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Abstract

A recent literature explores many ways in which uncertainty shocks can have important
economic effects. But how large are uncertainty shocks and where do they come from?
Researchers typically estimate a model with stochastic volatility, using all available data,
then condition on the estimated model to infer volatility. This volatility is the uncertainty
of an agent who knows the true probability of outcomes and whose only uncertainty is about
what the draw from that distribution will be. We model a Bayesian forecaster who uses
new data released each quarter to re-estimate the parameters that govern the shape of the
probability distribution of GDP growth. Although the forecaster’s parameter revisions are
small, the probability of black swans (extreme events) is very sensitive to these revisions.
Our real-time measure of GDP forecast uncertainty reveals that changes in the risk of a
black swan explain most of the shocks to uncertainty.



Some times are uncertain times for the aggregate economy. At other times, events

appear to be predictable and confidence is high. An active emerging literature argues that

changes in uncertainty can explain asset pricing, banking crises, business cycle fluctuations,

and the 2007 financial crisis. But these theories do not explain why people suddenly become

uncertain. We examine whether a simple, Bayesian belief formation process can generate

large enough fluctuations in uncertainty to explain recessions and financial crises.

One source of uncertainty shocks is volatility shocks. The variance of unpredictable

innovations to output could rise. If an agent knows the true law of motion for the economy,

then all uncertainty shocks come from changes in volatility. But if an agent does not know

the true law of motion of the economy because he does not know the true parameter values

that govern the model, then new sources of uncertainty shocks emerge. We estimate two

Bayesian forecasting models and compute uncertainty (conditional standard deviation) of

the forecast of next quarter’s GDP growth, recognizing that since the estimated parameters

have standard errors, they are themselves uncertain. In each quarter, we update the

forecast and model parameter estimates, using all U.S. GDP growth data that was available

at that time.

Acknowledging parameter uncertainty uncovers two new sources of uncertainty shocks.

One source of shocks is surprises: events that are improbable under the previous period’s

estimated model. If an event occurs that a model says is improbable, a Bayesian agent

concentrates less probability weight on that model’s parameters; standard errors on the

parameter estimate often rises and uncertainty increases. Of course, an outlier event also

leads a stochastic volatility model to predict higher volatility. That makes these mecha-

nisms hard to distinguish. But more importantly, uncertainty shocks generated from this

first mechanism are tiny.

The second source of uncertainty is something we call “black swan risk,” which is the

conditional probability of a growth realization more negative than any observed so far.

When the forecasting model implies a normal distribution of outcomes, the probability of

an n-standard-deviation event is constant. But when we allow our forecaster to estimate

skewness, the probability of negative outliers can fluctuate. For example, a new piece of

data can lead the forecaster to estimate more negative skewness, which makes extreme

negative outcomes more likely and thus raises uncertainty. Because the probability of

1



tail events is very sensitive to the parameters that regulate skewness, black swan risk is

very volatile and generates large changes in uncertainty. When we apply this model to

GDP data, we find that most of the shocks to uncertainty are explained by changes in the

estimated probability of black swans.

We define macroeconomic uncertainty as the standard deviation of next-period GDP

growth yt+1, conditional on all information observed through time t: Std[yt+1|It]. We use

this definition because in most models, this is the theoretically-relevant moment. When

there is an option value of waiting, beliefs with a higher conditional variance (imprecise

beliefs) raise the value of waiting to observe additional information. Thus, it is uncertainty

in the form of a higher conditional variance that typically delays consumption or investment

and thus depresses economic activity.

To build up intuition for how estimation uncertainty behaves, we start with one of the

simplest forecasting models: a linear model of GDP growth with a continuous hidden state

and homoskedastic innovations. We hold the volatility of the innovations fixed so that

we can isolate the effect of parameter uncertainty shocks. Each period t, our forecaster

observes time-t GDP growth and uses the complete history of GDP data to estimate her

model and forecast GDP growth in t + 1. In such a setting, an agent with known model

parameters faces no uncertainty shocks because the estimated model is a homoskedastic

one. But the forecaster with parameter uncertainty experiences changes in the conditional

variance of her forecasts. These are uncertainty shocks.

However, a linear model with normally distributed shocks generates only small uncer-

tainty shocks, those shocks are not counter-cyclical, and its forecasts badly miss a key

feature of forecast data: The average forecast is significantly lower than the average GDP

growth realization. For an unbiased forecaster with a linear model, this should not be

the case. But if the true distribution of GDP growth is not known and is believed to

be negatively skewed, we show that expected values can be systematically lower than the

realizations. Therefore, we explore a non-linear forecasting model and find that combining

non-linear forecasting with parameter uncertainty generates large shocks to uncertainty,

particularly in recessions.

We compare our model-based uncertainty series to commonly-used uncertainty proxies

and find that it is less variable, but more persistent than the proxy variables. The most
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highly correlated proxies are the price of a volatility option (VIX) and the Baker, Bloom

and Davis (2012) uncertainty index.

A key message of our paper is that understanding and measuring economic uncertainty

requires relaxing the full-information assumptions of rational expectations econometrics. In

econometrics, rational expectations typically describes the assumption that agents know the

true law of motion of the economy. In such a world, agents have no uncertainty about what

the distribution of economic outcomes is. Their only uncertainty is about what realization

will be drawn from that distribution. To measure the uncertainty of such a forecaster,

it makes sense to estimate a model on as much data as possible, take the parameters

as given, and estimate the conditional standard deviation of model innovations. This is

what stochastic volatility estimates typically are. But in reality, the macroeconomy is not

governed by a simple, known model and we surely don’t know its parameters. Instead, our

forecast data (from the Survey of Professional Forecasters or SPF) suggests that forecasters

estimate simple models to approximate complex processes and constantly use new data to

update beliefs. Forecasters are not irrational. They simply do not know the economy’s

true data-generating process. In such a setting, uncertainty and volatility can behave quite

differently.

Related literature A new and growing literature uses uncertainty shocks as a driving

process to explain business cycles (e.g., Bloom, Floetotto, Jaimovich, Sapora-Eksten, and

Terry (2012), Basu and Bundick (2012) Christiano, Motto, and Rostagno (2012), Bianchi,

Ilut, and Schneider (2012)), to explain investment dynamics Bachmann and Bayer (2012a),

to explain asset prices (e.g., Bansal and Shaliastovich (2010), Pastor and Veronesi (2012)),

and to explain banking panics (Bruno and Shin, 2012). These papers are complementary

to ours. We explain where uncertainty shocks come from, while these papers trace out the

economic and financial consequences of the shocks.1

A small set of related theories explain why uncertainty fluctuates using nonlinearities

in a production economy (Van Nieuwerburgh and Veldkamp (2006), Fajgelbaum, Schaal,

and Taschereau-Dumouchel (2013)) or active experimentation (Bachmann and Moscarini

(2012)). Our model differs because it does not depend on an economic environment, only

1In contrast, Bachmann and Bayer (2012b) argue that there is little impact of uncertainty on economic
activity.
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on a statistical law of motion. Our uncertainty shocks arise from agents applying Bayes

law when parameters are unknown.

