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Abstract

The impacts of technologies that mitigate climate change are tempered by the willingness of
individuals and firms to adopt them. Absent costly, sustained taxes or subsidies, this willing-
ness rests on the technologies’ private returns, which are generally assumed to be modest. We
document a novel productivity co-benefit to the adoption of energy-saving LED lighting. First,
using detailed daily production data from garment factories in Bangalore, India, we show that
efficiency (realized output over target output) decreases substantially on hotter days. But the
introduction of energy-saving LED lighting, which emits less heat than incandescent or fluores-
cent lighting, attenuates 75 percent of the negative impact of temperature on productivity. Our
results are robust to a variety of measures of temperature, specifications, and the incorporation
of relative humidity. Our estimates suggest that the productivity returns to LED adoption are
more than 4 times larger than the energy savings.
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1 Introduction

The Inter-governmental Panel on Climate Change (IPCC) projects that the mean global temper-
ature will likely rise by more than 1.5 degrees Celsius relative to pre-industrial temperature by
2100 for a range of climate change scenarios (IPCC, 2013). Developing countries, whose adaptive
and protective capacities are low and who are on average hotter than developed countries, will
bear the lion’s share of the negative impacts of climate change (Mendelsohn et al., 2006). Produc-
tivity in agriculture and unskilled industrial labor will likely decline drastically, not only due to
the increased frequency of extreme weather events1 but also because excessive heat decreases the
body’s capacity for exertion (Kjellstrom et al., 2009; Lemke and Kjellstrom, 2012; Sudarshan and
Tewari, 2013).

Given these repercussions, there is great academic and policymaking interest in identifying
effective climate change mitigation strategies and convincing individuals and firms to adopt them.
This process is not easy: though the public benefits of mitigation may be high, the immediate
private returns are generally assumed to be low or even negative (Knittel and Sandler, 2011). If
this were true, then achieving widespread adoption might require costly sustained subsidies or
taxation.

In this study, we ask: do mitigation strategies have hidden private returns? In particular, we
estimate the productivity consequences of the adoption of energy-saving technology. Using de-
tailed production data from garment factories in Bangalore, India, we show that the introduction
of light-emitting diode (LED) technology on factory floors substantially attenuates the negative
relationship between temperature and worker efficiency. LED lighting is 7 times more energy-
efficient than standard fluorescent lighting in our setting, and emits about 1/7th the heat. We
study the impacts of a staggered roll-out of LEDs over four years on the stitching floors of 25
factories operated by a large garment export firm in India.2

We begin by estimating the effect of changes in temperature on worker efficiency (realized
output over target output) at the production line by day level. We find that efficiency decreases
substantially on hotter days: a 1 degree Celsius increase in mean daily heat index lowers produc-
tion efficiency by .161 points (average efficiency is 53.4 percent). Contemporaneous effects of tem-
perature on attendance are small and tightly bounded around 0, suggesting that the temperature-
efficiency gradient derives from the direct physiological effect of temperature on workers’ pro-
ductive capacity, rather than an indirect mechanism via worker attendance.3 We do, however,
find evidence that lagged temperature (the average over the past 7 days) significantly affects ab-
senteeism.

We then estimate the extent to which the introduction of LED lighting, through the reduced
intensification of temperature on factory floors, flattens the temperature-efficiency gradient. Our

1See, e.g., Deschênes and Greenstone (2007); Guiteras (2009); Hsiang (2010); Kala et al. (2012); Kurukulasuriya et al.
(2006); Lobell et al. (2011).

2Our data sample includes 29 factories, four of which did not receive LED lighting.
3It bears mentioning that absenteeism is a significant problem in these factories, so there is substantial day-to-day

variation in attendance.
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estimated magnitudes are startling: on average, the introduction of LED lighting eliminates nearly
75 percent of the negative impact of temperature on efficiency. These results are quite robust to
changes in empirical specification and to a variety of temperature measures. Interestingly, though
we find that LED introduction generates significant attenuation of the temperature-productivity
gradient across the temperature distribution, this differential effect is nearly twice as large below
median temperature as compared to above.

Our study contributes to the understanding of the effects of environmental factors on economic
productivity. Recent work has documented significant labor supply and productivity impacts of
air pollution (Graff Zivin and Neidell, 2012; Hanna and Oliva, 2011) and temperature (Graff Zivin
and Neidell, 2010; Hsiang, 2010; Sudarshan and Tewari, 2013). Our detailed productivity mea-
sures, relatively long time span, and high-frequency temperature data allow us to quantify im-
pacts with precision. Our findings are quite consistent with the previous studies: deviations in
temperature strongly impact labor productivity. These studies make important inroads, but they
stop short of evaluating policies that actually lessen the negative impact of heat on productiv-
ity. We provide the first evidence to our knowledge of the impact of technology that flattens the
temperature-productivity gradient, while also having important environmental benefits via cli-
mate change mitigation.

Second, we add to the body of work on the negative impacts of high temperatures in devel-
oping country contexts. Recent studies have demonstrated the impacts of either long-term mean
temperature or temperature anomalies on agricultural output (Deschênes and Greenstone, 2007;
Guiteras, 2009; Kala et al., 2012; Kurukulasuriya et al., 2006; Lobell et al., 2011); industrial produc-
tion (Hsiang, 2010; Sudarshan and Tewari, 2013); health and survival (Burgess et al., 2013; Danet
et al., 1999; Deschênes and Greenstone, 2011; Kudamatsu et al., 2012); and conflict (Burke et al.,
2009; Hsiang et al., 2013). We contribute to this literature new evidence of temperature’s effects on
industrial productivity, which represents a rising fraction of GDP in the developing world.

Finally, we contribute to the literature on the returns to climate change mitigation.4 The few
recent studies that examine “co-benefits,” or additional gains, of mitigation focus largely on the
indirect public returns (Bollen et al., 2009; Knittel and Sandler, 2011). For example, a carbon tax
aimed primarily at reducing CO2 emissions may also reduce emissions of accompanying pollu-
tants such as nitrous oxides or carbon monoxide, thus reducing substantially the tax’s welfare
costs. Our study examines a novel, private co-benefit of climate change mitigation. This distinc-
tion is important because the success of most mitigation strategies relies on individuals’ and firms’
willingness to adopt them, and this willingness is largely driven by private returns. If energy-
saving technologies like LEDs do have substantial private co-benefits, this should meaningfully
alter firms’ benefit-cost calculations. Indeed, by our estimation, the benefits of LEDs in terms of
productivity are substantially larger than energy savings (in fact, roughly 4 times as large), indicat-
ing that ignoring the former source of benefit would seriously underestimate the private returns

4A related literature has established patterns of adaptation to climate change and the returns to this adaptation (e.g.
Barreca et al. (2013)).
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to adoption.
The remainder of the paper is organized as follows. Section 2 describes contextual details

regarding garment production in India and LED technology. Section 3 provides details on the
temperature and production data. Section 4 describes our empirical strategy. Section 5 describes
the results, and section 6 has a concluding discussion.

