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Abstract

This paper introduces a dynamic approach for estimating the sources of ag-
glomeration economies. Our framework allows us to simultaneously estimate
the importance of agglomeration forces due to (1) cross-industry spillovers,
(2) within-industry spillovers, and (3) overall city-size on the growth of city-
industries. This is done while controlling for fixed locational fundamentals,
city-specific shocks, and national industry growth rates. We implement the ap-
proach using detailed new data describing the industry composition of English
cities from 1851-1911. We find strong evidence that cross-industry connections
can influence industry growth, particularly for industries with small firms and
more skilled workers. Within-industry effects are not present for most indus-
tries, but may be important in a small number of sectors characterized by large
firms and low-skilled workers. Once we control for the role of industry composi-
tion, we find a strong negative relationship between city size and city-industry
growth rates.
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1 Introduction

At the heart of many theories of urban agglomeration lies the idea that firms benefit

from proximity to one other. These localized benefits could take many forms, such

as input-output connections, the benefits of sharing common labor pools, or the ex-

change of knowledge spillovers (Marshall (1890)). These benefits may be shared by

firms within the same industry, they may flow between particular industry pairs, or

the benefits may be due to overall city size and diversity.1 Balancing these localized

benefits in leading urban models are the costs of firm proximity, through increased

competition for local consumers or congestion in the use of local inputs. Recently

researchers have made important advances in understanding some of these agglom-

eration forces.2 Yet important questions remain unanswered. How important are

spillovers occurring within industries relative to spillovers flowing across industries?

How do these benefits compare to the cost of proximity arising through congestion

or competition? How can we separate all of these features from the fixed locational

advantages of cities?

This study attempts to shed new light on these questions by introducing a dy-

namic panel-data approach. We begin by constructing a new set of city-industry

panel data. Using these data, we investigate the extent to which employment growth

in any industry i is influenced by the initial size of that industry, by spillovers from

other industries through channels such as input-output connections, and by the ini-

tial size of the city overall. We calculate these relationships while controlling for

time-varying industry-specific shocks at the national level as well as time-varying

city-specific shocks. This approach offers several advantages over the static approach

taken in other recent studies. First, using a dynamic approach allows us to deal with

concerns about fixed locational fundamentals that affect the size of a city-industry.

Dealing with fixed locational fundamentals has been a key challenge in the agglom-

eration literature. Existing studies generally rely on constructing measures of key

locational fundamentals that can be used as control variables. But with panel data

we can deal flexibly with any fixed locational features. A second advantage of our

approach is that we can look at multiple channels – within-industry spillovers, cross-

1Glaeser et al. (1992) refer to within-industry and across industry spillovers as, respectively,
Marshall-Arrow-Romer spillovers and Jacobs spillovers.

2Major recent contributions include Ellison et al. (2010), Greenstone et al. (2010), both of which
focus on identifying the channels that drive inter-industry spillovers.
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industry spillovers, city-size effects – at the same time. In contrast, recent studies

have generally focused on one, or at most two, of these stories at once. Moreover, we

can be more flexible when analyzing cross-industry spillovers, by allowing spillovers

from industry i to j to differ from spillovers from j to i.3

Our primary data come from Britain and cover 25 of the largest English cities

(based on 1851 population) for the period 1851-1911 (currently being extended to

later years). Within each city, we construct employment for 27 industry groups.

These industries span nearly the entire private sector economy, including services, so

we can go beyond an analysis of manufacturing alone. As we will discuss, these data

are unique in providing a high level of detail over such a long time period and a wide

set of cities and industries. A second advantage offered by this setting is that we are

able to look at a system of cities that should be near equilibrium.4 A third advantage

is that government intervention was insignificant, due largely to the limited size of

the central government and the strong laissez-faire ideology that was dominant in

Britain over most of this period.

Our estimation strategy is motivated by a simple model of city-industry growth.

In the model, productivity growth in a city-industry in a period is determined by

within and across-industry spillovers which depend on the level of initial employment

in the spillover-producing industries in that period. In any period, the model is in

spatial equilibrium and trade is costless, so more rapid productivity growth is reflected

in industry employment. This main contribution of this theory is that it disciplines

the empirical specification.

In estimating the relationship between employment in industry j in a city and the

subsequent growth of industry i in the city, we may be concerned that employment

in industry j is affected by factors that also affect growth in industry i,, such as

spillovers from i to j in the previous period. We deal with this concern by using

an approach suggested by Bartik (1991).5 We use industry growth at the national

level multiplied by lagged industry employment to generate predicted employment in

industry j in a period. This predicted employment level is then used as an instrument

for actual employment in industry j. Put another way, we take advantage of the

3This is not possible in the coagglomeration approach offered by Ellison et al. (2010).
4This contrasts with the system of cities in the U.S., where the same period was characterized by

huge shifts toward the West, as well as the integration of the South into the national labor market.
5The Bartik approach is commonly used in studies in this literature. One recent example is

Diamond (2012).
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national industry growth rate to generate predicted industry employment levels within

a city that are plausibly exogenous to local spillovers in the previous period. We

apply the same methodology when we estimate the relationship between employment

in industry j in a city and the subsequent growth of that industry.

It is not possible to estimate the full matrix of inter-industry spillovers because

of the large number of coefficients involved. Thus, it is necessary to look for chan-

nels through which information is likely to flow between industries, and then use

these channels to parameterize the inter-industry spillover terms. Previous research

has suggested that information flows between firms that buy or sell to one another

(see, e.g., Javorcik (2004) or Kugler (2006)) or through worker flows (see, e.g., Poole

(2013) and Balsvik (2011)). Thus, we use input-output connections and industry

occupational similarity to parameterize our cross-industry spillover terms.6

Our main results can be divided into those related to cross-industry spillovers,

within-industry spillovers, and city-size effects. For cross-industry spillovers, we find

strong evidence of dynamic effects. These operate primarily through forward link-

ages; employment in an industry grows more rapidly in cities in which many of that

industry’s suppliers are present. We also find some evidence of positive labor market

pooling benefits, i.e., employment in an industry tends to grow more rapidly in cities

with other industries that employ similar worker types. We find no evidence of posi-

tive effects occurring through backward linkages and some evidence that these effects

may actually be negative. In other words, industries seem to grow more rapidly when

more of their buyers are located outside of their city. This may suggest that rapid

growth requires industries to look beyond supplying local consumers. Unpacking

these results, we show that cross-industry spillovers have larger employment effects

in tradable industries, and that they are stronger in industries with smaller firms and

more educated workers.

On average, we find little evidence of positive within-industry spillovers, though

there is substantial heterogeneity across industries. In most cases, the larger the is an

industry at the beginning of a period, the slower it will grow. This is consistent with

local competition forces outweighing positive localized spillover benefits. In contrast,

a small number of industries, such as shipbuilding and textiles, do show positive and

statistically significant within-industry benefits. The industries exhibiting positive

6This approach is similar to that used in Ellison et al. (2010), but because we are looking at
dynamic effects, the motivation is slightly different.
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within-industry spillovers are characterized by large average firm sizes, a high degree

of spatial agglomeration, and less educated workforces.

For city size, we find strong evidence that, all else equal, industries grow more

slowly in larger cities. Thus, we find no support for (dynamic) urbanization economies

and strong evidence of congestion forces operating at the city level. At the same time,

city growth is unrelated to initial city size, consistent with Gibrat’s Law. In short, the

negative congestion force generated by city size is balanced by the positive localized

spillovers operating within and across industries in cities.

While the results described above focus on effects occurring within cities, we can

extend our analysis to consider cross-city effects adjusting for the the distance from

each city to the other cities in our sample. Specifically, we focus on how city-industry

growth is affected by (1) access to consumers in other nearby cities and (2) cross-

industry spillovers from other nearby cities. We find some evidence that city-industry

growth is positively related to market access to other nearby cities, calculated using

the distance weighted population of those cities. This result is consistent with Hanson

(2005). We also find some evidence of cross-city cross-industry spillovers occurring

between industries with similar labor forces. However, these effects are an order of

magnitude smaller than the effect of spillovers within a city.

This project is related to a substantial literature investigating agglomeration

forces. One strand of this literature, motivated by the endogenous growth literature,

focuses on estimating the dynamic agglomeration forces generated by city charcter-

istics, such as size and industrial specialization or diversity (Glaeser et al. (1992),

Henderson et al. (1995)).7 The standard approach is to compare long-differenced

growth of industry employment in a selection of industries in U.S. cities to fairly

course measures of city features, such as industry concentration or a city’s industrial

diversity, in the base year. A more recent contribution to this literature, Henderson

(2003), extends this approach using firm-level panel data.

A second and more recent strand of the literature exploits data on the structure

connections between industries, such as input-output flows, labor force similarity, and

measures of technological spillovers, in order to identify the channels that generate

these agglomeration forces (Rosenthal & Strange (2001), Ellison et al. (2010), Faggio

et al. (2013)). These studies use cross-sectional data and therefor focused on levels,

7A related paper, Kim (1995), focuses on similar issues at the regional level.
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rather than growth effects. A concern with this cross-sectional approach is the role of

fixed locational feathers. To deal with this, current studies include a vector of control

variables representing a variety of locational features.

