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Abstract

This note illustrates how agents’ beliefs about economic outcomes can
dynamically synchronize and de-synchronize to produce business-cycle-like
fluctuations in a simple macroeconomic model. I consider a simple macroe-
conomic model with multiple equilibria. The equilibria correspond to differ-
ent ways that agents can use a sunspot variable to forecast future output,
which are self-fulfilling. Agents are assumed to learn to use the sunspot
variable through econometric learning. I show that if different agents mea-
sure output with a slight bias (though the average bias in the economy
vanishes), this leads to a complex nonlinear dynamic of synchronization of
beliefs about the equilibrium being played. The economy fluctuates between
long eras where the agents’ beliefs are almost homogenous and therefore they
are coordinated on the use of the sunspot, and eras of dispersed beliefs where
the coordination mechanism fails. I show that the equation describing the
evolution of the economy is similar to the Kuramoto model, a prototypi-
cal model of synchronization phenomena, and make some first attempts at
mapping the connections.

1 Introduction

The goal of this note is to illustrate how agents’ beliefs about economic outcomes
can dynamically synchronize and de-synchronize to produce business-cycle-like
fluctuations in a simple macroeconomic model.

In models with strategic uncertainty, such as models with multiple equilibria,
agents must form beliefs about the actions of other players. In sunspot models,
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for example, this is achieved by the agents using an exogenous stochastic process,
the sunspot variable, to coordinate on the equilibrium that is played. An inter-
esting question is whether agents in such an economy can learn to coordinate by
measuring observable quantities in that economy. This question has been studied
for a number of models, and conditions have been identified to determine if an
equilibrium is stable under different learning schemes (see e.g. Woodford, 1990;
Evans et al., 1994).

The literature so far has treated the question as dichotomous, referring to equi-
libria as either learnable or not-learnable. In this note I study a third option: that
the agents’ beliefs about the equilibrium being played fluctuate between eras of
synchronized beliefs, where the beliefs are nearly identical across agents and self-
fulfilling, and eras of asynchronous beliefs. Specifically, the agents in the model
are trying to learn about the relationship between two publicly observed stochastic
processes (zit, i = 1, 2) and total output (yt). There are specific linear combina-
tions, yt = φ+ξ ·zt, such that if the entire economy believed that output fluctuates
according to this formula, it would be self fulfilling. However, I introduce two as-
sumptions into the model that cause the system to never converge to any of these
rational-expectations equilibria: first, I assume that agents update their beliefs
about the relationship between the sunspot variables and output using an econo-
metric learning algorithm; and second, I assume that each agent measures output
with a slight persistent bias, i.e. some agents are inherently slightly pessimistic
while others are slightly optimistic.1 Even though the agents are on average (across
agents) correct in their measurements, this imperfection is sufficient to generate
a complicated nonlinear dynamic in the belief space. While agents never end up
agreeing on an equilibrium, the system does not diverge either: instead, it slowly
moves between eras of lower and higher dispersion in the belief space.

The dynamics of the model are closely related to the Kuramoto model (Ku-
ramoto, 1975), which has been used to describe synchronization phenomena across
different disciplines and subject areas including synchronization of flashing fireflies,
phase lock in metronomes, and synchronized applause at the end of a concert (Stro-
gatz, 2000). The Kuramoto model describes a set of oscillators whose phases, are
nonlinearly coupled, not unlike how the learning process in my model links the
agents’ beliefs about the equilibrium being played. This is, to my knowledge, the
first time that this link has been made, and potentially opens the door to incor-
porating into macroeconomics the rich phenomena that the Kuramoto model can
describe.

The organization of this note is as follows: in the next section I review some of

1In a recent paper Patton and Timmermann (2010) provide empirical evidence that individual
professional forecasters do seem to be persistently biassed in their predictions compared to the
average forecast. This provides some motivation for my assumptions.

2



the relevant economic literature and give some background about the Kuramoto
model for readers who are not familiar with it. Section 3 describes the model,
which is a slightly modified version of the model of Benhabib, Wang, and Wen
(2012). Section 4 includes the main analysis: describing the rational-expectations
equilibria of the model and their stability properties, the results of numerical
simulations for the full model, and proving the relationship to the Kuramoto model.
Finally, some concluding remarks are left to section 5.

