# Information, Misallocation and Aggregate Productivity

Summer 2014

## This paper

"Misallocation," i.e., dispersion in MP's  $\Rightarrow$  large losses in TFP and output

- But sources of distortions still unclear...
- Role of imperfect information? Informational role of financial markets?

#### What we do

- Heterogeneous firms choose inputs under imperfect info
- Firms learn from internal/private sources and noisy asset prices
- Quantify frictions using stock market/production data in US, China, India

#### 2. What we find

- Significant micro-level uncertainty, esp. in China and India
  - $\rightarrow$  accounts for 20-50% (+...) of MRPK dispersion
- Sizable aggregate impact
  - ightarrow TFP losses: 7-10% in China and India, 4% in US; can be much larger...
- Only limited learning from markets; firm internal sources are key

## This paper

- "Misallocation," i.e., dispersion in MP's  $\Rightarrow$  large losses in TFP and output
  - But sources of distortions still unclear...
  - Role of imperfect information? Informational role of financial markets?

#### 1. What we do

- · Heterogeneous firms choose inputs under imperfect info
- Firms learn from internal/private sources and noisy asset prices
- Quantify frictions using stock market/production data in US, China, India

#### 2. What we find

- Sizable aggregate impact  $\rightarrow$  TFP losses: 7-10% in China and India, 4% in US; can be much larger..
- Only limited learning from markets; firm internal sources are key

### This paper

- "Misallocation," i.e., dispersion in MP's  $\Rightarrow$  large losses in TFP and output
  - · But sources of distortions still unclear...
  - Role of imperfect information? Informational role of financial markets?

#### 1. What we do

- · Heterogeneous firms choose inputs under imperfect info
- Firms learn from internal/private sources and noisy asset prices
- Quantify frictions using stock market/production data in US, China, India

#### 2. What we find

- Significant micro-level uncertainty, esp. in China and India
  - ightarrow accounts for 20-50% (+...) of MRPK dispersion
- Sizable aggregate impact
  - $\rightarrow$  TFP losses: 7-10% in China and India, 4% in US; can be much larger...
- Only limited learning from markets; firm internal sources are key

# Simplified model

Homogeneous good, only capital, no agg. risk

• Continuum of producers:  $Y_{it} = A_{it}K_{it}^{\alpha}, \quad a_{it} \sim iid, \ \mathcal{N}\left(0, \sigma_{\mu}^{2}\right)$ 

Input choice under incomplete info:

• Choice of  $K_{it}$  conditional on info  $\mathcal{I}_{it}$ ,  $a_{it}|\mathcal{I}_{it} \sim \mathcal{N}\left(\mathbb{E}_{it}a_{it}, \mathbb{V}\right)$ 

▼ is key object

- Misallocation:  $\sigma^2_{mpk} = \mathbb{V}$
- TFP:  $a = a^* \frac{1}{2} \frac{\alpha}{1-\alpha} \sigma_{mpk}^2 = a^* \frac{1}{2} \frac{\alpha}{1-\alpha} \mathbb{V}$
- $\Rightarrow$  *TFP*  $\searrow$  in  $\mathbb{V}$ ; effect of poor info  $\nearrow$  in  $\alpha$

# Simplified model

Homogeneous good, only capital, no agg. risk

• Continuum of producers:  $Y_{it} = A_{it} K_{it}^{\alpha}, \quad a_{it} \sim \textit{iid}, \; \mathcal{N}\left(0, \sigma_{\mu}^2\right)$ 

Input choice under incomplete info:

• Choice of  $K_{it}$  conditional on info  $\mathcal{I}_{it}$ ,  $a_{it}|\mathcal{I}_{it} \sim \mathcal{N}\left(\mathbb{E}_{it}a_{it}, \mathbb{V}\right)$ 

 $\mathbb{V}$  is key object:

- Misallocation:  $\sigma^2_{\textit{mpk}} = \mathbb{V}$
- TFP :  $a = a^* \frac{1}{2} \frac{\alpha}{1-\alpha} \sigma_{mpk}^2 = a^* \frac{1}{2} \frac{\alpha}{1-\alpha} \mathbb{V}$

 $\Rightarrow$  *TFP*  $\searrow$  in  $\mathbb{V}$ ; effect of poor info  $\nearrow$  in  $\alpha$ 