2 Context

In this section, we 1) discuss the garment sector in India and key elements of the garment pro-
duction process; 2) review the physiology of the relationship between temperature and worker
productivity; 3) provide an overview of energy usage and heat emissions in LED v. fluorescent
lighting; and 4) describe the roll-out of LED lighting across the garment factories in our data.

2.1 The Indian Garment Sector

Global apparel is one of the largest export sectors in the world, and vitally important for economic
growth in developing countries (Staritz, 2010). India is the world’s second largest producer of
textile and garments, with the export value totaling $10.7 billion in 2009-2010. Women comprise
the majority of the workforce (Staritz, 2010). Total employment in India’s formal apparel and
textile industry was about 2 million in 2008, of which 675,000 was in the formal apparel sector,
making this a crucial component of India’s industrial sector.

2.2 The Garment Production Process

There are three broad stages of garment production: cutting, sewing, and finishing. In the fac-
tories that comprise our production data, garments are sewn in production lines. Each line will
produce a single style of garment at a time (i.e. color and size will vary but the design of the
style will be the same for every garment produced by that line until the order for that garment
is met). Lines consist of 20-100 sewing machine operators (depending on the complexity of the
style) arranged in sequence and grouped in terms of segments of the garment (e.g. sleeve, collar,
placket).5 Completed sections of garments pass between these groups, are attached to each other
in additional operations along the way, and emerge at the end of the line as a completed garment.
These completed garments are then transferred to the finishing floor.

Before reaching the sewing floor, pieces of fabric needed for each segment of the garment are
cut using patterns from a single sheet so as to match color and quality perfectly. These pieces are
divided according to groups of sewing operations (e.g. sleeve construction, collar attachment) and
pieces for 10-20 garments are grouped and tied into bundles. These bundles are then transported

5In general, we describe here the process for woven garments; however, the steps are quite similar for knits and
even pants, with varying number and complexity of operations. Even within wovens, the production process can vary
a bit by style or factory.

4



to the sewing floors where they are distributed across the line at various “feeding points” for each
group of sewing operations.

In finishing, garments are checked, ironed, and packed. A great degree of quality checking
is done “in-line” on the sewing floor, but final checking occurs in the finishing stage. Any gar-
ments with quality issues are sent back to the sewing floor for rework or, if irreparably ruined, are
discarded before packing. Orders are then packed and sent to port.

2.3 Physiology of the Temperature-Productivity Gradient

The physical impact of temperature on human beings is a very well-studied area (Enander, 1989;
Parsons, 2010), and has traditionally been important in order to establish occupational safety stan-
dards for workers exposed to very high or low temperatures for continued periods of time (Van-
hoorne et al., 2006). Higher temperatures and consequent thermal stress can impact human beings
not only physically, but also through lower cognition and psychomotor ability (Hancock et al.,
2007). For instance, Ramsey et al. (1983) find increases in unsafe behavior by workers at tem-
peratures greater than 35 degrees Celsius WBGT (Wet Bulb Globe Temperature). The individual
impact on a person varies based on factors such as the type of task and its complexity, duration
of exposure, as well as the worker-level skill and acclimatization level (Pilcher et al., 2002), which
contributes to the issues in setting a particular limit in working environments (Hancock et al.,
2007).

2.4 LED v. Fluorescent Lighting

LED light bulbs are approximately 7 times as energy-efficient as fluorescent bulbs (requiring about
3 as opposed to 21 KWh/year in electricity in our setting), and thus operate at about 1/7 the cost
of fluorescent lighting. In addition, they generate a tenth of the CO2 emissions (5.01 pounds of
CO2 per year per bulb, as compared to 35.11 pounds for fluorescent lighting).6 Heat emissions
for LEDs are substantially lower than fluorescent bulbs: the average LED bulb emits 3.4 Btus, as
against 23.8 Btus for fluorescent lighting in the setting we study.

2.5 LED Roll-out: Summary and Timeline

The factories began installing LED lighting in October 2009 and completed the installations by
February 2013. There was no formal documentation of the reasons for LED adoption in each
factory, but according to senior management at the firm, the reasons were twofold. First, over the
last decade, buyers have become more stringent in their regulation of their suppliers’ production
standards and environmental policies. This generated a staggered roll-out of LEDs across factories
within the firm because some factories were more heavily involved in the production of orders

6Note that while both fluorescent and LED lighting are much more efficient than incandescent bulbs, the factories
in our sample did not have any incandescent lighting on the production floor. For details on emissions calculations,
please refer to section 6.
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from particular buyers than others. So, for example, if buyer A’s environmental regulations or
production guidelines become more stringent, then the supplier might choose to convert to LED
lighting in factories processing many orders from buyer A. When buyer B’s regulation change, the
firm will prioritize factories servicing buyer B, and so on. Second, over the study period, the firm
itself began a variety of “green” initiatives firm-wide, and thus scaled up LED introduction across
its factories. These two factors combine to generate wide variation in the timing of LED take-up
across the factories we study. To test whether this timing was exogenous to line-daily efficiency,
we perform some checks, which are described in detail in section 5.

The replacement took the form of replacing all fluorescent lights targeted at individual opera-
tions with an equivalent number of small LED lights mounted on individual workers’ machines.
The replacements were designed to maintain the original level of illumination. On average, each
unit replaced about 1,000 fluorescent lights of 7W each with 1,000 LED lights of 1W each.7 Based
on the factories’ operating time cost calculation, this meant an energy saving of 18KWh per light
per year. In the conclusion, we discuss the magnitude of the environmental benefits from the
installation.

A particular factory received the installation within a single month. 8% of the LED rollout (2
units) was completed in 2009, 48% (12 units) in 2010, 16% (4 units) in 2011, about 24% (6 units)
in 2012 and rest (1 unit) in 2013. Of the 29 units from which we have productivity data, LED
replacements occurred in 25 units. Since our productivity data ranges from April 2010 to June
2013, some units have LED since the beginning of our productivity data, and all but four units
have LED for the last four months of our productivity data range. This is why our results report
the impact of temperature not only for the whole sample, but also separately for the units that did
not have LED at a particular time.

3 Data

Here we provide an overview of data sources, describe our data via summary statistics, and pro-
vide preliminary graphical evidence on the temperature-productivity gradient and the effects of
LED introduction.