Our exercise also speaks to a set of papers that measure uncertainty shocks in various

ways. Bloom (2009), Baker, Bloom, and Davis (2012), Stock and Watson (2012), Jurado,

Ludvigson, and Ng (2013) Fernandez-Villaverde, Kuester, Guerron, and Rubio-Ramirez

(2012), Fernandez-Villaverde, Guerron-Quintana, Rubio-Ramirez, and Uribe (2011), Naka-

mura, Sergeyev, and Steinsson (2012), Justiniano and Primiceri (2008) and Born, Peter,

and Pfeifer (2011) document the properties of uncertainty shocks in the U.S. and in emerg-

ing economies, while Bachmann, Elstner, and Sims (2012) use forecaster data to measure

ex-ante and ex-post uncertainty in Germany. While our paper also engages in a measure-

ment exercise, we primarily contribute a quantitative model of how and why such shocks

arise.

The idea that the probability of rare events is time-varying also appears in models of

discrete, rare events (e.g., Rietz (1998), Barro (2006), Wachter (2013)). However, these

papers assume that there is a time-varying probability of a rare event and derive the conse-

quences of that for asset prices. Our paper is a complement to this literature; it describes a

learning process that can generate volatile, counter-cyclical beliefs about the probabilities

of extreme, negative outcomes. Using only the assumptions of Bayesian updating and the

idea of parameter uncertainty in non-normal probability distributions, we show as a result

that estimated probabilities of tail outcomes are volatile and that economic uncertainty is

sensitive to these probabilities. This finding helps to justify the assumptions of the previous

literature.

The theoretical part of our paper grows out of an existing literature that estimates

Bayesian forecasting models with model uncertainty. Cogley and Sargent (2005) use such

a model to understand the behavior of monetary policy, while Johannes, Lochstoer, and

Mou (2011) estimate a similar type of model on consumption data to capture properties

of asset prices. While the mechanics of model estimation are similar, the focus on skewed

uncertainty shocks and uncertainty proxies distinguish our paper. Nimark (2012) also gen-

erates increases in uncertainty by assuming that only outlier events are reported. Thus, the

publication of a signal conveys both the signal content and information that the true event

is far away from the mean. Such signals can increase agents’ uncertainty. But that paper
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does not attempt to quantitatively explain the fluctuations in uncertainty measures. Our

paper is in the spirit of Hansen’s Ely Lecture (Hansen, 2007) and Chen, Dou, and Kogan

(2013) which advocate putting agents in the model on equal footing with an econometrician

who is learning about his environment over time and struggling with model selection.

1 A Linear-Normal Forecasting Model

The purpose of the model is to explain why relaxing rational expectations and assuming

that agents do not know the true distribution of outcomes with certainty opens up an

additional source of uncertainty shocks. To isolate this new source of uncertainty shocks,

we consider first a homoskedastic model. If an agent knew the true model (they had

rational expectations), their uncertainty would be only about the random realizations of

future shocks. Since the variance of these shocks is assumed to be constant over time, there

would be no uncertainty shocks.

We consider a forecaster who observes real-time GDP growth data, in every quarter

and forecasts the next period’s growth. The agent knows that GDP growth comes from a

linear model with a hidden state, but does not know the parameters of this model. Each

period, he starts with prior beliefs about these parameters and the current state, observes

the new GDP data, and updates his beliefs using Bayes’ law.

1.1 Definitions

A model, denoted M, has a vector a parameters θ. Together, M and θ determine a

probability distribution over a sequence of outcomes yt. Let yt ≡ {yτ}tτ=0 denote a series

of data available to the forecaster at time t. In every model, agent i’s information set Iit
will include the model M and the history yt of y observations up to and including time t.

The state St, innovations, and the parameters θ are never observed.

The agent, who we call a forecaster and index by i, is not faced with any economic

choices. He simply uses Bayes’ law to forecast future y outcomes. Specifically, at each date

t, the agent conditions on his information set Iit and forms beliefs about yt+1. We call

the expected value E (yt+1|Iit) an agent i’s forecast and the square root of the conditional

variance V ar (yt+1|Iit) is what we call uncertainty. Forecasters’ forecasts will differ from
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the realized growth rate. This difference is what we call a forecast error.

Definition 1. An agent i’s forecast error is the distance, in absolute value, between the

forecast and the realized growth rate: FEi,t+1 = |yt+1 − E[yt+1|Iit]|.

We date the forecast error t + 1 because it depends on a variable yt+1 that is not

observed at time t. Similarly, if there are Nt forecasters at date t, an average forecast error

is

F̄Et+1 =
1

Nt

Nt∑
i=1

FEi,t+1. (1)

We define forecast errors and uncertainty over 1-period-ahead forecasts because that is the

horizon we focus on in this paper. But future work could use these same tools to measure

uncertainty at any horizon.

Definition 2. Uncertainty is the standard deviation of the time-(t + 1) GDP growth,

conditional on an agent’s time-t information: Uit =

√
E
[

(yt+1 − E[yt+1|Iit])2
∣∣∣ Iit].

Volatility is the same standard deviation as before, but now conditional on the history

yt, the model M and the parameters θ:

Definition 3. Volatility is the standard deviation of the unexpected innovations in yt+1,

taking the model and its parameters as given:

V OLt =

√
E
[

(yt+1 − E[yt+1|yt, θ,M])2
∣∣∣ yt,M, θ

]
.

If an agent knew the parameters (i.e., if Iit = {yt,M, θ}), then uncertainty and volatil-

ity would be identical. Thus, the only source of uncertainty shocks would be volatility

shocks.

Many papers equate volatility, uncertainty and squared forecast errors. These defini-

tions allow us to understand the conditions under which these are equivalent. Volatility

and uncertainty are both ex-ante measures because they are time-t expectations of t + 1

outcomes, which are time-t measurable. However, forecast errors are an ex-post measure

because it is not measurable at the time when the forecast is made. Substituting definition

1 into definition 3 reveals that Uit =
√
E[FE2

i,t+1|Iit]. So, uncertainty squared is the same

as the expected squared forecast error. Of course, what people measure with forecast er-

rors is typically not the expected squared forecast error. It is an average of realized squared

forecast errors:
√

1/Nt
∑

i FE
2
i,t+1.
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1.2 The linear forecasting model

We begin by examining the following continuous hidden-state process for yt
2

yt = α+ st + σεy,t (2)

st = ρst−1 + σsεs,t (3)

where εy,t and εs,t are standard normal random variables independent of each other. In

this model, the parameters are θ ≡ [α, ρ, σ, σs]
′.

Information assumptions Each forecaster has an identical information set: Iit =

{yt,M}, ∀i. The model M is described by (2) and (3). The state st and the parameters

θ are never observed.

To compute forecasts and the process for uncertainty, we use Bayesian updating A

forecast is a conditional expectation of next-period growth, where the expectation is taken

over unknown parameters, states, and growth realizations. Using the law of iterated ex-

pectations, we can write this forecast as:

E
(
yt+1|yt

)
=

∫ ∫ ∫
yt+1p

(
yt+1|θ, st+1, y

t
)
p
(
st+1|θ, yt

)
p
(
θ|yt

)
dθdst+1dyt+1 (4)

The first probability density function, p
(
yt+1|θ, st+1, y

t
)
, is the probability of t + 1 GDP

growth, given the state and the parameters. From 2, we know that, conditional on the

state, GDP growth is normally distributed with mean α+ st+1 and variance σ2.