# Characterizing **V**

The firm's information set  $\mathcal{I}_{it}$ 

- 1. Private signal:  $s_{it} = a_{it} + e_{it}, \quad e_{it} \sim \mathcal{N}\left(0, \sigma_e^2\right)$
- 2. Stock price: pit
  - Equivalent to signal  $a_{it} + \eta_{it}, \quad \eta_{it} \sim \mathcal{N}\left(0, \sigma_{\eta}^2\right)$
- 3. For now:  $(a_{it}, e_{it}, \eta_{it})$  mutually independent
- $\Rightarrow$  Sharp characterization of  $\mathbb{V}:$

$$\mathbb{V} = \frac{1}{\frac{1}{\sigma_{\mu}^2} + \frac{1}{\sigma_{e}^2} + \frac{1}{\sigma_{\eta}^2}}$$

# Identifying info frictions - simplified model

## General strategy:

- Measure  $\sigma_{\mu}^2$  directly:  $(a_{it} = y_{it} \alpha k_{it})$
- Use  $(\rho_{pk},\rho_{pa})$  to infer  $(\sigma_e^2,\sigma_\eta^2)$  or equiv  $(\mathbb{V},\sigma_\eta^2)$

$$ho_{
ho a} = rac{1}{\sqrt{1+rac{\sigma_{\eta}^2}{\sigma_{\mu}^2}}} \qquad rac{\mathbb{V}}{\sigma_{\mu}^2} = 1-\left(rac{
ho_{
ho a}}{
ho_{
ho k}}
ight)^2$$

- 2. Some appealing properties:
  - Unaffected by correlations in firm and market signals
  - Unaffected by 'correlated' distortions
  - Conservative estimate if 'uncorrelated' distortions

# Identifying info frictions - simplified model

### General strategy:

- Measure  $\sigma_{\mu}^2$  directly:  $(a_{it} = y_{it} \alpha k_{it})$
- Use  $(\rho_{\it pk}, \rho_{\it pa})$  to infer  $(\sigma_{\it e}^2, \sigma_{\it \eta}^2)$  or equiv  $(\mathbb{V}, \sigma_{\it \eta}^2)$

$$ho_{ extsf{pa}} = rac{1}{\sqrt{1 + rac{\sigma_{\eta}^2}{\sigma_{\mu}^2}}} \qquad rac{\mathbb{V}}{\sigma_{\mu}^2} = 1 - \left(rac{
ho_{ extsf{pa}}}{
ho_{ extsf{pk}}}
ight)^2$$

#### 2. Some appealing properties:

- Unaffected by correlations in firm and market signals
- · Unaffected by 'correlated' distortions
- Conservative estimate if 'uncorrelated' distortions

### Quantitative model

- 1. Monopolistic competition:  $Y_t = \left(\int A_{it} Y_{it}^{\frac{\theta-1}{\theta}} di\right)^{\frac{\theta}{\theta-1}}$
- 2. Production:  $Y_{it} = K_{it}^{\alpha_1} L_{it}^{\alpha_2}$ 
  - Case 1: both factors chosen under imperfect info
  - Case 2: only K chosen under imperfect info, L adjusts ex-post
- $\Rightarrow$  Preserves  $\max_{K_{it}} \Pi \mathbb{E}_{it} [A_{it}] K_{it}^{\alpha} RK_{it}$ ; with  $\alpha$  in case  $1 > \alpha$  in case 2
- 3. Persistence in  $A_{it}$ :  $a_{it} = \rho a_{it-1} + \mu_{it}, \quad \mu_{it} \sim \mathcal{N}\left(0, \sigma_{\mu}^{2}\right)$
- 4. Explicit model of stock market trading
  - Same info in p<sub>it</sub>
- $\Rightarrow$  Preserves  $\mathbb{V} = rac{1}{rac{1}{\sigma_{\mu}^2 + rac{1}{\sigma_e^2} + rac{1}{\sigma_{\eta}^2}}$