3.1 Data Sources

3.1.1 Temperature Data

Our temperature data is from the National Climatic Data Center (NCDC) at the National Oceanic
and Atmospheric Administration (NOAA). The Center compiles global station-level weather data
at the hourly level, although most stations outside the US report data only at 3-hour intervals. We
have temperature data from three stations in Bangalore over the period spanned by our productiv-

7The number of lights installed unit by unit is a function of the number of machines in the unit, and varies from
about 100 to 2,550 with a mean of 1,000.
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ity data (April 2010 to June 2013). Over 80% of the observations are at the 3 hourly level (midnight
IST onwards), and the rest are across somewhat arbitrary time measurements. We consider all
observations across the three available stations between 9am and 6pm for each day as our daily
temperature measure, which constitutes the working hours at the factories we consider.8 This is
dry bulb temperature, and at the daily level ranges between 18.8 and 34.4 degrees Celsius, with
an average of about 27.6 degrees Celsius.

We have relative humidity data at the monthly level for three stations in Bangalore from Jan-
uary 2010 to November 2013, from the NOAA’s National Data Center (NNDC). We were unable to
find relative humidity data at a daily level for Bangalore, and are consequently unable to include
daily relative humidity. At the monthly level, relative humidity ranges between about 44% and
85.7%.9.

With the daily temperature and monthly relative humidity data, we construct two measures
that incorporate both temperature and humidity. The first is the Heat Index (HI) that is calculated
based on the formula:

HI = −42.379 + 2.04901523 ∗ Td + 10.14333127 ∗ rh− .22475541 ∗ Td ∗ rh

− .00683783 ∗ T 2
d − .05481717 ∗ rh2 + .00122874 ∗ T 2

d rh

+ .00085282 ∗ Td ∗ rh2 − .00000199 ∗ T 2
d ∗ rh2. (1)

where Td = dry bulb temperature in Fahrenheit and rh = relative humidity (%). The for-
mula for the calculation is derived from the Rothfusz regression that replicates the HI values from
Steadman (1979).

For about 0.6% of our data, the relative humidity is greater than 85% and daily temperature
ranges between 80 and 87 degrees Fahrenheit, and the following adjustment is applied:

HI = HI + [(rh− 85)/10] ∗ [(87− Td)/5] (2)

The second measure is a particular method for calculation Wet Bulb Globe Temperature that is
suitable for indoor exposure. The formula is from Lemke and Kjellstrom (2012), and is given by:

WBGT = 0.567Td + 0.216

(
rh

100
∗ 6.105 exp

(
17.27Td

237.7 + Td

))
+ 3.38. (3)

All the three measures of temperature – dry bulb temperature, Heat Index (HI), and Wet Bulb
Globe Temperature (WBGT) – are converted into Celsius to ensure interpretative ease across re-

8Note that since not all observations are available for each of the three stations, assigning factories to the nearest
station is not feasible. About 60% of our observations come from the first station, and about 20% each from the second
and third. The correlation between the observations from the first and second station as well as the first and third
station is between 0.92 and 0.93, which is very high (the second and third stations do not overlap in terms of data
availability).

9Analogous to the temperature calculations, we average over the station observations - the correlation between
station-level observations ranges from 0.92 to 0.99
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gression specifications. While there are numerous formulae for the calculation of varied heat
indices, we chose these two since they were relatively easy to calculate and interpret. For all our
results, we report the main effect of dry bulb temperature as well as the main effect of dry bulb
temperature controlling for relative humidity in addition to the impact of the Heat Index and the
Wet Bulb Globe Temperature.

3.1.2 Factory Data

We use data on line-level daily production from 29 garment factories in and around Bangalore,
India. Identifiers include factory unit number and line number within the factory. For each line
and day within each factory unit, production measures include actual quantity produced, actual
efficiency, and budgeted efficiency.

Actual efficiency is actual quantity produced divided by target quantity. The target quantity
is derived from an industrial engineering (IE) measure for the complexity of the garment called
“Standard Allowable Minute” (SAM). This measure amounts to the estimated number of minutes
required to produce a single garment of a particular style. This estimate comes from a central
database of styles, but is then amended by the factory’s IE department during “sampling.” Sam-
pling is the process by which a style that is ordered by a buyer is costed in terms of labor and
production time. The highest skill grade tailor, called a sampling tailor, will make a garment of a
particular style entirely and recommend a SAM for that style to the IE department.

This SAM is then used to calculate the target quantity for the line for each hour of production.
Each line runs for 8 hours during a standard work day. Accordingly, a line producing a style with
a SAM of .5 will have a target of 120 garments per hour, 960 garments per day. If 900 garments are
actually produced on that day, the actual efficiency will be 900/960=93.75%.

Each line will only produce a single style at any time. However, depending on the order size
(or “scheduled quantity”) for a style, multiple lines might be producing the same style at one time
and each line could produce a style for many days.10 Of course, a line which has been producing
the same style for many days will likely be more efficient at producing that style than will a line
which has been producing a style (of even the same complexity or SAM) for less days. These types
of variations in efficiency, in addition to dimensions such as the number of operations the SAM
must be divided into for producing a style, are reflected in the budgeted efficiency. Consequently,
actual efficiency of a given style will vary systematically across lines and within line over time.
We will accordingly control for budgeted efficiency and include line fixed effects in the regression
analysis below.

Most importantly, we use actual efficiency rather than produced quantity as our outcome of
choice. Produced quantity would not account for systematic variation due to complexity of style
or number of operations. Without normalizing production observations to target quantity, one
could potentially misrepresent an association between temperature and style complexity or order
size as an impact on productivity. Accordingly, we argue that actual efficiency, controlling for

10Indeed, in our data, lines produce styles for between 1 and 199 days.
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budgeted efficiency, is the most appropriate outcome for the empirical exercise proposed in this
study.

3.2 Summary Statistics

We present means and standard deviations of variables used in the analysis below. Our sample
consists of 446 lines across 29 factory units. The range of dates over which we have production
data spans 941 days in total. However, we do not observe all factory units, nor all lines within a
unit, for all dates. We restrict our attention to lines for which we observe production data for at
least 40% of dates. Altogether, our data includes nearly 215,000 line-day observations. Roughly,
one-third of the observations correspond to days in factory units prior to the introduction of LED
lighting and the rest are post-LED observations.