The second probability density function, p
(
st+1|θ, yt

)
, is the probability of a hidden

state in a Kalman filtering system. It is also conditionally normally distributed. When

the parameters are known, (2) and (3) form the observation and state equations of a

Kalman filtering system. The following recursive equations describe the conditional mean

and variance of the first two probability terms, jointly:

E[yt+1|yt, θ,M] = ρE[yt|yt−1, θ,M] + ρKtyt (5)

where the term Kt = Kt = (I + σ2V ar[yt|yt−1, θ,M])−1 is the Kalman gain and the

2We have also explored a version of the model with a discrete hidden state. The results are very similar
and are reported in Appendix B.
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conditional variance of the estimate is

V ar[yt+1|yt, θ,M] =
(
(1− ρ2)σ2 + σ2S

)
I (6)

Volatility is
√
V ar[yt+1|yt, θ,M], which is a constant. Constant volatility may or may not

be a realistic feature of the data. But it is a helpful starting point because it will allow us

to isolate the fluctuations in uncertainty that come from parameter uncertainty.

Finally, the third probability density function is the probability of the parameter vector

θ, conditional on the t-history of observed GDP data. To compute posterior beliefs about

parameters, we employ a Markov Chain Monte Carlo (MCMC) technique.3 At each date t,

the MCMC algorithm produces a sample of possible parameter vectors,
{
θd
}D
d=1

, such that

the probability of any parameter vector θd being in the sample is equal to the posterior

probability of those parameters, p
(
θd|yt

)
. Therefore, we can compute an approximation

to any integral by averaging over sample draws:
∫
f(θ)p(θ|yt)dθ ≈ 1/D

∑
d f(θd).

To estimate uncertainty, we compute these probability density terms and integrate

numerically to get a forecast. In similar fashion, we also calculate E
(
y2t+1|yt

)
. Applying

the variance formula V ar
(
yt+1|yt

)
= E

(
y2t+1|yt

)
−E

(
yt+1|yt

)2
, and taking the square root

yields uncertainty: Ut =
√
V ar (yt+1|yt).

1.3 Data Description

There are two pieces of data that we use to evaluate and estimate our forecasting model.

The first is real-time GDP data from the Philadelphia Federal Reserve. The variable we

denote yt is the growth rate of GDP. Specifically, it is the log-difference of the real GDP

series, times 400, so that it can be interpreted as an annualized percentage change. We

use real-time data because we want to accurately assess what agents know at each date.

Allowing them to observe final GDP estimates, that are not known until much later, is not

consistent with the goal. Therefore, yt represents the estimate of GDP growth between

the end of quarter t − 1 and quarter t, based on the GDP estimates available at time t.

Similarly, yt is the history of GDP growth up to and including period t, based on the data

available at time t.

3More details are presented in the Appendix.
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We use the second set of data, professional GDP forecasts, to evaluate our forecasting

models. We describe below the four key moments that we use to make that assessment.

The data come from the Survey of Professional Forecasters, released by the Philadelphia

Federal Reserve. The data are a panel of individual forecaster predictions of real US output

for both the current quarter and for one quarter ahead from quarterly surveys from 1968

Q4 to 2013 Q4. In each quarter, the number of forecasters varies from quarter-to-quarter,

with an average of 40.5 forecasts per quarter.

Formally, t ∈ {1, 2, . . . , T} is the quarter in which the survey of professional forecasters

is given. Let i ∈ {1, 2, . . . , I} index a forecaster and It ⊂ {1, 2, . . . , I} be the subset of

forecasters who participate in a given quarter. Thus, the number of forecasts made at time

t is Nt =
∑I

i=1 I(i ∈ It). Finally, let yt+1 denote the GDP growth rate over the course of

period t. Thus, if GDPt is the GDP at the end of period t, observed at the start of quarter

t+ 1, then yt+1 ≡ ln(GDPt)− ln(GDPt−1). This timing convention may appear odd. But

we date the growth t+ 1 because it is not known until the start of date t+ 1.

1.4 Estimation and results: linear-normal model

Our forecaster needs prior distributions over all the parameters to start the updating

process. We start with a flat prior, estimate each parameter on GDP growth data from

1947:2-1968:3, and use the mean and variance of this estimate as the mean and variance

of prior beliefs. (See appendix for more details and prior estimation results.) Starting in

quarter 4 of 1968, each period, the agent observes yt and revisions of previous quarters’

data and updates his beliefs about future GDP growth using (4). We start the estimation

of the model in 1968:4 because this is the first quarter for which we have forecasts from

the Survey of Professional Forecasters.

To understand what properties of our forecasts come from parameter uncertainty, Fig-

ure 1 compares our uncertainty to that of an agent who takes the model parameters as

given (labeled θ known). To keep the results comparable, the parameters that are used to

compute volatility are the same as the mean prior beliefs in our model.

The main takeaway is that parameter uncertainty generates uncertainty shocks, albeit

small ones. With known parameters, stdev(Ut) = 0. When parameters are updated every

period, stdev(Ut) = 0.48. What triggers these uncertainty shocks is primarily surprises.
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Figure 1: Uncertainty shocks in the linear model.
Volatility, uncertainty and surprises are calculated using (6), definition 2 and (7).

We define a surprise to be an event that was unlikely, given the previous period’s estimated

model:

Surpriset =
|yt − E(yt|yt−1)|

Ut−1
. (7)

Figure 1 plots this surprise measure against the uncertainty measure. What it reveals is

that periods with large surprises are periods when uncertainty increases. But also that the

uncertainty generated by the surprise persists, long after the surprise has passed.

Our results also expose three aspects of our forecasts that do not look realistic. 1) Our

forecasters’ uncertainty is not counter-cyclical (Correl(Ut,GDP) = 13% ). Every common

proxy for uncertainty is counter-cyclical and most theories use uncertainty to explain the

onset of a recession. So, a forecasting model that fails to deliver this feature is suspect. 2)

The model does not explain the low average forecasts of GDP observed in the professional

forecaster data. The true average of GDP growth over 1968:Q4-2012:Q4 is 2.68%. The

average professional forecast of GDP growth is 2.24%, almost half a percentage point lower.

This model fails to explain that gap.4 3) There is obviously no dispersion in forecasts.

There is only one forecaster. Yet, forecast dispersion is a prominent and interesting feature

of the data. Later, we will introduce heterogeneous signals to examine its role.

4This gap only arises in final GDP estimates. The average initial GDP announcement has 2.3% growth
on average, in line with the forecasts. But if these initial announcements are themselves BEA forecasts of
what the final GDP estimate will be, there is still a puzzle about why early estimates are systematically
lower than final estimates.
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In the next section, we examine a nonlinear forecasting model that remedies the first

two problems: It generates counter-cyclical uncertainty, forecasts that are low on average,

and larger uncertainty shocks.

2 A Skewed Forecasting Model

The linear-normal model of the previous section was a starting point. It is a commonly-used

framework where we shut down all sources of uncertainty shocks besides our estimation

uncertainty and could see that mechanism at work. But that model misses important

features of the forecast data and its uncertainty shocks are modest. One reason that

uncertainty varies so little is that all the random variables are normally distributed. The

normal distribution has the unusual properties that the conditional variance is the same,

no matter what the conditional mean is and that an n-standard deviation event is always

equally unlikely. Since uncertainty is a conditional variance, the normal distribution shuts

down much scope for changes in uncertainty. Therefore, we explore a model that has

non-normal shocks.