A third strand of related literature focuses on identifying the causal impact of

changes in local economic activity on either productivity or employment (Greenstone

et al. (2010) and Hanlon (2013)). These studies compare similar outcomes in similar

locations, where some locations receive a plausably exogenous shock to the level of

local economic activity. As a result, these studies are able to more clearly identify

causal relationships, but only in special conditions.

Our study sits at the intersection of these three strands. We are interested in

identifying dynamic agglomeration forces while at the same time shedding light on the

channels that generate these effects. In terms of identification, we view our panel data

approach and use of Bartic-style instrumentation as an improvement over previous

studies looking at the broad econonomy. Identification using this approach is likely to

be less clean than in studies utilizing natural experiments, but at the same time our

approach has broader aplicability. Thus, we view our approach as complementary to

previous studies focused on identifying causal links in more specific contexts. Finally,

we are particularly interested in heterogeneity across industries in the importance of

differetn agglomeration forces, a feature highlighted in a number of the studies cited

above.8

The next section presents a simple theory of city-industry growth with inter-

industry spillovers that is used to motivate our empirical specification. Section 3

describes the data. Our primary analysis, based on the British city-industry data

set, is in Section 4 and Section 5 presents our main results. Section 6 extends the

analysis to mechanisms that may operate across, rather than within, cities. Section

7 concludes.

8Studies were heterogeneity in the role of agglomeration forces across industries plays an impor-
tant role include, among others, Henderson et al. (1995), Audretsch & Feldman (1996), Henderson
(2003) and Faggio et al. (2013).
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2 Theory

In this section we build a simple model of city growth incorporating localized spillovers

within and across industries. The model clarifies the key forces that we are interested

in and generates the empirical specification that we will take to the data. Since

most of the elements of the model drawn directly from the existing literature, our

description will be brief.

The theory focuses on localized spillovers that affect industry technology, and

thereby influence industry growth rates. These dynamic effects are our primary object

of interest. In order to keep things simple, we abstract from other localized factors

that will affect the level of industry employment, such as the availability of cheaper

inputs or the benefits of a larger labor pool.

The model is dynamic in discrete time. The dynamics of the model are driven by

spillovers within and across industries which depend on industry employment and a

matrix of parameters reflecting the extent to which any industry benefits from learn-

ing generated by employment in other industries (i.e., learning-by-doing spillovers).

Because these dynamic effects are external to firms, they will not influence the static

allocation of economic activity across space that is obtained given a distribution of

technology levels. Thus, we can begin by focusing on the allocation of economic ac-

tivity across space in any particular period. We then consider how the allocation in

one period affects the evolution of technology and thus, the allocation of employment

across city-industries in the next period.

2.1 Allocation within a static period

We begin by describing how the model allocates population and economic activity

across geographic space within a static period, taking technology levels as given. The

model economy is composed of many locations indexed by c = {1, ...N}. There are

many industries indexed by i = {1, ...I}. Each industry produces one final good

so final goods are also indexed by i. For simplicity, we assume that there are no

transport costs required to move goods between locations, so each good will have the

same price in every location.

Individuals are identical in all locations and, within any period, they consume

an index of final goods given by Dt. The corresponding price index is Pt. The
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consumption idex takes a CES form,

Dt =

(∑
i

γitx
ρ
it

) 1
ρ

, Pt =

(∑
i

γσitp
1−σ
it

) 1
1−σ

where xi is the quantity of good i consumed, γit is a distribution parameter that

determines how important are the different final goods to consumers, pit is the price

of final good i, and σ is the (constant) elasticity of substitution between final goods.

Note that we allow for changes in these preference parameters over time. It follows

that the overall demand for any final good is,

xit = DtP
σ
t p
−σ
it γ

σ
it. (1)

Production is undertaken by many perfectly competitive firms in each industry,

indexed by f . Output by firm f in industry i is given by,

xicft = AictL
α
icftK

1−α
icft , (2)

where Aict is technology, Licft is labor input, and Kicft is another input which we

call resources. One important thing to note in this equation is that technology is

not specific to any particular firm but that it is specific to each industry-location.

This represents the idea that within industry-locations, firms are able to monitor and

copy their competitors relatively easily, while information flows more slowly across

locations.

Labor can move costlesly across locations to achieve spatial equilibrium. This

is a standard assumption in urban economics models and one that is likely satisfied

over the long time periods that we consider. The overall labor supply of labor to the

economy is allowed to vary subject only to the fixed outside option wage w̄t available

to potential migrants. This reflects the fact that more successful cities (and countries)

will attract migrants, but also that the wage needed to attract immigrants may vary

over time.9

We also want to incorporate city-specific factors into our framework. Here we have

9One can think of this either as the wage that must be offered to immigrants or to a wage that
is sufficient to attract labor to move from rural areas into the city.
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in mind city-wide congestions forces, such as the price of housing, city-wide amenities,

as well as the quality of city institutions. We incorporate these features by including

a term λct > 0 that represents a location-specific factor that affects the firm’s cost

of employing labor. The effective wage rate paid by firms in location c is then w̄λct.

When λct < 1, the location is providing benefits that (net of their cost) increase the

desirability of living in the city and thus reduce the effective wage rate. In contrast,

values of λct > 1 represent inefficient cities that increase the effective wage rate paid

by firms in that location. In practice, this term will capture any fixed or time-varying

city amenities or disamenities that affect all industries in the city.

In contrast to labor, resources are fixed geographically. They are also industry-

specific, so that in equilibrium
∑
f Kicft = K̄ic, where K̄ic is fixed for each industry-

location and does not vary across time, though the level of K̄ic does vary across

locations. These fixed resources will be important for generating an initial distribution

of industries across cities in our model, and allowing multiple cities to compete in the

same industries in any period.

Firms solve:

max
Licft,Kicft

pitAictL
α
icftK

1−α
icft − w̄tλctLicft − rictKicft.

Using the first order conditions, and summing over all firms in the industry-

location, we obtain the following expression for employment in industry i and location

c:

Lict = A
1

1−α
ict p

1
1−α
it

(
α

w̄tλct

) 1
1−α

K̄ic. (3)

This expression tells us that employment in any industry i and location c will de-

pend on technology in that industry-location, the fixed resource endowment for that

industry-location, factors that affect the industry in all locations (pit), city-specific

factors (λct), and factors that affect the economy as a whole (w̄t).

To close the static model, we need only ensure that income in the economy is

equal to expenditures. This occurs when,

DtPt +Mt = w̄t
∑
c

λct
∑
i

Lict +
∑
i

∑
c

rictK̄ic.
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where Mt represents net expenditures on imports. For a closed economy model we

can set Mt to zero and then solve for the equilibrium price levels in the economy.10

Alternatively, we can consider a (small) open economy case where prices are given

and solve for Mt. We are agnostic between these two approaches.

2.2 Dynamics: Technology growth over time

Technological progress in the model occurs through localized learning-by-doing spillovers.

It is important that these spillovers are external to firms, so that firms are not forward

looking when making their employment decisions within any particular period. We

believe that this is a reasonable assumption over the long time-line that we consider,

and it serves to greatly simplify the model.

Following the existing literature, we write the growth rate in technology as,

ln
(
Aict+1

Aict

)
= Sict + εict, (4)

where Sict represent the amount of spillovers available in a city-industry in period t.11

Some of the factors that we might consider are:

Sict = f
(

within-industry spillovers, cross-industry spillovers,

national industry technology growth, city-level aggregate spillovers
)
.

We can use Equation 4 to translate the growth in (unobservable) city-industry

technology into the growth of (observable) city-industry employment. Starting with

10To solve for the price levels in the closed economy case, we use the first order conditions from
the firm’s maximization problem and Equation 3 to obtain,

pit =

(
α

w̄t

) α
ασ−α−σ

(∑
c

A
1

1−α

ict K̄icλ
α

α−1

ct

) 1−α
ασ−α−σ

(DtP
σ
t )

α−1
ασ−α−σ γ

σ(α−1)
ασ−α−σ

it .

This equation tells us that in the closed-economy case, changes in the price level for goods produced
by industry i will depend on both shifts in the level of demand for goods produced by industry i
represented by γit, as well as changes in the overall level of technology in that industry (adjusted
for resource abundance), represented by the summation over Aict terms.

11This formulation exactly matches that used in Glaeser et al. (1992) (Equation 6).
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Equation 3 for period t+ 1, taking logs, and plugging in 4, we obtain,

ln(Lict+1) =

(
1

1− α

)
ln(Aict) +

(
1

1− α

)
Sict +

(
1

1− α

)
ln(Pit+1) +

(
1

1− α

)
ln(α)

−
(

1

1− α

)
ln(λct+1)−

(
1

1− α

)
ln(w̄t+1) + ln(K̄ic) +

(
1

1− α

)
εict.