The summary statistics indicate a great deal of variation in the measures of temperature. The
means of these measures appear quite similar before and after the introduction of LED. This is to
be expected given that the timing of LED introduction varied at the factory level across nearly the
entire date range. That is, 6 units already have LED lighting at the beginning of the date range
and 4 units still have not received LED lighting by the end of the date range. On the other hand,
both actual and budgeted efficiency appear to differ on average between the before and after LED
samples. Average efficiency appears higher after LED introduction, while budgeted efficiency
appears lower.

3.3 Preliminary Graphical Evidence

We begin by motivating the central exercise of this study with descriptive plots of production and
temperature data.

3.3.1 Temperature-Productivity Gradient

Underlying the analysis conducted below is the assertion that productivity and temperature are
negatively correlated. In order to check this assertion in our empirical context, we plot both the
daily time series of actual production efficiency and the heat index. These plots, presented in Fig-
ure 1, depict a distinct negative correlation and, perhaps, a slight lag in the impact of temperature
on efficiency.

We next collapse the time element of the data and plot actual efficiency as a function of the
heat index. Figure 2 shows that indeed efficiency appears to be a downward-sloping function of
temperature.

3.3.2 Impacts of LED Introduction

Having provided preliminary evidence of a negative temperature-productivity gradient for the
garment factories in our data, we next check for evidence that this gradient is affected by the
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FIGURE 1: EFFICIENCY AND TEMPERATURE TIME SERIES
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FIGURE 2: EFFICIENCY AGAINST TEMPERATURE
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FIGURE 3: EFFICIENCY AGAINST TEMPERATURE BY LED

49
50

51
52

53
54

55
56

57

Ac
tu

al
 E

ffi
ci

en
cy

 (P
er

ce
nt

)

22 24 26 28 30 32 34 36 38 40

Heat Index (Celsius)

Without LED With LED
Notes: Heat Index accounts for humidity and is trimmed at the 1st and 99th percentiles.

replacement of the ambient fluorescent lighting in factories with focused, machine-mounted LED
lighting. We repeat the exercise from Figure 2 for subsets of the data from before and after the LED
roll-out in each factory. These plots are presented in Figure 3. The evidence suggests that factories
are more efficient at all temperatures after the LED introduction.

Lastly, we return to the exercise conducted in Figure 1, but plot the efficiency series separately
for factory-day observations with and without LED lighting. Once again, we include the tem-
perature time series for comparison and present the plots in Figure 4. The evidence in Figure
4 also suggests that LED lighting improves efficiency on all days, but particularly smooths the
fluctuations in efficiency due to temperature.

Motivated by this preliminary evidence we set forth a more rigorous regression analysis below
to causally identify both the effect of temperature on production efficiency and the attenuation of
this impact driven by the replacement of traditional fluorescent lighting with LED technology. In
particular, we address concerns regarding unit-level trends in efficiency, line-level unobservables,
seasonality in efficiency, and the exogeneity of the LED introduction.
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FIGURE 4: EFFICIENCY AND TEMPERATURE TIME SERIES BY LED
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4 Empirical Strategy

First, we estimate the following empirical specification of the relationship between worker effi-
ciency and temperature:

Eludmy = βTdmy + αl + γuy + ηm + δd + εludmy. (4)

Here, E is efficiency in line l of unit u on day d in month m and year y; T is daily temperature
in degrees Celsius; αl are line fixed effects; γuy are unit x year fixed effects; ηm are month fixed
effects; and δd are day-of-week fixed effects. β is the coefficient of interest, giving the impact of a
1-degree Celsius increase in temperature on line-level efficiency.

In addition to the average effect of temperature on efficiency, we are also interested in testing
whether this effect, and its corresponding attenuation by LED lighting, is heterogenous across
the distribution of temperature. To implement this, we estimate equation 4 allowing for varying
slopes of temperature above and below the median of the temperature distribution. We use the
following empirical specification:

Eludmy = ζ1 (Q1 x Tdmy) + ζ2 (Q2 x Tdmy) + +ζ5Q1 + ζ6Q2 + αl + γuy + ηm + δd + εludmy.(5)

where Q1 is a dummy variable that is 1 if temperature is above median temperature and zero

12



otherwise, and Q2 is a dummy variable that is 1 if temperature is below median temperature and
zero otherwise.

We then estimate the extent to which the introduction of LED lighting attenuates the temperature-
productivity relationship via the following specification:

Eludmy = β1 (Tdmy x LEDumy) + β2LEDmy + β3Tdmy + αl + γuy + ηm + δd + εludmy. (6)

Here LEDumy is a dummy for presence of LED lighting in unit u in month m and year y. It
changes from 0 to 1 in the month following LED introduction in a particular factory unit. The
coefficients of interest in the above specification are β1 and β3. β3 indicates the effect of temper-
ature on productivity before LED introduction. β3 is the extent of attenuation of the temperature-
productivity gradient once LED lighting is introduced. The sum of these two, β1 + β3, gives the
net effect of temperature on productivity following LED introduction. Finally, we test if the atten-
uation impact of LED is heterogenous for temperatures above and below the median temperature
by estimating the following specification:

Eludmy = β1Q1 x Tdmy x LEDumy + β2Q2 x Tdmy x LEDumy + ψ1Q1 x Tdmy + ψ2Q2 x Tdmy

+ ζ1Q1 x LEDumy + ζ2Q2 x LEDumy + θQ1 + αl + γuy + ηm + δd + εludmy. (7)

Following Graff Zivin and Neidell (2012), we use two-way clustering of standard errors in
all regressions (Cameron et al., 2011). Standard errors are clustered 1) at the production line level,
because our cross-sectional variation is the line level, and we would expect inter-temporal correla-
tion in productivity within lines; and 2) at the date level, since this is the level at which temperature
varies.

5 Results

In this section, we present and discuss the results of the estimation strategy proposed in section 4
above.

5.0.3 Average Impact of Temperature

We begin by verifying the apparent negative temperature-productivity gradient depicted in Fig-
ure 2. In Table 2, we present results from the regression of actual efficiency on various measures
of temperature. Unless otherwise noted, all specifications, as discussed in section 4, include bud-
geted efficiency as a control as well as month, day-of-week, line, and unit by year fixed effects.

Column 1 in Panel A shows that a one degree Celsius increase in the heat index leads to a .1
percentage point reduction in efficiency (as compared to a mean efficiency of roughly 53.4 per-
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cent). This estimate is significant at the 1 percent level and is robust across various temperature
measures. Column 2 presents the impact of a one degree rise in wet bulb globe temperature; while
columns 3 and 4 present the impact of a one degree rise in dry bulb temperature with and without
relative humidity as a control, respectively. Across all measures estimates are negative, statisti-
cally significant and of nearly identical magnitude. Estimates range from .135 to .17 percentage
points across the other measures of temperature.