2 Related Literature and Background

2.1 Macroeconomics and Learning

Learning has a long history in macroeconomics, but the stochastic recursive de-
scription in this paper originates with Marcet and Sargent (1989). For a compre-
hensive account of the state of this field see Evans and Honkapohja (2012). Some
papers that study learning in the presence of multiple equilibria and sunspots are
Woodford (1990); Guesnerie and Woodford (1990); Evans et al. (1994); Evans and
Honkapohja (2003a,b); Honkapohja and Mitra (2004).

2.2 Sunspots and Sentiments

Traditionally, the term sunspot is used in macroeconomics to describe a situation
where the dynamic equations of a system lead to indeterminacy, and therefore a
new stochastic process, the sunspot, can be introduced for the agents to coordinate
their actions on (for example Benhabib and Farmer, 1994; Christiano and Har-
rison, 1996). In these models the realization of the stochastic process determines
the equilibrium being played. In a more recent paper Angeletos and La’O (2013)
describe a different situation where there is a unique equilibrium in which the
agents use a random variable that they call the sentiment to choose their actions.
While similar in spirit, these are formally different situations. This note makes use
of the model introduced by Benhabib et al. (2012), which is similar to the latter
in that the role of the stochastic process is not to choose between equilibria.

2.3 The Kuramoto Model

The Kuramoto model (Kuramoto, 1975) describes a system of N oscillators whose
phases {ψit}

N
i=1 (ψ

j
t ∈ [−π, π]), are coupled in the manner described by the equation

d

dt
ψit = ωi −

K

N

N
∑

j=1

sin(ψit − ψjt ), i = 1, · · · , N,
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where t ∈ R is a continuous time parameter, ωi is the natural frequency of the
oscillator i, and K is the coupling coefficient. This might describe, for example,
a system of metronomes set to different frequencies whose phases are coupled
by sending vibrations through a platform that they are placed on. Thorough
introductions to the model and reviews of the current state of the literature include
Strogatz (2000) and Acebrn et al. (2005).

By defining

Rte
iψt =

1

N

N
∑

i=1

eiψ
i
t ,

the equations take the more convenient form

d

dt
ψit = ωi −RtK sin(ψit − ψt).

I refer the reader to the above references for a rigorous treatment of the model,
and just briefly mention that in the case of large N , there are three interesting
solutions to the model. First, if the phases are distributed uniformly along the
circle, then Rt = 0 and we have each phase moving with its natural frequency
ψit = ωit. This is the incoherent solution.

A second solution can occur if K is sufficiently large and the ωi’s are not too
dispersed. This is the synchronized solution, which is given by all the phases
moving with the same frequency with a constant phase difference between them:
ψit = ω̄t+φi, and ψt = ω̄t. The parameter ω̄ is the average of the frequencies, and
the phase differences φi can be found by plugging this solution into the equations.
One finds

ω̄ =
1

N

N
∑

i=1

ωi, sinφi =
ωi − ω̄

R̄K
, R̄ =

1

N

∣

∣

∣

∣

N
∑

i=1

eiφ
i

∣

∣

∣

∣

.

In addition, there may be a mixed solution, where the oscillators whose natural
frequency ωi is close enough to ω̄ are moving in phase-lock while the others are
drifting around the circle.

The stability of the solutions depends on the strength of the coupling coefficient
K. In a finite sample, the system may spend a large amount of time (compared
to ω̄−1) in a state approximating the synchronized phase, and then transition to
the incoherent phase, and continuing back and forth. Thus, the system has two
characteristic time scales: a short one defined by the natural frequency ω̄−1 and a
long one defined by the frequency of transitions.

Finally, by choosing different formulas for the coupling between the oscillators,
one can get even more complex ordered phenomena in the Kuramoto model. For
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example, by choosing the coupling between every two oscillators Ki,j to be some
specific function of |i − j|, one gets solutions were parts of the system is syn-
chronized in different times, and those areas move in wave-like patterns. These
solutions have proved instructive in various applications, and may well be useful
for economists as well.

3 Model Setup

The model setup is based on Benhabib, Wang, and Wen (2012).

3.1 Households and Firms

3.1.1 Households

A representative household values streams of consumption Ct ≥ 0 and laborNt ≥ 0
according to

U =

∞
∑

t=0

βt[logCt − ψNt], β ∈ (0, 1), ψ > 0,

and is subject to the budget constraint

PtCt ≤WtNt +Πt,

where Pt,Wt and Πt are the prices of the consumption good, the nominal wage,
and the profits from ownership of firms, respectively.