Moving away from normality, there is an infinite set of possibilities. But one natural

choice is to focus on a distribution with skewness. Negative skewness is a salient feature

of GDP data. In the real GDP (1968:Q4-2013:Q4) data we use for our forecasting model

simulations, the skewness of GDP growth is -0.30. Skewness is also a feature of many

models. Models where workers lose jobs quickly and find jobs gradually, or models where

borrowing constraints amplify downturns are just a couple of examples of models that

generate booms that are more gradual than crashes. Finally, we find that a model with

skewness both does a better job of matching features of forecast data and generates much

larger uncertainty shocks.

Updating non-normal variables is typically cumbersome. Combining this with param-

eter uncertainty typically requires particle filtering, which is possible, but slow. We make

this problem tractable by doing a change of measure. The Radon-Nikodym theorem tells

us that, for any measure g that is absolutely continuous with respect to a measure in-

duced by a normal distribution, we can find a change-of-measure function f such that

g(x) =
∫
f(x)dΦ(x), where Φ is a normal cdf. If we estimate such an f function, then we

use f−1 to take data from a skewed distribution and transform it into normal data that
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we can then use the tools from the last section to learn about.

Of course, allowing a forecaster to explore the whole function space of possible f ’s is

not viable. We focus the problem by considering a family of functions and allowing the

forecaster to consider parameter estimates that govern the properties of the distribution.

The change of measure function should have three desirable properties: 1) Its range is the

real line; 2) it is monotone; and 3) it can be either globally concave or globally convex,

depending on the estimated parameters. A class of transformations that satisfy this criteria

is5

f(X̃t) = c+ b exp(−X̃t) (8)

If we have estimates for b and c, we can do a change of variable: Use f−1(yt) to transform

GDP growth into a variable X̃, which is a normally-distributed continuous variable with a

hidden persistent state.

X̃t = St + σεt

St = ρSt−1 + σSεt

where εt ∼ N(0, 1) and εt ∼ N(0, 1). This procedure allows our forecaster to consider

a family of non-normal distributions of GDP growth and convert each one into a linear-

normal filtering problem with unknown parameters that can be solved using the same tools

as in the previous section. The only additional complication is that the parameters b and

c also need to be estimated.

The b parameter governs the mean of the X̃ process. To see this, note that for b < 0, we

can rewrite b exp(−X̃t) = −exp(−X̃t + ln(|b|)). To streamline our code, we simply remove

the time-t sample mean of the X̃t and set b = −1. After estimating the parameters of the

mean-zero process, we add back in the sample mean. This approach is supported by the

fact that when we have estimated b in less complex settings, we come up with consistently

negative values and quantitatively similar estimates.

We start with priors (see Appendix) and use MCMC techniques to form beliefs about

5Of course, the choice of class of transformations can affect our uncertainty estimates. However, the
key property of this function is its degree of curvature. We allow our agent to estimate a parameter that
governs this curvature. Any function with similar curvature, such as a polynomial or sine function, would
have a similar mechanism. Our work in progress is exploring a concave, piecewise polynomial function.
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the ρ, σ, σs and c parameters. For each parameter draw θi from the MCMC algorithm,

we compute E[yt|It, θi] and E[y2t |It, θi]. We average these expectations over all parameter

draws and compute uncertainty as Ut = E[y2t |It]− E[yt|It]2.

2.1 Results: Uncertainty Shocks

unc
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inty
 de

tren
ded

 

 

1970:Q4 1975:Q4 1980:Q4 1985:Q4 1990:Q4 1995:Q4 2000:Q4 2005:Q4 2010:Q4

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

fixed θ
normal
skewed

Figure 2: Uncertainty (Ut) implied by linear and skewed models in log deviations from
trend.

Figure 2 compares the time series of uncertainty in both models. Column (3) of Table 1

shows that updating beliefs about the skewness of the GDP growth distribution has a large

effect on uncertainty. Such learning increases the average level of uncertainty by only 8%.

But it amplifies uncertainty shocks. The standard deviation of the uncertainty series was

0.48% with normally-distributed outcomes and rises to 1.50% when our forecaster updates

beliefs about skewness. One can interpret the magnitude of this standard deviation relative

to the mean. A 1-standard deviation shock to uncertainty raises uncertainty 33% above its

mean. That is quite a volatile process and offers a stark contrast to the relatively modest

changes in volatility typically measured.

Since using growth rates of GDP is a form of trend-removal, it makes sense to correlate

a stationary series with another stationary series. Therefore, we detrend volatility and

uncertainty in order to discern the nature of their cyclical components (Table 1, middle

panel). We remove the trend in uncertainty using log deviations from an exponential trend:

Ũt ≡ ln(Ut)− ln(U trendt ) (9)
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model: normal skewed

Mean Ut 4.20% 4.53%
Vt 4.65% 5.41%

Std deviation Ut 0.48% 1.50%
Vt 0% 0.07%

Autocorrelation Ut 0.99 0.97
Vt 0 0.92

Detrended uncertainty/volatility

Corr(Ũt, Et[yt+1]) 0.04 -0.78

Corr(Ṽt, Et[yt+1]) 0 -0.99

Forecast properties
data normal skewed

Mean forecast 2.29% 2.82% 2.27%
Mean |F Err| 1.87% 2.25% 2.51%
Std forecast 2.25% 1.17% 0.64%
Std |F Err| 1.46% 2.17% 2.39%

Table 1: Properties of model uncertainty series. Forecasts are computed using equation
(4). Forecast error is (forecast - final GDP growth). Volatilities are computed assuming that the true
parameters θ are equal to the the mean prior beliefs for the parameter learning models.

The resulting series, plotted in figure 2, reveals large, highly counter-cyclical uncertainty

shocks. Not only is the level higher, uncertainty rose noticeably during each of the reces-

sions since 1970.

Keep in mind that there is still no stochastic volatility in this model. To the extent that

we believe that there are volatility shocks to GDP, this would create additional shocks to

uncertainty, above and beyond those we have already measured. These series are not yet

a complete picture of macroeconomic uncertainty. Instead, they are a look at what part of

uncertainty is missed when we just measure volatility.

Clearly, the model is not forecasting GDP as accurately as the forecasters in the survey

of professional forecasters do (Table 1, bottom panel). However, this is a problem that we

can remedy, without changing our main message. The forecasts in the model are based

only on prior GDP releases. In reality, forecasters have access to other sources of data

that improve the accuracy of their forecasts. The fact that the model produces a forecast

error that is too large and too volatile reflects this problem. See section 3.2 for a sketch
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of a model with additional forecasting information that remedies this problem, without

undermining our uncertainty shock mechanism.

Finally, uncertainty is very persistent. It is highest at the start of the sample, when

data is most scarce, and then slowly decays over the rest of the sample. As noted by Collin-

Dufresne, Johannes, and Lochstoer (2013), the persistent uncertainty process comes from

the nature of learning: A single large shock to GDP growth results in a quick reevaluation

of the parameter and model probabilities. These revisions in beliefs act as permanent,

non-stationary shocks even when the underlying shock is transitory.

2.2 Skewness Shocks and Time-Varying Black Swan Risk

To understand why uncertainty varies so much, it is helpful to look at the probability of tail

events. Since our estimated probability distribution is negatively skewed, negative outliers

are more likely than positive ones. For a concrete example, let’s consider the probability of

a particular negative growth event. The mean of GDP growth is 2.68%, while its standard

deviation is 3.32%. If GDP growth were normally distributed, then yt+1 ≤ −6.8% would

be a 1-in-100-year event (Pr= 0.0025 quarterly). Let’s call this rare event a black swan.