Panel B of Table 2 shows estimates from regressions identical to those reported in Panel A, but
restricting attention to observations prior to the introduction of LED lighting. To the extent that
LED lighting affects the temperature-productivity gradient, the true estimate of the gradient will
be most precisely estimated in the absence of LED lighting. Indeed, point estimates from Panel
B are consistently larger than those from Panel A ranging from .16 to .26 percentage points. All
estimates in Panel B, as in Panel A, are significant at the 1 to 5 percent level.

5.1 Lagged Impact of Temperature

Having shown the significant impact of contemporaneous temperature on efficiency, we next ex-
plore the degree to which this impact persists and/or compounds over time. We test for persistent,
cumulative effects of temperature by re-estimating the regression from Table 2 including the mean
temperature over the prior week as an additional regressor. The results of these regressions are
reported in Table 3. The point estimates on lagged temperature measures in panel A, using the
pooled sample, are imprecisely estimated (likely due to serial correlation in temperature). Never-
theless, the sign and magnitude of the estimates suggest that mean temperature in the past week
does have an incremental negative impact on current efficiency above current temperature.

Indeed, in panel B, we repeat the exercise for the sample of observations corresponding to
factory days before LED lighting. For this subsample, the point estimate on the one week lag is
precisely estimated, negative, and large in magnitude across all measures of temperature. Point
estimates are more than 50 percent larger than the contemporaneous effect of temperature, pre-
sented in panel B of Table 2. These results suggest that the effect of temperature on efficiency does
in fact persist or even compound.11

Next, we explore the impact of temperature on worker attendance. Considering that when the
work attendance decision is made in the morning the temperature is still quite mild, we do not
expect that contemporaneous temperature will have much of an effect on attendance. Rather, we
suspect that lagged temperature will impact future attendance, perhaps by way of exhaustion. We
estimate regressions identical those reported in Table 3, but with a binary for whether the worker
attended a full day of work. We present results from these regressions in Table 4.

Notice these data are available at the worker level, rather than the production line level. Ac-
cordingly, the sample of observations is much larger. The results indicate that the probability that

11The fact that the estimates include observations after the introduction of LED lighting presented in Panel A are
attenuated and insignificant might indicate that the introduction of LED lighting offsets the persistent impacts of tem-
perature on efficiency as well. However, there is insufficient residual variation in the interaction of the 1 week lagged
temperature with LED after controlling for the interaction of LED with contemporaneous temperature.
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a worker comes to work today is indeed reduced by the mean temperature over the prior week. A
one degree celsius increase in mean temperature over the prior week leads to between a .2 and .5
percentage point reduction in the probability of attending. Estimates are quite similar from both
the whole sample (reported in panel A) and the sample of observations prior to LED introduction
(reported in Panel B).

5.2 LED and the Temperature-Efficiency Gradient

Having established the impacts of temperature on production outcomes, we next investigate the
degree to which LED attenuates these impacts. We regress actual efficiency on the interactions of
our four measures of temperature with a dummy for the presence of LED lighting in the factory
along with the main effects of temperature and LED introduction. The remainder of the specifica-
tion is identical to that presented in Table 2. The results of these regressions are presented in Table
5. Estimates of the coefficients on the interaction of LED introduction with all measures of tem-
perature are positive, statistically significant, and large in magnitude relative to the main effects of
temperature. The estimates overall provide strong evidence that the partial replacement of incan-
descent bulbs with LED bulbs significantly offset the negative impact temperature on production
efficiency.

The results in column 1 indicate that the introduction of LED lighting offsets .15 percentage
points in efficiency loss for each degree of the heat index. This amounts to roughly a 75% reduction
in the impact of temperature on efficiency. The final row of Table 4 shows that the impact of
temperature on efficiency net of attenuation from LED introduction is only weakly negative and
insignificant. Estimates in columns 2 through 4 using alternate measures of temperature are very
similar: LED introduction reduces the negative effects of temperature by 75-93% leading to a
insignificant, weakly negative net impact of temperature on efficiency.

While we may not necessarily expect that LED has as strong a mitigative effect on the impacts
of lagged temperature, we are not able to explicitly test for this effect. In the data, there is insuffi-
cient independent variation in the interaction of LED with the 1 week lagged mean of temperature
once we control for the interaction of the contemporaneous temperature with LED. Given the lack
of evidence for effects of contemporaneous temperature on attendance, we do not report results
from regressions of attendance on the interaction of lagged temperature with LED introduction.12

5.2.1 Distributional Impacts of Temperature

In Table 6, we investigate the degree to which the temperature-efficiency gradient has different
slopes above and below the median of the temperature distribution, and accordingly, the degree
to which the mitigative impact of LED is more strongly realized at above or below median tem-
peratures. The regressions reported in Table 6 are identical to those in the first columns of Tables
2 and 5, with added triple interactions of heat index, LED, and dummies for temperatures below

12The results show no evidence of a role for LED and are available upon request.
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and above the median. The main effect of the below median dummy is omitted to preserve the
constant.

The results suggest that indeed the slope of the temperature-efficiency gradient is steeper be-
low the median. As might be expected, the mitigative impact of LED appears to be strongest
for below median temperatures as well. These results could perhaps indicate that at sufficiently
high temperatures the reduction in indoor temperature due to LED lighting replacement is less
noticeable.

5.3 Exogeneity of LED Introduction

In Table 7, we report results from checks of the exogeneity of the timing of the roll-out of LED
bulb replacement across factory units. To the degree that temperature deviations from monthly
means are plausibly exogenous, we do not necessarily need LED roll-out to also be exogenous in
order to interpret the coefficient on the interaction of LED introduction and temperature in the
main results as causal. That is, any correlation of LED introduction timing with unobservable
determinants of efficiency across factories or over time ought to be addressed by the inclusion of
the main effect of LED introduction, so long as these unobservables are orthogonal to temperature
deviations within month. Furthermore, as mentioned in section 2, senior managers at the garment
factories indicated that LED introduction was driven mostly by efforts to comply with changing
environmental policies of the companies of specific buyers.

Nevertheless, for the sake of interpretation and external validity, we investigate determinants
of the timing of LED introduction. Specifically, we investigate the degree to which budgeted effi-
ciency and scheduled quantity predict LED introduction. That is, to the extent that LED replace-
ment is, for example, more likely during lean production times or less likely during the production
of large orders from important buyers, these will be reflected in the scheduled quantity and bud-
geted efficiency for the days leading up to LED introduction.