The household’s first-order conditions are

Ct =
1

ψ
·
Wt

Pt
, (1)

Nt =
1

ψ
−

Πt

Wt
. (2)

3.1.2 Final Good Producers

The consumption good is produced by competitive final good producers using a
continuum of intermediate goods indexed by j ∈ [0, 1], with the stochastic tech-
nology

Yt =

[
∫ 1

0

ǫθjtY
1−θ
jt dj

]

1

1−θ

, θ > 0 (3)

where ǫjt are iid random variables, and can be interpreted as preference shocks.
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Denoting the price of good j at time t by Pjt, the demand for intermediate
good j is given by

(

Yjt
Yt

)θ

=
Pt
Pjt

εθjt.

From which we also get the relationship:

P
1−1/θ
t =

∫ 1

0

ǫjtP
1−1/θ
jt dj.

3.1.3 Intermediate Goods Producers

Each variety of intermediate good j is manufactured by a monopolist using labor
as the only input and with the production function: Yjt = ANjt. The intermediate
good manufacturers must decide on their level of production simultaneously at the
beginning of the period without observing the shocks ǫjt. After these decisions have
been made, prices are set so that markets clear, similarly to a Cornout competition.

The intermediate good producers’ problem is therefore

max
Yjt

Ejt[(Pjt −Wt/A)Yjt],

where Ejt represents the firms expectation operator conditioned on the information
(and beliefs) available to firm j at time t, which will be described below. The first-
order-condition is

Yjt = Ejt

[

A(1− θ)
Pt
Wt

Y θ
t ǫ

θ
jt

]1/θ

.

Substituting (1) into the above, we get

Yjt = Ejt

[

A(1− θ)

ψ
Y θ−1
t ǫθjt

]1/θ

= Ejt

[

Y θ−1
t ǫθjt

]1/θ
, (4)

where in the last step, without loss of generality, I choose units of output such
that ψ = A(1− θ).

Notice that in order to make the production decision, the firm needs to forecast
the overall output Yt, and its own preference shock ǫjt. I assume that the firm bases
its decision on a signal sjt that is obtained from consumer surveys to be described
below.
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3.2 Information

There is a large number of forecasters indexed by i ∈ [0, 1]. The forecasters observe
a two-dimensional stochastic process zt and use that to forecast output Yt. The
variable zt is in fact entirely unrelated to the fundamentals of the economy, but the
forecasters do not know that and have to develop a belief about this relationship.
In the baseline model we assume that zt is a two-dimensional standard normal
random variable, independent across time, and we limit the belief space so that
the forecasters are limited to beliefs of the form yt = log Yt = φi + ξi · zt, with
(φi, ξi) ∈ R

3.
The intermediate-good firms do not get to see the signal zt directly, but instead

rely on a survey of the forecasters to estimate its demand curve. However, the
firm is limited in its ability to conduct market research, and we assume that it
eventually obtains a signal that mixes the forecasters’ beliefs about output with
their preference for the firm’s good:

sjt = λεjt + (1− λ)
(〈

φi
〉

t
+
〈

ξi
〉

t
· zt

)

, λ ∈ (0, 1), (5)

where εjt = log ǫjt, and 〈φi〉t and 〈ξi〉t denote the average beliefs of forecasters
about φ and ξ respectively. A possible interpretation of this information constraint
is that the firm asks the forecasters questions that aim to gauge the demand for
their good, and the result is a signal that mixes the preference for the specific good
εjt with the overall forecast for output yt = 〈φi〉t + 〈ξi〉t · zt.

The intermediate good firms also each have a belief that output follows yt =
φj + ξj · zt, which they use to interpret the signal they obtain from the survey.

