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Abstract

How does the experience of a �nancial crises and other macroeconomic shocks alter

the dynamics of �nancial markets? Recent evidence suggests that individuals overweight

personal experiences of macroeconomic shocks when forming beliefs about risky outcomes

and making investment and borrowing decisions. We propose a simple OLG model as a

theoretical underpinning of experience-based learning. Risk averse investors invest in a

`Lucas tree' and a risk-free asset. They form beliefs based on data observed during their

lifetime so far. We show that, in equilibrium, prices depend only on the dividends ob-

served by the generations that are alive, and are more sensitive to more recent dividends.

Younger generations react more strongly to recent experiences than older generations

and, hence, have higher demand for the risky asset than the old in good times, and lower

demand in bad times. The model generates predictions for stock prices, stock market

participation, and trading volume. First, the more agents in an economy rely on recent

observations, the more volatile are prices and the higher is the autocorrelation of prices.

Second, the stronger the disagreement across generations (e.g. after a recent shock), the

higher is the trade volume. Third, a recent crisis will increase the average age of stock

market participants, while periods of stock-market boom have the opposite e�ect.
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1 Introduction

Economists and policy-makers alike have long wrestled with a better understanding of

the long-lasting e�ects of �nancial crises and other macroeconomic shocks. In the case of

the Great Depression, Friedman and Schwartz (1963) argue that the experience of that time

created a �mood of pessimism that for a long time a�ected markets.� In the case of the recent

�nancial crisis, Blanchard (2012) argues that �The crisis has left deep scars, which will a�ect

both supply and demand for many years to come.�

The notion that longer-lasting crisis e�ects alter the dynamics of �nancial markets is con-

sistent with growing empirical evidence on experience e�ects. This evidence suggests that

individuals overweight personal experiences of macroeconomic shocks when forming beliefs,

and that personal experiences appear to leave an imprint on individuals' willingness to take

risk. For example, Alesina and Fuchs-Schundeln (2007) relate the personal experience of living

in (communist) Eastern Germany to political attitudes post-reuni�cation. Weber, Bocken-

holt, Hilton, and Wallace (1993) and Hertwig, Barron, Weber, and Erev (2004) show how

doctors' experience a�ect their future diagnoses. On the �nance side, Malmendier and Nagel

(2011) show that stock-market experiences predict future willingness to invest in the stock

market, and Kaustia and Knüpfer (2008) argue the same for IPO experiences.

In this paper, we investigate the long-term e�ects of personal experiences on market par-

ticipation and portfolio decisions of di�erent cohorts in an economy. We derive implications

for prices, volatility, and trade volume. Our theoretical framework illustrates that a deeper

understanding of the in�uence of past experiences is important to improve not only the micro-

modeling of �nancial risk-taking, but also our understanding of the aggregate dynamics of

�nancial decision-making and the long-run e�ects of macro-shocks.

We propose a stylized overlapping generations (OLG) general equilibrium model in which

agents form their beliefs by overweighting their own experiences. We consider CARA investors

that live for a �nite number of periods and, during their lifetimes, choose portfolios of risky

and risk-free securities to maximize their �nal wealth. Consumption takes place at the end
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of their lifes for tractability, which is standard in much of the literature (see Vives (2008).

Investors can invest either in a risky asset, which is in unit net supply and pays random

dividends every period (a Lucas Tree), or in a risk-less asset that is in in�nitely elastic supply

and pays a �xed return. Investors do not know the true mean of the distribution of risky

dividends, but they can learn about it by observing the history of realized dividends.

The novel feature of the model is that investors are experience-based learners. Building

on the psychology evidence on availability bias (Tversky and Kahneman (1974)), we model

experience-based learners who (i) only use data observed during their lifetime, and (ii) may

overweight more recent observations when forming beliefs. These agents do observe the entire

history of dividends (no asymmetric information) but choose not to use it to form their beliefs.

This assumption captures, in a stylized manner, the availability bias underlying experience-

based learning, including the possibility of a recency bias. In empirical implementations

(and generalizations of the theoretical model) investors are using more historical data, but

overweight their lifetime experiences.

Experience-based learning generates long-lasting e�ects of economic shocks on equilibrium

prices and asset demand through direct and indirect channels: First, shocks to dividends

shape agents beliefs about future dividends, thereby a�ecting equilibrium prices and demands.

Second, investors who have been confronted with di�erent experiences in their lives so far (i.e.,

di�erent life-time sequences of dividends) have di�erential reactions to macroeconomic shocks.

This di�erential reaction to �booms� and �recessions� will a�ect equilibrium quantities such as

trade volume. Third, the di�erent investment horizons (young vs. old) also a�ect anticipated

future trading behavior. In our framework, agents fully understand everyone's belief formation

process. Hence, they understand that shocks will generate disagreements that everybody will

exploit in the market. In response to this, and for a given set of beliefs, agents distort their

portfolio decisions to incorporate what we will refer to as a hedging motive. Note that the

latter a mechanism is di�erent than simply belief heterogeneity.

The model is stylized and it allows us to fully isolate the forces introduced by the presence
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of experience-based learners. We focus on a�ne equilibria, i.e., equilibria wherein prices are

a�ne functions of current and past dividends. In the benchmark case where agents know the

true mean of dividends, equilibrium prices are constant and individual demands for the risky

asset only change as a response to the change in horizon of di�erent cohorts. Hence, in our

model environment, any departure from constant equilibrium prices and trade levels can be

cleanly attributed to experience-based learning.

Our �rst result characterizes of each generation's demand for risky assets. In rational ex-

pectations portfolio models where agents know the true mean of dividends (i.e. no learning),

investors' wealth in the distant future is independent of next period returns. Hence, even

though agents face a multi-period investment problem, their demands in each period coincide

with those of a static problem. Thus, the multi-period investment problem can be partitioned

into a sequence of one-period ones (Vives (2008)). Under experience-based learning, future

beliefs and portfolio decisions and, as a result, prices in the distant future, depend on current

dividends. Thus, investors' wealth in the distant future is correlated with next periods returns

and the simpli�cation to a sequence of static problem no longer applies. However, exploiting

the CARA-Gaussian setup, we show that the demand of experience-based learners coincides

with the one in a static problem where dividends are drawn from a modi�ed Gaussian distri-

bution. That is, we can still partition the multi-period investment problem into a sequence

of one-period problems; but for each of these, the probability distribution di�ers from the

original one, re�ecting the fact that future wealth is correlated with next period payo�.

Second, we derive the model prediction about prices, which capture the intuition of Fried-

man and Schwartz (1963) that a recession (understood as a negative shock to dividends) can

have a long-lasting e�ect on equilibrium outcomes. We show that, in our model, equilibrium

prices are only a function of the dividends observed by the generations that are alive and

actively trading in the market. That is, prices (and thus returns) are predictable; and only

dividends observed by the generations that are alive are relevant for predictability. This ob-

servation proposes a novel link between factors predicting long-run prices (and returns) and
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investors' past experiences. Our second �nding also has implications for price volatility. The

resulting price volatility goes above and beyond the volatility of the assumed dividend process.

Both features stem from the learning mechanism in our model: If agents know the true mean

of dividends (or their beliefs converge to the truth), this setup yields constant prices.

Third, we characterize the heterogeneity in demand for risky assets and portfolio decisions

across cohorts, focusing on the simple case where agents live two periods. We show that

young generations react more strongly than old ones to current dividend shocks. The key

intuition is simple: the younger generation has experienced a shorter life so far and will

thus put a higher weight on the current realization. However, the full mechanism is more

complex, and we can decompose agents' demands for the risky asset into three components:

a beliefs term, a hedging-motive term, and a horizon term. The beliefs e�ect captures that an

increase (decrease) in dividends makes younger agents more optimistic (pessimistic) about the

return of the risky asset than older agents. Therefore, they demand more (less) of the risky

asset in response to a positive shock to dividends. The hedging e�ect captures that agents

anticipate they will learn about the risky asset from future dividends. As a result, they distort

their portfolio decisions to hedge their exposure to changes in beliefs. The horizon e�ect is

the least interesting. It indicates that even when agents share beliefs, young agents react less

aggressively to a change in dividends (in their beliefs) due to their longer remaining investment

horizon. We show that the belief e�ect always dominates. As a result, the demand of young

agents reacts positively more strongly to changes in dividends.

Finally, we derive the implications of experience-based on trade volume. We show that the

presence of learning and disagreements generate positive trade volume in equilibrium through

two channels. First, an increase (decrease) in dividends induces trade since young agents

become more optimistic (pessimistic) than old agents, and disagreement generates gains from

trade. Second, agents trade due to the hedging motive and is present even in the absence of

disagreements. Note that the �rst channel unambiguously predicts that changes in dividends

increase trade volume, while the direction of the second channel is ambiguous. However, we
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are able to show that trade volume always increases in response to large enough changes in

dividends.

Our �ndings closely related to a growing literature arguing that �nancial crises and macroe-

conomic shocks have long-run e�ects. As alluded to earlier, Friedman and Schwartz (1963)

discuss at length how the Great Depression created a long-lasting shift toward pessimism about

economic conditions and economic stability. More recently, Delong and Summers (2012), ar-

gue that recessions such as the Great Recession of 2008-2009 leave scarring e�ects, or what

they term `hysteresis e�ects.' The literature on `experience e�ects' rationalizes these long-run

e�ects empricially by showing that personal experiences of macroeconomic shocks leave a last-

ing imprint and signi�cantly a�ect individuals' decision-making over lifetimes. For example,

Malmendier and Nagel (2011) show that people who live through di�erent stock-market histo-

ries di�er in their level of risk taking in the stock market. They �nd that individuals who have

experienced low stock market returns report lower willingness to take �nancial risk, are less

likely to participate in the stock market, invest a lower fraction of their liquid assets in stocks

if they participate, and are more pessimistic about future stock returns. Malmendier and Shen

(2015) show that individual experiences of macroeconomic unemployment conditions strongly

a�ect consumption behavior � households who have experienced higher unemployment con-

ditions during their lifetime spend signi�cantly less and are more likely to use coupons and

allocate expenditure toward lower-end products. Moreover, Malmendier and Nagel (2013)

show that experience e�ects work through the channel of beliefs. In the context of in�ation

expectations, they show that di�erences in life-time experiences of in�ation strongly predict

di�erences in individuals' subjective in�ation expectations. Empirical �ndings from these

papers form the foundation for our model on learning from experience e�ects.

Our modelling approach builds on a large literature of learning models in asset pricing. For

instance, Barsky and DeLong (1993), Timmermann (1993), Timmermann (1996), and Adam,

Marcet, and Nicolini (2012) study the implications of learning for stock-return volatility and

predictability. Cecchetti, Lam, and Mark (2000) construct a Lucas asset-pricing model with
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in�nitely-lived agents where the representative agent's subjective beliefs about endowment

growth are distorted. More closely related to our approach, Cogley and Sargent (2008) propose

a model in which the representative consumer uses Bayes' theorem to update estimates of

transition probabilities as realizations accrue. The main di�erence to our paper is that,

in our setup, agents are not Bayesian and live for a �nite number of periods. Consequently,

observations during the agents' life-time have a non-negligible e�ect on their beliefs. We think

that this feature provides an alternative modeling device that allow us to capture Friedman

and Schwartz's idea that economic events, such as the Great Depression, shape the attitude

of agents towards �nancial markets in the future.

There is a large literature which proposes other mechanism, such as borrowing constraints,

as the link from demographics, or life cycle considerations, to asset prices and other equilib-

rium quantities. We view these other mechanisms as complementary to our paper, and are

omitted for the sake of tractability of the model.