We first plot budgeted efficiency against the date relative to LED introduction using data from
the quarters before and after LED introduction for each factory unit. This plot is presented in
Figure 5 and shows no clear evidence of abnormal trends in budgeted efficiency leading up to
LED introduction. Next, we perform the regression analog to Figure 5 by regressing budgeted
efficiency on the date relative to LED introduction, again including the usual fixed effects. The
results of this regression are reported in column 1 of Table 7 and provide no evidence of any
correlation.

We then repeat both exercises for scheduled quantity. The plot of scheduled quantity against
the date relative to LED introduction is presented in Figure 6. The results from the analogous
regression are reported in columns 2 of Table 6. Both further support the exogeneity of the intro-
duction of LED lighting.
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FIGURE 5: EFFICIENCY BY DATE RELATIVE TO LED INTRODUCTION
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FIGURE 6: SCHEDULED QUANTITY BY DATE RELATIVE TO LED INTRODUCTION
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6 Discussion

The promise of climate change mitigation is tempered by the willingness of individuals and firms
to adopt these beneficial technologies on a large scale. This willingness, in turn, is a function of the
private returns to adoption, which, for most mitigation strategies, are cited as low or negative even
when the public benefits are large. In this study, we show that the introduction of energy-saving
LED lighting in Indian garment factories has substantial productivity co-benefits. In particular,
the introduction of LEDs eliminates 75% percent of the negative impact of temperature on worker
efficiency.

What are the benefit-cost implications for the firm of this productivity impact? From the coeffi-
cient estimates in Table 4, we find that, at the average daily heat index of 29.669, LED introduction
is associated with an increase in efficiency of -3.87 + (.15 x 29.669) = .58 percentage points. What
does this mean to the firm? Senior management at the firm we worked with estimated that the
profit gains for each percentage point gain in efficiency were 0.2 percentage points (a fifth of every
point gained in efficiency is translated to profit). Thus, at 1,067.58 dollars (USD), the approximate
value of profit per factory unit per operating day, LED introduction results in a profit increase of
about 41.4 USD per factory unit per operating day, or 12,922.46 USD per factory per year. This is
equivalent to about 3.9 percent of daily profit per unit. Put another way, installing LEDs results in
each factory unit “gaining” 12 additional days in profit per year.

How does this estimate change the benefit-cost calculations of LED adoption for the firm? To
begin with, we obtained energy cost-savings calculations the firm used when making its LED
adoption choices. Management estimated that the total energy and operating cost savings per
year per factory unit of LEDs (as compared with CFL bulbs, which were being used before LED
introduction) were approximately 1,83,000 rupees (INR), or about 3,000 USD. The productivity
savings we compute are more than 4 times this amount. The cost of replacing a single factory’s
bulbs to LEDs is 3,84,000 INR, or about 6,300 USD. Thus, if only energy savings were taken into
account, it would take more than 2 years to break even. But when the productivity benefits are
included, the firm breaks even within 5 months of LED introduction.

In addition to the private benefits of increased productivity and energy cost savings, the re-
placement of LED lighting has public benefits of avoided damages due to reduced carbon emis-
sions. On average, the LED replacement saves 18,000 KWh of electricity per factory unit per year,
which in this case reduces electricity emissions by about 3.73 tC emissions per unit per year.13

Valuing this reduction of carbon emissions at the Nordhaus (2008) estimate of $27/tC (a 2005 car-
bon price) gives us avoided damages of $101.23 per unit per year, and valuing this at the mean
value of the review by Tol (2005) of $93/tC yields avoided damages of $345.68 per unit per year.
Interestingly, at the current estimates of carbon prices, these benefits are relatively small in com-

13The conversion from electricity consumption to carbon emissions is done as follows: According to the CO2 Baseline
Database for the Indian Power Sector (version 8) by the Central Electricity Authority of India, a MWh of electricity
generated on the Southern grid causes 0.76 tCO2 of emissions. Thus, 18,000 KWh causes about 13.68 tCO2, or about
3.73 tC.

19



parison to the annual private benefits.14

We believe our work is an important first step in quantifying private co-benefits of climate
change mitigation strategies, but that much more needs to be done quantify the full returns to
the variety of mitigation strategies. For example, as Knittel and Sandler (2011) suggest, carbon
taxes likely have health benefits due to decreases in local air pollution. If consumers internalize
these benefits, the effective costs of the tax will be substantially lower. Whether similar co-benefits
exist for other types of mitigation – e.g., renewable energy investments, public transport systems,
energy-efficient built environments, etc. – is an open and vital question.

14Adding the corresponding reduction in local air pollutants would increase the valuation of public benefits, but
given the sparsity of accurate data regarding marginal damages of local pollutants in Bangalore, we are unable to
include this valuation in this study.
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A Additional Tables

We test the robustness of our main results–that is, the main effect of temperature on efficiency,
as well as the interaction of LED introduction and temperature–to the subtraction of a variety of
fixed effects, including month, day-of-week, production line, and unit x year. We find that the
results are very robust to these alternate fixed effects specifications, and that the coefficients on
temperature and the interaction of temperature and LED introduction are quite stable.

B Data Appendix

We have daily line-level data from 29 factories in Bangalore. To ensure accurate estimation, we re-
move extreme outlier values as well as unrepresentative days (such as Sundays) from the dataset.
The following factors are taken into consideration when deciding our final sample.

• We create a measure of the difference between the maximum and minimum date for which
each line is observed divided by the total number of days for which it is observed. This
measure essentially captures the proportion of time for which a line is observed relative to
its time in the data. We remove observations for which this proportion is strictly greater than
1 (10 lines) and less than 0.38, which is the 5th percentile of the observations. This is done to
ensure that the sample includes lines that are consistently producing, not ad hoc lines that
are sometimes set up to fulfil rush orders or orders behind schedule.

• We remove lines observed greater than twice a day, about 0.6% of our observations, since
these are likely coding errors. While it is possible that a line finished a set of orders and
moved onto producing a different style of garment midway through the day, it is not possible
that a line finished several sets of garment orders in a single day, since orders are usually for
hundreds or thousands of garments per order. For lines that are observed more than twice a
day, we consider mean actual efficiency and mean budgeted efficiency across the two styles
produced that day.

• We remove extreme outliers from the efficiency and quantity produced. We consider all ob-
servations between the 5th and 95th percentile of the efficiency measurements, which ranges
from about 3% to about 111%. After removing these values, we also trim physical quantity
produced at the 1st and 99th percentile. These decisions were taken following meetings with
the Industrial Engineering experts at the factory regarding what constitutes feasible values
of output and efficiency.