### Quantitative model

- 1. Monopolistic competition:  $Y_t = \left(\int A_{it} Y_{it}^{\frac{\theta-1}{\theta}} di\right)^{\frac{\theta}{\theta-1}}$
- 2. Production:  $Y_{it} = K_{it}^{\alpha_1} L_{it}^{\alpha_2}$ 
  - Case 1: both factors chosen under imperfect info
  - Case 2: only K chosen under imperfect info, L adjusts ex-post
- $\Rightarrow$  Preserves  $\max_{K_{it}} \Pi \mathbb{E}_{it} [A_{it}] K_{it}^{\alpha} RK_{it}$ ; with  $\alpha$  in case  $1 > \alpha$  in case 2
- 3. Persistence in  $A_{it}$ :  $a_{it} = \rho a_{it-1} + \mu_{it}$ ,  $\mu_{it} \sim \mathcal{N}\left(0, \sigma_{\mu}^{2}\right)$
- 4. Explicit model of stock market trading
  - Same info in p<sub>it</sub>
- $\Rightarrow$  Preserves  $\mathbb{V}=rac{1}{rac{1}{\sigma_{\mu}^{2}}+rac{1}{\sigma_{e}^{2}}+rac{1}{\sigma_{\eta}^{2}}}$

# Identifying info frictions - quantitative model





 $\Rightarrow$  Same intuition as simple model:

- ullet  $ho_{\it pa}$  ightarrow noise in prices
- ullet  $ho_{\mathit{pi}}$  relative to  $ho_{\mathit{pa}} \, o \, \mathbb{V}$

### General parameters

| Parameter  | Description                | Target/Value |
|------------|----------------------------|--------------|
|            | Time period                | 3 years      |
| $\beta$    | Discount rate              | 0.90         |
| $\alpha_1$ | Capital share              | 0.33         |
| $\alpha_2$ | Labor share                | 0.67         |
| $\theta$   | Elasticity of substitution | 6            |

• If K and L both chosen under imperfect information (case 1)

$$\rightarrow \quad \alpha = \frac{\theta - 1}{\theta} = 0.83$$

• If only K chosen under imperfect information (case 2)

$$\rightarrow$$
  $\alpha = 0.62$ 

# The impact of informational frictions

|                            | $\frac{\mathbb{V}}{\sigma_{\mu}^2}$ | $\frac{\mathbb{V}}{\sigma_{mrpk}^2}$ | a* – a |
|----------------------------|-------------------------------------|--------------------------------------|--------|
| Case 2 ( $\alpha = 0.62$ ) |                                     |                                      |        |
| US                         | 0.41                                | 0.22                                 | 0.04   |
| China                      | 0.63                                | 0.34                                 | 0.07   |
| India                      | 0.77                                | 0.48                                 | 0.10   |
| Case 1 ( $\alpha = 0.83$ ) |                                     |                                      |        |
| US                         | 0.63                                | 0.35                                 | 0.40   |
| China                      | 0.65                                | 0.39                                 | 0.55   |
| India                      | 0.86                                | 0.56                                 | 0.77   |

- Substantial posterior uncertainty (US firms best informed)
   ⇒ significant misallocation, losses in TFP and output
- ullet Effects increase with lpha

#### Case 1 vs. Case 2

### Quantitative impact sensitive to this assumption

- Interpret our results as bounds
- But can we say anything more...?

#### A suggestive statistic:

$$\bullet \ \ \mathsf{Case} \ 2 \to \frac{\sigma_{\mathit{mrpl}}^2}{\sigma_{\mathit{mrpk}}^2} = 0; \qquad \ \mathsf{case} \ 1 \to \frac{\sigma_{\mathit{mrpl}}^2}{\sigma_{\mathit{mrpk}}^2} = 1$$

• In US data:  $\frac{\sigma_{mrpl}^2}{\sigma_{mrpk}^2} = 0.57$ 

# Decomposing $\mathbb{V}$ : the contribution of learning and its sources

|        |            | Share fro | Share from source |  |  |
|--------|------------|-----------|-------------------|--|--|
|        | $\Delta a$ | Private   | Market            |  |  |
| Case 2 |            |           |                   |  |  |
| US     | 5%         | 92%       | 8%                |  |  |
| China  | 4%         | 96%       | 4%                |  |  |
| India  | 3%         | 89%       | 11%               |  |  |
| Case 1 |            |           |                   |  |  |
| US     | 23%        | 91%       | 9%                |  |  |
| China  | 30%        | 96%       | 4%                |  |  |
| India  | 12%        | 96%       | 4%                |  |  |

- 1. Significant learning  $\Rightarrow$  significant aggregate gains
- Learning is primarily from private sources Interpretation? Manager skill/incentives, info collection/processing...
- 3. Only small role for market-generated info  $\Rightarrow$  just too much noise in prices