2 The Model

Consider an in�nite horizon economy t ∈ {0, 1, 2...} with overlapping generations of a

continuum of risk averse agents. Each generation is born every period and lives for q periods

with q ∈ {1, 2, 3, ...}; that is, one generation born at each t ≥ 0, and at any time t, there are

q + 1 generations alive. Generation born at time t = n is called generation n. Within each

generation there is a mass of q−1 identical agents.

Agents only consume in their �nal period, and have CARA preferences with risk aversion

γ. They are born with no endowment, but can accumulate wealth during their lifetime by

investing in �nancial markets (i.e. trading). There is a single risky asset (a Lucas Tree), that

pays random dividends dt ∼ N
(
θ, σ2

)
at time t,∀t, and that is in unit net supply, and a

riskless asset that is in perfectly elastic supply and pays r > 1 at all times. See Figure 1 for

the timeline of this economy for q = 2 , two-period lived generations.
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t t+1 t+2 t+3 t+4

t− 2-cohort
consumes

t− 1-cohort
trades

t− 1-cohort
consumes

t-cohort
is born and trades

t-cohort
trades

t-cohort
consumes

t+ 1-cohort
is born and trades

t+ 1-cohort
trades

t+ 2-cohort
trades

t+ 3-cohort
trades

Figure 1: A timeline for an economy with two-period lived generations, q = 2.

For each generation n and any t ∈ {n, ..., n+ q}, the budget constraint is given by

Wn
t = xnt pt + ant (1)

where Wn
t denotes the wealth of generation n at time t, xnt is the amount invested in the

risky asset (number of shares on the Lucas Tree) and ant is the amount invested in the riskless

asset at time t by generation n, and pt is the price of investing in one unit of the risky asset

at time t. As a result, wealth next period is given by:

Wn
t+1 = xnt (pt+1 + dt+1) + ant r = xnt (pt+1 + dt+1 − ptr) + rWn

t . (2)

To simplify on notation, we de�ne st+1 ≡ pt+1 + dt+1 − ptr as the net payo� received in

t + 1 from investing in one unit of the risky asset at time t. Note that pt+1 + dt+1 is the

payo� of the risky asset in t+ 1 and rpt is the cost of investing in one unit of the risky asset

at time t. Using this notation, Wn
t+1 = xnt st+1 + rWn

t . For a given initial wealth level, Wn
n ,

the problem of a generation n is given by:
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max
{xnt }

nT+q
t=nT

EnnT
[
− exp(−γWn

nT+q)
]

(3)

subject to 1-2, for all t. The operator Ent [.] denotes the expectations computed with beliefs

of generation n at period t.

2.1 Formation of Subjective Beliefs: Experience-Based Learning

To model uncertainty about fundamentals, we assume that agents do not know the true mean

of dividends θ and use past observations to estimate it and thus forecast dividends. To keep

the model tractable, we assume that σ2, the variance of dividends, is known at all times. It

is important to note that we assume agents have full information, i.e., they observe the entire

history of dividends.1 However, they choose not to use observations outside their lifetime.

Consistent with this, it is enough that agents learn only from dividends; prices do not add

any additional information since the history of dividends is available to them. We make

this assumption for simplicity, since all we need for our results to hold is that the history is

heavily discounted when agents form their beliefs. In addition, we believe that adding private

information and learning from prices to this framework would complicate matters without

necessarily adding new intuition.

Experience-based learning (EBL) agents do not learn about the equilibrium, they learn

in equilibrium. That is, agents understand the model and know all the primitives, except

the mean of the dividend process. Also it is a passive learning problem, in the sense that

actions of the players do not a�ect the information they receive. These two features make

our problem di�erent from reinforcement learning-type of problems. Note that if we have,

say, participation, then that could be a link between action (e.g. participate or not) and

learning/data. We consider this to be an interesting line to explore in the future.

We proceed to endogeneize the heterogeneity of beliefs across di�erent cohorts by assuming

1Agents also fully understand the structure of the model.
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that (1) agents do not know the mean of dividends (but know that dividends are Gaussian with

variance σ2), and (2) there is experience-based learning; that is, agents overweight observations

received during their lifetime. The parameter of interest that agents want to learn is θ, the

mean of dividends. The belief of generation n at period t is given by the precision weighted

average of dividends realized during the agent's lifetime, as in Malmendier and Nagel (2010).

At any point in time t, generation n alive, with age ≡ t− n, forms its beliefs as follows:

Ent [θ] =

age∑
k=0

w(k, λ, age)dt−k (4)

where w(k, λ, age) denotes the weight an agent aged age assigns to the k − period before

observation of dividends, and λ parametrizes these weights and will be described in what

follows. Note that
∑age

k=0w(k, λ, age) = 1,∀age. We now characterize the probability measure

implied by these weights.

2.1.1 The experience-based empirical probability measure

We now introduce the idea of experience-based empirical probability measure which allow

us to extend the idea of experience-based learning to objects other than the mean. Given a

realization of dividends (dτ )tτ=0, let
2

Pnt (d) =
t−nT∑
k=0

1{dt−k}(d)w(k, λ, t− nT ), ∀d ∈ R (5)

where, for any k ≤ a

w(k, λ, a) =
(a+ 1− k)λ∑a
k′=0(a+ 1− k′)λ , if a ≥ 0 (6)

be the experience-based empirical probability measure of generation n at period t ∈ {nT, ...., (n+

q)T}. That is, this probability measure puts weight of (w(k, λ, t − nT ))t−nTk=0 to the observa-

2The function x 7→ 1A(x) takes value 1 if x ∈ A, 0 otherwise.
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tions during the lifetime of the generation and zero to all other observations. This captures

the assumptions that agents in this economy are experience-based learners. Within the ob-

servations during their lifetime, the generation puts weight (a+1)λ∑a
k′=0(a+1−k′)λ to the most recent

one, (a+1−1)λ∑a
k′=0(a+1−k′)λ to the previous one, and so on. The parameter λ regulates the relative

weight the most recent observations receive.

It is easy to see that for λ > 0, more recent observations receive relative more weights,

whereas for λ < 0 the opposite holds. We now present some examples:

Example 1 (Linearly Declining Weights, λ = 1). With λ = 1, it is easy to see that, for any

0 ≤ k, k + j ≤ a

w(k, 1, a)− w(k + j, 1, a) = − j∑a
k′=0(a+ 1− k′) ,

i.e., weights decay linearly. �

Example 2 (Equal Weights, λ = 0). With λ = 0, it is easy to see that, for any 0 ≤ k ≤ a

w(k, 0, a) =
1

a+ 1
.

�

Example 3 (The Case with λ =∞). If λ→∞, it follows that, for any 0 ≤ k ≤ a

w(k, λ, a)→ 1{k = 0}.

Hence, as λ diverges, the generation puts weight 1 to the most recent observation and 0 to all

the rest. �

2.1.2 Beliefs about θ

The belief about θ of generation n at time t ∈ {n, ..., (n + q)}, from now on denoted as

θnt is thus the expectation of the dividends computed using the experience-based empirical
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probability measure, i.e.,

θnt = EPn [d] =
t−n∑
k=0

w(k, λ, t− n)dt−k. (7)

Example 4. For q = 2, it follows that

θtt =dt

θtt+1 =dt+1
2λ

1 + 2λ
+ dt

1

1 + 2λ

for all t. �

We conclude this section with a remark about the stochastic behavior of θnt . By construc-

tion, θnt ∼ N(θ, σ2
∑t−n

k=0(w(k, λ, t−n))2). Hence, whether θnt converges to the truth as t→∞

will depend on whether
∑t−n

k=0(w(k, λ, t−n))2 → 0; this in turn depends how fast the weights

for "old" observations decay to zero. Note that when agents have �nite lives, convergence will

not occur. In addition, since separate cohorts weight di�erent realizations di�erently, at any

point in time we should expect belief heterogeneity driven by di�erent experiences.

2.2 Connection to Bayesian Learners

For the sake of comparison, we compare our learning procedure with one where agents

update their beliefs using Bayes rule. In principle, one can think of two sub-cases. The

standard case, wherein agents use all the available observations from period 0 onwards to

form their beliefs, and an alternative formulation where agents are learners from experience

(in the sense they only use data observed during their lifetimes) but update their beliefs using

Bayes rule. We explore both cases separately. We call the agents in the former case Full

Bayesian Learners and in the latter case we call them Bayesian Learners from Experience.

This section shows that full Bayesian learners do not di�er in their beliefs about the mean

of the dividends and, eventually, it will converge to the truth. For EBL and Bayesian learners
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from experience this is not true (in fact we show that � for di�use priors � Bayesian learners

can be viewed as a particular case of EBL). These results illustrates the importance of the

main feature of our experience-based learning: the fact that agents only use data observed

during their lifetimes.

2.2.1 Full Bayesian Learners

In this case, all generations consider the whole set of observation from period 0 in order to

form their belief. We assume that each generation t has a prior N(m, τ2).3 The posterior

mean of any generation alive at period t+ a, γt+a, is given by

γt+a =
τ−2

τ−2 + σ−2(t+ a)
m+

(t+ a)σ−2

τ−2 + σ−2(t+ a)

t+a∑
k=0

dt+a−k
1

t+ a

=
τ−2

τ−2 + σ−2(t+ a)
m+

(t+ a)σ−2

τ−2 + σ−2(t+ a)

{
a∑
k=0

dt+a−k
1

t+ a
+

t+a∑
k=a+1

dt+a−k
1

t+ a

}

=
τ−2

τ−2 + σ−2(t+ a)
m+

(t+ a)σ−2

τ−2 + σ−2(t+ a)

{
θtt+a

a+ 1

t+ a
+

t+a∑
k=a+1

dt+a−k
1

t+ a

}
.

That is, the belief of a generation that is a full Bayesian learner is a convex combination of

the prior and the average mean using all observations available to date. The key di�erence

with our approach is that all generations alive in any given period will have the same belief;

that is, the belief heterogeneity arising from di�erent past experiences vanishes. Moreover,

the beliefs are non-stationary (in the sense that depend on the time period) and as t → ∞,

the posterior mean converges (almost surely) to the true mean.

2.2.2 Bayesian Learners from Experience

For the Bayesian learner from experience the situation is di�erent. First, we assume that

the each generation t has a prior N(m, τ2) when they are born (and not from t = 0). The

3The analysis could be easily extended to allow heterogenous Gaussian priors across generations. The
assumption of Gaussianity is also not needed but simpli�es the exposition greatly.
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posterior mean of generation t at period t+ a, βtt+a, is given by

βtt+a =
τ−2

τ−2 + σ−2(a+ 1)
m+

(a+ 1)σ−2

τ−2 + σ−2(a+ 1)

a∑
k=0

dt+a−k
1

a+ 1

=
τ−2

τ−2 + σ−2(a+ 1)
m+

(a+ 1)σ−2

τ−2 + σ−2(a+ 1)
θtt+a.

Now, the belief of a BL generation is a convex combination of the prior and the average

mean using only life-time observations; in turn this average coincides with the belief of our

learners from experience with λ = 0. That is, the only di�erence between a Bayesian Learner

from experience and an EBL with λ = 0, is that the EBL is not born with a prior belief

distribution. We see this as a strength of our framework, since we want to focus on how

observations experienced by agents (as opposed to priors) shape their beliefs. Finally, we note

that if the prior is di�use, i.e., τ =∞, then βtt+a coincides with θ
t
t+a for λ = 0. 4

2.3 Characterization of Demands for the Risky Assets under A�ne Prices

In this section we characterize the portfolio choice and resulting demand for the risky asset

of the di�erent cohorts in a linear equilibrium. We begin by highlighting that the dynamic

portfolio problem of agents in this economy cannot be expressed as a succession of static

problems, as is standard in the literature (see Vives (2008).) This is because learning and

the fact that agents are sophisticated enough to understand how their beliefs evolve over

their lifetime introduce a correlation between future returns and continuation values that

distorts the portfolio decisions. This observation notwithstanding, we show that the agents

dynamic portfolio problem can be expressed as a adjusted static problem where dividends

follow a normal distribution with adjusted mean and variance. For the q = 2 case, we show

that the adjusted distribution of dividends has a lower variance than the actual distribution of

dividends. These adjustments result from learning making the value function of the agent less

concave; that is, very high and very low realizations of future dividends are now associated

4The formal argument relies on looking at the limit of βtt+a as τ → ∞.
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with higher continuation values.

