Growth, Trade, and Inequality

Gene Grossman Elhanan Helpman

July 2014

Introduction

- Theoretical exploration of link between growth process and income distribution in the closed and open economies
- Focus on one mechanism:
 - Sorting of heterogeneous workers into idea-generating and manufacturing activities
 - Matching of workers in manufacturing with heterogeneous firms/technologies
- Many other mechanisms are absent; e.g.,
 - Differences in savings propensity between rich and poor (Kaldor)
 - Poor households face credit constraints (Galor and Zeira)
 - Greater inequality generates more redistribution via political process (Alesina and Rodrik; Persson and Tabellini)

Demand and Supply of Consumption Goods

- Mass N of heterogeneous individuals, indexed by a
- Cumulative distribution H(a), with H'(a) > 0 on $[a_{\min}, a_{\max}]$
- Logarithmic intertemporal utility
- Consumption good assembled from CES differentiated intermediate inputs; consumption good priced competitively

Production of Intermediates

Production of intermediates

$$\mathbf{x}_{\omega}=\int_{\mathbf{a}\in L_{\omega}}\psi\left(\mathbf{arphi}_{\omega},\mathbf{a}
ight)\ell_{\omega}\left(\mathbf{a}
ight)\mathsf{d}\mathbf{a}$$

- ullet Assume $\psi\left(arphi,a
 ight)$ is twice differentiable and strictly log supermodular
 - ullet For arbitrary wage schedule, firm hires optimal labor type $m\left(arphi
 ight)$
 - PAM: $m'(\varphi) > 0$
- Monopolistic competition yields mark-up pricing of intermediates

Inventing New Varieties

- Invention of new varieties à la Romer
 - Stock of knowledge: $\theta_K M$
 - Worker of type a has productivity T(a) in research sector
 - $\ell_R(a)$ workers of type a invent $dM = \theta_K MT(a) \ell_R(a)$ new varieties per time dt (strong scale effects)
- ullet Each invention generates a "Melitz draw" of arphi from $G\left(arphi
 ight)$
- Allow free entry into innovation

Inventing New Varieties

- Invention of new varieties à la Romer
 - Stock of knowledge: $\theta_K M$
 - Worker of type a has productivity T(a) in research sector
 - $\ell_R(a)$ workers of type a invent $dM = \theta_K MT(a) \ell_R(a)$ new varieties per time dt (strong scale effects)
- Each invention generates a "Melitz draw" of φ from $G(\varphi)$
- Allow free entry into innovation
- Comparative advantage in ideas: Assume $T\left(a\right)/\psi\left(\varphi,a\right)$ is increasing in a for all $\left(\varphi,a\right)$

Inventing New Varieties

- Invention of new varieties à la Romer
 - Stock of knowledge: $\theta_K M$
 - ullet Worker of type a has productivity T(a) in research sector
 - $\ell_R(a)$ workers of type a invent $dM = \theta_K MT(a) \ell_R(a)$ new varieties per time dt (strong scale effects)
- ullet Each invention generates a "Melitz draw" of arphi from $G\left(arphi
 ight)$
- Allow free entry into innovation
- Comparative advantage in ideas: Assume $T\left(a\right)/\psi\left(\varphi,a\right)$ is increasing in a for all $\left(\varphi,a\right)$
- \Rightarrow Sorting: $\exists a_R$ ("cutoff") such that $a < a_R \Rightarrow a \in L_M$ and $a > a_R$ $\Rightarrow a \in L_R$ (like "occupational choice" in Lucas 78)

Labor-Market Equilibrium

- Labor market clearing: Supply of workers of type $m(\varphi)$ equals demand for workers by firms of type φ
- Differentiate this condition

$$\frac{m''\left(\varphi\right)}{m'\left(\varphi\right)} = \left(\sigma - 1\right) \frac{\psi_{\varphi}\left[\varphi, m\left(\varphi\right)\right]}{\psi\left[\varphi, m\left(\varphi\right)\right]} - \frac{\psi_{\mathsf{a}}\left[\varphi, m\left(\varphi\right)\right] m'\left(\varphi\right)}{\psi\left[\varphi, m\left(\varphi\right)\right]} \\ + \frac{G''\left(\varphi\right)}{G'\left(\varphi\right)} - \frac{H''\left[m\left(\varphi\right)\right] m'\left(\varphi\right)}{H'\left[m\left(\varphi\right)\right]}$$

Boundary conditions

$$m\left({{arphi _{\min }}} \right) = {a_{\min }}, \qquad m\left({{arphi _{\max }}} \right) = {a_R}$$

