth in response to an adverse

CISS shock may reflect firms’ability to draw down existing credit lines at the early stages of a

financial crisis, mitigating the overall constraints on bank loan supply in the short term.28 At

the same time, this fact is also in line with a lagged reaction of lending following the strong and

immediate decline in output growth.

Figure 4 also illustrates that the IRFs estimated for a constant-parameter Gaussian VAR

model (the black dotted lines) would clearly underestimate the effects of financial stress shocks

on economic activity in certain states of the world, as well as on the other macro aggregates.

We conclude that inference with, and policy guidance from, such a model, in circumstances of

financial stress, is likely to be misleading.

3.3 Counterfactual analyses

In this section we carry out counterfactual simulations ir order to illustrate the differential

effects of financial shocks during systemic crises and in tranquil times. Counterfactual analysis

provides much the same information as impulse response functions do, but also provide some

historical context. We also investigate the importance of bank lending for the real activity in

our framework.

3.3.1 The role of systemic stress

To explore the fundamental change in economic dynamics during crisis episodes, we consider a

counterfactual scenario in which tranquil times are assumed to have persisted from October 2008

to February 2009, instead of incurring the switch to systemic crisis that our baseline specification

says took place.29 Figure 5 demonstrates that in this scenario the level of systemic stress would

have been substantially lower, by almost 0.2, and that impact of this switch on output growth

was substantial. The figure shows that growth in industrial production would have declined

27 Note that if we normalise the shock in tranquil times to be the same as in the systemic crisis regime, the
impulse response in the tranquil regime is only slightly larger and has the same shape as for the shock size based
on the tranquil episode as displayed in the figure.
28 See Ivashina and Scharfstein (2010) for evidence on the relevance of this point for the case of the United

States.
29 This counterfactual employs the estimated coeffi cients and the parameters of the shock variances of the

counterfactual regime to compute the counterfactual path of the variables during the counterfactual period. See
also Sims and Zha (2006) for a similar counterfactual experiment in a different context.
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at only 6 percent annual rate, instead of "melting down" at a 21 percent pace; loan growth

and inflation would have remained more or less stable at the rates observed at the outset of

the exercise, instead of being 2.5 percentage points and 3 percentage points lower, respectively.

Monetary policy would have been less accommodative with short-term interest rates dropping

by only 1 percentage point instead of the 3 percentage points that was observed. Additional

counterfactual experiments comparing the effects of a different path of financial stress in systemic

crisis versus tranquil times are presented in Appendix C. They show that an increase in systemic

financial stress has little effect in tranquil times, but substantial effects in episodes of systemic

crisis.

3.3.2 The role of lending

In this Section we investigate the role of bank lending for the macroeconomy. In particular, we are

interested whether lending has an impact for the real economy beyond that which originates from

financial stress. To this end, we conduct a counterfactual experiment that assesses the real effects

of a reduction in the growth in bank lending to zero percent– as opposed to growth of about

6 percent in the baseline– between October 2001 and March 2002. Our model characterizes

the counterfactual period as one of elevated stress, vMcH.30 In order to isolate the effects

of loan growth independent of the effect operating through fluctuations in financial stress we

hold the path for financial stress constant at its average level over this period. The situation

is one such that credit growth during the burst of the dot-com bubble would have declined as

much as it actually did during the 2008-09 financial crisis.31 We find that if loan growth had

been flat during the counterfactual period, output growth would have been about 5 percentage

points lower, as displayed in Figure 6. Inflation and the interest rate would have also been

substantially lower, specifically by about 2 percentage points, compared to history. The lower

interest rate would have probably reflected a monetary policy reaction to the output losses and

the contraction in loan growth. These results suggest that bank loans may play a material role

for the macroeconomic dynamics during regimes of systemic stress that imply a strong shock

propagation, bearing in mind that the estimated effects of lower loan growth are derived under