We focus on the case where prices are an a�ne function of K past dividends, for some K

such that q ≤ K < ∞. Henceforth, we study equilibria wherein prices are an a�ne function

of dividends. For some α0 ∈ R and βk ∈ R for k ∈ {0, ...,K} such that:

pt = α0 +

K∑
k=0

βkdt−k (8)

for all t ≥ K.

For any s, t ∈ N, let ds:t = (ds, ..., dt) denote the history of dividends from time s up to

time t. At time t, a t-generation agent solves the following problem:

max
xt:t+q−1=(xt,...,xt+q−1)∈Rq

Ett
[
− exp

(
−γWn

t+q(xt:t+q−1)
)]

(9)

s.t. W t
t+q(xt:t+q−1) =

t+q−1∑
τ=t

rt+q−1−τxτsτ+1 (10)

For simplicity, we assume that the initial wealth of all generations is zero, i.e. Wn
n = 0, ∀n.

We can cast this problem iteratively � by solving from t+ q − 1 backwards � as

V t
t+q−1(dt+q−1−K:t+q−1) = max

x∈R
Ett+q−1 [− exp (−γst+qx)] and (11)

V t
τ (dτ−K:τ ) = max

x∈R
Etτ
[
V t
τ+1(dτ+1−K:τ+1) exp (−γsτ+1x)

]
, ∀ τ ∈ {t, ..., t+ q − 2}

(12)

Remark 5. Notice that V t
τ does not include the wealth at time τ , that is, from equation 9,

the optimization problem can be cast as maxx∈R exp{−γrW t
t+q−1}Ett+q−1 [− exp (−γst+qx)].

However, our de�nition of V t
t+q−1 omits the term exp{−γrW t

t+q−1} since it does not a�ect

the maximization.

This shows that, although the t-generation's problem at t + q − 1 is a static portfolio

problem, for any other τ ∈ {t, ..., t + q − 2}, it is not because V t
τ+1 is correlated with sτ+1
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through dividends. That is, dividend realization dτ+1 impacts (i) the net payo� obtained from

investing xτ in the risky asset at time τ , and (ii) the continuation value V t
τ+1(dτ+1−K:τ+1) by

a�ecting the beliefs of the t-generation at τ + 1, and the resulting portfolio decision.

In the CARA-Gaussian framework with no learning, continuation values are constant and

thus uncorrelated with returns sτ+1. Therefore, the dynamic problem becomes a sequence of

static ones with a risk-aversion coe�cient adjusted by the horizon of the agent. In our setup,

because of the presence of learning, this will not be the case. However, Proposition 6 below

shows that at each time t, can be expressed as an adjusted static portfolio problem where

dividends follow a normal distribution with adjusted mean and variance.

Let EN(µ,σ2)[.] and VN(µ,σ2)[.] be the expectation and variance with respect to a Gaussian

pdf with mean µ and σ2.

Proposition 6 (pro: demands). Suppose pt = α0 +
∑K

k=0 βkdt−k. For any generation t in

period t+ j for j ∈ {0, ..., q − 1} (the age of the generation), demands for the risky asset are

given by:

xtt+j =
EN(mj ,σ2

j )[st+j+1]

γrq−1−jVN(mj ,σ2
j )[st+j+1]

(13)

where:

mj ≡
θtt+j − σ2

(
bj +

∑K
k=1 bj(k)dt+j−k

)
2cjσ2 + 1

(14)

σ2
j ≡

σ2

2cjσ2 + 1
(15)

for {{bj(k)}q−1
k=1, bj , cj} constants that change with the agent's age (j) (for exact expressions

see the proof).

Proof of Proposition 6. See Appendix A.1.

The intuition of the proof is as follows. By solving the problem backwards we note that at

time t+ q−1 the problem is in fact a static one (see equation 11). In particular we show that

V t
t+q−1 is of the form exponential-quadratic in dt+q−1 (see Lemma 6 in the Appendix). We
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then show that the exponential-quadratic term times the Gaussian distribution of dividends

imply a new Gaussian distribution with an slanted mean and variance (see Lemma 3 in the

Appendix). Thus the problem at time t + q − 2 can be viewed as a static problem with

a modi�ed Gaussian distribution, and consequently (a) demands are of the form of 13 and

V t
t+q−2 is also of the exponential-quadratic form. The process thus continues until time t.

Remark 7. From equation 13, we can cast the optimal demand at time t+ j as 5

xtt+j =
EN(θtt+j ,σ

2)[st+j+1]

γrq−1−jVN(θtt+j ,σ
2)[st+j+1]

− (bj +
∑K

k=1 bj(k)dt+j−k)

γrq−1−j(1 + β0)
. (16)

The �rst term coincides with the demand of a static portfolio problem for an agent with

beliefs θtt+j. The second term
(bj+

∑K
k=1 bj(k)dt−k)

γrq−1−j(1+β0)
, is an adjustment which accounts for the

dynamic nature of the problem.

Remark 8. From equation 16, it is not hard to show (which we still show in lemma 7 in the

Appendix) that demands at time t are a�ne in dt−K:t. From the derivations, it can be seen

that this is because prices are stated as a function of dividends from t to t−K (while beliefs

about future dividends depend on the history observed by a given generation).

This observation is the basis of Proposition 9 below where we show that, in a linear equilib-

rium, prices will only depend on the history of dividends observed by the oldest generation in

the market. This result in turn, also implies that demands at time t will also only depend on

dt−q:t.

2.4 Characterization of the Linear Equilibrium

We now establish that in a linear equilibrium prices at any time t only depend on the dividends

observed by the generations trading at time t.

5Note that EN(b+a,s)[st+1] = EN(a,s)[st+1] + (1 + β0)b.
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Proposition 9. For r > 1, the price in any linear equilibrium is a�ne in the history of

dividends observed by the oldest generation participating in the market. For any t ≥ 0, q ≥ 1,

pt = α0 +

q−1∑
k=0

βkdt−k. (17)

Proof of Proposition 9. See Appendix A.3.

The idea of the proof is as follows. By lemma 7, demands at time t are a�ne in dividends

dt−K:t. However, from these dividends only (at most) dt−q−1:t matter for forming beliefs; the

dividends dt−K:t−q only enter through are de�nition of linear equilibrium. The proof shows

that under market clearing, the coe�cients accompanying the dividends dt−K:t−q are zero.

As a result, prices and demands depend only on the history of dividends observed by

the oldest generation in the market. Perhaps more importantly, the previous proposition

provides a link between the factors in�uencing asset prices and demographic composition. In

particular, in our model, only dividends observed by generations participating in the market

predict prices.

This result captures the belief channel described by Friedman and Schawrtz: prices are a

function of past dividends solely due to the fact that generations form their beliefs using past

data. By studying a general equilibrium model, however, we provide a more nuance view.

Since observations of older generations a�ect current prices, they also a�ect the demand of

younger generation, that did not necessarily experience those observations. This suggests that

agents may use di�erent sets of past data to predict dividends (fundamentals) and prices. To

form expectations about future dividends agents use dividends observed during their lifetime,

while to form expectations about future prices agents look at the history of dividends observed

by the cohort in the market.

We brie�y discuss the implications of proposition 9 for the price dynamics.

Price Dynamics. Our results imply that the variance of prices is given by σ2
P =

(∑q−1
k=0 β

2
k

)
σ2
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and also that the autocorrelation structure for prices is given by

Cov(pt+j , pt) =σ2

(
q−1−j∑
k=0

βkβk+j

)
, for any j ≤ q − 1

=0, otherwise.

The presence of learning introduces volatility and correlation to the price process, that

would otherwise be constant. This can be seen in Figure 2. In addition, the numerical results

show that the standard deviation of prices is increasing in w0 (parametrized by λ), while

decreasing in the riskfree rate. This is because higher λ is associated with a stronger response

of old agent's beliefs to present dividends, that do follow a random process. In contrast, higher

rates reduce the response of demands for the risky asset to changes in beliefs, and thus reduce

the volatility of prices. The bottom panel shows that the correlation of prices is decreasing in

w0 (prices react more strongly to recent dividends relative to past dividends), and increasing

in the riskfree rate. It is also important to highlight that prices are only positively correlated

to the past prices observed by generations that are present in the market.

Predictability of Excess Returns. We note that the equilibrium excess return at

time t + j is given by
pt+j+1+dt+j+1

pt+j
− r =

(1+β0)dt+j+1+
∑q−1
k=1 βkdt+j+1−k∑q−1

k=0 βkdt+j−k
− r. Thus, at time

t and for j ≤ q − 1, the dividends dt, ..., dt+j−(q−1) can be used as factors for predicting

the excess returns. For q > j − 1 our model predicts that excess returns are independent

from dividends at time t. It is worth noting that the predictability of excess returns is an

equilibrium phenomenon that stems solely from our learning mechanism and not from, say,

a build-in dependence in dividends. In fact, our model provides a link between age pro�le of

agents participating in the stock markets and factor for predicting stock returns. This theory

provides a nuance mechanism that connects past realizations to future returns through the

latter's impact on the level of disagreements across market participants. [Connect to the

literature on disagreements and trade volume and return predictability.]
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Figure 2: Comparative Statics on Standard Deviations and Correlations. The q=2 Case.
r = 1.11, γ = 10, λ = 1(w0 = 2

3), σ2 = 1, unless otherwise noted.

3 Characterization of the Demands for Risky Assets for q = 2.

We now specialize our results to the case with q = 2. By doing so, we are able to sharpen our

previous results regarding the behavior of prices and risky demands in equilibrium.

The next lemma shows that {α0, β0, β1} solve a complicated system of non-linear equations

Lemma 1 (lem:prices-q2). For r > 1 in any linear equilibrium prices are given by:

pt = α0 + β0dt + β1dt−1 t ≥ 1 (18)
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where {α0, β0, β1} solve the following system of equations:

0 =α0 (1− r)
[
r +

σ2

s2
− [(1 + β0)w(0, λ, 0) + β1 − rβ0]

1 + β0

]
− 2rγ (1 + β0)2 σ2 (19)

0 =[(1 + β0)w(0, λ, 0) + β1 − rβ0] +
1

r

σ2

s2
(β1 − rβ0) (20)

+
1

r
(1 + β0)

(
1−

σ2

s2
β1[(1 + β0)w(0, λ, 0) + β1 − rβ0]

(1 + β0)2

)
(21)

0 =[(1 + β0)w(1, λ, 0)− rβ1]− σ2

s2
β1 (22)

where s2 = σ2 (1+β0)2

(1+β0)2+((1+β0)w(0,λ,0)+β1−rβ0)2
.

Proof of Lemma 1. See Appendix A.4.

Although the equations in the lemma form a complicated system of non-linear equations,

we are able to establish that prices react positively to dividends dt and dt−1. Formally,

Proposition 10. For λ > 0, α0 ≤ 0 and 0 < β1 < rβ0.

Proof of Proposition 10. See Appendix A.4.