Next, we use Equation 3 for period t, in logs, to substitute out Aict in the expression

above, in order to obtain,

ln(Lict+1)− ln(Lict) =

(
1

1− α

)[
Sict +

[
ln(Pit+1)− ln(Pit)

]
+

[
ln(λct+1)− ln(λct)

]
+
[

ln(w̄t+1)− ln(w̄t)
]

+ eict

]
.

where eict = εict+1 − εict is the error term.

The last step towards obtaining a usable basis for our empirical specification

involves placing more structure on the spillovers term. Existing empirical evidence

provides little guidance on what form this function should take, so here we follow the

existing literature and take a fairly simple approach in which technology growth is a

linear function of the sum of spillovers, so that

Sict =
∑
k

τki ln(Lkct) + ξit + ψct

where each τki ∈ (0, 1) is a parameter that determines the level of spillovers from

industry k to industry i. While admittedly arbitrary, this functional form does in-

corporates a number of desirable features. First, if there is very little employment in

industry k in location c (e.g., Lkct = 1), then that industry makes no contribution

to technology growth in industry i. Similarly, if τki = 0 then industry k makes no

contribution to technology growth in industry i. This specification does require that

all industries have positive employment levels, such that Lict ≥ 1. As this is the case

in the data we consider, we do not view this as an issue. This functional form also

rules out complementarity between technological spillovers from different industries.
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While such complementarities may exist, they are beyond the scope of the current

paper. One thing to note about Equation 4 is that it will exhibit scale effects. While

this may be a concern in other types of models, it is a desirable feature in a model

of agglomeration economies, where these positive scale effects will be balanced by

offsetting congestion forces.

Plugging this in, we obtain,

ln(Lict+1)− ln(Lict) =

(
1

1− α

)[
τii ln(Lict) +

∑
k 6=i

τki ln(Lkct) + ξit + ψct

+
[

ln(Pit+1)− ln(Pit)
]

+
[

ln(λct+1)− ln(λct)
]

(5)

+
[

ln(w̄t+1)− ln(w̄t)
]

+ eict

]
.

To highlight that this expression incorporates both within and cross-industry

spillovers, we have pulled the within-industry spillover term out of the summation.

This equation expresses the change in log employment in industry i and location c

in terms of (1) within-industry spillovers generated by employment in industry i, (2)

cross-industry spillovers from other industries, (3) national industry-specific factors

that affect industry i in all locations, (4) city-specific factors that affect all industries

in a location, and (5) aggregate changes in the wage (and thus national labor supply)

that affects all industries and locations.

This expression for city-industry growth will motivate our empirical specification.

One feature that is worth noting here is that we have two factors, city-level aggregate

spillovers (ψct) and other time-varying city factors (λct), both of which vary at the

city-year level. Empirically we will not be able to separate these positive and negative

effects and so we will only be able to identify their net impact. Similarly, we cannot

separate positive and negative effects that vary at the industry-year level.
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3 Data

3.1 The British city-industry database

Our main database is drawn from the British Census of Population summary reports

which were prepared by the Census Office. These data were collected by trained

registrars during a relatively short time period, usually a few days in April of each

census year. As part of the census, individuals were asked to provide one or more

occupation. The primary occupation listed on the individual forms were then tabu-

lated by the Census and summary reports were provided in printed format. To build

our database we digitized hundreds of pages of printed documents.12

The cities included in the database are those that had a population of 50,000 or

more in the 1851 census within the municipal boundaries.13 To this were added a set

of slightly smaller towns in Lancashire and Yorkshire for which data were previously

available from Hanlon (2013). These towns are Blackburn, Halifax and Huddersfield.14

This means that our database is slightly oversampling industrial cities. While the

population of London was sometimes reported separately by borough, London is

treated as one metropolitan area in the database. The geographic extent of these

cities does change over time as the cities grow, a feature that we view as desirable for

the purposes of our study15.

Table 1 provides a list of the cities included in our main database, as well as

the 1851 population of each city, the number of workers in the city in 1851, and the

number of workers in 1851 that are working in one of the industry groups used in our

analysis. A map showing the location of these cities in England is available in the

12We are grateful to the UK Data Archive for providing the scanned copies of the printed census
reports. Because of the quality of the original documents they had to be digitized by hand-entry
using a double-entry procedure to reduce errors.

13An exception to this rule was made for Wolverhampton, Staffordshire, with a population 49,985.
Also, Plymouth is excluded from our database because in early years Plymouth data includes nearby
Devonport while in later years it does not, resulting in an inconsistent series.

14The 1851 populations of these towns were: Blackburn 46,536, Halifax 33,582 and Huddersfield
30,880.

15The alternative is working with fixed geographic units. While that may be preferred for some
types of work, given the growth that characterizes most of the cities in our sample, using fixed
geographic units would mean either that the early observations would include a substantial portion
of rural land surrounding the city, or that a substantial portion of city growth would not be part
of our sample in the later years. Either of these options is undesirable. Other studies in the same
vein, such as Michaels et al. (2013), also use metropolitan boundaries that expand over time.

12



Table 1: Cities in the primary analysis database

Population Working population Workers in analysis
City in 1851 in 1851 industries in 1851
Bath 54,240 28,302 22,805
Birmingham 232,841 112,523 93,238
Blackburn 46,536 26,281 24,248
Bolton 61,171 31,291 28,617
Bradford 103,778 58,565 54,613
Brighton 69,673 33,521 27,129
Bristol 137,328 64,824 53,110
Halifax 33,582 18,159 16,162
Huddersfield 30,880 13,984 12,092
Kingston-upon-Hull 84,690 37,390 30,456
Leeds 172,270 83,980 73,480
Leicester 60,584 31,317 28,051
Liverpool 375,955 166,184 135,068
London 2,362,236 1,096,384 866,640
Manchester 367,232 205,314 180,839
Newcastle-upon-Tyne 87,784 38,804 32,133
Norwich 68,195 34,369 28,879
Nottingham 57,407 34,104 30,526
Oldham 52,820 38,932 35,690
Portsmouth 72,096 31,571 18,538
Preston 69,542 36,998 32,601
Sheffield 135,310 58,775 50,860
Stockport 53,835 30,209 27,632
Sunderland 63,897 24,978 21,253
Wolverhampton 49,985 22,844 19,423

Appendix. In general, our analysis industries cover most of the working population of

the cities. Much of the remaining working population is employed by the government

or in agricultural work.16

The occupations listed in the census reports closely correspond to industries, an

important feature for our purposes. Examples from 1851 include “Banker”, “Glass

Manufacture” or “Cotton manufacture”. The database does include a few occupa-

tions that do not directly correspond to industries, such as “Labourer”, “Mechanic”,

or “Gentleman”, but these are a relatively small share of the population. These cat-

16For example, in Portsmouth, the large gap between working population and workers in the
analysis industries is due to the fact that this was a major base for the Royal Navy.
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egories are not included in the analysis. A major challenge faced in using these data

is that the occupational categories listed in the census reports varied over time. To

deal with this issue we combined multiple industries in order to construct consistent

industry groupings over the study period. Individual categories in the years were

combined into industry groups based on (1) the census’ occupation classes, and (2)

the name of the occupation. This process generates 27 consistent private sector occu-

pation categories. Of these, 23 can be matched to input-output categories and used

in the analysis.17 Table 2 describes the industries included in the database.

It is worth pausing to highlight the differences between our British city-industry

database and other potential alternatives. Focusing on U.S. data, there are two likely

alternatives. The first is to use occupation and industry data from the U.S. Population

Census (IPUMS). These data have been used in papers such as Katz & Margo (2013)

and Michaels et al. (2013), but always in a more aggregated way than we need. The

main issue with using these data for our purposes is that they are based on 1% or

5% samples, rather than the full census. One consequence is that measurement error

becomes a major concern when disaggregating the data to city-industries, even when

we focus on large municipalities. A second, more promising alternative, is to use

County Business Patterns data. These data are publicly available starting in the

1970’s, and in recent work, Duranton et al. (2013) have digitized earlier data dating

to 1956. While the time-period covered by these data is more limited than the period

available in our primary data, these data do offer the necessary level of detail. One

additional concern with these data is that some employment is censored for some

county-industries, which is not a concern in the British data.