Equilibrium Matching Function

- Differential equation has unique solution for given a_R
- If boundary points change and none of terms in diff eq change, new and old matching functions can intersect at most once

Equilibrium Matching Function

- Differential equation has unique solution for given a_R
- If boundary points change and none of terms in diff eq change, new and old matching functions can intersect at most once

- So, $a_R \uparrow \Rightarrow$ (inverse)-matching function shifts down
 - every worker matches with lower productivity firm
 - due to log supermodularity of $\psi(\cdot)$, log wage profile on $[a_{\min}, a_R]$ must flatten (steepen) when a_R increases (decreases)

Balanced-Growth Path

$$g_{M} = \theta_{K} N \int_{a_{R}}^{a_{\text{max}}} T(a) dH(a)$$
 (RR)

Combining labor-market clearing and free-entry condition:

$$\rho + g_M = \theta_K N \Lambda (a_R) \tag{AA}$$

Analysis of Balanced Growth Paths

Two Types of Results

- Autarky
 - How do cross-country differences generate differences in autarky (steady-state) growth rates and wage inequality?
- Integration
 - How does trade integration affect countries' growth rates and inequality?
 - How do growth and inequality compare across countries in a trade equilibrium?

Cross-country Comparisons in Autarky

Capacity to Innovate

- Capacity to innovate described by three parameters
 - Size of labor force: N_C
 - ullet Efficiency of knowledge accumulation: $heta_{Kc}$
 - Productivity of inventors: θ_{Tc}
- In RR and AA curve, these parameters enter as product: $N_c \theta_{Kc} \theta_{Tc}$
- If $N_i \theta_{Ki} \theta_{Ti} > N_j \theta_{Kj} \theta_{Tj} \Rightarrow a_{Ri} < a_{Rj}$ and $g_{Mi} > g_{Mj}$
- Income inequality:
 - More unequal wages in manufacturing in i than in j due to better technology matches
 - Larger size of research sector, which pays higher reward to ability
 - $\bullet \Rightarrow$ more inequality!

International Integration: Trade and Knowledge Spillovers

- C countries
- Costly trade in intermediate goods due to tariffs and/or shipping. Delivered price in j is τ_{jc} times as great as source price in c.
- Final goods nontradable
- R&D subsidies at rate s_c
- Asymmetries: $\theta_{\psi c}$, θ_{Tc} , N_c
- Partial (or complete) knowledge spillovers:

$$\mathcal{K}_c = \sum_{j=1}^{C} heta_{\mathcal{K}jc} \mathcal{M}_j; \ heta_{\mathcal{K}jc} > 0 \ ext{for all } j \ ext{and} \ c$$

Effects of Trade on Growth and Inequality

- Convergence in long-run growth rates.
- Opening of trade: analogous to increase in θ_K in closed economy.
 - More labor allocated to R&D in every country.
 - Growth rate faster in every country.
 - Greater income inequality in every country.

International Asymmetries

- Differences in Manufacturing Productivity and Trade Barriers
 - Convergence in growth rates and wage inequality
 - Change in au_{ic} or $heta_{\psi c}$ have no effect on long-run growth or inequality
- Differences in Innovation Capacity or in Ability to Create and Absorb Knowledge Spillovers
 - Convergence in growth rates and wage inequality
- Differences in R&D Subsidies
 - If $s_i > s_j$ and international knowledge spillovers are complete, then $a_{Ri} < a_{Rj}$ and more wage inequality in i than in j
- Differences in Technology Sets
 - If $\bar{\varphi}_i>\bar{\varphi}_j$ and international knowledge spillovers are complete, then $a_{Ri}>a_{Rj}$
 - Greater inequality in i than in j at bottom of distribution, but at least as great inequality in j at top.

Conclusions

- International integration affords researcher access to larger knowledge stock ⇒ accelerates innovation and growth
- Expansion of idea-generating sector generates ubiquitous increase in income inequality
- Technological conditions and government policies typically have spillover effects abroad

Conclusions

- International integration affords researcher access to larger knowledge stock ⇒ accelerates innovation and growth
- Expansion of idea-generating sector generates ubiquitous increase in income inequality
- Technological conditions and government policies typically have spillover effects abroad
- Have abstracted from
 - Diversity in manufacturing industries (factor intensities, etc.)
 - Team production activities that involve multiple individuals
 - Capital inputs that may be complementary to certain types of worker or inventors
 - Market frictions in labor market and in financing new ideas
 - Superstar potential for those at top end, especially in open economy