3.3 Learning

Throughout this paper it is assumed that at any point in time all agents have a
belief about the system, which can be summarized by a point (φj, ξj) ∈ R

3, and
they act as if they have no uncertainty about it. At the end of the period, the
variable zt is revealed, and firms update their beliefs. This non-Bayesian form of
learning is sometimes called econometric learning, and has been used extensively
in macroeconomics.2

The updating process can be written recursively:

(

φjt+1

ξjt+1

)

=

(

φjt
ξjt

)

+ gtΥ
j
t+1

−1
(

1
zt

)

(yt − φjt − ξjt · zt),

Υj
t+1 = Υj

t + gt(zt · z
′
t −Υj

t ),

2For a review of the literature, see Evans and Honkapohja (2012)
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where gt is the gain function. The choice gt = 1/t corresponds to least-square
learning (RLS), and replicates the OLS estimator. In the next section we con-
sider a few different choices for the gain function. Also notice that the matrix
Υj
t only depends on the starting point Υj

0 and on the realization of zt, which is
common knowledge, which implies that Υj

t will quickly diverge to the unit matrix
I2. Therefore, for simplicity I assume that Υj

t = I2 throughout.
I modify the above by assuming that each firm in the economy has a persistent

bias in its measurement of output, denoted by ∆φj. Since this bias generates a
biased estimate of φ, it can be interpreted as an assumption that some agents
are inherently too optimistic or pessimistic. With this assumption, the recursive
learning formula is

(

φjt+1

ξjt+1

)

=

(

φjt
ξjt

)

+ gt

(

1
zt

)

(yt +∆φj − φjt − ξjt · zt). (6)

Finally, the beliefs of the forecasters at the beginning of every period are as-
sumed to be identically distributed to those of the firms. This simplifying assump-
tion is similar to assuming that firms do get to observe zt but with a very large
error, so that this information is not useful for making their own prediction about
output, and that the surveys are conducted by polling representatives of other
firms.

4 Analysis

First, consider a firm whose beliefs are given by (φj, ξj). Defining xjt = (θ−1)(yt−
φj) + θεjt, we have from (4)

yjt = θ−1 logEjt
[

e(θ−1)yt+θǫjt |sjt
]

= (1− θ−1)φj + θ−1 logEjt [e
xjt |sjt] . (7)

Let us assume that log ǫj,t ∼ N(0, σ2
ε), so that Ejt[xjt] = 0, Ejt[sjt] = (1 − λ)φj,

and the subjective variance-covariance matrix of (xjt, sjt) is

Σ =

(

θ2σ2
ε + (1− θ)2‖ξj‖2 θλσ2

ε − (1− λ)(1− θ)‖ξj‖2

sym. λ2σ2
ε + (1− λ)2‖ξj‖2

)

.

Therefore, xjt|sjt ∼ N(m(‖ξj‖2)(sjt − (1− λ)φj), Σ̂(‖ξj‖2)), where

m(‖ξj‖2) =
θλσ2

ε − (1− λ)(1− θ)‖ξj‖2

λ2σ2
ε + (1− λ)2‖ξj‖2

,

Σ̂(‖ξj‖2) =
(θ + λ− 2θλ)2‖ξj‖2σ2

ε

λ2σ2
ε + (1− λ)2‖ξj‖2

.
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Therefore, from (7)

yjt = (1− θ−1)φj + θ−1

[

m(‖ξj‖2)(sjt − (1− λ)φj) +
1

2
Σ̂(‖ξj‖2)

]

.

Using this in (3),

(1− θ)yt = log

∫ 1

0

eθεjt+(1−θ)yjtdj =

= log

∫ 1

0

eθεjt+(1−θ){(1−θ−1)φj+θ−1[m(‖ξj‖2)(sjt−(1−λ)φj )+ 1

2
Σ̂(‖ξj‖2)]}dj =

= log

∫ 1

0

eθεjt+(1−θ){(1−θ−1)φj+θ−1[m(‖ξj‖2)(λεjt+(1−λ)(〈φi〉−φj+〈ξi〉·zt))+ 1

2
Σ̂(‖ξj‖2)]}dj,

where (5) is used in the last step. Since εjt is independent of beliefs, we can
integrate

(1− θ)yt = log

∫ 1

0

e
σ2
ε
2
[θ+(θ−1−1)λm(‖ξj‖2)]2×

× e+(1−θ){(1−θ−1)φj+θ−1[(1−λ)m(‖ξj‖2)(〈φi〉−φj+〈ξi〉·zt)+
1

2
Σ̂(‖ξj‖2)]}dj. (8)

Equation (8) describes the mapping from the full belief space to actual output.