17Another issue faced when using these data is that in some years occupation was reported for only
some age groups. Specifically, the data for 1851-1861 are available divided into workers over 19 and
workers under 20, by occupation, but in 1871, data by occupation are available only for workers over
19, while in 1881-1891 data are only available for all workers. It is, therefore, necessary to estimate
values for 1871 employees under 20, as this was an important fraction of the labor force at this time.
This is done by calculating the average ratio of all employees to employees over 20, in each industry
and location, in 1851 and 1861, using data from the towns in Lancashire and Yorkshire available
from Hanlon (2013). Only Lancashire and Yorkshire towns are used here because age-specific data
have not been entered for the other towns. This value is then multiplied by the number of employees
in each industry and location in 1871 in order to obtain 1871 values that are consistent with the
other years. For the years 1901 and 1911 the data are available for workers over 10 years of age. It
is assumed that this encompasses the entire workforce starting in 1901. The database includes both
male and female workers.
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Table 2: Industries in the primary analysis database with 1851 employment

Manufacturing Services and Professional
Chemicals & drugs 17,814 Engineers & Surveyors* 2,288
Dress 320,613 Clerks* 27,108
Instruments & jewelry* 31,462 General services 454,825
Earthenware & bricks 18,247 Merchant, agent, accountant, etc. 30,492
Leather & hair goods 26,214 Messenger, porter, etc. 71,645
Metal & Machines 161,615 Shopkeeper, salesmen, etc. 26,570
Oil, soap, etc. 12,063
Paper and publishing 41,805 Transportation services
Shipbuilding 13,962 Railway transport 9,878
Textiles 308,984 Road transport 34,771
Vehicles 8,609 Sea & canal transport 63,569
Wood & furniture 68,587

Food, etc.
Others industries Food processing 111,316
Building 134,643 Spiritous drinks, etc. 7,892
Mining 22,920 Tobacconists* 3,224
Water & gas services 3,847

Industries marked with a * are available in the database but are not used in the
baseline analysis because they cannot be linked to categories in the 1907 British
input-output table.
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3.2 Industry economic proximity measures

The second necessary piece of data for our analysis is a set of matrices measuring the

pattern of connections between industries. Ideally we would like historical measures

of the pattern of input-output connections, labor force similarity, and technological

similarity, for each pair of industries in our data. However, the availability of such

data for the period we study is necessarily sparse.

Our best measures are those reflecting input-output connections. Our main mea-

sure here is based on an input-output table constructed by Thomas (1987) based on

the 1907 British Census of Production (Britain’s first industrial census). This matrix

is divided into 41 industry groups. We construct two variables: IOinij, which gives

the share of industry i’s intermediate inputs that are sourced from industry j, and

IOoutij which gives the share of industry i’s sales of intermediate goods that are

purchased by industry j.

To measure labor force similarity between industry pairs, we take advantage of

details about the characteristics of workers in each occupation available from the

census data. For each occupation, we have information on the share of male and

female workers, as well as the share of workers under 20. While rough, these divisions

reflect important industry features in the 19th century that varied widely across

sectors. For example, textile industries employed substantial amounts of female and

child labor, while metal and heavy machinery industries employed few female or young

workers. Our main measure of labor force similarity, EMPij, simply divides workers

in each industry into these four available bins (male/female and over20/under20) and

calculates the correlation in shares across industries. We also construct a measures

based only on gender (EMPgenderij) and (EMPageij). These measures are based

on the absolute value of the difference between the gender or age shares for any pair

of industries. Note that, unlike EMPij, these are dissimilarity measures.

The most difficult of the Marshallian connections to measure is technology spillovers.

Currently, no matrix is available to measure the technological similarity of industries

in the historical context we study, though we are working to construct one.
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3.3 Additional data sets

We also collect data on a wide variety of other industry and city characteristics. The

1851 Census of Population was particularly detailed, and provides information on

firm sizes in each industry and education levels in each city. From the 1907 Census

of Production, Britain’s first industrial census, we have collected data on the share of

salaried workers in each industry as well as the industries coal usage. From the 1907

input-output table, we have measures of the share of industry output that is sold

directly to households, as well as the share exported abroad. Finally, we collect data

on the distance between cities from Google Maps, which we will use when considering

cross-city effects in Section 6.

4 Empirical approach

The starting point for our analysis is based on Equation 5, which represents the growth

rate of a city-industry as a function of the learning spillovers as well as time-varying

city-specific and national industry-specific factors. Rewriting this as a regression

equation we have,

4 ln(Lict+1) = τ̃ii ln(Lict) +
∑
k 6=i

τ̃ki ln(Lkct) + θct + φit + eict (6)

where 4 is the first difference operator, τ̃ii and τ̃ki include the coefficient
(

1
1−α

)
, θct is

a full set of city-year effects and φit is a full set of industry-year effects. The first term

on the right hand side represents within-industry spillovers, while the second term

represents cross-industry spillovers. We purposely omitted the last term of Equation

5, namely 4 ln(w̄t+1), because although it could be estimated as a year-specific con-

stant, it would be collinear with both the (summation of) industry-year and city-year

effects. Moreover, in any given year we also need to drop one of the city or industry

dummies in order to avoid collinearity. We chose to drop in all specifications the

industry-year dummies associated with the “General services” sector.

One issue with Equation 6 is that there are too many parameters for us to credibly

estimate given the available data.18 In order to reduce the number of parameters,

18Our main dataset consists of C = 25 cities, I = 27 industries and T + 1 = 7 decades worth of
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we need to put additional structure on the spillover terms. To do this, we look for

measures reflecting the channels through which ideas may flow between industries.

One channel suggested by the literature is that firms may share information with

their customers or suppliers. For example, Javorcik (2004) and Kugler (2006) provide

evidence that the presence of foreign firms (FDI) affects the productivity of upstream

and downstream domestic firms. To reflect this channel, we will look at how growth in

a city-industry is affected by the presence of upstream and downstream industries in

the city. Another channel for knowledge flow may be the movement of workers, who

may carry ideas between industries. Research by Poole (2013) and Balsvik (2011),

using data from Brazil and Norway, respectively, has highlighted this channel. To

reflect this, we will look at how growth in a city-industry is affected by the presence

of other industries in the city that share similar labor pools, which is likely to influence

the ability of worker to move between industries.

We parametrize the spillovers across industries, using the available input-output

and occupational similarity matrices, in following way:

τ̃ki = β0 + β1IOinki + β2IOoutki + β3EMPki ∀ i, k

Substituting this into 6 we obtain:

4 ln(Lict+1) = τ̃ii ln(Lict) + β0
∑
k 6=i

ln(Lkct) + β1
∑
k 6=i

IOinki ln(Lkct) + β2
∑
k 6=i

IOoutki ln(Lkct)

+ β3
∑
k 6=i

EMPki ln(Lkct) + θct + φit + eict (7)

Instead of a large number of parameters measuring spillovers across industry,

Equation 7 now contains only three parameters multiplying three (weighted) summa-

tions of log employment. The first summation, where log employment in all industries

k 6= i are equally weighted, is very close to the log of total employment in the city

and therefore we will interpret β0 as the effect of city size on growth. The remaining

summation terms use instead weights measuring input and output connections, and

data, thus we have 4,050 data points. Without imposing further structure, Equation 6 requires us
to estimate 729 spillover coefficients and 306 fixed effects.
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labor pooling. This will serve as the baseline specification in the analysis.

There are two issues to address at this point, both of which could violate the

exogeneity restriction needed to estimate this equation. First, there could be a mea-

surement error in Lict. Since this variable appears both on the left and right hand

side, this would mechanically generate an attenuation bias in our within-industry

spillover estimates. Moreover, since Lict is correlated with the other explanatory

variables, such measurement error would also bias the remaining estimates. We deal

with measurement error in Lict on the right hand side by instrumenting it with what

we will call henceforth a Bartik instrument, following an approach similar to Bartik

(1991). Under the assumption that the measurement error in any given city-industry

pair is iid across cities and time, our instrument is LBartict = Lict−1×gi−ct, where Lict−1

is the lag of Lict and gi−ct is the decennial growth rate in industry i computed using

employment levels in all cities except city c.

Second, even after addressing a potential measurement error in Lict, the exogeneity

restriction may still fail due to a simultaneity bias. For instance, if there is some

factor not included in our model which causes growth in two industries i and k 6=
i in the same city, a naive estimation would impute such growth to the spillover

effect from k to i, thus biasing the estimated spillover upward. We can control

for this potential simultaneity bias also using a Bartik approach, whereby all the

summation terms in Equation 7 such as
∑
k 6=i IOinki ln(Lkct) will be instrumented

with
∑
k 6=i IOinki ln(LBartkct ), where LBartkct is computed as described above.

In addition, we need to discuss whether the presence of city-year effects θct or

industry-year effects φit raises concerns in the estimation of Equation 7. First, one

may wonder whether the presence of a lagged dependent variable in a fixed effects

estimation invalidates our estimation strategy. Notice that we would run into the

type of endogeneity studied by Arellano & Bond (1991) if we had time-invariant city-

industry effects. We do not have such effects because in the model itself these were

captured by the term K̄ic and were differenced out when we derived our estimating

equation. Second, notice that the first two terms in Equation 7, namely ln(Lict)

and
∑
k 6=i ln(Lkct), are jointly collinear with the city-year effect θct. In our primary

regression specifications, we drop
∑
k 6=i ln(Lkct) and let θct absorb all the effect of city

size. In some alternative specifications we instead use a time-invariant city effect θc

in order to retain the term
∑
k 6=i ln(Lkct).
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The estimation is performed using OLS and two-step GMM under a variety of

assumptions for the standard errors, namely arbitrarily heteroskedastic and clustered

by city. The different assumptions made on the standard errors do not matter for the

point estimates obtained under OLS but they can affect the GMM results. To simplify

the exposition, we will hereafter collectively refer to the set of regressors ln(Lict), i =

1...I as the within variables. Similarly, with a small abuse of notation the term∑
k 6=i ln(Lkct) will be referred to as employment, the term

∑
k 6=i IOinki ln(Lkct) as

IOin, and so on for IOout and EMP . Finally, we will collectively refer to the latter

terms as the between regressors since they are the parametrized counterpart of the

spillovers across industries.