Black SwanRiskt = Prob[yt+1 ≤ −6.8%|It]. (10)

The correlation between black swan risk and uncertainty is 97% (75% for the detrended

series). This illustrates that uncertainty shocks arise in times when the estimated proba-

bilities of extreme events change. Our model suggests that uncertainty builds up gradually

over time as more and more unusual observations are realized.

When the distribution of GDP growth is non-normal and states and parameter esti-

mates change over time, the probability of this black swan event fluctuates. Figure 3 plots

the estimated black swan probability each period. The black swan probability varies con-

siderably. It reaches a high of 18% in early 1970. Leading up to the 2008 financial crisis,

the black swan probability rose from 3.5% in 2007 Q1 to over 4.6% in Q3 of 2009.

These results teach us that when we include parameter uncertainty in our notion of

economic uncertainty, and we consider a model with skewed outcomes, then most changes

in uncertainty coincide with changes in the estimated probability of rare events. Most of
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Figure 3: When the probability of a black swan event is high, uncertainty is high. Black
Swan Risk is defined in (10). It is evaluated in the model where the skewness parameter c is updated
every period.

these uncertainty shocks were not present when we did not allow the forecaster to update

his skewness beliefs. When we allow for learning about skewness, new pieces of data

cause changes in the skewness estimates. Tail event probabilities are very sensitive to this

skewness parameter. When the probability of extreme events is high, uncertainty is high

as well.

This explanation raises the question: What types of data realizations make estimated

skewness more negative, increase black swan risk, and thereby generate uncertainty shocks?

We find two types of episodes that set up large uncertainty shocks. The first is simply a

large negative GDP growth realization. When a negative outlier is observed, the forecaster

revises skewness to be more negative and increases the estimated variance of shocks, both

of which cause the probability of a black swan event and uncertainty to rise. This is what

happens in 2008 and in the early 1980’s. But there is a second, more subtle, cause of

uncertainty shocks that comes from a sequence of mild positive GDP growth realizations

in a row. These observations cause the forecaster to increase the estimated mean of the

distribution. When the mean increases, the existing negative outlier data points become

further from the mean. Because the previously-observed negative realizations are more

extreme, the estimate of skewness rises and the probability of rare negative events can

rise as well. This is what happens in the early 1970’s. A sequence of positive growth

realizations causes a rise and then a fall in uncertainty. But the persistence of the high

estimated skewness set the stage for the large rise in uncertainty in the second half of

the 1970’s. This mechanism provides one explanation for why uncertainty seems to rise
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particularly at the end of long spells of consistently positive growth.
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Figure 4: An example of a positive growth episode that increased the estimated mean,
skewness and black swan probability.

2.3 Negative Skewness as a Force for Counter-Cyclical Uncertainty

One way of understanding the cyclical effect skewness has on uncertainty is by thinking

about the skewed distribution as a non-linear transformation of a normal variable. The

non-linear transformation has no economic interpretation. It does not represent a utility

function, production function or anything other than an estimated change-of-measure func-

tion that regulates the skewness of outcomes.6 But since many problems in economics use

normal shocks and compute means and variances of concave functions of these shocks, we

can leverage that intuition here to understand the role of skewness. (See Albagli, Hellwig,

and Tsyvinski (2013) for a similar approach.)

The unconditional distribution of GDP growth rates is negatively skewed. Therefore,

when we estimate the change of measure function f (8), we consistently find that the

6Although this paper does not try to explain the negative skewness of outcomes, many other theories
do. Negative skewness can arise when the economy is functioning very well (high X̃t), then improving its
efficiency results in a small increase in GDP. But if there is a high degree of dysfunction or inefficiency
(low X̃), then the economy can fall into depression. Many models generate exactly this type of effect
through borrowing or collateral constraints, other financial accelerator mechanisms, matching frictions, or
information frictions. Even a simple diminishing returns story could explain such skewness.
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coefficient b is negative, meaning that the transformation is concave. A concave transfor-

mation of a normal variable puts more weight on very low realizations and makes very

high realizations extremely unlikely. In other words, the concave transformation creates a

negatively-skewed variable.

GDP

Growth (y)

State (x)

y uncertainty

x uncertainty

Figure 5: Nonlinear change of measure and counter-cyclical uncertainty. A given amount of
uncertainty about x creates more uncertainty about y when x is low than it does when x is high.

The concavity of the change of measure explains why uncertainty becomes counter-

cyclical. The concave line in Figure 5 is a mapping from x into GDP growth, y. The slope

of this curve is a Radon-Nikodym derivative. A given amount of uncertainty is like a band

of possible x’s. (If x was uniform, the band would represent the positive-probability set

and the width of the band would measure uncertainty about x.) If that band is projected

on to the y-space, the implied amount of uncertainty about y depends on the state x.

When x is high, the mapping is flat, and the resulting width of the band projected on the

y-axis (y uncertainty) is small. When x is low, the band projected on the y axis is larger

and uncertainty is high. (See Straub and Ulbricht (2013) for theoretical results relating

concavity to uncertainty.)

Learning about skewness causes this concave curve to shift over time. When a negative

outlier is observed, the estimated state falls and estimated skewness becomes more negative.

More skewness translates into more curvature in the change of measure function. Combined

with a low estimated state, this generates even more uncertainty. Thus, bad events trigger

larger increases in uncertainty. This is reflected is the more negative correlation between

forecasts and uncertainty in the learn skew model in Table 1.
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2.4 Why Skewness and Model Uncertainty Lower Forecasts

Aside from generating larger uncertainty shocks, the model with skewness also explains

the low GDP growth forecasts in the professional forecaster data. The average forecast

is 2.27% in the model and 2.29% in the forecaster (SPF) data.7 Thus, the first puzzle is

why the nonlinear model produces these average forecasts. If GDP growth is a concave

transformation of a linear-normal underlying variable, Jensen’s inequality tells us that

expected values will be systematically lower than the median realization. But by itself,

Jensen’s inequality does not explain the forecast bias because the expected GDP growth

and the mean GDP growth should both be lowered by the concave transformation (see

figure 6, left panel). It must be that there is some additional uncertainty in expectations,

E[Xt+1|Xt, M, θ]

Jensen effect

E[yt+1|yt, M, θ]

GDP

Growth (y)

State (x) E[Xt+1|Xt]

Additional Jensen effect
from model uncertainty

E[yt+1|yt, M, θ]

E[yt+1|yt]

Forecaster believes

f(Xt+1|Xt)

GDP

Growth (y)

State (x)

Figure 6: Explaining why average forecasts are lower than mean GDP growth. The result has
two key ingredients: The forecaster faces more uncertainty than he would if he knew the true distribution
of outcomes, and a Jensen inequality effect from the concave change of measure.

making the Jensen inequality effect larger for forecasts than it is for the unconditional mean

of the true distribution (see figure 6, right panel). This would explain why our results tell

us that most of the time the sample mean is greater than the average forecast. If the agent

knew the true parameters, he would have less uncertainty about yt+1. Less uncertainty

would make the Jensen effect smaller and raise his estimate of yt+1, on average. Thus, it is

the combination of parameter uncertainty and a skewed distribution that can explain the

forecast bias.8

7Elliott and Timmermann (2008) confirm our finding of forecast bias. They argue that stock analysts
over-estimate earnings growth and the Federal Reserve under-estimates GDP growth.