#### Effect of US information structure

|                     | Case 2     | Case 1     |
|---------------------|------------|------------|
|                     | $\Delta a$ | $\Delta a$ |
| Market Information  |            |            |
| China               | 1%         | 2%         |
| India               | 1%         | 4%         |
| Private Information |            |            |
| China               | 3%         | 6%         |
| India               | 5%         | 26%        |
| Shocks              |            |            |
| China               | 1%         | 10%        |
| India               | 2%         | 20%        |

- 1. Gains from US private info > US market info
- 2. Differences in fundamentals  $\rightarrow$  differential impact of friction

#### Conclusion

### Theory linking micro uncertainty to misallocation and aggregates

- Substantial uncertainty and associated aggregate losses
- Limited informational role for stock markets
- Significant role for private learning ⇒ drives cross-country differences

#### Where next?

- Entry/exit
- Other frictions...

#### Related literature

#### Misallocation

- Hsieh and Klenow (09), Restuccia and Rogerson (08),...
- Financial frictions: Buera, Kaboski and Shin (11), Midrigan and Xu (13),...
- Adjustment costs: Asker, Collard-Wexler and De Loecker (13)
- Information frictions: Jovanovic (13)

#### Stock price informativeness

• Morck, Yeung and Yu (00), Durnev, Yeung and Zarowin (03),...

## The "feedback" effect (Bond, Edmans and Goldstein (12))

- Investment: Chen, Goldstein and Jiang (07), Bakke and Whited (10), Morck, Schleifer and Vishny (90)
- R&D spending: Bai, Philippon and Savov (13)
- Mergers and acquisitions: Luo (05)

### Full-info TFP

Simplified model:

$$a^*=rac{1}{2}rac{\sigma_{\mu}^2}{1-lpha}$$

General model:

$$\mathbf{a}^* = \frac{1}{2} \left( \frac{\theta}{\theta - 1} \right) \frac{\sigma_a^2}{1 - \alpha}$$

simple model



#### The stock market

Unit measure of firm equity traded by 2 type of agents

- 1. Investors: Can purchase up to single unit at price  $p_{it}$
- 2. Noise traders: purchase random quantity  $\Phi(z_{it})$ ,  $z_{it} \sim \mathcal{N}(0, \sigma_z^2)$

#### Information of investors:

- History: a<sub>it-1</sub>
- Private signal:  $s_{iit} = a_{it} + v_{iit}, v_{iit} \sim \mathcal{N}(0, \sigma_v^2)$
- Stock price: p<sub>it</sub>

Trading: buy asset if  $E_{iit}\Pi_{it} \geq p_{it}$  or  $s_{iit} > \hat{s}_{it}$ 

Market clearing: 
$$\underbrace{1 - \Phi\left(\frac{\widehat{\mathsf{s}}_{it} - \mathsf{a}_{it}}{\sigma_{\nu}}\right)}_{\mathsf{Investors}} + \underbrace{\Phi\left(z_{it}\right)}_{\mathsf{Noise traders}} = 1$$

$$\Rightarrow$$
 Info in price:  $\hat{s}_{it} = a_{it} + \sigma_{\nu} z_{it}$   $\left[\sigma_{\eta}^2 = \sigma_{\nu}^2 \sigma_{z}^2\right]$ 

$$\left[\sigma_{\eta}^2 = \sigma_{\rm v}^2 \sigma_{\rm z}^2\right]$$

#### Identification with iid shocks

$$\rho_{pa} = \frac{1}{\sqrt{1 + \frac{\sigma_v^2 \sigma_z^2}{\sigma_\mu^2}}} \qquad (\searrow \text{ in } \sigma_v \sigma_z)$$

$$\rho_{pk} = \frac{1}{\sqrt{\left(1 + \frac{\sigma_v^2 \sigma_z^2}{\sigma_\mu^2}\right) \left(1 - \frac{\mathbb{V}}{\sigma_\mu^2}\right)}} \qquad (\nearrow \text{ in } \mathbb{V})$$

$$\sigma_p^2 = \left(\frac{1 - \beta}{1 - \alpha}\right)^2 \left(\frac{\sigma_z^2 + 1}{\sigma_z^2 + \frac{1}{\sigma^2}}\right)^2 \frac{1}{\rho_{pa}^2} \sigma_\mu^2 \qquad (\nearrow \text{ in } \sigma_z)$$