This proposition establishes that when agents form their beliefs by using non-decreasing

weights (i.e. w0 ≥ 0.5) β0r is larger than β1. This result re�ects the fact that the dividends at

time t are observed by both generations whereas dt−1 is only observed by the old generation;

in fact it is not hard to see from the equations that in the case w(1, λ, 0) = 0 �agents do not

put any weight on the previous dividend,� then β1 = 0. In the Appendix, we also show that

when agents use increasing weights, i.e. w0 < 0.5, there is a lower bound on the risk-free rate

that guarantees that the main result in Proposition 10 holds.

Figure 3 depicts the behavior of {β0, β1} for di�erent values of (λ, r). Note that the values

of {β0, β1} are independent of the process for dividends, σ2, and of the coe�cient of risk

aversion, γ. Thus, the results shown in the �gure do not depend on parameter values other

than the ones used for comparative statics: (λ, r).
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Figure 3: Comparative Statics: Sensitivity of Prices to Dividends for the q=2 Case.

3.1 Characterization of the Demands for the Risky Asset

The next proposition establishes that the demand of the young generation (decreases) in-

creases, while the one of the old generation (increases) decreases, when current dividends

(decrease) increase; and the opposite holds for the dividends last period.

Proposition 11. For r > r̄: (1)
∂xtt
∂dt

> 0 >
∂xt−1
t
∂dt

, and (2)
∂xtt
∂dt−1

< 0 <
∂xt−1
t

∂dt−1
.

Proof of Proposition 11. See Appendix A.4.

In our model, the young generation puts more weight on current dividends when forming

beliefs, so when dt increase, they young are "overly optimistic" relatively to the old generation.

This e�ect contributes to the result (1) (and similar reasoning contributes to results (2));
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however, this is not the only e�ect to consider. There additional e�ects due to the fact that

the young are confronted with a di�erent horizon investment.

In order to shed some light on the di�erent e�ects, it is useful to re-write the demand of

agents as follows:

xt−1
t =

α0 (1− r)
γ (1 + β0)2 σ2

+
(1 + β0)w(0, λ, 1) + β1 − rβ0

γ (1 + β0)2 σ2
dt +

(1 + β0)(1− w(0, λ, 1))− rβ1

γ (1 + β0)2 σ2
dt−1

xtt =
α0 (1− r)

γr (1 + β0)2 σ2
+

1 + β0 + β1 − rβ0

γr (1 + β0)2 σ2
dt −

rβ1

γr (1 + β0)2 σ2
dt−1︸ ︷︷ ︸

x̃tt

+∆t

with

∆t ≡
α0 (1− r) + (β1 − rβ0) dt − rβ1dt−1

γr (1 + β0)2

(
1

s2
− 1

σ2

)
+

1

γr (1 + β0)

(
m

s2
− dt
σ2

)
. (23)

In particular, the demand of the young agent can be expressed as a term re�ecting the

demand of a static agent with risk aversion rγ and the beliefs of the young agent (we denote

this term by x̃tt) and a second term re�ecting the adjustment in demand of the risky asset

that arises in a learning framework, which we will refer to as a hedging motive, ∆t.

To understand how the demand of young and adult agents react to changes in dividends,

we need to �nd:

∂(xtt − xt−1
t )

∂dt
=
∂(x̃tt − xt−1

t )

∂dt
+
∂∆t

∂dt
. (24)

We focus �rst on understanding the changes in demands when we abstract from the hedging

motive. Let

∂
(
x̃tt − xt−1

t

)
∂dt

=
(1 + β0) (1− w(0, λ, 1))

γ (1 + β0)2 σ2︸ ︷︷ ︸
Beliefs Term

+
1 + β0 + β1 − rβ0

γ (1 + β0)2 σ2

(
−r − 1

r

)
︸ ︷︷ ︸

Horizon Term

The refer to the �rst term as the Beliefs Term. This term is positive, and it re�ects that

an increase (decrease) in dividends makes young agents more optimistic (pessimistic) about
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Figure 4: Comparative Statics: Sensitivity of Demands to Dividends for the q=2 Case.

Decomposition of
∂(xt

t−xt−1
t )

∂dt
into the Belief, Horizon, and Hedging Terms.

the return of the risky asset than adult agents, who are also weighing past realizations of

dividends in their belief formation. This term is zero when both agents have the same belief

formation (e.g. w(0, λ, 1) = 1). The second term is the Horizon Term. It is negative (see

Lemma 8 in Appendix for a proof). It re�ects the fact that even when agents share beliefs,

young agents react less aggressively to a change in dividends (in their beliefs) due to their

longer horizon. These terms fully characterize the di�erential response across di�erent cohorts

when agents do not internalize the learning in their portfolio decisions.

When agents understand that they are learning about the risky asset, they distort their

portfolio decisions accordingly, giving rise to a hedging motive. Note that when m = θtt = dt,

and s2 = σ2; that is, there is no adjustment in the distribution, the hedging motive disappears.
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However, for other cases, we are interested in how this term reacts to changes in present

dividends. Observe that

∂∆t

∂dt
=

β1 − rβ0

γ (1 + β0)2 σ2

1

r

(
σ2

s2
− 1

)
− (1 + β0)

γ (1 + β0)2 σ2

(
l(1, 1)l (0, 1)

(1 + β0)2 r

)

since ∂m
∂dt

= s2

σ2

(
1− l(1,1)l(0,1)

(1+β0)2

)
. Even though we can not formally pin down the sign of ∂∆

∂dt
,

since the �rst term is negative, while the second term is positive (see the proof of Proposi-

tion 11, in the numerical solutions we �nd that it is always positive (see Figure (4)). Most

importantly, we are able to show that the overall sign of
∂(xtt−x

t−1
t )

∂dt
is positive.

In �gure 4 we show the behavior of each of the terms for di�erent values of (r, λ).

3.2 Volume of Trade

We now study how learning and disagreements a�ect the volume of trade observed in the

market. In our OLG framework, there is always trade due to the agents' changing horizon.

We focus our analysis on the trade levels driven by the presence of learning and disagree-

ments. Therefore, we are interested in the di�erence in trade levels between our economy

with experience-based learners and our economy with full information. Let xnFI,t be the de-

mand for the risky asset of generation n at time t in the full information economy.6 We

de�ne the trade of generation n at time t that is driven by learning as trnt = xnt − xnFI,t. If

agents are not learning, and there are no disagreements, our trade measure is zero. In this

sense, we are measuring the trade volume that is solely generated by the presence of learning

and disagreements and not to our speci�c OLG framework. We focus on characterizing trade

levels for the q = 2 case. The resulting total volume of trade in the economy is de�ned as

follows:

6Trade levels would be the same in an economy with no learning and no disagreements, even if we were not
in the full information case. As long as all agents agree on the distribution of dividends, the demand functions
are the same as the ones in the full information case where all agents know the true mean of dividends.
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TRt ≡
t∑

n=t−2

1

2
(trnt )2 (25)

By market clearing, trtt+ trt−1
t = 0 and thus trade volume can be written as: TRt = (trnt )2.

In the full information economy, the demand of the young generation is given by xtFI,t ≡
E[st+1]

γr(1+β0)2σ2
, that of the adult generation by xt−1

FI,t ≡
E[st+1]

γ(1+β0)2σ2
, and that of the old is zero. By

market clearing: xtFI,t = 2
1+r , x

t−1
FI,t = 2r

1+r . The following Lemma characterizes trade volume

for this economy.

Lemma 2. For the q = 2 case, trade volume de�ned by (25) is given by:

TRt =
1

1 + r

(
1− w0

γ (1 + β0)σ2
ψt + r∆ (dt−1, ψ)

)2

(26)

where ψ = dt − dt−1. In addition, trade volume increases in response to large changes in

dividends, i.e.

∂TRt
∂ψ

=
2

1 + r
× trtt ×

∂trtt
∂ψ

(27)

and there exists an interval
[
ψ, ψ̄

]
with ψ ≤ 0 ≤ ψ̄ such that for ψ < ψ and ψ > ψ̄, ∆TRt

∆ψ > 0

[It is more general than this, think about how to write it].

Proof. See Appendix A.5.

The previous Lemma shows that the presence of learning and disagreements induces trade

volume through two channels. The �rst is the belief, or disagreements, channel, which is

captured by the �rst term and is proportional to ψ, the change in dividends. Remember that

an increase (decrease) in dividends impacts the belief of both generations in the market, but

the e�ect on beliefs is stronger for the younger generation. Therefore, an increase (decrease)

in dividends induces trade since young agents become more optimistic (pessimistic) than

old agents, and disagreements generate gains from trade. This mechanism is solely due to

the presence ef experience-based learners, since it is essential that each generation reacts

di�erently to the same realization of dividends.
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Figure 5: Comparative Statics: Trade Volume Levels and Changes.

We assume that dt = 20 for all t but d2 = 10. That is, ψ = −10 in t = 2 and zero otherwise.
Parameters are as the ones described in other plots.

The second is the learning channel, and it is captured by the second term: the hedging

motive. Young cohorts have an incentive to distort their portfolios due to learning (since

returns are now correlated with their continuation values through beliefs), while old agents

do not have continuation values and thus invest as static agents. This di�erence in the way

they form optimal portfolios also induces trade. The response of this hedging motive to

changes in dividends, however, could be positive or negative. What we show, however, is that

for any initial level of dividends dt−1, there always exists a large enough change in dividends

(positive or negative), that will increase the hedging motive, and thus trade volume.

Figure 5 shows the response of trade levels to a negative shock to dividends. It is clear

from the simulations that the change in trade volume induced by the change in dividends

is larger when disagreements among cohorts are larger (i.e. when w0 is smaller). This is

because changes in dividends induce more disagreements when the recency bias in agent's
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belief formation is not that strong. It is also important to highlight that a one-time change

in dividends induces traded volume not only at the time of the shock, but also in the future,

since there will be disagreements between the generation that experienced the shock and the

newly born. This suggests that there is a persistent component to changes in trade volume.

4 Simulations

We solve the model numerically for di�erent parameter values, and simulate the economy

for the q = 2 case to highlight the main results discussed in the paper. For the following

numerical exercise, we assume (unless otherwise noted), that the belief parameter is λ = 1

(implying a belief weight on most recent dividends of the adult generation of w0 = 0.67),

volatility of dividends σ2 = 1, risk-free rate r = 1.1, risk aversion γ = 10, and the mean of

dividends θ = 10. We simulate the following scenario: dividends are constant at their mean

level: dt = 20, but in t = 2 there is a one time negative shock implying that d2 = 10.

We study the reaction to a negative shock in dividends on the demands for the risky asset

of di�erent cohorts, the price of the risky asset, and trade volume. We do so for several weigh

functions in the agent's beliefs formation, and for various interest rates.

5 Conclusion

To be completed.
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Figure 6: Simulating the q=2 Case.
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Figure 7: Simulating the q=2 Case.
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Figure 8: Simulating the q=2 Case.
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Figure 9: Simulating the q=2 Case.
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Figure 10: Simulating the q=2 Case.
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A Appendix

A.1 Proofs of Section 2.3

For the proof of Proposition 6 we need the following technical lemmas (their proofs are rele-

gated to section A.2)

Lemma 3 (l: AdjustedGaussian). Suppose z ∼ N(µ, σ2), then for any A,B,C ∈ R, z 7→

K−1 exp{−A − Bz − Cz2}φ(z;µ, σ2) is Gaussian with mean m ≡ −Σ2B + Σ2σ−2µ and

Σ2 ≡ σ2

2Cσ2+1
, where

K = EΦ(µ,σ2)[exp{−A−Bz − Cz2}] =
1√

2σ2C + 1
exp{−(A+ 0.5σ−2µ2) +

m2

2Σ2
}

Lemma 4 (l: TwoLastPeriods). Demands for the risky asset in the last two period of an

agent's life are given by: xt−qt = 0 and xt−q+1
t =

Et−q+1
t [st+1]

γσ2
∗

, ∀t ≥ 0,q ≥ 1.