4.1 Rational Expectations Equilibria

Equation (8) simplifies tremendously in the case that all agents have common
beliefs φj = φ, ξj = ξ. We have

(1− θ)yt = −
(1− θ)2

θ
φ+

1

2
[θ + (θ−1 − 1)m(‖ξ‖2)λ]2σ2

ε

+ (θ−1 − 1)

[

m(‖ξ‖2)(1− λ)ξ · zt +
1

2
Σ̂(‖ξ‖2)

]

.

The actual output is a linear function of zt, therefore the above defines a mapping
from the commonly perceived law of motion yt = φ + ξ · zt to the actual law of
motion above:

φ→ −
(1− θ)

θ
φ+

1

2θ
Σ̂(‖ξ‖2) +

[θ + (θ−1 − 1)m(‖ξ‖2)λ]2σ2
ε

2(1− θ)
, (9a)

ξ →
1

θ
m(‖ξ‖2)(1− λ)ξ. (9b)
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A rational expectations equilibrium is a fixed point of the above mapping. There
always exist a fixed point of the form:

ξC = 0, φC =
θσ2

ε

2(1− θ)
.

The superscript C stands for ‘certainty’, since output is constant in this fixed
point. Note that in this case, since output is known, the signal reveals εjt so firms
choose output optimally.

If 0 ≤ λ ≤ 1/2, there is an addition circle of fixed points given by

‖ξS‖2 =
θλ(1− 2λ)

(1− λ)2
σ2
ε , φS = φC

(

1−
(1− θ)(1− 2λ)

1− λ

)

.

The superscript S stands for ‘stochastic’, as output is a linear function of the
stochastic process zt in these fixes points.

These two types of fixed points correspond to the equilibria found in Benhabib
et al. (2012). As they note, the average output is lower in the stochastic equilibrium
(clearly φC > φS for all λ ∈ [0, 1/2] and θ ∈ (0, 1)). It is also straightforward to
show that the certainty equilibrium is Pareto superior.

4.2 Stability without Bias

Before discussing the effect of the persistent bias, it is instructive to consider the
stability properties of the rational expectations equilibria found above, thus for
now we set ∆φj = 0. Equations (9) define a mapping from perceived to actual law
of motion in the (φ, ξ) space with homogenous beliefs, and the stability properties
of this mapping are given by the eigenvalues of the first derivatives at the fixed
point. For the certainty equilibrium, the eigenvalues are:

λ0 = −
1− θ

θ
, λ1,2 =

1− λ

λ
.

For the stochastic equilibria, the eigenvalues are:

λ0 = −
1− θ

θ
, λ1 = 1−

2(1− 2λ)

(1− 2λ)θ + λ
, λ2 = 1.

The unit eigenvalue in the latter case is a manifestation of the rotational symmetry
in the (ξ1, ξ2).

Under recursive-least-squares learning, the condition for convergence is that
the eigenvalues as defined above are all smaller than unity.3 Therefore, we see

3Cf. §2 of Evans and Honkapohja (2012), and §3.1 for the case of heterogenous expectations.
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that for λ > 1/2, when only the certainty equilibrium exists, it is also stable,
and therefore the system almost surely converges to it. When λ < 1/2, both
types of equilibria exist, but the certainty equilibrium is not stable since λ1,2 > 1.
As for the stochastic equilibria, the first two eigenvalues are smaller than unity
(λ0, λ1 < 1), which would imply convergence with probability one, but the third
eigenvalue λ2 = 1 is exactly the borderline case when convergence cannot be
determined. Since this eigenvalue comes from an exact symmetry of the system,
the mapping (9) is exactly flat in the corresponding direction, thus higher-order
derivatives vanish and cannot be used to resolve the question of stability.

For the rest of this note, I focus on the case λ < 1/2, where the certainty
equilibrium is not relevant. Once we reintroduce the bias (∆φj), we shall see that
the system tends to “drift” between the circle of stochastic equilibria. Recursive-
least-squares learning is defined by (6) with gt = t−1, thus, the weight that agents
assign to new observations decreases to zero over time. This is not a very natural
assumption in a system that does not converge. Instead, a popular alternative is
least-squares with forgetting, that is defined by gt = (1−q)/(1−qt) (q ∈ (0, 1)), and
arises from the assumption that agents assign a weight of qt to an observation that
occurred t periods ago. This gain function approaches constant gains gt → (1− q)
as t→ +∞, which implies that learning does not slow down as time passes.