30 Note that we also carried out the opposite experiment for the systemic crisis episode starting in October
2008, namely we kept lending constant over the counterfactual period instead of the actual decline. The results
point in the same direction, that lending plays a relevant role.
31 This simulation (as well as another counterfactual shown in an appendix) involves computing the sequence

of shocks to the relevant variable that is necessary to produce the counterfactual path for that variable, with all
other variables being allowed to follow whatever path is implied by the sequence of shocks, except where otherwise
indicated. For a discussion of how counterfactual experiments work in a linear framework, see Waggoner and
Zha (1999). The experiments are designed to be “small” in the sense that the sequence of shocks is within an
empirically plausible set.
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Figure 5: Counterfactual, tranquil times (vLcL) instead of systemic crisis regime (cHcH), Octo-
ber 2008 to February 2009
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the assumption that financial stress remains unchanged over the counterfactual period.32 To

further illustrate the implications of disturbances to bank lending, we also present the impulse

responses to lending shocks for two regimes with different coeffi cient regimes but the same

variance regime, where the size of the lending shock is comparable across regimes.

These impulse responses, shown in Figure 7, demonstrate that in response to an exogenous

shock to bank lending, output growth is not declining in time of systemic fragility (vHcL), where

large shocks affect the economy, but there is no strong shock propagation. However, in systemic

crisis episodes (vHcH) output growth is declining since in those periods credit supply is binding.

Since this is an identified shock and output growth is initially being held constant, this shock

is properly interpreted as a loan supply shock. Moreover, the negative, though small, reaction

in financial stress can be explained by a loosening of montary policy in response to the loan

reduction, which more than offsets the increase in financial stress.33

3.4 Macroprudential Surveillance and Real-time Probabilities

A necessary condition for this model to be useful as a macroprudential surveillance tool would

be to demonstrate the reliability of the model for real-time nowcasting of switches in regime. As

a modest step in this direction, we estimate the state probabilities in pseudo real time based on

a recursively expanding window, holding VAR model coeffi cients at their full-sample estimates.

These probabilities provide an indication of what the real-time state of the economy is, and it

is important for early warning signal for crises.

The results are shown in Figure 8. While the blue colored lines represent the full sample

estimates of the smoothed state probabilities of the vMcH and vHcH regimes, the gray lines are

the estimates based on the recursively expanding samples. If the model is successful, it should

lead to relatively few false signals of change in regime, meaning that the gray lines should be small

and not terribly frequent. As can be seen, the estimation of the regime probabilities is robust.

The model only rarely indicates a regime switch (indicated by a real-time regime probability of

larger than 0.5, for instance) that would not be confirmed by the full-sample estimate ex post.

As might be expected at the beginning of the sample period, when information from the data is

scarce, pseudo-real-time probabilities of being in a high systemic stress regime sometimes rise,

but they never reach a value close to 0.5. At the same time, when the full-sample estimates

signal the presence of a high systemic stress regime, the real-time probabilities tend to do so as

32 Note that if unrestricted, financial stress would go down. This might be explained by a looser montary policy
stance in response to the loan reduction, which alleviates the increase in financial stress that might have otherwise
been generated.
33 This interpretation is in line with the evidence of a credit supply reduction during the global financial crisis

based on credit register data for Portugal, e.g. Iyer, Lopes, Peydro and Schoar (2014).
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temic crisis (vHcH) and systemic fragility regime (vHcL), both regimes with high stress variance
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Figure 8: Real-time smoothed probabilities; systemic stress regime (vMcH and vHcH)

well. In other words, falsely predicting high stress and falsely predicting a return to tranquil

times is limited based on the pseudo real-time probabilities from this model.

This demonstration, while compelling in its own right, is not suffi cient to establish the

model’s ability to serve as an effective real-time macroprudential tool. A more comprehensive

assessment, employing real-time estimates of model coeffi cients and using vintage data, for

instance, would be useful.