5 Main results

Our main regression results are based on the specification described in Equation 7.

Regressions based on this specification generate results that can tell us about cross-

industry spillovers, within-industry spillovers, city-wide factors, and industry-specific

factors. In the following subsections, we will discuss results related to each of these

forces in turn, but it is important to keep in mind that these results are coming out

of regressions in which all of these factors are present. We begin by considering the

pattern of spillovers across industries.

5.1 Cross-industry spillovers

Our estimation strategy involves using three proxies for the pattern of cross-industry

spillovers: forward input-output linkages, backward input-output linkages, and oc-

cupational similarity. We begin our analysis, in Table 3 by looking at results that

include only one of these proxies at a time. Columns 1-2 include only the forward

input-output linkages. First we calculate results using the largest sample for which

the IO measure is available. Then, for comparability to later results, we confine

the sample to the set of observations for which measures of all three channels are

available. The same exercise is done for backward input-output linkages in columns

3-4 and occupational similarity in columns 5-6. We find evidence of strong positive

spillovers through forward input-output connections and some evidence of benefits
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operating through the occupational similarity channel. There is little evidence of

benefits occurring through backward input-output linkages. In Table 4 we focus on

the restricted sample and use Bartik instruments to address the potential endogeneity

of the within and between variables. The results are qualitatively unchanged with

the exception of the coefficient on IOout, which changes sign but remains statistically

indistinguishable from zero.

Table 3: Regressions including only one spillover path at a time

(1) (2) (3) (4) (5) (6)
VARIABLES lhs lhs lhs lhs lhs lhs

IOin 0.0848*** 0.0662***
(0.0237) (0.0093)

IOout 0.0041 0.0041
(0.0085) (0.0085)

EMP 0.0033*** 0.0021**
(0.0013) (0.0009)

Observations 3,750 3,450 3,450 3,450 4,050 3,450
estimation ols ols ols ols ols ols
FE1 Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year
FE2 City*Year City*Year City*Year City*Year City*Year City*Year
instruments none none none none none none
instrumented none none none none none none
SE clustered clustered clustered clustered clustered clustered
sample whole restrict whole restrict whole restrict

Standard errors clustered by city. Regressors within and fixed effects included in all regressions
but not displayed. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

Next, consider all three channels together, while applying Bartik instrumentation

to deal with endogeneity in industry employment. Our baseline results are displayed

in Table 5. The first two columns present OLS results with either robust standard

errors or standard errors clustered at the city level. In columns 3 and 4, we use the

Bartik approach described above to instrument for the within variables, represented

by ln(Lict) in Equation 7. Because this instrumentation approach requires the use of

a lag, these regressions do not include observations from 1851. In columns 5-6, we use

the Bartik approach to instrument for both the within and cross-industry spillover

terms.

Across all specifications, we consistently find a positive and statistically significant

coefficient on the IOin coefficient. This suggests that industries grow more rapidly in
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Table 4: Instrumented regressions including only one spillover path at a time

(1) (2) (3) (4) (5) (6)
VARIABLES lhs lhs lhs lhs lhs lhs

IOin 0.0531*** 0.0548***
(0.0103) (0.0108)

IOout -0.0070 -0.0086
(0.0083) (0.0081)

EMP 0.0032*** 0.0030**
(0.0012) (0.0012)

Observations 2,871 2,871 2,871 2,871 2,871 2,871
estimation gmm gmm gmm gmm gmm gmm
FE1 Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year
FE2 City*Year City*Year City*Year City*Year City*Year City*Year
instruments Bartik Bartik Bartik Bartik Bartik Bartik
instrumented wtn wtn wtn wtn,btn wtn,btn wtn,btn
SE clustered clustered clustered clustered clustered clustered
sample restrict restrict restrict restrict restrict restrict

Standard errors clustered by city. Regressors within and fixed effects included in all regressions
but not displayed. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Note that the number
of observations falls for the instrumented regressions because the instruments require a lagged
employment term. Thus, data from 1851 are not available for these regressions. Acronyms: wtn
= within, btn = between.

cities with more employment in their supplier firms. In contrast, the IOout coefficients

are uniformly negative and generally statistically significant, suggesting that firms do

not grow faster in cities with a greater number of their customer industries. This may

reflect that city-industries achieve fast growth by serving markets outside of their own

city, rather than by focusing on local customers. However, comparing these results

to Table 3 suggests that some of this effect may be due to correlations between our

measures of different spillover channels. Thus, we do not interpret this as strong

evidence of a negative effect. Finally, we find evidence that firms grow more rapidly

in cities where there are more other firms employing a similar workforce. This result

strengthens when we use the Bartic instrument. One potential explanation for this

is that having more industries pulling from a similar local labor pool could have a

negative short-run effect, through competition for workers, but a positive effect in

the long-run. In that case, the Bartik instrumentation would deal with the short-

term endogeneity, helping us identify the positive long-run effect. Additional results,

available in Appendix A.2.1, show that we obtain similar results when London is
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excluded from the analysis.

Table 5: Baseline results – with all spillover channels

(1) (2) (3) (4) (5) (6)
VARIABLES lhs lhs lhs lhs lhs lhs

IOin 0.0732*** 0.0732*** 0.0637*** 0.0669*** 0.0679*** 0.0699***
(0.0094) (0.0105) (0.0099) (0.0106) (0.0102) (0.0114)

IOout -0.0152* -0.0152* -0.0262*** -0.0247*** -0.0286*** -0.0273***
(0.0079) (0.0084) (0.0087) (0.0090) (0.0084) (0.0089)

EMP 0.0014 0.0014 0.0031*** 0.0023*** 0.0027** 0.0022***
(0.0009) (0.0010) (0.0010) (0.0005) (0.0010) (0.0005)

Observations 3,450 3,450 2,871 2,871 2,871 2,871
estimation ols ols gmm gmm gmm gmm
FE1 Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year
FE2 City*Year City*Year City*Year City*Year City*Year City*Year
instruments none none Bartik Bartik Bartik Bartik
instrumented none none wtn wtn wtn,btn wtn,btn
SE robust clustered robust clustered robust clustered

Standard errors clustered by city. Regressors within and fixed effects included in all regressions
but not displayed. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Note that the number of
observations falls for the instrumented regressions in columns 3-6 because the instruments require a
lagged employment term. Thus, data from 1851 are not available for these regressions. Acronyms:
wtn = within, btn = between.

One potential concern with the results generated above is that some of our indus-

tries are non-traded. In this case, growth in local employment may not reflect growth

in industry productivity. In contrast, this will not be a concern for tradable goods

when labor is mobile, particularly given the long time-frame we study. To address this

concern, Table 6 uses data on each industry’s share of sales that are exported to di-

vide industries into those above or below the median in terms of tradability. We then

analyze industries with more and less traded good separately. We find stronger results

for more-traded industries and weaker results for less-traded industries, though less

traded industries still show positive and statistically significant growth effects from

the local presence of supplier firms.

The results above reveal average patterns across all industries. We can further

unpack these effects by estimating industry-specific coefficients for each of the spillover

channels. Specifically, we replace β1, β2, and β3 in Equation 7, with industry-specific

coefficients βi1, βi2, and βi3. The estimated industry-specific coefficients are presented
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Table 6: Baseline results – by tradability

More traded industries Less traded industries
(1) (2) (3) (4) (5) (6)

IOin 0.0496*** 0.0369** 0.0484*** 0.0505*** 0.0606*** 0.0524***
(0.0137) (0.0164) (0.0174) (0.0191) (0.0167) (0.0178)

IOout -0.0186** -0.0291*** -0.0324*** -0.0093 -0.0166 -0.0144
(0.0089) (0.0095) (0.0096) (0.0149) (0.0135) (0.0136)

EMP 0.0027*** 0.0038*** 0.0035*** -0.0154*** -0.0041 -0.0067
(0.0010) (0.0013) (0.0012) (0.0045) (0.0041) (0.0043)

Observations 1,800 1,496 1,496 1,650 1,375 1,375
estimation ols gmm gmm ols gmm gmm
FE1 Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year
FE2 City*Year City*Year City*Year City*Year City*Year City*Year
instruments none Bartik Bartik none Bartik Bartik
instrumented none wtn wtn,btn none wtn wtn,btn
SE clustered clustered clustered clustered clustered clustered

The median export share is used to split the sample in tradable vs non-tradable. Since we have an
odd number of industries, the tradable sample contains one industry more than the non-tradable
sample. Standard errors clustered by city. Regressors within and fixed effects included in all
regressions but not displayed. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Acronyms:
wtn = within, btn = between.

in the Appendix. We can compare these industry-specific cross-industry spillover

coefficients to available information on industry characteristics, in order to identify

the features of industries where each type of cross-industry spillover is important.