Lemma 5 (l: GralMax). Let z ∼ Φ(µ, σ2). Let A,B,C ∈ R, and z 7→ h (z) ≡ f + ez for any

e, f ∈ R.Then

max
x

E[− exp{−A−Bz − Cz2} exp{−axh (z)}] = − 1√
2σ2C + 1

exp

[
−A− 0.5

(
µ2

σ2
− m2

s2

)]
exp

[
−0.5

µ̃
(
m, s2

)2
σ̃2 (m, s2)

]

arg max
x

E[− exp{−A−Bz − Cz2} exp{−axh (z)}] =
µ̃
(
m, s2

)
aσ̃2 (m, s2)

withm = s2
[
σ−2µ−B

]
, s2 = σ2

2Cσ2+1
, µ̃
(
m, s2

)
= EΦ(m,s2) [h (z)] , σ2

(
m, s2

)
= VΦ(m,s2) [h (z)].

Lemma 6 (l: static). Let z ∼ Φ(µ, σ2), then for any a > 0,

x∗ = arg max
x

E[− exp{−axz}] =
µ

aσ2

and max
x

E[− exp{−axz}] =− exp{−0.5(σax∗)2} = − exp

(
−0.5

µ2

σ2

)

Let β(k) = βk+1 − rβk for k ∈ {0, ...,K − 1} and β(K) = −rβK .
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Lemma 7. Suppose pt = α0 +
∑K

k=0 βkdt−k, then the demand for risky assets of any cohort

alive at time t is an a�ne function of past dividends, where the coe�cients associated with a

given dividend will depend on the agent's age, age. That is,

xt−aget = δ(age) +
K∑
k=0

δk(age)dt−k, for age ∈ {0, ..., q} (28)

with

δ(q) = δk(q) = 0, ∀k ∈ {0, ...,K} (29)

δ(q − 1) =
α0(1− r)

γ((1 + β0)σ)2
, δk(q − 1) =

(1 + β0)w(k, λ, q − 1) + β(k)

γ((1 + β0)σ)2
, ∀k ∈ {0, ..., q − 1}

(30)

δk(q − 1) =
β(k)

γ((1 + β0)σ)2
, ∀k ∈ {q, ...,K}, (31)

and for age ∈ {0, ..., q − 2},

δ(age) =
α0(1− r)− s2

age(1 + β0)δ0(age+ 1)δ(age+ 1)(rq−1−(age+1)γ)2((1 + β0)sage+1)2

rq−1−(age)γ((1 + β0)sage)2
,

(32)

δk(age) =
(1 + β0)s2

age(σ
−2w(k, λ, age)− [(rq−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)]) + β(k)

rq−1−(age)γ((1 + β0)sage)2

(33)

k ∈ {0, ..., q − 1}, (34)

δk(age) =
−(1 + β0)s2

age[(r
q−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)] + β(k)

rq−1−(age)γ((1 + β0)sage)2
, k ∈ {q, ...,K − 1}

(35)

δK(age) =
β(K)

rq−1−(age)γ((1 + β0)sage)2
, (36)

and sq−1 = σ and s2
age ≡ σ2

(rq−1−(age+1)γ)2((1+β0)sage+1)2(δ0(age+1))2σ2+1
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The expressions for bj , bj(k) and cj for j ∈ {0, ..., q − 1} are:

bj ≡(rq−1−jγ)2((1 + β0)σj)
2δ(j)δ0(j)

bj(k) ≡δk(j)δ0(j)(rq−1−jγ)2((1 + β0)σj)
2

and, cq−1 = 1 and

cj−1 = 0.5(rq−1−(j+1)γ)(1 + β0)σj+1δ0(j + 1)

for j ∈ {0, ..., q − 2}.

Proof of Proposition 6. By lemma 6,

xtt+q−1 =
EN(mq−1,σ2

q−1)[st+q]

γVN(mq−1,σ2
q−1)[st+q]

with mq−1 = θtt+q−1 and σq−1 = σ, and

V t
t+q−1 = − exp{−0.5

(
(1 + β0)σγxtt+q−1

)2}.
By lemma 7, xtt+q−1 is a�ne in dt+q−1−K:t+q−1 and thus V t

t+q−1 = − exp{−A−Bdt+q−1−

C(dt+q−1)2} where A, B and C depend on primitives and on dt+q−1−K:t+q−2, in particular B

is a�ne in dt+q−1−K:t+q−2 and C is constant with respect to dt+q−1−K:t+q−1:

C ≡1

2
γ2((1 + β0)σq−1)2 (δ0(q − 1))2

B ≡γ2((1 + β0)σq−1)2

δ(q − 1) +

K∑
j=1

δk(q − 1)dt+q−1−j

 δ0(q − 1)

A ≡1

2
γ2((1 + β0)σq−1)2

δ(q − 1) +

K∑
j=1

δk(q − 1)dt+q−1−j

2

.

(see Lemma 7 step 1 for the expressions for δ(q − 1) and (δk(q − 1))Kk=1).
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At time t+ q − 2, by equation 12,

xtt+q−2 = arg max
x∈R

Ett+q−2

[
V t
t+q−1(dt+q−1−K:t+q−1) exp (−γst+q−1x)

]
where the expectation is taken with respect N(θtt+q−2, σ

2). Hence, by lemma 3, this problem

can be cast as

xtt+q−2 = arg max
x∈R

EN(mq−2,σq−2) [− exp (−rγst+q−1x)]

where mq−2 = σq−2(
θtt+q−2

σ2 −B) and σ2
q−2 = σ2

2Cσ2+1
. Hence, by lemma 6

xtt+q−2 =
EN(mq−2,σ2

q−2)[st+q−1]

γrVN(mq−2,σ2
q−2)[st+q−1]

,

Also, by lemma 6, V t
t+q−2 = − exp{−0.5

(
VN(mq−2,σ2

q−2)[st+q−1]rγxtt+q−2

)2
}. By lemma 7,

xtt+q−2 is a�ne and thus V t
t+q−2 = − exp{−A − Bdt+q−2 − C(dt+q−2)2} where A, B and C

depend on primitives and on dt+q−2−K:t+q−3, in particular B is a�ne in dt+q−2−K:t+q−3 and

C is constant with respect to dt+q−1−K:t+q−1:

C ≡1

2
(rγ)2((1 + β0)σq−2)2 (δ0(q − 2))2

B ≡(rγ)2((1 + β0)σq−2)2

δ(q − 2) +

K∑
j=1

δk(q − 2)dt+q−2−j

 δ0(q − 2)

A ≡1

2
(rγ)2((1 + β0)σq−2)2

δ(q − 2) +

K∑
j=1

δk(q − 2)dt+q−2−j

2

.

(observe that the A and B and C are not the same as the previous ones; the expressions for

δ(q − 2) and (δk(q − 2))Kk=1 can be found in the proof of lemma 7 step 2).

The result for j ∈ {0, ..., q − 3} follows by iteration.
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A.2 Proof of Lemmas 3, 4, 5, 6 and 7

Proof of Lemma 3. Let ϕ(z) ≡ K exp{−(A + Bz + Cz2)}φ(z;µ, σ2). By de�nition of K,∫
ϕ(z)dz = 1 and ϕ ≥ 0, so it is a pdf. Moreover,

ϕ(z) =
K−1

√
2πσ

exp{−A−Bz − Cz2 − 0.5σ−2(z − µ)2}

=
1

K
√

2πσ
exp{−z2(C + 0.5σ−2)− 2z(0.5B − 0.5σ−2µ)− (A+ 0.5σ−2µ2)}

=
1

K
√

2πσ
exp{−(A+ 0.5σ−2µ2)} exp{−0.5(2C + σ−2)

(
z2 − 2z

(−B + σ−2µ)

(2C + σ−2)

)
}.

Let Σ2 ≡ (2c+σ−2)−1, m ≡ Σ2(σ−2µ−b), and K = 1√
2σ2C+1

exp{−(A+0.5σ−2µ2)+ m2

2Σ2 }:

ϕ(z) =
1

K
√

2πσ
exp{−(a+ 0.5

µ2

σ2
) +

m2

2Σ2
} exp{−z

2 − 2zm+m2

2Σ2
}

=
1

K
√

2πσ
exp{−(a+ 0.5σ−2µ2) +

m2

2Σ2
} exp{−(z −m)2

2Σ2
} =

1√
2πΣ

exp{−(z −m)2

2Σ2
}

=
1√

2πΣ2
exp{−(z −m)2

2Σ2
}

Proof of Lemma 4. At time t+q, an agent born in t is in the last period of his life, consuming

all of its wealth. Therefore, he will sell all of its claims to the assets it holds and consume.

The gain from saving is zero, and therefore the holding of �nancial assets is also zero by the

end of this period: xtt+q = 0, att+q = 0. Given this, we can compute the portfolio choice of an

agent with age q−1, who does want to save for next period when all wealth will be consumed.

The agent's problem is a standard static portfolio problem, with initial wealth W t
t+q−1:

max
x

Ett+q−1

[
− exp

(
−γ
(
W t
t+q−1 + xst+q

))]
= max

x
Ett+q−1 [− exp (−γxst+q)] (37)

At time t+ q−1, the only random variable is dt+q, which is normally distributed, and thus
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st+q ∼ N
(
Ett+q−1 [st+q] ; (1 + β0)σ2

)
. Given this, the agent's problem becomes:

V t−q
t−1 ≡max

x

[
− exp

(
−γxEt−qt−1 [st] +

1

2
γ2x2 (1 + β0)σ2

)]
(38)

max
x

xEt−qt−1 [st]−
1

2
γx2 (1 + β0)2 σ2 (39)

And therefore, by FOC:

xtt+q−1 =
Ett+q−1 [st+q]

γσ2
∗

(40)

Proof of Lemma 5. Note that E[− exp{−A−Bz − Cz2} exp{−axh (z)}] can be written as:

∫
exp{−axh (z)} − exp{−A−Bz − Cz2} 1√

2πσ2
exp

{
−1

2

z − µ
σ2

}
dz

By Lemma 3, we know that his can be re-written as:

1√
2σ2C + 1

exp

{
−A− 0.5

(
µ2

σ2
− m2

s2

)}∫
− exp{−axh (z)}Φ

(
m, s2

)
dz

with m = −s2B + sσ−2µ and s2 = σ2

2Cσ2+1
. Therefore, the maximization problem becomes:

max
x

EΦ(m,s2)[− exp{−axh (z)}]

with EΦ(m,s2) [·] being the expectations operator over z ∼ N
(
m, s2

)
. Since h(z) is linear, we

know that h (z) ∼ N
(
µ̃
(
m, s2

)
, σ̃
(
m, s2

)2)
, with µ̃

(
m, s2

)
= EΦ(m,s2) [h (z)], σ̃

(
m, s2

)2
=
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VΦ(m,s2) [h (z)], by Lemma 6, we know that

arg max
x

E[− exp{−A−Bz − Cz2} exp{−axh (z)}] =
µ̃
(
m, s2

)
aσ̃ (m, s2)2

max
x

E[− exp{−A−Bz − Cz2} exp{−axh (z)}] =− 1√
2σ2C + 1

exp

[
−A− 0.5

(
µ2

σ2
− m2

s2

)]
× exp

[
−0.5

µ̃
(
m, s2

)2
σ̃ (m, s2)2

]

Proof of Lemma 6. Since z ∼ Φ(µ, σ2), we can re-write the problem as follows:

x∗ = arg max
x
− exp

(
−axE[z] +

1

2
a2x2V [z]

)
= arg max

x
axµ− 1

2
a2x2σ2

From FOC, x∗ = µ
aσ2 . Plugging x

∗ in − exp
(
−ax∗µ+ 1

2a
2(x∗)2σ2

)
the second result follows.