4 Alternative Measures of Financial Stress

We have, in this paper, tried to establish the usefulness of the CISS as an effi cacious tool for

measuring systemic financial distress. The CISS is not, however, the only measure that has been

proposed for purposes of this nature. In this section, we take two steps towards investigating

the role of the particular construction of the CISS for our results. In particular, in one subsec-

tion, we explore the replacement of the CISS by two plausible alternative measures that have

been suggested and used in the literature; in another subsection, we isolate two features of the

construction of the CISS.

4.1 Stock market volatility and corporate bond spreads

It is often argued that the VIX or realized stock price volatility are useful indicators of risk

aversion and financial stress more generally; see e.g. Coudert and Gex (2008) and Bekaert and

Hoerova (2014). As one assessment of the value added of the CISS, in this section we re-estimate
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our preferred model replacing the CISS with a measure of realized stock market volatility. In

this instance, we measure realized volatility as the square root of average daily squared log price

returns on the broad EMU equity price index, as maintained by Thomson Financial Datastream.

Figure 9 displays the impulse responses to a one-standard-deviation shock in realized stock

market volatility. Comparing the responses of output growth to this shock with their counter-

parts from the model using the standard CISS (see Figure 4), we find that with the model that

uses stock market volatility, the output responses are much smaller and much less persistent.

Thus if one were to adopt the prior belief financial stress is an important driver of output fluc-

tuations in times of systemic stress, relying exclusively on stock market volatility as a measure

of systemic stress might be regarded as unsatisfactory. This interpretation may be regarded

as plausible because stock market volatility does not capture other, less transitory markers of

financial stress, such as increased risk premiums. In point of fact, the level of stock market

volatility displays notably less persistence that does the CISS, especially during the recent cri-

sis; this observation might explain, at least in part, the lower estimated persistence of the real

effects of a shock to stock price volatility as compared with a financial stress shock measured by

the CISS.

A different strand of the literature argues that corporate bond spreads, in particular for

bonds of non-financial corporations, contain predictive content for the business cycle and other

macroeconomic aggregates. Corporate bond spreads arguably capture changes in market per-

ceptions of the quality of borrowers’balance sheets and thus their default risk; these measures

tend to lead the business cycle, as documented by Gertler and Lown (1999) and Gilchrist and

Zakrajšek (2012). Corporate bond spreads also move when the price of risk changes, and spreads

can capture general disruptions in the financial system either through declines in the value of

such bonds as collateral or via decreases in second market trading and thus in liquidity premi-

ums. To explore the adequacy of the corporate bond spreads as a measure of systemic financial

stress– or almost equivalently, to explore how much the documented success of the CISS is be-

cause it contains corporate bond spreads– we re-estimate our base case model, substituting in

place of the CISS the spread between German non-financial corporate bonds and the average

yield of all German government bonds, as published by the Bundesbank.

The regime identification based on this model variant appears plausible in general. While

the estimated regime probabilities suggest that the global financial crisis started in September

2008, they also indicate a relatively quick termination of the worst state of systemic stress, in

the beginning of 2009. This is in contrast with our base case model with the CISS which dates
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Figure 9: Impulse responses to a one-standard-deviation financial stress shock in a model with
realised stock price volatility as measure of financial stress; systemic crisis (vHcH) and tranquil
regime (vLcL)

28



the end of the global financial crisis in October 2009, after the release of the U.S. bank stress test

results in May of that year. In broad terms, the two models identify approximately the same

date ranges as being periods of systemic stress. However, the impulse responses to the financial

shock identified in this model are economically implausible. We conclude that the corporate

bond spread is a useful indicator of systemic stress and that it probably is a major contributor

to the applicacy of the CISS.

Overall, our assessment is that a broad-based systemic financial stress indicator is arguably

better able to uncover the nature of the interactions between financial instabilities and the

macroeconomy than is a single-market single-indicator measure of financial stress. Even so, our

analysis with corporate bond spreads suggests that more work in this area is called for.