▶ iden

## Identification with permanent shocks

$$\begin{split} \frac{\mathbb{V}}{\sigma_{\mu}^2} &= \frac{\rho_{\textit{pk}} - \rho_{\textit{pa}}}{\eta} \quad \text{ where } \quad \eta = \frac{1}{1 - \alpha} \frac{\sigma_{\mu}}{\sigma_{\textit{p}}} \\ \frac{\sigma_{\textit{v}}^2 \sigma_{\textit{z}}^2}{\sigma_{\mu}^2} &= \frac{\left(1 - \eta^2\right)}{2\rho_{\textit{pa}}^2} + \frac{\eta}{\rho_{\textit{pa}}} - 1 \\ \frac{\sigma_{\textit{z}}^2 + 1}{\sigma_{\textit{z}}^2 + 1 + \frac{\sigma_{\textit{v}}^2 \sigma_{\textit{z}}^2}{\sigma^2}} &= \frac{1}{\eta} \end{split}$$

▶ ident

Step 1. cov(p, k) = cov(p, a).

- follows from  $k = E(a|p, s_i)$
- and since we can write  $a = E(a|p, s_i) + \varepsilon$
- $cov(a, p) = cov(E(a|p, s_i), p) + cov(\varepsilon, p) = cov(k, p)$ .

Step 2. divide both sides by  $\sigma_a \sigma_p$  so we get

$$\frac{\left[\operatorname{cov}(p,k)\right]^{2}}{\left(\sigma_{a}\sigma_{p}\right)^{2}} = \rho\left(p,a\right)^{2} \tag{1}$$

Step 3. By the law of total covariance,  $\sigma_{\rm a}^2=\sigma_{\it k}^2+V$  so

$$\frac{\sigma_k^2}{\sigma_a^2} = 1 - \frac{V}{\sigma_a^2} \tag{2}$$

Substituting (2) in (1) we get

$$\left(1 - \frac{V}{\sigma_a^2}\right) = \left(\frac{\rho(p, a)}{\rho(p, k)}\right)^2$$

identical to our identification equation. 

identification equation.

## Measuring V with other frictions - simplified model

Introduce alternative 'distortions' into capital choice:

$$au_{it} = \gamma \mu_{it} + arepsilon_{it}, \quad arepsilon_{it} \sim \mathcal{N}\left(0, \sigma_{arepsilon}^{2}\right)$$

$$\Rightarrow k_{it} = \frac{(1 + \gamma) \mathbb{E}\left[\mu_{it}\right] + arepsilon_{it}}{1 - \alpha}$$

1. 'Correlated' distortion  $(\gamma \neq 0, \sigma_{\varepsilon}^2 = 0)$   $\Rightarrow \sigma_{mrpk}^2 = \gamma^2 \left(\sigma_{\mu}^2 - \mathbb{V}\right) + \mathbb{V} > \mathbb{V}$  But, our measure  $1 - \left(\frac{\rho_{pa}}{\rho_{pk}}\right)^2 = \frac{\mathbb{V}}{\sigma_{\mu}^2}$  still valid!

2. 'Uncorrelated' distortion 
$$(\gamma=0,\sigma_{\varepsilon}^2\neq 0)$$
 
$$\Rightarrow \sigma_{mrpk}^2=\mathbb{V}+\sigma_{\varepsilon}^2>\mathbb{V}$$
 Our measure  $1-\left(\frac{\rho_{pa}}{\rho_{pk}}\right)^2=\frac{\mathbb{V}}{\sigma_{\mu}^2}-\frac{\sigma_{\varepsilon}^2}{\sigma_{\mu}^2}$  is conservative...

# Investment-Q regressions

Model has reduced-form representation:

$$\Delta k_{it} = \lambda_1 \left( \Delta \mu_{it} + \Delta e_{it} \right) + \lambda_2 \Delta p_{it}$$

Use model to derive:

$$\lambda_2 \propto \frac{\mathbb{V}}{\sigma_{\eta}^2}$$

Intuition:  $\lambda_2 \nearrow$  in  $\mathbb{V}$ ,  $\searrow$  in  $\sigma_{\eta}^2$ 

But, regression ID's  $\lambda_2$  only if  $\Delta e_{it} \perp \Delta \mu_{it}, \Delta p_{it}$ 

• Violated if correlated signals, correlated distortions...