We focus on three features of industries for which data are available. First, we

consider two measures of firm size in the industry in 1851. Second, we consider the

share of industry output that goes to exports or that are sold directly to households.

Third, we consider the skill level in the industry, using data on the share of workers

paid on salary. In each case we run a simple univariate regression where the dependent

variable is our industry-specific cross-industry spillover coefficient and the indepen-

dent variable is one of the five industry characteristics.19 The goal of these regressions

is simply to identify the characteristics of industries that benefit from cross-industry

spillovers; these results should not be interpreted as offering causal evidence.

Table 7 lists the coefficients generated by univariate regressions. Further details on

the regression specifications used in this table, and full regression results, are available

19Univariate regressions are used because we are working with a relatively small number of obser-
vations.
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in the Appendix. In rows 1-2, we see evidence that small firm size in an industry is

associated with more cross-industry spillover benefits. Rows 3 and 4 show a weaker a

relationship between who an industry sells to and the level of cross-industry spillover

benefits, though there is some evidence that firms supplying more final goods to

households may experience slightly larger cross-industry spillovers. In row 5, we see

that high-skill industries – this with a larger share of salaried workers – are more

likely to benefit from cross-industry spillovers.

Table 7: Features of industries that benefit from each type of cross-industry spillover
– coefficients from univariate regressions

DV: Estimated industry-specific
cross-industry spillover coefficients

Industry Spillovers channel:
features: IO-in IO-out EMP
Average firm size -3.500*** -3.548 -2.739*

(1.217) (9.756) (1.475)

Median worker’s firm size -0.466*** -0.766 -0.358*
(0.134) (1.138) (0.174)

Share of industry output -0.726 -1.131 -0.877
exported abroad (0.430) (3.048) (0.548)

Share of industry output 0.320* -1.172 0.384*
sold to households (0.175) (1.418) (0.224)

Salaried worker share 3.737*** 6.041 2.560*
(0.884) (9.549) (1.240)

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
The dependent variables are the estimated cross-industry spillover
coefficients for each industry and each spillover channel. More
details are available in Appendix A.2.1. Firm size data comes
from the 1851 Census of Population. The share of industry output
exported or sold to households and is from the 1907 Input-Output
matrix. The share of salaried workers in each industry is from the
1907 Census of Production
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5.2 Within-industry spillovers

Our analysis can also help us understand the strength of within-industry spillovers.20

These spillovers are reflected in the ln(Lict) term in Equation 6, which is an instru-

mented variable. Figure 1 presents the within-industry coefficients and 95% confi-

dence intervals for regression specifications corresponding to columns 5 and 6 of Table

5. The top panel presents results from a specification with heteroskedasticity-robust

standard errors, while the bottom panel uses standard errors that are clustered at

the city level. We show both because, when using clustered standard errors, a few of

the terms are dropped tue to colinearity. Both approaches display a similar pattern;

localization economies appear to be an important positive factor in only a small num-

ber of industries, such as textile production and shipbuilding. These industries are

characterized by increasing returns and strong patterns of geographic concentration.

In contrast, we observe statistically significant negative coefficients for a number of

industries, suggesting that there may be negative effects operating through channels

such as competition for local customers or local inputs. Many of the industries show-

ing negative coefficients are primarily non-tradable producers, such as “Water and

Gas Service” to “Merchants, Agents, and Accountants”.

20In a static context these are often referred to as localization economies.
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Figure 1: Strength of localization economies by industry

Using specification in column 5 of Table 5 (robust S.E.s)

Using specification in column 6 of Table 5 (clustered S.E.s)

Results are based on regression in columns 5 and 6 of Table 5. These regressions include a full set of

city-year and industry-year terms, and both the within and between terms are instrumented using

the Bartik approach. Estimation is done using a GMM approach.

In Table 8 we use additional data to consider some of the industry characteristics

that may be generating the range of different within-industry spillover estimates we

observe. We view these results as merely suggestive, since they are based on few

observations. Columns 1-2 focus on the role of firm size using two different mea-

sures. We observe a strong positive relationship between firm size in an industry and
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the strength of within-industry spillovers.21 The third and fourth columns look at

the buyers served by each industry. We find no relationship between within-industry

spillovers and the importance of exports. However, within-industry spillovers are asso-

ciated with a lower share of industry output going directly to households, though this

relationship is statistically weak. In the last column, we show that there is a negative

relationship between the share of high-skilled workers in an industry, proxied by the

share of workers paid on salary, and the level of within industry spillovers. Overall,

we find that within-industry spillovers were positive and substantial only for a small

number of industries. These industries were characterized by large manufacturing

firms employing relatively low-skilled workers.

Table 8: Correlates of within-industry spillovers

DV: Estimated industry-specific within-industry spillover coefficients
(1) (2) (3) (4) (5)

Average firm size 0.517**
(0.227)

Median worker’s firm size 0.0653**
(0.0260)

Share of industry output 0.116
exported abroad (0.0743)

Share of industry output -0.0639*
sold to households (0.0329)

Salaried worker share -0.442**
(0.178)

Constant -0.0815*** -0.0622*** -0.0659*** -0.0233 0.00403
(0.0182) (0.0114) (0.0139) (0.0163) (0.0209)

hline Observations 20 20 23 23 20
R-squared 0.224 0.260 0.105 0.152 0.255

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The number of observations
varies because the explanatory variables are drawn from different sources and are not available
for all industries. The within coefficients come from the specification used in column 6 of Table
5 (clustered S.E.s). Firm size data comes from the 1851 Census of Population. The export’s and
household’s share of industry output come from the input-output table. The share of industry
workers paid on salary comes from the 1907 Census of Production.

21More data on firm size by industry are available in the Appendix.
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5.3 City-wide effects

Next, we want to look for effects operating at the city level. In particular, we are

interested in the effect of city size on city-industry growth. City size may reduce

city growth through congestion forces, but may also increase city-industry growth if

there are substantial agglomeration benefits from being in a large city. Such aggre-

gate city-size agglomeration forces play a role in existing theories, such as Davis &

Dingel (2012). In addition to city size, we will also investigate the importance of a

city’s industrial diversity, which has been considered in several previous studies. The

motivation for that interest comes from work by Jacobs (1969), who suggests that

industries may benefit from locating near a diverse set of other industries.

We begin by focusing on the effect of city size in 1851 on city growth during the

1851-1911 period. In the left-hand panel of Figure 2, we plot the relationship between

each city’s working population in 1851 and the average growth rate of city’s working

population over 1851-1911.22 There is no evidence of a strong relationship between

city size and city growth, consistent with Gibrat’s law (Gabaix (1999)). However,

this relationship may be influenced by the type of industries found in a city, and the

connections between them.

Our methodology allows us to isolate city-size effects from other factors related to

a city’s industrial composition. These city-size effects are reflected in the estimated

coefficients on the city-year indicator variables in our analysis. In the right-hand

panel of Figure 2, we plot these estimated coefficients, averaged at the city level over

the 1851-1911 period, against the log of city working population in 1851. We now see

evidence of a strong negative relationship between the average of estimated city-year

coefficients and initial city size. This supports the idea that industry growth can face

a substantial drag from congestion forces related to overall city size, but that this

congestion drag is offset by localized industry spillovers.23

22This relationship is essentially unchanged if we focus on total city population rather than the
city’s working population.

23A similar relationship emerges if we focus on overall city size, rather than a city’s working
population. These results are also robust to excluding London, which is an outlier in terms of initial
city size.
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Figure 2: The effect of city size on city growth

City size vs. actual city growth City size vs. estimated city growth coefficients

DV: Average growth of
city working population
Log city working -0.017
population in 1851 (0.016)
Constant 0.348*

(0.169)
R-squared 0.05
Observations 25

DV: Average of estimated
city growth coefficients

Log city working -0.486***
population in 1851 (0.075)
Constant 2.758***

(0.815)
R-squared 0.64
Observations 25

The left-hand graph shows the relationship between city growth during the 1851-1911 period and each city’s working
population in 1851. The right-hand graph shows the relationship between an average over our estimated city-year
growth coefficients for 1851-1911 and each city’s working population in 1851. The city-year growth coefficients are
estimated using the specification described in Column 3 of Table 5. The tables below each graph show corresponding
OLS regression results for the fitted line. *** p<0.01, ** p<0.05, * p<0.1.