4.2 Exploring the composition and construction of the CISS

Two important elements characterize the construction of the CISS as a measure of systemic

stress: first, that the CISS encompasses five different, broad-based financial market segments;

and second, that the time-variation in the dependence between these financial market segments

is taken into account in its construction. With respect to the former feature, the role of financial

intermediaries is of special importance for a bank-centered financial system as in the euro area.

To investigate the importance of these features, we carry out two different experiments. Our first

experiment explores the importance of the banking sector within the construction of the CISS,

by rerunning our preferred 3v2c model, along with some of the associated model assessment

exercises, using a version of the CISS that excludes the banking sector.34 Some of the recent

theoretical literature has emphasized the role of disruption in financial intermediation as an

important mechanism driving large output fluctuations; see, for example, He and Krishnamurthy

(2014) and Boissay, Collard and Smets (2013). To succinctly summarize our results, we find

that excluding financial intermediaries from the CISS leads to estimated durations of states that

are too short lived to be regarded as plausible, and to model properties that are diffi cult to

explain. In particular, we find implausibly small and not very persistent responses in output

growth to financial stress shocks in periods of systemic crises.

Our second experiment examines the systemic dimension of the CISS. The base case con-

struction of the CISS encompasses the notion of cross-market correlations of systemic stress on

an aggregate level by allowing time variation in the weights of the index’s five components.35

34 Arguably, this part of the analysis complements the counterfactual experiments demonstrating the role of
lending to the private sector, which also highlight the importance of financial intermediation for the transmission
of financial shocks to the macroeconomy, conditional on the Markov state.
35 Allen, Bali and Tang (2012) similarly argue that their macromeasure of systemic risk complements microlevel

systemic risk measures.
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We explore the importance of this feature of the CISS by replacing the time-varying correlations

between the different subindexes with a simple (time-invariant) equally-weighted average. Then

we once again re-estimate our preferred model and analyze its properties.36 Our results show

that not all regimes are identified with this modified CISS. And this version of the model exhibits

impulse response functions with economically implausible features. We take these results as

demonstrative of the importance of taking the systemic aspect of financial stress into account

by incorporating time-varying cross-correlation between different financial markets.

We conclude that for an economy like the euro area, where the banking sector plays a more

important role than is for instance the case in the United States, a systemic financial stress index

like the CISS that covers all major segments of a financial system and emphasizes the contagion

of financial instability from market to market, is well suited for capturing the interaction between

systemic financial instability and the macroeconomy.

5 Concluding remarks

In this paper, we introduced a representation of systemic financial instability in a Markov-

switching vector-autogressive model for the euro area. Our principal goal was to examine the

initiation and nonlinear propagation and amplification of financial shocks through the macro-

economy and to uncover whether such shocks are state contingent. Toward this end, we em-

ployed a new Composite Indicator of Systemic Stress (CISS), recently developed at the European

Central Bank, together with conventional macroeconomic and monetary variables, and estimated

the model with recently developed Bayesian methods.

We found evidence that the Euro area economy is subject to occasional switches into what we

called periods of high systemic stress. We further found that switching behavior manifested itself

in both the variances of model shocks and in the structural characteristics of the model; that is,

in the parameters that propagate those shocks throughout the economy. Our results show that

this switching behavior is economically important. In particular, the effects of financial stress

stress shocks on output are much larger, more persistent, and more consequential for the real

economy in regimes of high systemic stress than during tranquil times, and bank lending plays

an independent role for the determination of real activity during episodes of high systemic stress,

36 The relevance of the systemic dimension of financial stress has been emphasized in the literature on systemic
risk. The comovement of the financial firm’s assets with the aggregate financial sector in a crisis has been argued
to be an important component of systemic stress. Acharya et al. (2012) have proposed an economic and statistical
approach to measure the systemic risk of financial firms. Correlation-based measures of connectedness, including
systemic risk, are discussed, for instance, in Diebold and Yilmaz (2014) who propose another way of measuring
the connectedness of financial firms.
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with exogenous identified shocks to loan growth having important consequences for the rest of

the economy, whereas in tranquil times they do not. It follows from this that a single-regime,

constant-variance characterization of the economy will miss these features and is therefore likely

to provide misleading answers to questions of this nature.