Convergence under constant gains is more complicated, but it is sufficient to
require that the mapping (9) is Lyapunov stable, i.e. that the eigenvalues are
within the unit circle, which is guaranteed for the first two eigenvalues of the
stochastic equilibria when θ > 1/2 and (1 − 2λ)(1 − θ) < λ. These results are
summarized in figure 1. From here on we mostly concentrate on the area of the
parameter space where these conditions are satisfied, so that without the bias
the system would convergence at least in the two directions orthogonal to the
rotational symmetry in the (ξ1, ξ2) plane.

4.3 Numerical Simulation

For studying the full system, it is useful to introduce polar coordinates:

Rj
te
iψj

t = ξ1jt + iξ2jt ,

Rte
iψ =

∫

Rj
te
iψjdj.

For example, the stochastic equilibria are given by the Rj ’s all equal to ξS, and
the ψj all equal to some constant, and therefore R = ξS and ψ is equal to the same
constant. Indeed, holding the Rj

t ’s fixed, when the ψjt ’s are close to each other, we
will have Rt ≈

〈

Rj
t

〉

, but when the ψjt ’s are dispersed Rt ≈ 0, so Rt is a measure
of the degree of coordination between the agents.
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Figure 2 shows the result of a typical simulation where firms are assumed to
have the bias ∆φj = (−1)j 0.08φS. One can see that the beliefs about average
output fluctuates mostly between φS and φC , thus, the system does not converge
but also does not diverge. More interestingly, the middle panel shows that Rt/ξ

S

seems to climb towards unity, as the system tends to converge toward one of the
stochastic equilibria, but falls as beliefs get more dispersed.

The precise behaviour of the system is very sensitive to the variance of the bias
∆φj . With high bias the system stays near Rt = 0 and the resulting time series
for output, yt, is right-skewed and heavy tailed. With small bias, |∆φj| ≪ φS,
the system quickly converges and stays near Rt = 1. Output in the latter case is
symmetric and mesokurtic. This behaviour is not surprising: large persistent bias
prevents agents from getting close enough to the rational-expectations-equilibria,
and so beliefs remain dispersed, while with small bias the agents converge on some
equilibria and only move slightly thereafter in repones to shocks. However, simu-
lations with many different choices of parameters also suggest that the transition
between these two regimes occurs abruptly at some critical value. In the next
subsection I argue that this feature is a result of the similarity between this model
and the Kuramoto model.

One other result that can be obtained from simulations concerns the cyclical
behaviour of dispersion of beliefs. In particular, notice that the best predictor
for future output Ej,tyt+1 is φjt . Therefore, the statistical properties of φjt can be
thought of as analogous to the dispersion of forecasts measured in various surveys
of professional forecasters. Clearly, my model is too simplistic to be compared
to empirical data, but it is worth noting that in all simulations I find that high
forecast dispersion (the variance of φjt) is associated with the mean forecast being
away from φS. In other words, this model predicts that forecasters will tend to
disagree more when the average prediction is near the peak of trough of the cycle.

4.4 Learning about Phases Only

It is difficult to say anything more analytical about the full nonlinear system, but
some insight can be obtained by considering the following simplification: suppose
that all agents had fixed beliefs about φ and Rj . Specifically, assume that φj = φS

and Rj = ξS. This leaves ψj as the only parameter that the agents are trying to
learn about. With these assumptions, the actual law of motion (8) simplifies to

yt = φS +
1

1− θ
log

∫ 1

0

e(1−θ)ξ
Srt cos(ψj−ζt)dj,

12



where rte
iζt = z1t + iz2t . To first order in gt, the learning process is given by4

ψjt+1 = ψjt −
gtrt
ξS

sin(ψjt − ζt)

(

ξSrt

{

〈

cos(ψkt − ζt)
〉∗

− cos(ψjt − ζt)
}

+∆φj
)

,

(10)

〈

cos(ψkt − ζt)
〉∗

=
1

(1− θ)(ξSrt)
log

∫ 1

0

e(1−θ)ξ
Srt cos(ψk

t −ζt)dk. (11)

Figure 3 shows an example of a simulation of this system. What is remarkable
about this system is that Rt, which measures the coordination between the agents,
spends extended amounts of time close to ξS (maximum coordination), and then
quickly changes to a phase of very low coordination. Not incidentally, this is
precisely the dynamics of the Kuramoto model. To make the connection, first
consider the term

〈

cos(ψkt − ζt)
〉∗
. This term is a logarithm of a generalized mean

of exp(cos(ψj − ζt)). In the linear approximation, which is valid when the ψj ’s
are not too dispersed, the generalized mean is replaced with a simple arithmetic
mean, so that (10) simplifies to

ψjt+1 = ψjt−
gtrt
ξS

sin(ψjt−ζt)

(

2ξSrt

∫ 1

0

{

sin
(ψjt + ψkt

2
−ζt

)

sin
(ψjt − ψkt

2

)}

dk+∆φj
)

.