8When we compare SPF forecasts to first-release GDP data, the difference in means disappears. But
that is consistent with an interpretation of this first release as itself a forecast. The first release may be
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2.5 Convergence and the Downward Trend in Uncertainty

Since the true parameters in this model are constant, eventually agents will learn them, if

the model is correctly specified. Even in our 44-year sample, there is evidence of conver-

gence. There is a downward trend in uncertainty, some of which comes from the decline in

the uncertainty about the parameter values. Between 1970 and 2013, uncertainty falls from

6.2% to 3.5%. Does this decline imply that all parameter uncertainty should be resolved

in the near future and these effects will disappear? There are three reasons why parameter

uncertainty would persist.

First, our forecasting model is clearly not a complete or correct description of the

macroeconomy. Our simple specification represents the idea that people use simple models

to understand complex economic processes. Bayesian learning converges when the model

is correctly specified. But when the estimated model and the true data-generating process

differ, there is no guarantee that parameter beliefs will converge to the truth. Even as

the data sample becomes large, parameter beliefs can continue to fluctuate, generating

uncertainty shocks.

Second, much of the trend decline in uncertainty comes from lower estimated volatility.

The mean estimate of the transitory shock variance (σ2) falls by 46% between 1970 Q1 and

2013 Q4. The mean estimate of variances decline because GDP growth just becomes less

volatile in the second half of the sample and agents react to that by revising down their

estimates of the variance parameters. Lower innovation variance also reduces uncertainty.

Finally, simply adding time-varying parameters can avoid convergence. If we assume

that some or all of the parameters drift over time, then beliefs about these parameters will

continue to change over time, just like beliefs about the hidden state st fail to converge

over time. One example of a model with time-varying parameters is a stochastic volatility

model. Our estimation of a stochastic volatility model with learning about the volatility

and the other fixed parameters of the model is still work in progress.

lower, on average because it is more uncertain and the added uncertainty, combined with the non-linear
model, lowers the average initial announcement.
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3 Data Used to Proxy for Uncertainty

Our model generates a measure of economic uncertainty. Next, we compare our measure

to others. Commonly used measures for uncertainty include the VIX, forecast dispersion,

squared forecast errors, and GARCH volatility estimates. First, we describe each measure

and examine the theoretical difference with ours. Then, we compare the statical properties.

3.1 Time-varying volatility models

One common procedure for estimating the size of volatility shocks is to estimate an ARMA

process that allows for stochastic volatility. In order to compare such a volatility measure

to our uncertainty series, we estimate a GARCH model of GDP growth, that allows for

time-variation in the variance of the innovations. All data is quarterly and all of these

series are non-stationary. To obtain stationary series, we use annualized growth rates.

The GARCH process that generates the best fit is one with an AR(1) process for GDP

growth (y) and a GARCH(1) process for volatility, σ2t+1, which includes 1 lagged variance:

yt+1 = 3.38 + 0.41yt + εt+1, εt+1 ∼ N (0, σ2t+1) (11)

σ2t+1 = 0.52 + 0.76σ2t + 0.24ε2t (12)

We assume that the errors in our models, εt, are Gaussian and estimate the process using

our full sample of data (1947-2012). The complete set of estimates, stationarity tests, as

well as more detail about the model selection process are reported in appendix B.

Our forecasting model assumed that innovations to the state and observation equa-

tions had constant variance. We estimate homoskedastic models to test the hypothesis

of homoskedasticity with an ARCH-LM test. The evidence for time-varying volatility is

inconclusive.9

9The log likelihood of the highest-likelihood heteroskedastic model is only 3% higher than the best-fitting
homoskedastic model. With an ARCH-LM test, one cannot reject the null hypothesis of homoskedasticity
(pvalue is 0.22). We come to a similar conclusion if we estimate the model, starting in 1947, use a stochastic
volatility model, or relax the distributional assumptions. Our baseline analysis assumes that errors εt have
a Gaussian distribution. Using distributions with fatter tails (student-t) yields no difference in estimations
or significance. Furthermore, we explore further lags of all variables; either coefficients were not significantly
different from zero or the log-likelihood was reduced. Finally, we included different lags of linear terms for
εt and variances σ2

t in the GARCH specification. Again, the estimated parameters were not significant or
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But we could incorporate volatility shocks in our forecasting model by allowing the

shock variances σ2 and/or σ2s to have their own stochastic processes. Increases in volatility

would increase uncertainty directly and indirectly, by making other parameters harder to

learn. Future work will explore this interaction.

3.2 Forecast dispersion

Some authors use forecast dispersion (Dt in equation 14) as a measure of uncertainty.10

One advantage of this measure is that it is typically regarded as “model-free.” It turns

out that dispersion is not model-free. It is only equivalent to uncertainty in models with

uncorrelated signal noise and no parameter uncertainty.

Any unbiased forecast can be written as the difference between the true variable being

forecast and some forecast noise that is orthogonal to the forecast. In other words,

yt+1 = E[yt+1|It] + ηt + eit (13)

where the forecast error (ηt + eit) is mean-zero and orthogonal to the forecast. We can

further decompose any forecast error into a component that is common to all forecasters

ηt and a component that is the idiosyncratic error eit of forecaster i.

Dispersion is the average squared difference of each forecast from the average forecast.

We can write each forecast as yt+1− ηt− eit. Then, with a large number of forecasters, we

can apply the law of large numbers, set the average eit to 0 and write the average forecast

as Ē[yt+1|It] = yt+1 − ηt. Thus,

Dt ≡
1

N

∑
i

(E[yt+1|It]− Ē[yt+1|It])2 =
1

N

∑
i

e2it (14)

Whether dispersion accurately reflects uncertainty depends on private or public nature of

information. Imprecise private information (high e2it) generates forecast dispersion, while

imprecise public information or estimation error typically does not.

To understand the importance of this distinction, Orlik, Veldkamp, and Kozeniauskas

(2013) explore a forecasting model with forecast dispersion. In that model, signals are a

the log-likelihood was reduced.
10See e.g. Baker, Bloom, and Davis (2012) or Diether, Malloy, and Scherbina (2002), or Johnson (2004).
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stand-in for all this other macroeconomic data that forecasters can use. Forecasters update

beliefs as in section 1. But each period, each forecaster i observes an additional signal zit

that is the next period’s GDP growth, with common signal noise and idiosyncratic signal

noise:

zit = yt+1 + ηt + εit (15)

where ηt ∼ N(0, σ2η) is common to all forecasters and εit ∼ N(0, σ2ε ) is i.i.d. across fore-

casters. The two signal noise variances σ2η and σ2ε match the average dispersion of forecasts

and the average forecast error, 1/T
∑

t FEt.

The main result is that forecast dispersion reduces uncertainty and average forecast

errors, in line with the data. But it does not create uncertainty shocks. Parameters are

estimated on a long string of historical data. That data is common to all forecasters. The

differences in signals about next-quarter GDP growth create differences in forecasts. But

for parameter estimation, there are many pieces of data that forecasters have in common

and one signal that differs. So the parameter estimates mostly reflect the common historical

data that forecasters observe. Since they have little heterogeneity, they do not contribute

to changes in forecast dispersion. Estimation error looks more like the public component

of the forecast error than it does the private component.