We found that the CISS has two particularly useful features for capturing the nature of

the interaction between financial instabilities and the macroeconomy. The first of these is the

inclusion of measures of instability in financial intermediation, a feature that is particularly

relevant for economies that have bank-centered financial systems as does the Euro area. The

second is the taking into account of the systemic dimension of financial stress through the use

of time-varying, cross-market correlations of the components of the CISS, which appears to us

to capture credit constraints that are binding during high-stress periods. Finally, the quasi-

real-time state probabilities of the estimated regimes from our base-case model suggest at least

some prospects for the model’s use as a tool for macroprudential surveillance, although more

research, preferably using vintage data would be in order before drawing definitive conclusions

on this score.
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Appendix A : The Composite Indicator of Systemic Stress

This appendix provides a few more technical details about the CISS. For full details the reader

is referred to Hollo, Kremer and Lo Duca (2012). As mentioned in Section 2.2, the CISS

comprises 15 mostly market-based individual financial stress indicators grouped into five broad

market segments supposedly covering the main sources of financing in the economy, namely the

financial intermediaries sector (notably banks, but also insurance companies, pension funds and

other financial services providers); money markets (broadly defined as including in principle all

forms of short-term wholesale debt financing in the economy, e.g., interbank and commercial

paper markets); bond markets (only longer term sovereign and non-financial corporate issuers);

equity markets (only non-financial corporations); and foreign exchange markets (capturing cross-

border financing activities). Each of the five market segments is populated with three individual

stress measures capturing certain symptoms of financial stress in the relevant market. Table 4

contains a brief description of all 15 individual stress measures comprised in the CISS.

Prior to aggregation, in order to harmonize their scale and distributional properties, all in-

dividual stress indicators are transformed by means of their empirical cumulative distribution

function involving the computation of order statistics (probability integral transform). Accord-

ingly, each observation of a particular raw stress indicator at time t is first replaced by its

ranking number r(t) in the ascendingly ordered sample of size τ(t) which includes, apart from

the observation in time t, only past observations back to the sample origin t = 1. The ranking

number is then scaled by the total number of observations τ(t) in the respective sample such

that the transformation yields the value r(t)/τ(t) which corresponds to the (r/τ)-th quantile of

the cumulative distribution function. The fact that both the ranking number and the sample

size are indexed by time reflects the recursive nature of the transformation in order to preserve

the “real-time”nature of the CISS. The transformation projects raw stress indicators into vari-

ables which are unit-free and measured on an ordinal scale with range (0, 1]. The transformation

yields a set of 15 homogenised, standard uniform distributed indicators.

For each market category a separate financial stress subindex is computed by taking the

arithmetic average of its three constituent stress factors.

The subindexes are now aggregated on the basis of portfolio-theoretical principles, i.e. by

taking into account a measure of time-varying correlations ρij,t between them (collected in the

cross-correlation matrix Ωt). The cross-correlations are calculated as exponentially weighted

moving averages with a decay factor of 0.93. Since we apply the probability integral transform

to the raw stress indicators prior to aggregation, the cross-correlations represent a time-varying
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Table 4: Individual financial stress indicators included in the CISS

Money market
1. Realised volatility of 3-month Euribor rate; weekly average of absolute daily rate changes; data
start 8 Jan. 1999; source: Datastream.

2. Interest rate spread between 3-month Euribor and 3-month French T-bills; weekly average of daily
data; data start 8 Jan. 1999; source: Datastream.

3. Monetary Financial Institution’s (MFI) recourse to the marginal lending facility at Eurosystem
central banks, divided by their total reserve requirements; MFIs can use the marginal lending facility
to obtain overnight liquidity from the national central banks against eligible assets and, typically, at
an interest rate which is higher than the prevailing overnight market interest rate; weekly average of
daily data; data start 1 Jan. 1999; source: ECB.