Let t 7→ ρ(t) ≡ γt2 and let

Λ(dt−K , ..., dt) ≡α0(1− r) +

K∑
k=1

βkdt+1−k − r
K∑
k=0

βkdt−k

=α0(1− r) +
K−1∑
j=0

βj+1dt−j − r
K∑
k=0

βkdt−k = α0(1− r) +

K∑
k=0

β(k)dt−k

with β(k) = βk+1 − rβk for k ∈ {0, ...,K − 1} and β(K) = −rβK . We use Λτ to denote

Λ(dτ−K , ..., dτ ).

Proof of Lemma 7. We divide the proof into several steps.

STEP 1. It is straightforward that demand for risky assets can only be positive for a

generation that is alive. From Lemma 4, we know that xt−qt = 0 and that xt−q+1
t =

Et−q+1
t [st+1]
γ((1+β0)σ)2

.
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Therefore,

δ(q) = δk(q) = 0, ∀k ∈ {0, ...,K} (41)

δ(q − 1) =
α0(1− r)

γ((1 + β0)σ)2
, δk(q − 1) =

(1 + β0)w(k, λ, q − 1) + β(k)

γ((1 + β0)σ)2
, ∀k ∈ {0, ..., q − 1}

(42)

δk(q − 1) =
β(k)

γ((1 + β0)σ)2
, ∀k ∈ {q, ...,K}. (43)

We also know from Lemma 6 that

V q−1(dt−K , ..., dt) = − exp

−1

2

dtδ0(q − 1) + δ(q − 1) +
K∑
j=1

δk(q − 1)dt−j

2

γ2((1 + β0)sq−1)2


where sq−1 = σ2. Henceforth, we denote V q−1(dt−K , ..., dt) by V t−q+1

t . In particular,

V t+1−q+1
t+1 = V t−q+2

t+1 = V q−1(dt+1−K , ..., dt+1).

STEP 2. We now derive the risky demand and continuation value for generation aged

q − 2. The problem of generation aged q − 2 at time t is given by,

max
x

Et−q+2
t

[
V t−q+2
t+1 exp (−γrxst+1)

]
. (44)

By the calculations in step 1, and using Λt as de�ned in (41), this problem becomes:

V q−2(dt−K , ..., dt) (45)

= max
x

Et−q+2
t

[
− exp

(
−1

2

(
xq−1
t

)2
γ2((1 + β0)sq−1)2 − γrx((1 + β0)dt+1 + Λt)

)]
. (46)

with xq−1
t = dt+1δ0(q − 1) + δ(q − 1) +

∑K
j=1 δk(q − 1)dt+1−j .
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Observe that

− 1

2

dt+1δ0(q − 1) + δ(q − 1) +
K∑
j=1

δk(q − 1)dt+1−j

2

γ2((1 + β0)sq−1)2

=− 1

2
γ2((1 + β0)sq−1)2

δ(q − 1) +
K∑
j=1

δk(q − 1)dt+1−j

2

− γ2((1 + β0)sq−1)2

δ(q − 1) +
K∑
j=1

δk(q − 1)dt+1−j

 δ0(q − 1)dt+1

− 1

2
γ2((1 + β0)sq−1)2 (δ0(q − 1))2 d2

t+1,

and that future dividends are the only random variable, with dt+1 ∼ N
(
θt−q+2
t , σ2

)
. There-

fore, by Lemma 5, and with:

A =
1

2
γ2((1 + β0)sq−1)2

δ(q − 1) +

K∑
j=1

δk(q − 1)dt+1−j

2

B =γ2((1 + β0)sq−1)2

δ(q − 1) +

K∑
j=1

δk(q − 1)dt+1−j

 δ0(q − 1)

C =
1

2
γ2((1 + β0)sq−1)2 (δ0(q − 1))2

we obtain:

x
t−(q−2)
t =

(1 + β0)s2
q−2(σ−2θ

t−(q−2)
t −B) + Λt

rγ((1 + β0)sq−2)2
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with s2
q−2 ≡ σ2

γ2((1+β0)sq−1)2(δ0(q−1))2σ2+1
. Therefore,

δ(q − 2) =
α0(1− r)− s2

q−2(1 + β0)δ0(q − 1)δ(q − 1)γ2((1 + β0)sq−1)2

rγ((1 + β0)sq−2)2

δk(q − 2) =
(1 + β0)s2

q−2(σ−2w(k, λ, q − 2)− [γ2((1 + β0)sq−1)2δk+1(q − 1)δ0(q − 1)]) + β(k)

rγ((1 + β0)sq−2)2
, k ∈ {0, ..., q − 1}

δk(q − 2) =
−(1 + β0)s2

q−2[γ2((1 + β0)sq−1)2δk+1(q − 1)δ0(q − 1)] + β(k)

rγ((1 + β0)sq−2)2
, k ∈ {q, ...,K − 1}

δK(q − 2) =
β(K)

rγ((1 + β0)sq−2)2
.

By lemma 3, dt+1 ∼ N(mt, s
2
q−2) with mt ≡ −s2

q−2B + s2
q−2σ

−2θt−q+2
t . Thus, invoking

lemma 6 for this distribution for dividends and a = rγ(1 + β0) implies that

V q−2(dt−K , ..., dt) �− exp

(
−1

2

(
x
t−(q−2)
t

)2
(rγ)2((1 + β0)sq−2)2

)

=− exp

−1

2

dtδ0(q − 2) + δ(q − 2) +
K∑
j=1

δk(q − 2)dt−j

2

(rγ)2((1 + β0)sq−2)2


(the symbol � means that equality holds up to a positive constant).

STEP 3. We now consider the problem for agents of age age ≤ q−3. Suppose the problem

at age age+ 1 is solved, that is, suppose

V t−age−1
t+1 =V age+1(dt+1−K , ..., dt+1)

�− exp

−1

2

dt+1δ0(age+ 1) + δ(age+ 1) +

K∑
j=1

δj(age+ 1)dt+1−j

2

(rq−1−(age+1)γ)2((1 + β0)sage+1)2

 .

The maximization problem is given by:

V age(dt−K , ..., dt) ≡ max
x

Et−aget

[
V t−age−1
t+1 exp

(
−γrq−1−agex((1 + β0)dt+1 + Λt)

)]
. (47)
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By similar calculations to step 2 and Lemma 5,

xt−aget =
(1 + β0)s2

age(σ
−2θt−aget −B) + Λt

rq−1−(age)γ((1 + β0)sage)2

with s2
age ≡ σ2

(rq−1−(age+1)γ)2((1+β0)sage+1)2(δ0(age+1))2σ2+1
, and

B ≡ (rq−1−(age+1)γ)2((1 + β0)sage+1)2

δ(age+ 1) +

K∑
j=1

δj(age+ 1)dt+1−j

 δ0(age+ 1).

Therefore

δ(age) =
α0(1− r)− s2

age(1 + β0)δ0(age+ 1)δ(age+ 1)(rq−1−(age+1)γ)2((1 + β0)sage+1)2

rq−1−(age)γ((1 + β0)sage)2
,

δk(age) =
(1 + β0)s2

age(σ
−2w(k, λ, age)− [(rq−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)]) + β(k)

rq−1−(age)γ((1 + β0)sage)2

k ∈ {0, ..., q − 1},

δk(age) =
−(1 + β0)s2

age[(r
q−1−(age+1)γ)2((1 + β0)sage+1)2δk+1(age+ 1)δ0(age+ 1)] + β(k)

rq−1−(age)γ((1 + β0)sage)2
, k ∈ {q, ...,K − 1}

δK(age) =
β(K)

rq−1−(age)γ((1 + β0)sage)2
.

By lemma 3, dt+1 ∼ N(mt, s
2
age) with mt ≡ −s2

ageB + s2
ageσ

−2θt−q+2
t . Thus, invoking

lemma 6 for this distribution for dividends and a = rq−1−ageγ(1 + β0) implies that

V age(dt−K , ..., dt) �− exp

(
−1

2

(
x
t−(age)
t

)2
(rq−1−(age)γ)2((1 + β0)sage)

2

)

=− exp

−1

2

dtδ0(age) + δ(age) +

K∑
j=1

δk(age)dt−j

2

(rq−1−(age)γ)2((1 + β0)sage)
2

 .
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A.3 Proof for Section 2.4

Proof of Proposition 9. [HERE AND BEFORE, β0 6= −1] Market Clearing and Lemma 7

imply that, for all k ∈ {0, ...,K},
q−1∑
age=0

δk(age) = 0 (48)

and

q−1∑
age=0

δ(age) = q.

For k = K, it follows from equations 31 and 36

q−1∑
age=0

δK(age) = β(K)

 q−1∑
age=0

1

rq−1−ageγ((1 + β0)sage)2
+

1

γ((1 + β0)σ)2


therefore β(K) = 0 which implies that βK = 0 and β(K − 1) = −rβK−1 and δK(age) = 0 for

any age.

For k = K − 1, by equations 31 and 35

q−1∑
age=0

δK−1(age) = β(K − 1)

 q−2∑
age=0

1

rq−1γ((1 + β0)sage)2
+

1

γ((1 + β0)σ)2


and thus β(K−1) = 0 which implies that βK−1 = 0 and β(K−2) = −rβK−2 and δK−1(age) =

0 for any age.

By induction, for any k ∈ {q, ...,K − 2}, taking βk+1 = 0, it follows by equations 31 and

35, that

q−1∑
age=0

δk(age) = β(k)

 q−2∑
age=0

1

rq−1−ageγ((1 + β0)sage)2
+

1

γ((1 + β0)σ)2


and thus β(k) = 0 which implies βk = 0 and β(k − 1) = −rβk−1 and δk(age) = 0 for any

age ∈ {q, ...,K}.
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For k = q − 1, it follows by equations 30 and 33

q−1∑
age=0

δq−1(age) =
(1 + β0)w(q − 1, λ, q − 1)− rβq−1

γ((1 + β0)σ)2

+

q−2∑
age=0

(1 + β0)s2
ageσ

−2w(q − 1, λ, age)− rβq−1

rq−1−ageγ((1 + β0)sage)2

=
(1 + β0)w(q − 1, λ, q − 1)− rβq−1

γ((1 + β0)σ)2
−

q−2∑
age=0

rβq−1

rq−1−ageγ((1 + β0)sage)2

=
1

γ(1 + β0)2

(1 + β0)w(q − 1, λ, q − 1)

σ2
− rβq−1

q−1∑
age=0

1

rq−1−age(sage)2


where the second line follows from the fact that w(q − 1, λ, age) = 0 for age ∈ [0, ...q − 2].

Thus

βq−1 =
(1 + β0)w(q − 1, λ, q − 1)

rσ2Γ
,

with Γ =
∑q−1

age=0
1

rq−1−age(sage)2
.