The bottom line is that forecast dispersion is not synonymous with uncertainty. Build-

ing a quantitative model with forecast dispersion is not a mechanism for generating large

uncertainty shocks. Uncertainty shocks that come from parameter uncertainty are un-

likely to be captured by a dispersion measure because most of the relevant data used for

estimation is public, not private.

3.3 Mean-squared forecast errors

A measure related to forecast dispersion that captures both private and common forecast

errors is the forecast mean-squared error.

We define a forecast mean-squared error (MSEt+1) of a forecast of yt+1 made in quarter

t as the square root of the average squared distance between the forecast and the realized

value

MSEt+1 =

√∑
i∈It(E[yt+1|Iit]− yt+1)2

Nt
. (16)
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If forecast errors were completely idiosyncratic, with no common component, then

dispersion in forecasts and mean-squared forecasting errors would be equal. To see this,

note that FE2
jt = (E[yt+1|Ijt]− yt+1)

2. We can split up FE2
jt into the sum ((E[yt+1|Ijt]−

Ēt[yt+1]) + (Ē[yt+1] − yt+1))
2, where Ēt[yt+1] =

∫
j E[yt+1|Ijt] is the average forecast. If

the first term in parentheses is orthogonal to the second, 1/N
∑

j FE
2
jt = MSE2

t is simply

the sum of forecast dispersion and the squared error in the average forecast: E[yt+1|Ijt]−
Ēt[yt+1])

2 + (Ēt[yt+1]− yt+1)
2.

We can then use this insight along with our forecast data to evaluate the extent to which

variation in mean-squared errors (MSE) comes from changes in the accuracy of average

forecasts and how much comes from changes in dispersion. We estimate a regression of

the GDP forecast mean-squared error, MSE2, defined in (16) on (Ēt[yt+1] − yt+1)
2. We

find that the R2 of this regression is 80%. The remaining variation is due to changes in

forecast dispersion. Since most of the fluctuation in MSE comes from changes in average

forecast errors, it tells us that using forecast dispersion as a proxy for uncertainty will miss

an important source of variation.

3.4 VIX and confidence measures

We discuss the volatility and forecast-based measures in most detail because there are

measures that we can relate explicitly to our theory. Other proxy variables for uncertainty

are interesting but have a less clear connection to our model. The market volatility index

(VIX) is a traded blend of options that measures expected percentage changes of the

S&P500 in the next 30 days. It captures expected volatility of equity prices. But it

would take a rich and complicated model to link macroeconomic uncertainty to precise

movements in the VIX. Nevertheless, we can compare its statistical properties to those of

the uncertainty measure in our model. Figure 7 does just this.

Another commonly cited measure of uncertainty is business or consumer confidence.

The consumer confidence survey asks respondents whether their outlook on future business

or employment conditions is “positive, negative or neutral.” Likewise, the index of consumer

sentiment asks respondents whether future business conditions and personal finances will be

“better, worse or about the same.” While these indices are indeed negatively correlated with

the GARCH-implied volatility of GDP, they are not explicitly questions about uncertainty.
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Furthermore, we would like to use a measure that we can compare to the forecasts in

our model. Since it is not clear what macro variable “business conditions” or “personal

finances” corresponds to, it is not obvious what macro variable respondents are predicting.

3.5 Comparing uncertainty proxies to model-generated uncertainty
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Figure 7: Comparing variables used to measure uncertainty in the literature.

Figure 7 plots each of the uncertainty proxies. There is considerable comovement, but

also substantial variation in the dynamics of each process. These are clearly not measures

of the same stochastic process, each with independent observation noise. Furthermore, they

have properties that are quite different from our model-implied uncertainty metric. Table

2 shows that our uncertainty metric is negatively correlated with traditional measures of

volatility, but is highly correlated with the volatility index (VIX) and the Baker, Bloom,

and Davis (2012) policy uncertainty index.

3.6 Inferring uncertainty from probability forecasts

One way to infer the uncertainty of an economic forecaster is to ask them about the

probabilities of various events. The survey of professional forecasters does just that. They

ask about the probability that GDP growth exceeds 6%, is between 5-5.9%, between 4-
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Mean Standard autocorr correlation correlation

deviation with gt+1 with Ũt
forecast MSE 2.64% 1.53 0.48 0.04 -20.8%
forecast dispersion 1.54% 0.95 0.74 -0.19 -15.4%
GARCH volatility 3.65% 1.35 0.90 0.06 -22.3%
VIX 20.55 7.81 0.58 -0.41 40.2%
BBD policy uncertainty 105.95 31.79 0.65 -0.41 56.0%

Table 2: Properties of forecast errors and volatility series for macro vari-
ables. Coefficient of variation (CV) listed in parentheses. Forecast MSE and dis-
persion are defined in (16) and (14) and use data from 1968q4-2011q4. Growth forecast is constructed as
ln(Et(GDPt))−ln(Et(GDPt−1)). GARCH volatility is the σt+1 that comes from estimating (12), using data
from 1947q2-2012q2. V IXt is the Chicago Board Options Exchange Volatility Index closing price on the
last day of quarter t, from 1990q1-2011q4. BBD policy uncertainty is the Baker, Bloom, and Davis (2012)
economic policy uncertainty index for the last month of quarter t, from 1985q1-2011q4. Ũt is nonlinear
model uncertainty, measured as the log deviation from trend (eq. 9).

4.9%, . . . , between -1 and -2%, and below -2%. However, the survey only reports a single

probability weight that is averaged across all forecasters.

Since this data does not completely describe the distribution of yt+1 beliefs, computing

a variance requires some approximation. The most obvious approximation is to assume a

discrete distribution. For example, when agents assign a probability to 1−2% GDP growth,

we treat this as if that is the probability placed on the outcome of 1.5% GDP growth.

When the agent says that there is probability p6.5 of growth above 6%, we treat this as

probability p6.5 placed on the outcome yt+1 = 6.5%. And if the agent reports probability

p−2.5 of growth below -2%, we place probability of p−2.5 on yt+1 = −2.5%. Then the

expected rate of GDP growth is ȳ =
∑

mεM pmm for M = {−2.5,−1.5, . . . , 6.5}. Finally,

the conditional variance of beliefs about GDP growth are var[y|I] =
∑

mεM pm(m− ȳ)2.

The resulting conditional variance series is not very informative. It hardly varies (range

is [0.0072, 0.0099]). It does not rise substantially during the financial crisis. In fact, it

suggests that uncertainty in 2008 was roughly the same as it was in 2003. The reason this

measure does not detect high uncertainty in exteme events is that the growth rates are top-

and bottom-coded. All extremely bad GDP events are grouped in the bin “growth less

than 2%.” All the uncertainty was about how bad this recession might be. Instead, what

the probability bins reveal is a high probability weight on growth below 2%. Since most of

26



the probability is concentrated in one bin, it makes the uncertainty look low. In sum, while

using surveys to ask about ex-ante probabilities of GDP events is a promising approach to

measuring uncertainty, the available data does not seem useful for our purposes.

4 Conclusions

Most approaches to measuring economic uncertainty ignore parameter estimation uncer-

tainty. Sometimes referred to as “rational expectations econometrics,” the traditional

approach entails estimating a model on the full sample of data and then treating the esti-

mated parameters as truth to infer what the volatility of innovations was in each period in

the past. In equating the volatility with uncertainty, the econometrician is assuming that

the uncertain agent knows the true distribution of outcomes at every moment in time and

is only uncertain about which outcome will be chosen from this distribution. Assuming

such precise knowledge of the economic model rules out most uncertainty and ignores many

sources of uncertainty shocks.