Bond market
4. Realised volatility of German 10-year benchmark government bond index; weekly average of ab-
solute daily yield changes; data start 5 Jan. 1990; source: Datastream.

5. Yield spread between A-rated non-financial corporations and government bonds (7-year maturity);
weekly average of daily data; data start 3 Apr. 1998; source: Bloomberg.

6. 10-year interest rate swap spread; weekly average of daily data; data start 4 Mar. 1987; source:
Datastream.

Equity market
7. Realised volatility of Datastream non-financial sector stock price index; weekly average of absolute
daily log returns; data start 4 Jan. 1980; source: Datastream.

8. Maximum cumulated loss (CMAX) of Datastream non-financial sector stock price index (xt) over
a moving 2-year window: CMAXt = 1 − xt/max[x ∈ (xt−j |j = 0, 1, ..., T )] with T = 104 for
weekly data; data start 1 Jan. 1982; source: Datastream.

9. Stock-bond correlation; weekly average of the difference between the 4-year (1040 business days)
and the 4-week (20 business days) correlation coeffi cients between daily log returns of Datastream total
stock price index and the 10-year German government benchmark bond price index; final indicator is
assigned a value of zero for negative differences; data start 8 Jan. 1982; source: Datastream.

Financial intermediaries
10. Realised volatility of idiosyncratic equity return of Datastream bank sector stock price index over
the total market index; weekly average of absolute daily idiosyncratic returns; idiosyncratic return
calculated as residual from OLS regression of daily log bank return on log market return over a moving
2-year window (522 business days); data start 1 Jan. 1982; source: Datastream.

11. Yield spread between A-rated financial and non-financial corporations (7-year maturity); weekly
average of daily data; data start 3 Apr. 1998; source: Bloomberg.

12. CMAX of Datastream financial sector stock price index interacted with the sector’s book-price ra-
tio; both indicators transformed by their recursive sample CDF prior to multiplication; final indicator
obtained by taking the square root of this product; data start 1 Jan. 1982; source: Datastream.

Foreign exchange market
13. Realised volatility of euro exchange rate vis-à-vis US dollar; weekly average of absolute daily log
foreign exchange returns; data start 6 July 1990; source: Datastream.

14. Realised volatility of euro exchange rate vis-à-vis Japanese Yen; weekly average of absolute daily
log foreign exchange returns; data start 6 July 1990; source: Datastream.

15. Realised volatility of euro exchange rate vis-à-vis British Pound; weekly average of absolute daily
log foreign exchange returns; data start 6 July 1990; source: Datastream.36



variant of Spearman’s rank correlation. The CISS is then computed as:

CISSt = (w ◦ st)′Ωt(w ◦ st),

with w = (w1, w2, w3, w4, w5)
′ being the vector of subindex weights, which are assumed to be

constant and equal at 20%; st = (s1,t, s2,t, s3,t, s4,t, s5,t)
′ represents the vector of subindexes. The

CISS is hence continuous, unit-free and bounded between zero and one.

Appendix B : Priors

Two sets of priors are relevant for our model, one on the reduced-form parameters of the VAR

conditional on a state, s, and the other on the transition matrix. The priors on the reduced-

form VAR are the standard Minnesota prior on the lag decay dampening the influence of long

lags. In other words, this prior shrinks the model towards a random walk. µ1controls the overall

tightness and the prior of A0. µ2 controls the tightness of the random walk prior on the lagged

coeffi cients. The prior for constant terms is zero and the prior standard deviation is µ3.The

priors that further play a role are µ4 that controls the tightness of the prior that dampens the

erratic sampling effects on lag coeffi cients (lag decay). µ5 and µ6 are the priors that express

beliefs about unit roots and cointegration.