• Finally, we remove Sundays as well as days which have very few lines, since these are likely
regional holidays or days of unrepresentatively low productivity. We consider only days for
which 117 or more lines are present in the data (the 1st percentile of observations).
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Number  of  line-‐‑day  observations
Number  of  lines
Number  of  days
Number  of  units

Mean SD Mean SD Mean SD
Weather
          Temperature  (degree  Celsius) 27.599 2.786 27.441 2.730 27.679 2.811
          Relative  Humidity  (%) 67.418 11.159 68.423 11.380 66.913 11.012
          Wet  Bulb  Globe  Temperature  (degree  Celsius) 24.348 1.921 24.289 1.903 24.377 1.929
          Heat  Index  (degree  Celsius) 29.669 4.026 29.502 4.039 29.752 4.016

Production
          Actual  Efficiency 53.411 21.452 52.054 21.411 54.095 21.440
          Budgeted  Efficiency 61.929 11.364 63.325 10.490 61.226 11.717

446
941
29

Whole  Sample Without  LED With  LED

214,968 71,969 142,999

Table  1
Summary  Statistics:  Weather,  Production,  and  LED  Introduction

(1) (2) (5)



Panel  A:  Whole  Sample (1) (2) (3) (4)

Heat  Index -‐‑0.102***
(0.0388)

Wet  Bulb  Globe  Temperature -‐‑0.170**
(0.0680)

Temperature -‐‑0.152*** -‐‑0.135**
(0.0591) (0.0590)

Relative  Humidity 0.0622
(0.0513)

Fixed  Effects

Observations 214,968 214,968 214,968 214,968
R-‐‑squared 0.209 0.209 0.209 0.209

Panel  B:  Without  LED (1) (2) (3) (4)

Heat  Index -‐‑0.161***
(0.0587)

Wet  Bulb  Globe  Temperature -‐‑0.263**
(0.109)

Temperature -‐‑0.232** -‐‑0.211**
(0.0963) (0.0970)

0.0980
Relative  Humidity (0.0887)

Fixed  Effects

Observations 71,969 71,969 71,969 71,969
R-‐‑squared 0.228 0.229 0.228 0.229

Month,  Day  of  Week,  Factory  x  Year,  Production  Line

Notes:  Cameron,  Gelbach,  Miller  (2011)  two-‐‑way  clustered  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  
production  line  and  day  level.    All  measures  of  temperature  are  in  degree  Celsius.  All  regressions  include  daily  budgeted  efficiency  as  a  control  
variable.

Actual  Efficiency
(Actual  Production  /  Targeted  Production)

Table  2

Actual  Efficiency
(Actual  Production  /  Targeted  Production)

Impact  of  Temperature  on  Production  Efficiency

Month,  Day  of  Week,  Factory  x  Year,  Production  Line



Panel  A:  Whole  Sample (1) (2) (3) (4)

Heat  Index -‐‑0.0744*
(0.0392)

Heat  Index  (1  Week  Lag) -‐‑0.115*
(0.0587)

Wet  Bulb  Globe  Temperature -‐‑0.133*
(0.0718)

Wet  Bulb  Globe  Temperature  (1  Week  Lag) -‐‑0.183
(0.116)

Temperature -‐‑0.114* -‐‑0.108*
(0.0632) (0.0623)

Temperature  (1  Week  Lag) -‐‑0.154 -‐‑0.129
(0.0950) (0.0982)

Relative  Humidity 0.0477
(0.0528)

Fixed  Effects

Observations 214,968 214,969 214,968 214,968
R-‐‑squared 0.209 0.210 0.209 0.209

Panel  B:  Without  LED (1) (2) (3) (4)

Heat  Index -‐‑0.103*
(0.0593)

Heat  Index  (1  Week  Lag) -‐‑0.260***
(0.0883)

Wet  Bulb  Globe  Temperature -‐‑0.177
(0.111)

Wet  Bulb  Globe  Temperature  (1  Week  Lag) -‐‑0.462***
(0.178)

Temperature -‐‑0.155 -‐‑0.147
(0.0984) (0.0994)

Temperature  (1  Week  Lag) -‐‑0.340** -‐‑0.312**
(0.149) (0.154)

Relative  Humidity 0.0980
(0.0887)

Fixed  Effects

Observations 71,969 71,970 71,969 71,970
R-‐‑squared 0.229 0.230 0.229 0.230

Actual  Efficiency
(Actual  Production  /  Targeted  Production)

Month,  Day  of  Week,  Factory  x  Year,  Production  Line

Notes:  Cameron,  Gelbach,  Miller  (2011)  two-‐‑way  clustered  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  production  line  and  day  level.    All  measures  of  
temperature  are  in  degree  Celsius.  All  regressions  include  daily  budgeted  efficiency  as  a  control  variable.

Month,  Day  of  Week,  Factory  x  Year,  Production  Line

Table  3
Impact  of  Lagged  Temperature  on  Production  Efficiency

Actual  Efficiency
(Actual  Production  /  Targeted  Production)



Panel  A:  Whole  Sample (1) (2) (3) (4)

Heat  Index -‐‑1.03e-‐‑05
(0.000776)

Heat  Index  (1  Week  Lag) -‐‑0.00194*
(0.00114)

Wet  Bulb  Globe  Temperature -‐‑0.000361
(0.00152)

Wet  Bulb  Globe  Temperature  (1  Week  Lag) -‐‑0.00555**
(0.00228)

Temperature -‐‑0.000202 -‐‑0.000328
(0.00130) (0.00133)

Temperature  (1  Week  Lag) -‐‑0.00520*** -‐‑0.00560***
(0.00200) (0.00189)

Relative  Humidity -‐‑0.000828
(0.000917)

Fixed  Effects

Observations 25,894,156 25,894,156 25,980,894 25,980,894
R-‐‑squared 0.004 0.004 0.004 0.004

Panel  B:  Without  LED (1) (2) (3) (4)

Heat  Index 0.000896
(0.000631)

Heat  Index  (1  Week  Lag) -‐‑0.00194*
(0.00105)

Wet  Bulb  Globe  Temperature 0.00124
(0.00128)

Wet  Bulb  Globe  Temperature  (1  Week  Lag) -‐‑0.00560**
(0.00221)

Temperature 0.00130 0.00112
(0.00112) (0.00114)

Temperature  (1  Week  Lag) -‐‑0.00556*** -‐‑0.00599***
(0.00203) (0.00196)

Relative  Humidity -‐‑0.00195**
(0.000877)

Fixed  Effects

Observations 7,630,496 7,630,496 7,630,496 7,630,496
R-‐‑squared 0.005 0.005 0.005 0.005

Attendance
1(Present  for  Full  Work  Day)

Month,  Day  of  Week,  Factory  x  Year

Notes:  Cameron,  Gelbach,  Miller  (2011)  two-‐‑way  clustered  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  individual  and  day  level.    All  
measures  of  temperature  are  in  degree  Celsius.