For any k ∈ {0, ..., q − 2}, by equations 30 and 33

q−1∑
age=0

δk(age) = 0

and �nally, by equations 30 and 32

q−2∑
age=0

δ(age) + δ(q − 1) = q−1
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A.4 Proofs for Section 3

A.4.1 Proof of Lemma 1

Proof of Lemma 1. By Proposition 6, we have the following demands:

xt−2
t = 0 (49)

xt−1
t =

Et−1
t [st+1]

γr (1 + β0)σ2
=
α0 (1− r) + l (0, 1) dt + l (1, 1) dt−1

γ (1 + β0)2 σ2
(50)

xtt =
EΦ(m,s2) [st+1]

γr (1 + β0) s2
=
α0 (1− r) + (β1 − rβ0) dt − rβ1dt−1 + (1 + β0)m

γr (1 + β0)2 s2
(51)

where l(0, 1) ≡ (1 + β0)w(0, λ, 0) + β1 − rβ0, l(1, 1) ≡ (1 + β0)w(1, λ, 0)− rβ1,

m =
s2

σ2

[
dt − σ2Bt+1 (1)

]
s2 =

σ2

2C (1)σ2 + 1
,

and

Bt+1 (1) =
α0 (1− r) l (0, 1)

(1 + β0)2 σ2
+
l(1, 1)l (0, 1)

(1 + β0)2 σ2
dt

C (1) =
l (0, 1)2

(1 + β0)2 σ2

Therefore:

m =
s2

σ2

[
dt −

α0 (1− r) l (0, 1)

(1 + β0)2 − l(1, 1)l (0, 1)

(1 + β0)2 dt

]
=
s2

σ2

[
−α0 (1− r) l (0, 1)

(1 + β0)2 +

(
1− l(1, 1)l (0, 1)

(1 + β0)2

)
dt

]
s2 =

σ2

2 l(0,1)2

(1+β0)2σ2
σ2 + 1

=
(1 + β0)2

l (0, 1)2 + (1 + β0)2σ
2.
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Plugging this in the expression for xtt, it follows that

xtt =
α0 (1− r) + (β1 − rβ0) dt − rβ1dt−1 + (1 + β0) s2

σ2

[
−α0(1−r)l(0,1)

(1+β0)2
+
(

1− l(1,1)l(0,1)

(1+β0)2

)
dt

]
γr (1 + β0)2 s2

=
α0 (1− r)

[
1− s2

σ2
l(0,1)

(1+β0)

]
+
[
β1 − rβ0 + (1 + β0) s2

σ2

(
1− l(1,1)l(0,1)

(1+β0)2

)]
dt − rβ1dt−1

γr (1 + β0)2 s2
.

By Market clearing:

1 =
1

2

(
α0 (1− r) + l (0, 1) dt + l (1, 1) dt−1

γ (1 + β0)2 σ2

)

+
1

2

α0 (1− r)
[
1− s2

σ2
l(0,1)

(1+β0)

]
+
[
β1 − rβ0 + s2

σ2 (1 + β0)
(

1− l(1,1)l(0,1)

(1+β0)2

)]
dt − rβ1dt−1

γr (1 + β0)2 s2


=

1

2

(
α0 (1− r) + l (0, 1) dt + l (1, 1) dt−1

γ (1 + β0)2 σ2

)

+
1

2

α0 (1− r) σ2

s2

[
1− s2

σ2
l(0,1)

(1+β0)

]
+
[
σ2

s2
(β1 − rβ0) + (1 + β0)

(
1− l(1,1)l(0,1)

(1+β0)2

)]
dt − σ2

s2
rβ1dt−1

γr (1 + β0)2 σ2

 ,

which implies

2γ (1 + β0)2 σ2 = (α0 (1− r) + l (0, 1) dt + l (1, 1) dt−1)

+
1

r

[
α0 (1− r) σ

2

s2

[
1− s2

σ2

l (0, 1)

(1 + β0)

]]
+

1

r

[[
σ2

s2
(β1 − rβ0) + (1 + β0)

(
1− l(1, 1)l (0, 1)

(1 + β0)2

)]
dt −

σ2

s2
rβ1dt−1

]
=α0 (1− r) 1

r

[
r +

σ2

s2
− l (0, 1)

(1 + β0)

]
+

[
l (0, 1) +

1

r

σ2

s2
(β1 − rβ0) +

1

r
(1 + β0)

(
1− l(1, 1)l (0, 1)

(1 + β0)2

)]
dt +

[
l (1, 1)− σ2

s2
β1

]
dt−1.
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Therefore {α0, β0, β1} solve the following system of equations:

0 = α0 (1− r)
[
r +

σ2

s2
− l (0, 1)

1 + β0

]
− 2rγ (1 + β0)2 σ2 (52)

0 = l (0, 1) +
1

r

σ2

s2
(β1 − rβ0) +

1

r
(1 + β0)

(
1− l(1, 1)l (0, 1)

(1 + β0)2

)
(53)

0 = l (1, 1)− σ2

s2
β1 (54)

where l(0, 1) ≡ [(1 + β0)w(0, λ, 0) + β1 − rβ0] and l(1, 1) ≡ [(1 + β0)w(1, λ, 0)− rβ1].

A.4.2 Proof of Proposition 10

Proof of Proposition 10. Throughout the proof, let w0 ≡ w(0, λ, 0).

We know from Lemma 1 that {α0, β0, β1} solve the system of equations given by (21) and

(22) and 19.

Step 1. By equation 19,

2rγ (1 + β0)2 σ2 = α0 (1− r)
[
r +

σ2

s2
− [(1 + β0)w(0, λ, 0) + β1 − rβ0]

1 + β0

]
.

We note that r > 1 ≥ w(0, λ, 0), thus, if 0 < β1 < rβ0 and 1+β0 > 0, then
[
r + σ2

s2
− [(1+β0)w(0,λ,0)+β1−rβ0]

1+β0

]
>

0 and α0 ≤ 0.

Step 2. We show that if 1 + β0 > 0, then 0 < β1 < rβ0.

For 1+β0 > 0, equation (22) implies β1 > 0 and l (1, 1) > 0. Now assume that β1−rβ0 > 0,

this implies that l (0, 1) > 0. For equation (21) to hold it must be that 1− 1
r
l(1,1)
1+β0

< 0.

1− 1

r

l(1, 1)

(1 + β0)2 = 1− 1

r

(1 + β0) (1− w0)− rβ1

(1 + β0)
(55)

= 1− 1

r
(1− w0) +

β1

1 + β0
> 0 (56)

Since r > 1, w0 < 1, and β1 > 1. Contradiction. Then, 1 + β0 > 0⇒ β1 − rβ0 < 0.
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Step 3. We now show that 1 + β0 > 0. Let φ ≡ σ2

s2
> 1. From equation (22):

(1 + β0) (1− w0)

φ+ r
= β1.

We plug this into equation (21) and we obtain:

φ

(
−β0r +

(1 + β0) (1− w0)

φ+ r

)
+ r

[
(1 + β0) (1− w0)

φ+ r
+ (1 + β0)w0 − β0r

]
+

+

[
1 + β0 −

φ(1− w0)
(
1 + β0 − β0φr − β0r

2 + (1 + β0) (φ+ r − 1)w0

)
(φ+ r)2

]
= 0.

Note that this is a linear equation on β0, i.e.,

β0{φ
(

1− w0

φ+ r
− r
)

+ r

[
1− w0

φ+ r
+ w0 − r

]
+ 1− φ(1− w0)

(
1− φr − r2 + (φ+ r − 1)w0

)
(φ+ r)2 }

+ φ

(
1− w0

φ+ r

)
+ r

[
(1− w0)

φ+ r
+ w0

]
+

[
1− φ(1− w0) (1 + (φ+ r − 1)w0)

(φ+ r)2

]
.

Therefore,

β0 = −
2− w0(1− r)− φ(1−w0)(1+(φ+r−1)w0)

(φ+r)2

2− w0(1− r)− φ(1−w0)(1+(φ+r−1)w0)

(φ+r)2
− (rφ+ r2)

[
1− φ(1−w0)

(φ+r)2

] ≡ − A

A− x.

where A ≡ 2 − w0(1 − r) − φ(1−w0)(1+(φ+r−1)w0)

(φ+r)2
and x ≡

(
rφ+ r2

) [
1− φ(1−w0)

(φ+r)2

]
> 0.

Note that for x = 0 ⇒ β0 = −1. Then, it su�ces to show that ∂β0
∂x = A

(A−x)2
≥ 0, that is,

A ≥ 0. For w0 = 0.5, which corresponds to λ = 0, A is positive, i.e. A(0.5) > 0. In addition,

∂A
∂w0

= (φ+r−1)(r2+φ(r−2(1−w0)))
(φ+r)2

> 0 for w0 ≥ 0.5. Therefore, A > 0 for w0 ≥ 0.5.

If we are interested in λ < 0 cases, since A(0) > 0, all we need to ensure that A is positive,

and thus the result holds for w0 ∈ [0, 0.5), is that r ≥ 2(1− w0).
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A.4.3 Proof of Proposition 11

In order to show Proposition 11, we need the following Lemmas (their proofs are relegated to

the end of the section).

Lemma 8 (l: sign1). For λ ≥ 0, 1 + β0 + β1 − rβ0 > 0.

Lemma 9 (lem:risk-demands-q2). Given our linear guess for prices (8), when q = 2, at time

t:

xt−1
t =

Et−1
t [st+1]

γr (1 + β0)σ2
=

α0 (1− r)
γ (1 + β0)2 σ2

+
l (0, 1)

γ (1 + β0)2 σ2
dt +

l (1, 1)

γ (1 + β0)2 σ2
dt−1 (57)

xtt =
EΦ(m,s2) [st+1]

r(1 + β0)s2
= δ(0) + δ0(0)dt + δ1(0)dt−1 (58)

with l(0, 1) ≡ [(1 + β0)w(0, λ, 0) + β1 − rβ0] and l(1, 1) ≡ [(1 + β0)w(1, λ, 0) − rβ1], and

δ(0) =
α0(1−r)

[
1− s2

σ2
l(0,1)
(1+β0)

]
γr(1+β0)2s2

, δ0(0) =
β1−rβ0+(1+β0) s

2

σ2

(
1− l(1,1)l(0,1)

(1+β0)
2

)
γr(1+β0)2s2

, and δ1(0) = − rβ1
rγ(1+β0)s2

.

Proof of Proposition 11. By lemma 9 and Market Clearing, it follows that

δ0(0) +
l (0, 1)

γ (1 + β0)2 σ2
= 0,

and

δ1(0) +
l (1, 1)

γ (1 + β0)2 σ2
= 0.

And
∂xtt
∂dt

= δ0(0) = −∂xt−1
t
∂dt

,
∂xtt
∂dt−1

= δ1(0), and
∂xt−1
t
∂dt

= l(0,1)

γ(1+β0)2σ2
and

∂xt−1
t

∂dt−1
= l(1,1)

γ(1+β0)2σ2
=

− ∂xtt
∂dt−1

.

Therefore, it su�ces to show that l(0, 1) < 0 and δ1(0) < 0.

By proposition 10, β1 > 0 and β0 > 0 and thus δ1(0) = − rβ1
rγ(1+β0)s2

< 0. So it only remains

to show that l(0, 1) < 0.
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We now show that l(0, 1) < 0. From the equilibrium condition (21) we have:

0 =

[
r − l(1, 1)

(1 + β0)

]
l (0, 1) +

l (0, 1)2

(1 + β0)2 (β1 − rβ0) + [1 + β0 + β1 − rβ0]

From Lemma 8, 1 + β0 + β1 − rβ0 > 0. Let x = l(0,1)
1+β0

, then

0 = [r (1 + β0)− l(1, 1)]x+ x2 (β1 − rβ0) + [1 + β0 + β1 − rβ0]

F (x) ≡ ax2 + bx+ c

with a = β1 − rβ0 < 0 (by Proposition 10), b = r (1 + β0) − l(1, 1) = r (1 + β0) − (1 +

β0)w(1, λ, 0) + rβ1 > 0 (by Proposition 10) and c = 1 + β0 + β1 − rβ0 > 0 ( by Lemma

8). Thus: F is convex and F (0) = c > 0. From FOC a2x∗ + b = 0 ⇒ x∗ = − b
2a > 0.

Let's focus on x2. Therefore, F (x) has two roots x1, x2 with x1 < 0 < x∗ < x2, where

x∗ = arg maxx∈R F (x).