The above can be thought of as a noisy version of the Kuramoto model, which was
described in section 2.3. In order to make the connection more apparent, consider
the case where the ψj ’s are all close, so that to first order (ψjt + ψkt )/2 ≈ ψjt . The
above equation is then

ψjt+1 = ψjt − gtrt sin(ψ
j
t − ζt)

[

sin(ψjt − ζt)

∫ 1

0

sin(ψjt − ψkt )dk +
∆φj

ξS

]

. (12)

Compare this to the discrete-time version of the Kuramoto model:

ψjt+1 = ψjt − gt

[

K

∫

sin(ψjt − ψkt )dk + ωj
]

. (13)

The similarity is clear. The only distinction is that in (12), both terms in the square
brackets have a coefficient that is stochastic. The first coefficient is rt sin

2(ψjt −ζt),
and is always positive, therefore, it has the same effect as in the Kuramoto model,
i.e. that of pulling the phases toward each other. The second term, which is

4I’m making the heuristic assumption that the agents continue using the RLS algorithm (6),
but then simply override whatever estimator they got by replacing φj with φS and rescale ξj

such that ‖ξj‖ = ξS . Essentially, they use the OLS estimator and then extract tanψj
t = ξ2jt /ξ

1j
t .

This is not an efficient estimator of ψ, but it is consistent and allows for the analytical results
that follow.
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proportional to sin(ψjt−ζt)∆φ
j, like the ωj term in (13) has the effect of pulling the

phases apart. It may seem that this term should average out over time because the
sine term would average out to zero, but since the bias is persistent, a correlation
builds up between ψjt and ∆φj , which means that this term affects each agent
differently in a persistent manner to drive the beliefs apart. In fact, a time series
analysis of long simulations shows that the correlation ρ(ψjt ,∆φ

j) is always close
to ±1 when Rt is close to ξS. This is demonstrated in figure 4.

The Kuramoto model has three special solutions: synchronized, incoherent,
and partially-synchronized. In the synchronized, the phases ψjt all move in synch,
in the incoherent the phases are spread uniformly along the circle, and in the
partially-synchronized the phases with |ωj| smaller than some critical value are
phase-locked while the others drift incoherently. All of these phenomena can be
observed in simulations by changing the exogenous parameters. For example, the
system remains in the synchronized state when 〈|∆φj|〉 ≪ φS, and remains in
the incoherent state when 〈|∆φj |〉 ≫ φS. However, more research is needed to
understand the relationships more deeply.

5 Conclusion

This note is intended to be an opening point to the study of synchronization and
desynchronization phenomena in macroeconomics. It shows how the existence of
a (small) bias in the way that agents measure economic variables can lead to
complex nonlinear phenomena, such as spontaneous creation and destruction of
order. Demonstrating the connection to the Kuramoto model is useful, since much
is known about this model and it may be possible to compare belief-synchronization
phenomena in economics to other complex systems.
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Figures

Figure 1: The phase space of the model, illustrating the regions of existence of the
two types of rational-expectations equilibria, and the Lyapunov stability of the
mapping (9). Lyapunov stability is a sufficient condition for convergence under
learning with constant gains.
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Figure 2: An example of a simulation of the full system. The top graph displays
the evolution of the average belief

〈

φjt
〉

/φS, with the solid black lines denoting φS

(bottom) and φC (top). The middle graph shows Rt/ξ
S, and the bottom shows

the average phase ψt.
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Figure 3: An example of a simulation of the system where only the phases ψj are
updated. The top graph shows Rt/ξ

S, and the bottom shows the average phase
ψt.
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Figure 4: A bivariate histogram of Rt/ξ
S and the correlation ρ(ψjt ,∆φ

j) drawn
from long simulations (T = 105).
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