To generate more rigorous results, we use a regression specification,

θ̂ct = α0 + α1 ln(CitySize1851c) + µt + uit

where θ̂ct is the estimated city-time fixed effect from our baseline regressions (Equa-

tion 7), ln(CitySize1851c) is the log of the working population of the city in 1851

and µt is a set of year fixed effects. Column 1 of Table 9 presents the relationship

between log initial city size and actual city growth rates. The coefficient is small

and not statistically significant, consistent with the results described above. Column

4 presents the relationship between log initial city size and the estimated city-time

growth coefficients, i.e., the relationship while controlling for factors related to a city’s

industrial composition. Here we observe a clear statistically significant negative rela-
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tionship between log city size and city growth. Given that the log of initial city size

in our database has a mean of 10.75 and standard deviation of 0.9, our results suggest

that a one standard deviation in log initial size size lowers city growth by about 9%

over a decade. Moreover, we can see that city size now explain a large fraction of the

variation in city growth.24

Columns 2 and 4 conduct a similar exercise with a city’s industrial diversity. Once

we control for each city’s industrial composition and spillovers between industries,

there is a clear positive relationship between the initial concentration of city indus-

tries and the average of estimated city growth coefficients for 1851-1911. The mean

and standard deviation of the city Herfendahl variable are, respectively, 0.23 and

0.11. Thus, a one standard deviation increase in a city’s Herfendahl index increase

city growth by about 6%. We can only speculate on the channels that may be gener-

ating this relationship. One possible channel is that cities with a more concentrated

industry mix are better able to coordinate on growth-enhancing policies or public

goods investments which improve growth across all industries in the city. Columns

3 and 6 combine the two effects. The negative city-size and positive city-diversity

effects remain when cotrolling for a city’s industrial composition.

An alternative approach for highlighting the role of city size is to alter Equation 7

by replacing the city-year effects θct with city fixed effects θc and including a city size

term β0
∑
k 6=i ln(Lkct). The estimated β0 coefficient then describes the relationship

between employment in all city-industries other than industry i and the growth rate

of industry i. Regression results generated using this approach, which are available in

Table 15 in Appendix A.2.2, show a negative and statistically significant relationship

between city size and industry employment growth.

Two lessons can be drawn from these results. First, the impact of a city’s size

and industrial diversity on city-industry growth become much clearer once we control

for other city-industry effects, and these two factors can explain a large fraction of

the remaining variation in city growth. This has important implications for how we

study these city-level factors. Second, we can see that city size exerts a strong negative

effect on city growth, consistent with an important role for congestion operating at

24This result is not driven by the inclusion of year effects in the regression. If we do not include
these effects the estimated coefficients are essentially unchanged and the R-squared statistics rises
from 0.013 in the specification corresponding to column 1 to 0.235 in the specification corresponding
to column 4.
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the aggregate city level. However, we observe no clear relationship between initial

city size and actual city growth, suggesting that these negative forces just balance the

positive spillover benefits experienced by industries, such that Gibrat’s Law holds.

Table 9: Influence of city size and diversity on city growth

Dependent variable: Actual city pop. growth rate Estimated city growth coefficient
(1) (2) (3) (4) (5) (6)

Log city working -0.0208 -0.0242 -0.0894*** -0.0765***
population in 1851 (0.0161) (0.0169) (0.0131) (0.0132)

Herfendahl of -0.0323 -0.0911 0.539*** 0.353***
city-industry concentration (0.133) (0.139) (0.116) (0.108)

Constant 0.434** 0.218*** 0.491** 0.670*** -0.417*** 0.450***
(0.177) (0.0449) (0.197) (0.143) (0.0393) (0.153)

Year effects X X X X X X
Observations 125 125 125 125 125 125

R-squared 0.062 0.049 0.065 0.400 0.293 0.450

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The actual city population
growth refers only to the city’s working population. The estimated city growth coefficients are the
city-year effects coefficient estimates corresponding to the regression shown in Column 6 of Table
5, where we instrument for both within and cross-industry terms. All estimates use observations
from 1861-1911, with 1851 data used to generate the Bartik instrument for 1861 values.

6 Extensions

In this section, we extend our analysis to consider the possibility that city-industry

growth may be influenced not just by factors within the city, but also through the

influence of other nearby cities. We consider two potential channels for this supra-city

effects. First, industries may benefit from proximity to consumers in nearby cities.

This market potential effect is motivated by research by Hanson (2005), who finds that

regional demand linkages play an important role in generating spatial agglomeration

using modern U.S. data. Second, industries may benefit from spillovers from other

industries in nearby towns, through any of the channels that we have identified.

There is substantial variation in the proximity of cities in our database to other

nearby cities (see the Appendix for a map). Some cities, particularly those in Lan-

cashire, west Yorkshire, and the North Midlands, are located in close proximity to a

32



number of other nearby cities. Others, such as Norwich, Hull, and Portsmouth are

located a relatively long distance from other cities.

We begin our analysis by collecting data on the distance (as a crow flies) between

each of the cities in our database, which we call distanceij. Using these, we construct

two measures for the remoteness of one city from another, d1ij = 1/distanceij and

d2ij = exp(−distanceij).25 Our measures of market potential for each city are then,

MP1ct =
∑
j 6=c

POPjt ∗ d1cj MP2ct =
∑
j 6=c

POPjt ∗ d2cj.

where POPjt is the population of city j. This differs slightly from Hanson’s approach,

which uses income in a city instead of population. Unfortunately, we do not have data

allowing us to calculate income in a city.

We also want to measure the potential for cross-industry spillovers occurring across

industries. We measure proximity to an industry i in other cities as the distance

weighted sum of log employment in that industry across all other cities. Our full re-

gression specification, including both cross-city market potential and spillover effects,

is then,

4 ln(Lict+1) = τ̃ii ln(Lict) + β0
∑
k 6=i

ln(Lkct)

+ β1
∑
k 6=i

IOinki ln(Lkct) + β2
∑
k 6=i

IOoutki ln(Lkct) + β3
∑
k 6=i

EMPki ln(Lkct)

+ β4
∑
k 6=i

IOinki
∑
j 6=c

d1jc ∗ ln(Lkjt) + β5
∑
k 6=i

IOoutki
∑
j 6=c

d1jc ∗ ln(Lkjt) (8)

+ β6
∑
k 6=i

EMPki
∑
j 6=c

d1jc ∗ ln(Lkjt)

+ MP1ct + θc + φit + εict.

When estimating this equation, note that we include city fixed effects (θc) in place of

city-year effects. This is necessary because city-year effects would be perfectly corre-

lated with our market potential measure. To simplify the exposition and in analogy

with the previous section, we will refer to the cross-city term
∑
k 6=i IOinki

∑
j 6=c d1jc ∗

25The first of these is attractive because of its simplicity, while the second is motivated by Hanson
(2005).
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ln(Lkjt) as IOin ∗ d1, and similarly for the other cross-city terms IOout ∗ d1 and

EMP ∗ d1.

The results generated using this specification are shown in Table 10. The first

thing to take away from this table is that our baseline results are essentially un-

changed when we include these additional variables, with the exception of the effects

reflected in the occupational similarity measure, which appear to weaken. The co-

efficients on the market potential measure are always positive, and sometimes sta-

tistically significant. This is consistent with the idea that a city’s market access

can contribute positively to city-industry growth. The results provide no evidence

of cross-city spillovers occurring through either of the input-output channels. There

is, however, some evidence of cross-city spillovers between industries employing sim-

ilar labor forces. These cross-city effects are an order of magnitude smaller than

the estimated within-city coefficients in our preferred specifications (columns 4 or 6).

Thus, we find some evidence that industries benefit from cross-industry spillovers at

a supra-city level, but these effects appear to be much smaller in magnitude than

those occurring within a city.
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Table 10: Regression results with cross-city variables

(1) (2) (3) (4) (5) (6)
VARIABLES lhs lhs lhs lhs lhs lhs

IOin 0.0651*** 0.0638*** 0.0672*** 0.0734*** 0.0651*** 0.0678***
(0.0107) (0.0107) (0.0118) (0.0114) (0.0119) (0.0125)

IOout -0.0303*** -0.0305*** -0.0299*** -0.0294*** -0.0304*** -0.0300***
(0.0090) (0.0090) (0.0091) (0.0091) (0.0091) (0.0091)

EMP 0.0026** 0.0028*** 0.0018* 0.0017 0.0023** 0.0020
(0.0011) (0.0011) (0.0011) (0.0012) (0.0011) (0.0012)

employment -0.0141*** -0.0143*** -0.0122*** -0.0135*** -0.0138*** -0.0140***
(0.0023) (0.0022) (0.0019) (0.0022) (0.0023) (0.0023)

MP1 0.1625* 0.1762*
(0.0947) (0.0972)

MP2 0.2572*** 0.3034
(0.0950) (0.1913)

IOin*d1 -0.0089 -0.0118
(0.0234) (0.0236)

IOout*d1 0.0011 0.0015
(0.0102) (0.0102)

EMP*d1 0.0008 0.0007
(0.0008) (0.0008)

IOin*d2 0.0031* 0.0007
(0.0018) (0.0028)

IOout*d2 -0.0010 -0.0006
(0.0010) (0.0011)

EMP*d2 0.0002* 0.0002*
(0.0001) (0.0001)

Observations 2,871 2,871 2,871 2,871 2,871 2,871
estimation gmm gmm gmm gmm gmm gmm
FE1 Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year
FE2 City City City City City City
instruments Bartik Bartik Bartik Bartik Bartik Bartik
instrumented wtn,btn wtn,btn wtn,btn wtn,btn wtn,btn wtn,btn
SE robust robust robust robust robust robust

Standard errors are clustered by city to deal with serial correlation concerns. Regressors within
and fixed effects included in all regressions but not displayed. Significance levels: *** p<0.01, **
p<0.05, * p<0.1. Acronyms: wtn = within, btn = between.