We now show that x2 = l(0,1)
1+β0

cannot be a solution. Suppose not, that is assume that our

solution is the positive root l(0,1)
1+β0

= x2, then:

− b

2a
<
l (0, 1)

1 + β0
(59)

r (1 + β0)− l(1, 1)

2 [− (β1 − rβ0)]
<
l (0, 1)

1 + β0
(60)

r (1 + β0)− l(1, 1)

2
< l (0, 1)

rβ0 − β1

1 + β0
(61)
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Let Z ≡ −β1−rβ0
1+β0

r (1 + β0)− (1 + β0) (1− w0) + rβ1 <2l (0, 1)Z

r (1 + β0)− (1 + β0) (1− w0) + rβ1 <2Z [(1 + β0)w0 + β1 − rβ0]

r − 1 + w0 + r
β1

(1 + β0)
<2Z

[
w0 +

β1 − rβ0

(1 + β0)

]
Z (w0 − Z) >0.5w0 +

1

2

[
r − 1 + r

β1

1 + β0

]
w0

4
>0.5w0 +

1

2

[
r − 1 + r

β1

1 + β0

]
.

Observe that 1
2

[
r − 1 + r β1

1+β0

]
> 0 and thus a contradiction follows. The solution must be

the negative root.

A.4.4 Proofs for Supplementary Lemmas

Proof of Lemma 8. Assume it is not: 1 + β0 + β1 − rβ0 ≤ 0. This implies that l(0, 1) =

(1 + β0)w0 + β1 − rβ0 ≤ 0 From condition (21) we have:

0 =

[
r − l(1, 1)

(1 + β0)

]
l (0, 1) +

l (0, 1)2

(1 + β0)2 (β1 − rβ0) + [1 + β0 + β1 − rβ0]

Then, since β1 − rβ0 ≤ 0 by proposition 10, for the previous equation to hold it must be

that
[
r − l(1,1)

(1+β0)

]
≤ 0.

[
r − (1 + β0) (1− w0)− rβ1

(1 + β0)

]
=

[
r +

rβ1

1 + β0
− (1− w0)

]
> 0

Thus, [1 + β0 + β1 − rβ0] > 0.

Proof of Lemma 9. From Lemma 6, we know that xt−1
t =

Et−1
t [st+1]

γ(1+β0)σ2 . Therefore, given our
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guess for prices and Lemma 9, we have:

xt−1
t =

Et−1
t [dt+1 + pt+1 − rpt]

γ(1 + β0)σ2
(62)

=
(1 + β0)θt−1

t + α0(1− r) + (β1 − rβ0)dt − rβ1dt−1

γ(1 + β0)σ2
(63)

since θt−1
t = w0dt+(1−w0)dt−1, we obtain equation (57), where l(0, 1) = (1+β0)w0+β1−rβ0

and l(1, 1) = (1 + β0)(1− w0)− rβ1. We also know from Lemma 4 that

V t−1
t =− exp

(
−1

2

Et−q+1
t [st+1]2

γ(1 + β0)σ2

)

=− exp

(
−1

2

(α0(1− r) + l(1, 1)dt−1 + l(0, 1)dt)
2

γ(1 + β0)σ2

)

=− exp

(
−1

2

(Lt(1, 1) + l(0, 1)dt)
2

γ(1 + β0)σ2

)

where Lt(1, 1) ≡ α0(1−r)+l(1, 1)dt−1. Thus, we can write the value function of the generation

who is investing for the last time on the market as follows:

V t−1
t = − exp(−At −Btdt − Cd2

t ) (64)

where At ≡ Lt(1,1)2

2γ(1+β0)2σ2 , Bt ≡ Lt(1,1)l(0,1)
γ(1+β0)2σ2 , C ≡ l(0,1)2

2γ(1+β0)2σ2 . Using this results to obtain

V t
t+1, the problem of the young generation at time t is given by:

max
x

Ett
[
V t
t+1 exp (−γrxst+1)

]
(65)

From Lemma 5:

xtt =
µ̃
(
m, s2

)
γrσ̃ (m, s2)2
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Where,

µ̃
(
m, s2

)
= EΦ(m,s2) [h (z)] = α0(1− r) + (β1 − rβ0)dt − rβ1dt−1 + (1 + β0)m

σ̃
(
m, s2

)2
= VΦ(m,s2) [h (dt+1)] = (1 + β0)2s2

with m =
θtt−σ2Bt+1

2Cσ2+1
, s2 = σ2

2Cσ2+1
. Incorporating the fact that Bt+1 = (α0(r−1)+l(1,1)dt)l(0,1)

(1+β0)2σ2

and θtt = dt we obtain equation (58) and the respective δs.

A.5 Proofs of Section 3.2

Proof of Lemma 2. Let ψ = dt − dt−1 denote the change in dividends. The demand of young

and adult agents expressed in terms of dt−1 and ψ are given by:

xtt =
α0 (1− r)

γr (1 + β0)2 σ2
+

1 + β0 + β1 − rβ0 − rβ1

γr (1 + β0)2 σ2
dt−1 +

1 + β0 + β1 − rβ0

γr (1 + β0)2 σ2
ψ + ∆ (dt−1, ψ)

(66)

xt−1
t =

α0 (1− r)
γ (1 + β0)2 σ2

+
1 + β0 + β1 − rβ0 − rβ1

γ (1 + β0)2 σ2
dt−1 +

(1 + β0)w0 + β1 − rβ0

γ (1 + β0)2 σ2
ψ (67)

Let x ≡ α0(1−r)
γ(1+β0)2σ2

+ 1+β0+β1−rβ0−rβ1
γ(1+β0)2σ2

dt−1. Then from Market Clearing :xt−1
t + xtt = 2:

x =
2r

1 + r
− r

1 + r
∆ (dt)−

[
(1 + β0 + β1 − rβ0)

γ (1 + β0)2 σ2
− r

1 + r

(1 + β0) (1− w0)

γ (1 + β0)2 σ2

]
ψ

Plugging this back into xtt, and comuting trtt we obtain:

trtt = xtt − xtFI =
1

1 + r

(1 + β0) (1− w0)

γ (1 + β0)2 σ2
ψ +

r

1 + r
∆ (dt)

The formula for trade volume follows. Now we're interested in understanding ∂TRt
∂ψ =
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(
1

1+r

)2
× trtt × ∂trt

∂ψ ∝ trtt ×
∂trtt
∂ψ near ψ = 0.

∆ (dt−1, ψ) =
1

γr (1 + β0)
2
σ2
×[

α0 (1− r)
(

l (0, 1)
2

(1 + β0)
2 −

l (0, 1)

(1 + β0)

)
+

(
(β1 − rβ0 − rβ1)

l (0, 1)
2

(1 + β0)
2 − l(1, 1)l (0, 1)

)
dt−1 − l(1, 1)l (0, 1)ψ

]

Note that
∂trtt
∂ψ = 1

1+r

[
(1+β0)(1−w0)

γ(1+β0)2σ2
− l(1,1)l(0,1)

γ(1+β0)2σ2

]
> 0. Thus, we need to pin down the sign

of trtt to understand how trade volume would react to changes in dividends. This will depend

on initial level of dividends dt−1.

Case A: (dt−1, ψ = 0) is such that trtt (dt−1, 0) ≤ 0. Therefore, since
∆trtt
∆ψ > 0 for all

dt−1, there exists shock large enough ψ̄ > 0 such that trtt
(
dt−1, ψ̄

)
= 0 and for all ψ ≥

ψ̄,trtt (dt−1, ψ) ≥ 0. Therefore, from a region in which trade volume was negative, there exists

a positive shock to dividends large enough that it increases trade volume. It is clear that in

this scenario, negative shocks to dividends ψ ≤ 0, increase trade volume.

Case B: (dt−1, ψ = 0) is such that trtt (dt−1, 0) ≥ 0. By the same argument, there exists

ψ ≤ 0 such that trtt
(
dt−1, ψ̄

)
= 0 and thus for all ψ ≤ ψ,trtt (dt−1, ψ) ≤ 0, thus, trade volume

increases when ψ falls below ψ. Again, it is straightforward in this case that any positive ψ

would increase trade levels.

55



References

Adam, K., A. Marcet, and J. P. Nicolini (2012). Stock Market Volatility and Learning.
Journal of Finance, forthcoming.

Alesina, A. and N. Fuchs-Schundeln (2007). Good-bye Lenin (or Not?): The E�ect of
Communismon People½	s Preferences. American Economic Review 97, 1507²C1528.

Barsky, R. and J. B. DeLong (1993). Why Does the Stock Market Fluctuate? Quarterly
Journal of Economics 108 (2), 291�311.

Blanchard, O. (2012). Sustaining a Global Recovery. Finance and Development 46 (3), 9�12.

Cecchetti, S. G., P. Lam, and N. C. Mark (2000). Asset Pricing with Distorted Beliefs: Are
Equity Returns Too Good to Be True? American Economic Review 90 (4), 787�805.

Cogley, T. and T. J. Sargent (2008). The Market Price of Risk and the Equity Premium:
A Legacy of the Great Depression? Journal of Monetary Economics 55 (3), 454�476.

Delong, B. and L. Summers (2012). Fiscal Policy in a Depressed Economy. Brookings Papers
on Economic Activity 44 (1), 233�297.

Friedman, M. and A. J. Schwartz (1963). A Monetary History of the United States. Prince-
ton, NJ: Princeton University Press.

Hertwig, R., G. Barron, E. U. Weber, and I. Erev (2004). Decisions from Experience and
the E�ect of Rare Events in Risky Choice. Psychological Science 15, 534²C539.

Kaustia, M. and S. Knüpfer (2008). Do Investors Overweight Personal Experience? Evi-
dence from IPO Subscriptions. Journal of Finance 63, 2679�2702.

Malmendier, U. and S. Nagel (2011). Depression Babies: Do Macroeconomic Experiences
A�ect Risk-Taking? Quarterly Journal of Economics 126.

Malmendier, U. and S. Nagel (2013). Learning from In�ation Experiences. Quarterly Jour-
nal of Economics, forthcoming.

Malmendier, U. and L. S. Shen (2015). Experience E�ects in Consumption. Working paper,
UC-Berkeley.

Timmermann, A. G. (1993). How Learning in Financial Markets Generates Excess Volatility
and Predictability in Stock Prices. Quarterly Journal of Economics 108 (4), 1135�1145.

Timmermann, A. G. (1996). Excess Volatility and Predictability of Stock Prices in Au-
toregressive Dividend Models with Learning. The Review of Economic Studies 63 (4),
523�557.

Tversky, A. and D. Kahneman (1974). Judgment under uncertainty: Heuristics and biases.
Science 4157, 1124�1131.

Vives, X. (2008). Information and Learning in markets: The Impact of Market Microstruc-
ture.

Weber, E. U., U. Bockenholt, D. J. Hilton, and B. Wallace (1993). Determinants of Diagnos-
tic Hypothesis Generation: E�ects of Information, Base Rates, and Experience. Journal
of Experimental Psychology: Learning, Memory, and Cognition 19, 1151²C1164.

56


	Introduction
	The Model
	Formation of Subjective Beliefs: Experience-Based Learning
	The experience-based empirical probability measure
	Beliefs about 

	Connection to Bayesian Learners
	Full Bayesian Learners
	Bayesian Learners from Experience

	Characterization of Demands for the Risky Assets under Affine Prices
	Characterization of the Linear Equilibrium

	Characterization of the Demands for Risky Assets for q=2.
	Characterization of the Demands for the Risky Asset
	Volume of Trade

	Simulations
	Conclusion
	Appendix
	Proofs of Section 2.3
	Proof of Lemmas 3, 4, 5, 6 and 7
	Proof for Section 2.4
	Proofs for Section 3 
	Proof of Lemma 1
	Proof of Proposition 10
	Proof of Proposition 11
	Proofs for Supplementary Lemmas

	Proofs of Section 3.2