### Data and parameter values

|        | Targ          | Target moments     |              | Parameters |      |                |            |                  |              |
|--------|---------------|--------------------|--------------|------------|------|----------------|------------|------------------|--------------|
|        | $ ho_{ m pi}$ | $ ho_{	extsf{pa}}$ | $\sigma_p^2$ |            | ρ    | $\sigma_{\mu}$ | $\sigma_e$ | $\sigma_{\it v}$ | $\sigma_{z}$ |
| Case 2 |               |                    |              |            |      |                |            |                  |              |
| US     | 0.23          | 0.18               | 0.23         |            | 0.92 | 0.45           | 0.39       | 0.37             | 3.50         |
| China  | 0.16          | 0.06               | 0.14         |            | 0.78 | 0.51           | 0.67       | 0.74             | 4.24         |
| India  | 0.25          | 0.08               | 0.23         |            | 0.93 | 0.53           | 1.04       | 0.69             | 4.36         |
| Case 1 |               |                    |              |            |      |                |            |                  |              |
| US     | 0.24          | 0.10               | 0.23         |            | 0.88 | 0.46           | 0.63       | 0.65             | 3.16         |
| China  | 0.15          | 0.02               | 0.14         |            | 0.75 | 0.53           | 0.74       | 1.18             | 3.14         |
| India  | 0.26          | 0.00               | 0.22         |            | 0.88 | 0.55           | 1.39       | 1.69             | 4.14         |

Data source: Compustat NA and Compustat Global.

- $\bullet$  Cross-country variation in moments  $\Rightarrow$  variation in parameters
- US: less fundamental uncertainty, better private info, less noise in markets

## Transitory vs. permanent MRPK deviations

- Information speaks to dispersion in transitory component
- $\bullet$  In US data: transitory  $\approx$  one-third of total
- US  $\mathbb V$  accounts for 60% in case 2; entirety in case 1



#### Robustness: adjustment costs

Are we simply labeling adj. costs as info frictions?

- · Simulate moments from full-info (for firms) adj. cost model
- Do we estimate large V with these moments?

|       | Adj. Cost $\mathbb {V}$ | $Baseline\ \mathbb{V}$ |
|-------|-------------------------|------------------------|
| US    | 0.03                    | 0.08                   |
| China | 0.06                    | 0.16                   |
| India | 0.08                    | 0.22                   |

- ullet  $\mathbb V$  (and agg effects) about 1/3 of baseline estimates
- $\Rightarrow$  Unlikely that we are reading adj. costs as info frictions!



#### Robustness: correlated information

How would correlation between firm and investors' signals affect results?

- Correlation  $\rightarrow \nearrow \rho_{pk} \rightarrow \nearrow \mathbb{V}$ ?
- Re-estimate assuming  $s_{ijt} = s_{it} + v_{ijt} = a_{it} + e_{it} + v_{ijt}$

|                        | $rac{\mathbb{V}}{\sigma_{\mu}^2}$ w corr. info | $rac{\mathbb{V}}{\sigma_{\mu}^2}$ baseline |
|------------------------|-------------------------------------------------|---------------------------------------------|
| Case 2 ( $lpha=$ 0.62) |                                                 |                                             |
| US                     | 0.41                                            | 0.41                                        |
| China                  | 0.58                                            | 0.63                                        |
| India                  | 0.68                                            | 0.77                                        |

⇒ Results quite close to baseline!



#### Full-information adjustment cost model

Value function

$$V\left(\tilde{A}_{it}, K_{it-1}\right) = \max_{K_{it}, N_{it}} G\tilde{A}_{it} K_{it}^{\tilde{\alpha}} - I_{it} - H\left(I_{it}, K_{it-1}\right) + \beta \mathbb{E} V\left(\tilde{A}_{it+1}, K_{it}\right)$$

where 
$$I_{it} = K_{it} - (1 - \delta) K_{it-1}$$
 and  $H(I_{it}, K_{it-1}) = \zeta K_{it-1} \left( \frac{I_{it}}{K_{it-1}} \right)^2$ 

- Solve numerically for joint distribution of  $\tilde{A}_{it}, K_{it}$  in GE
- Target  $(\rho_{pa}, \sigma_p^2, \sigma_k^2)$
- Simulate data to compute  $\rho_{pi}$  and relative correlation

▶ ident