7 Conclusion

This paper introduces a dynamic approach to studying agglomeration forces and uses

it to generate a rich set of results describing the nature and importance of agglomer-
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ation forces in generating employment growth in Britain from 1851-1911. Our frame-

work allows us to investigate a range of potential agglomeration and dispersion forces

– including within and across-industry spillovers, city-size congestion effects, market

access, and supra-city spillovers – in a single unified framework. To our knowledge,

this is the first study to analyze such a wide range of agglomeration theories in a

unified framework.

Our results reveal substantial evidence of spillovers across industries. These

spillovers operate through both input-output linkages and labor force similarity. How-

ever, we add to these results by showing that these linkages drive industry growth.

Moreover, for input-output linkages, we show that it is the presence of suppliers, not

customers, that plays the crucial role. These findings are consistent with, but also

add to, the findings of Ellison et al. (2010) and Greenstone et al. (2010). We also

find that spillovers within industries play little positive role in industry growth for

most industries, but that they can have a positive effect for a few large-scale manu-

facturing industries such as textiles or shipbuilding. Our analysis cannot differentiate

spillovers across firms in the same industry from within-firm increasing returns, so this

finding may reflect either of these factors. Our overall finding that within-industry

spillovers are relatively rare fits previous findings from the FDI literature suggesting

that spillovers from FDI firms occurred primarily across industries rather than within

them (Aitken & Harrison (1999), Javorcik (2004), Kugler (2006), et al.).

We find substantial heterogeneity across industries in the importance of both

within and across-industry spillovers. Specifically, industries that benefit more from

cross-industry spillovers are characterized by smaller firms and higher-skilled workers,

while within-industry spillovers are more important in industries with large firms

and less-skilled workers. We are not the first to highlight the potential for such

heterogeneity; this point appears in Henderson (2003) and, more recently, in Faggio

et al. (2013).

We show that, once we control for the role of industries, city size has a strong neg-

ative effect on city growth. Thus, we reject a positive role of urbanization economies

operating outside of industry spillovers in favor of congestion forces. This finding fits

well with many leading urban models, where city-level congestion effects push against

industry agglomeration forces. It is particularly interesting that the positive effect of

industry spillovers balances the negative city size effects such that Gibrat’s law holds.
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How exactly this balance is achieved is an interesting topic for further research.
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A Appendix

A.1 Data appendix

Table 11: Map showing the location of cities in the analysis database
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Table 12: Industry firm size data from 1851 Census of Population

A.2 Results appendix

A.2.1 Cross-industry spillovers results appendix

We begin by showing results generated without including London. Estimates corre-

sponding to our baseline results (Table 5) are shown in Table 13. Estimates differ-

entiating tradable from non-tradable, corresponding to Table 6 in the main text, are

shown in Table 14.
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Table 13: Regression results without London

(1) (2) (3) (4) (5) (6)
VARIABLES lhs lhs lhs lhs lhs lhs

IOin 0.0658*** 0.0658*** 0.0580*** 0.0535*** 0.0619*** 0.0541***
(0.0097) (0.0109) (0.0103) (0.0115) (0.0107) (0.0122)

IOout -0.0089 -0.0089 -0.0188* -0.0125 -0.0217** -0.0119
(0.0090) (0.0093) (0.0102) (0.0093) (0.0099) (0.0102)

EMP 0.0014 0.0014 0.0031*** 0.0021*** 0.0026** 0.0019***
(0.0009) (0.0011) (0.0010) (0.0005) (0.0011) (0.0006)

Observations 3,312 3,312 2,756 2,756 2,756 2,756
estimation ols ols gmm gmm gmm gmm
FE1 Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year
FE2 City*Year City*Year City*Year City*Year City*Year City*Year
instruments none none Bartik Bartik Bartik Bartik
instrumented none none wtn wtn wtn,btn wtn,btn
SE robust clustered robust clustered robust clustered

These regressions replicate the baseline results from 5 but are based on a sample that excludes Lon-
don. Regressors within and fixed effects included in all regressions but not displayed. Significance
levels: *** p<0.01, ** p<0.05, * p<0.1. Acronyms: wtn = within, btn = between.

Table 14: Regression results without London, by tradability

Tradeable industries Non-traded industries
(1) (2) (3) (4) (5) (6)

IOin 0.0415*** 0.0293* 0.0402** 0.0586*** 0.0687*** 0.0611***
(0.0138) (0.0166) (0.0175) (0.0194) (0.0177) (0.0186)

IOout -0.0131 -0.0232* -0.0271** -0.0071 -0.0125 -0.0103
(0.0100) (0.0120) (0.0124) (0.0164) (0.0150) (0.0151)

EMP 0.0027** 0.0037*** 0.0035*** -0.0143*** -0.0031 -0.0060
(0.0010) (0.0012) (0.0011) (0.0050) (0.0045) (0.0049)

Observations 1,728 1,436 1,436 1,584 1,320 1,320
estimation ols gmm gmm ols gmm gmm
FE1 Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year
FE2 City*Year City*Year City*Year City*Year City*Year City*Year
instruments none Bartik Bartik none Bartik Bartik
instrumented none wtn wtn,btn none wtn wtn,btn
SE clustered clustered clustered clustered clustered clustered
tradable yes yes yes no no no

These regressions replicate the baseline results from 6 but are based on a sample that excludes Lon-
don. Regressors within and fixed effects included in all regressions but not displayed. Significance
levels: *** p<0.01, ** p<0.05, * p<0.1. Acronyms: wtn = within, btn = between.
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Figures 3-5 present the estimated industry-specific cross-industry spillover coeffi-

cients for each of the spillover channel measures. Regressions are run with only one

channel at a time to keep the number of estimated parameters manageable. Thus,

the estimating equation for the first of these results is,

4 ln(Lict+1) = τ̃ii ln(Lict) + βi1
∑
k 6=i

IOinki ln(Lkct) + θct + φit + εict.

The results are plotted in Figure 3 with 95% confidence intervals. These estimates

are the dependent variable in the regressions shown in column 1 of Table 7.

Figure 3: Industry-specific cross-industry spillover coefficient estimates – IO in chan-
nel

A similar estimating equation is used for the IOout and EMP spillover channels.

The result are shown in Figures 4 and 5, respectively. These estimates provide the

dependent variables for, respectively, columns 2 and 3 of Table 7.
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Figure 4: Industry-specific cross-industry spillover coefficient estimates – IO out chan-
nel
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Figure 5: Industry-specific cross-industry spillover coefficient estimates – Employment
similarity channel
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A.2.2 City-size results appendix

Table 15: Regression results with city size term and city fixed effects

(1) (2) (3) (4) (5) (6)
VARIABLES lhs lhs lhs lhs lhs lhs

employment -0.0098*** -0.0098*** -0.0154*** -0.0151*** -0.0125*** -0.0121***
(0.0012) (0.0017) (0.0015) (0.0028) (0.0018) (0.0030)

IOin 0.0716*** 0.0716*** 0.0676*** 0.0554*** 0.0667*** 0.0537***
(0.0097) (0.0113) (0.0103) (0.0112) (0.0106) (0.0111)

IOout -0.0155* -0.0155* -0.0260*** -0.0173** -0.0299*** -0.0200***
(0.0086) (0.0089) (0.0093) (0.0079) (0.0090) (0.0077)

EMP 0.0011 0.0011 0.0019* 0.0014*** 0.0021** 0.0015***
(0.0009) (0.0011) (0.0010) (0.0004) (0.0010) (0.0004)

Observations 3,450 3,450 2,871 2,871 2,871 2,871
estimation ols ols gmm gmm gmm gmm
FE1 Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year Ind*Year
FE2 City City City City City City
instruments none none Bartik Bartik Bartik Bartik
instrumented none none wtn wtn wtn,btn wtn,btn
SE robust clustered robust clustered robust clustered

Employment represents the sum of employment in all industries in the city other than industry
i, when looking at growth in industry i. Clustered standard errors are clustered by city to deal
with serial correlation concerns. Regressors within and fixed effects included in all regressions
but not displayed. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Note that the number of
observations falls for the instrumented regressions in columns 3-6 because the instruments require a
lagged employment term. Thus, data from 1851 are not available for these regressions. Acronyms:
wtn = within, btn = between.
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