Let

A′+ = [A1(k)′, A2(k)
′
, ...Ap(k)

′
, C(k)

′
] and x

′
t = [y

′
t−1, ...y

′
t−p, z

′
t],

then the model in equation (1) can be written as

y′tA0(s
c
t) = x′tA+(sct) + ε′tΞ

−1(svt ), t = 1, 2...T. (3)

A0(st) and A+(st) could, in principle, be estimated straightforwardly, using the method of

Chib (1996) for example, but as n or h grows, the curse of dimensionality quickly sets in. The

matrix A+can be rewritten as

A+(st) = D(st) + Ŝ A0(st) where Ŝ =
[
In 0(m−n)×n

]
(4)

which means that a mean-zero prior can be placed on D which centers the prior on the usual

reduced-form random-walk model that forms the baseline prior for most Bayesian VAR models;

see Sims and Zha (1998) for details on this particular prior set-up. The relationship contained in

(4) means that a prior on D tightens or loosens the prior on a random walk for the reduced-form
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parameter matrix B.

The fact that the latent state, s,is discrete and that the transition probabilities of states

must sum to unity lends itself toward the priors of the Dirichlet form. Dirichlet priors also have

the advantageous property of being conjugate. Letting αij be a hyperparameter indexing the

expected duration of regime i before switching to regime k 6= i, the prior on P can be written:

p(P ) = Π
k∈H

[
Γ(
∑

i∈H αik)

Πi∈H Γ(αik)

]
× Π
i∈H

pik)
αik−1 (5)

where Γ(.) is the gamma distribution. The Dirichlet prior enables a flexible framework for a

variety of time variation including, for example, once-and-for-all shifts and, by letting h become

arbitrarily large, diffusion processes. In the application presented in this paper we allow for

switching in shock variances determined by a separate process from the one controlling shifts in

coeffi cients.

For our baseline specification, we use priors that are well-suited for a monthly model. In

particular, we specify µk k = {1, 2, ...6} = {0.57, 0.13, 0.1, 1.2, 10, 10}. With the values of µk we

employ what Sims and Zha (1998) and Sims, Waggoner and Zha (2008) suggest for monthly

data. The Dirichlet priors we use are looser than what would be usually used for monthly

data. They imply an 87 and 83 percent prior probability for the variances and coeffi cients,

respectively, that the economy will, in the next period, continue in the same state as it is in

the current period. These probabilities imply a shorter duration of regimes than the priors used

in Sims, Waggoner and Zha (2008) use for the macroeconomic application based on quarterly

data, consistent with the notion that in our study jumps in financial markets play an important

role in driving the regime shifts. We found that the data move the posterior away from the

prior in the sense that coeffi cient regimes turn out to be more persistent than the variance

regimes. Interestingly, our results are relatively robust to some variation in the Dirichlet prior.

For instance, if we impose a 74 and 85 percent probability, implying a more persistent coeffi cient

regime than variance regime, we get similar impulse responses and regime durations of variance

and coeffi cient regimes from the resulting model than from our model.

Appendix C : Counterfactuals on role of systemic financial stress

Figure 10 and 11 present some further counterfactual experiments. The first simulation sets the

CISS 0.25 above the level that was historically the case, starting in March 1995, as shown in
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the bottom-left pane of Figure 10. According to the model, these were tranquil times (vLcL).

The effect on output growth, the upper-left panel, would have been trivially small given the

magnitude of the change in the level of systemic stress; it drops by at most 0.5 percentage

points below its historical path. In contrast, a similar increase in the level of the CISS carried

out in October 2008– during the systemic fragility regime– would have lead to a massive decline

in output growth by about 7 percentage points, relative to the historical path, as displayed in

Figure 11. Moreover, inflation and loan growth decline by 0.5 percentage points, or 1 percentage

point more than was the case historically, respectively, and the short-term interest rate falls more

strongly by about 1 percentage point, probably reflecting a systematic easing of conventional

monetary policy in response to the deteriorating financial and macroeconomic environment.
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Figure 10: Counterfactual in tranquil times (vLcL), CISS path increased by 0.25 starting in
March 1995
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Figure 11: Counterfactual in systemic crisis period (vHcH), CISS path increase by 0.25 starting
in October 2008
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