Month,  Day  of  Week,  Factory  x  Year

Table  4
Impact  of  Lagged  Temperature  on  Attendance

Attendance
1(Present  for  Full  Work  Day)



(1) (2) (3) (4)

Heat  Index  X  LED 0.150**
(0.0608)

Wet  Bulb  Globe  Temperature  x  LED 0.415***
(0.123)

Temperature  x  LED 0.237** 0.244**
(0.102) (0.102)

Heat  Index -‐‑0.199***
(0.0535)

Wet  Bulb  Globe  Temperature -‐‑0.446***
(0.104)

Temperature -‐‑0.314*** -‐‑0.300***
(0.0899) (0.0903)

LED -‐‑3.870** -‐‑9.493*** -‐‑5.917** -‐‑6.117**
(1.918) (3.047) (2.900) (2.891)

Relative  Humidity 0.0712
(0.0513)

Fixed  Effects

Observations 214,968 214,968 214,968 214,968
R-‐‑squared 0.209 0.209 0.209 0.209

Temperature  Impacts  Net  of  LED -‐‑0.049 -‐‑0.031 -‐‑0.078 -‐‑0.056
(.045) (0.082) (0.069) (0.068)

Notes:  Cameron,  Gelbach,  Miller  (2011)  two-‐‑way  clustered  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  production  line  and  
day  level.    All  measures  of  temperature  are  in  degree  Celsius.  All  regressions  include  daily  budgeted  efficiency  as  a  control  variable.

LED  Lighting  and  the  Temperature-‐‑Productivity  Gradient
Table  5

Month,  Day  of  Week,  Factory  x  Year,  Production  Line

(Actual  Production  /  Targeted  Production)
Actual  Efficiency



(1) (2) (3)

  Whole  Sample Without  LED   Whole  Sample

Heat  Index  x  1(Above  Median) -‐‑0.121*** -‐‑0.261*** -‐‑0.288***
(0.0460) (0.0728) (0.0706)

Heat  Index  x  1(Below  Median) -‐‑0.130** -‐‑0.303*** -‐‑0.187
(0.0521) (0.0871) (0.134)

Heat  Index  x  1(Above  Median)  x  LED 0.170**
(0.0803)

Heat  Index  x  1(Below  Median)  x  LED 0.299*
(0.161)

Fixed  Effects

Observations 214,968 71,969 214,968
R-‐‑squared 0.209 0.228 0.209

Impacts  on  Production  Efficiency  and  LED  Attenuation  (Above  and  Below  Median  Temperature)
Table  6

Actual  Efficiency
(Actual  Production  /  Targeted  Production)

Notes:  Cameron,  Gelbach,  Miller  (2011)  two-‐‑way  clustered  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  production  line  and  day  level.  
Heat  Index  is  measured  in  degree  Celsius.  All  regressions  include  daily  budgeted  efficiency  as  a  control  variable.  Column  3  also  includes  additional  regressors:  1(Above  Median)  x  
LED,    1(Below  Median)  x  LED  and  1(Above  Median)  .

Month,  Day  of  Week,  Factory  x  Year,  Production  Line



(1) (2)

Budgeted  Efficiency Scheduled  Quantity

Date  Relative  to  LED  Introduction -‐‑0.00563 32.97
(0.00566) (110.9)

Fixed  Effects

Observations 214,968 185,383
R-‐‑squared 0.288 0.352

Notes:  Cameron,  Gelbach,  Miller  (2011)  two-‐‑way  clustered  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  
production  line  and  date  level.

Table  7
Checks  for  Exogeneity  of  LED  Roll-‐‑Out

Month,  Day  of  Week,  Factory  x  Year,  Production  Line



Cost  of  Implementation  (one-‐‑time)
          Investment  per  bulb  (bulb,  wiring,  etc.) $8.53
          Number  of  bulbs  replaced  per  factory  unit 1000
Total  Cost  of  Implementation $8,533.33

Energy  and  Maintenance  Savings  (per  year)
          Power  consumption  savings  per  bulb $2.40
          Reduced  replacement  cost  of  incandescent  bulb
          Number  of  bulbs  replaced 1000.000
Total  Energy  and  Maintenance  Savings $2,400.00

Efficiency  Savings  (per  year)
Average  profit  gain  in  USD  from  LED-‐‑caused  temperature  reductions  per  factory  unit  per  year $3,340.00

Total  Net  Savings  from  LED  Adoption  in  the  first  year -‐‑$2,793.33
Total  Net  Savings  from  LED  Adoption  in  the  second  year $2,673.34

Carbon  (Public)  Benefits  from  LED  adoption  (at  $27/tC) $101.23
Carbon  (Public)  Benefits  from  LED  adoption  (at  $93/tC) $345.68

Notes:  For  details  on  the  calculation  of  carbon  benefits,  please  refer  to  the  Conclusion  section.

Table  8
Cost-‐‑Benefit  Calculations  for  LED  Adoption



Panel  A:  Main  Impact  of  Temperature (1) (2) (3)

Heat  Index -‐‑0.0763** -‐‑0.0957*** -‐‑0.0969***
(0.0324) (0.0324) (0.0367)

Fixed  Effects None Year,  Month,  Day  of  Week
Year,  Month,  Day  of  Week,  
Line  No

Observations 214,968 214,968 214,968
R-‐‑squared 0.099 0.108 0.186

Panel  B:  Impact  of  LED (1) (2) (3)

Heat  Index  X  LED 0.166** 0.184*** 0.113*
(0.0684) (0.0664) (0.0666)

Heat  Index -‐‑0.197*** -‐‑0.211*** -‐‑0.171***
(0.0614) (0.0542) (0.0558)

LED -‐‑1.585 -‐‑0.865 -‐‑3.396*
(2.111) (2.062) (2.004)

Fixed  Effects None Year,  Month,  Day  of  Week
Year,  Month,  Day  of  Week,  
Line  No

Observations 214,968 214,968 214,968
R-‐‑squared 0.105 0.117 0.186

(Actual  Production  /  Targeted  Production)

Notes:  Cameron,  Gelbach,  Miller  (2011)  two-‐‑way  clustered  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  production  line  
and  month  level.    All  measures  of  temperature  are  in  degree  Celsius.  All  regressions  include  daily  budgeted  efficiency  as  a  control  variable.

Actual  Efficiency

Table  A
Alternative  Regression  Specifications

Actual  Efficiency
(Actual  Production  /  Targeted  Production)
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