We measure uncertainty for an agent who is not endowed with knowledge of the true

economic model. Instead, this agent needs to estimate the model of the economy, just

like an econometrician. The conditional variance of this agent’s forecast, his uncertainty,

is much higher and varies more than volatility does. When the agent considers skewed

distributions of outcomes, new data or real-time revisions to existing data can change

his beliefs about the skewness of the distribution, and thus the probability of extreme

events. Small changes in the estimated shape of a probability distribution can increase

or decrease the probability of these tail events many-fold. Because these events are so far

from the mean outcome, changes in their probability have a large effect on conditional

variance, which translates into large shocks to uncertainty. Thus, our message is that

it is beliefs about these black swans, extreme events that are never observed, but whose

probability is inferred from a forecasting model, that are responsible for much of the shocks

to macroeconomic uncertainty.
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A Estimating the model

In what follows we show how to use Metropolis-Hastings algorithm to generate samples
from p

(
θ|yt

)
for each t = 0, 1, 2, .., T . 11

The general idea of MCMC methods is to design a Markov chain whose stationary
distribution, π (with πT = π where T is a transitional kernel), is the distribution p we
are seeking to characterize. In particular, the Metropolis-Hastings sampling algorithm
constructs an ergodic Markov chain that satisfies a detailed balance property with respect
to p and, therefore, produces the respective approximate samples. The transition kernel of
that chain, T , is constructed based on sampling from a proposal conditional distribution
q
(
θ|θ(d)

)
where d denotes the number of the sampling step. Specifically, given the d-step

in the random walk θ(d) the next-step θ(d+1) is generated as follows

θ(d+1) =

 θ′ with probability α
(
θ(d), θ′

)
= min

(
1,

p(θ′|yt)
p(θ(d)|yt)

q(θ(d)|θ′)
q(θ′|θ(d))

)
θ(d) with probability 1− α

(
θ(d), θ′

)
where θ′ ∼ q

(
θ|θ(d)

)
.

11We drop here the dependence onM hoping that no confusion arises; the algorithm is applied indepen-
dently to generate the respective samples under each model.
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In our application, the simulation of the parameters is done through simple random
walk proposals. In particular, for the means the proposed move is

µ′S = µS + τuεS (17)

where S ∈ {1, ..., N}, εS ∼ N (0, 1).
For the variance σ2, the proposed move is a multiplicative random walk

log σ′ = log σ + τσξσ (18)

where ξσ ∼ N (0, 1).
In the case of the transition probability matrix, the move is slightly more involved due

to the constraint on the sum of rows. We reparameterize each row (qi1, ..., qiN ) as

qij =
ωij∑
j ωij

, ωij > 0, j ∈ {1, ..., N}

so that the summation constraint does not hinder the random walk. The proposed move
on ωij is then given by

logω′ij = logωij + τωξω (19)

where ξω ∼ N (0, 1). Note that this reparametrization requires that we select a prior
distribution on ωij rather than on qij .

The parameters τu, τσ, and τω can be adjusted to optimize the performance of the
sampler. Choosing a proposal with small variance would result in relatively high acceptance
rates but with strongly correlated consecutive samples. See Roberts, Gelman, and Gilks
(1997) for the results on optimal scaling of the random walk Metropolis algorithm.

Since the proposal is symmetric in all the cases (17), (18), and (19) and since εS , ξσ,
and ξω are drawn independently from one another, we have q (θ|θ′) = q (θ′|θ), and the

acceptance probability simplifies to min

(
1,

p(θ′|yt)
p(θ(d)|yt)

)
. To compute that acceptance ratio,

note that the posterior distribution p
(
θ|yt

)
is given by

p
(
θ|yt

)
=
p
(
yt|θ

)
p (θ)

p (yt)

where p
(
yt
)

=
∫
p
(
yt|θ

)
p (θ) dθ is the marginal likelihood (or data density).

Continuous state filtering details In turn, the predictive distribution of the data,
p
(
yt+1|yt, θ

)
can be obtained as an integral against the filtering distribution

p
(
yt+1|yt, θ

)
=

∫ ∫
p (yt+1|st+1, θ) p (st+1|st, θ) p

(
st|yt, θ

)
dstdst+1
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We apply Kalman filtering techniques to obtain the distribution of the filtered values
of the hidden state, p

(
st|yt, θ

)
, which will be characterized by the following moments

ŝt ≡ E
[
st|yt−1, θ

]
and V ars,t ≡ E

[
(st − ŝt) (st − ŝt)′

]
. The predictive distribution of the

data is then given by the following moments E
[
yt|yt−1, θ

]
= ŝt and V ar

[
yt|yt−1, θ

]
=

V ars,t + σ2.

Estimating Prior Beliefs To discipline the priors, we use historical data, i.e. the vin-
tage of the data as of 1968q3 (1947q2-1968q2). We use uniform priors on all the parameters,
and estimate respective models using Bayesian techniques described in the Appendix. The
mean and standard deviations of the posterior parameter distributions as of 1968q3 be-
come the moments of the prior distributions for respective parameters that will be used in
the real-time estimation from 1968q4 onwards. The results for the respective models are
reported in the tables below.

To compute volatility in these models, we fix parameters at the estimated means of
these prior distributions. Figures 8 and 9 plot the priors and the evolution of parameter
beliefs over the sample for the linear-normal and skewed models.

Parameter Mean Stdev

α 2.35 0.68
ρ 0.47 0.12
σ2 4.89 3.45
σ2s 15.92 4.47

Table 3: Moments of the prior distributions in the linear-normal model

Parameter Mean Stdev

c 41.27 6.97
ρ 0.05 0.07
σ2 0.02 0.01
σ2s 0.005 0.007

Table 4: Moments of the prior distributions in the model with skewness.

B Estimated ARCH/GARCH process for GDP

In this section we present the GARCH models that we estimate to infer volatility proxies
for GDP. We estimate volatility using an ARMA model with ARCH or GARCH errors.
The estimation procedure is maximum likelihood. We considered several models and chose
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Figure 8: Linear-Normal Model: Posterior Parameter Means, Medians, and 95%- Credible
Sets.
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Figure 9: Skewed Model: Posterior Parameter Means, Medians, and 95%- Credible Sets.

the AR and MA orders based on the significance of additional variables and their effect on
the log-likelihood. Similarly, we considered different lags of linear terms for εt and variances
σ2t in the GARCH specification and used the significance and effect of additional variables
on the log-likelihood to inform the specification choice.

We use quarterly GDP growth rate data for 1947:Q2–2012:Q2.12 The subsample of the
GDP data which matches the uncertainty data is 1968:Q4 to 2011:Q4. The results of ADF
tests indicate that the series for the full sample and matching subsample are stationary.

Best-fitting homoskedastic model Recall that we defined yt+1 ≡ ln(gdpt) − ln(gdpt−1).

12Data source: Bureau of Economic Analysis (http://www.bea.gov/national/index.htm#gdp). We are
using the seasonally adjusted annual rate for the quarterly percentage change in real GDP. Note that this
data is for the actual percentage change, not an approximation. The version of the data is 27 July 2012,
downloaded 2 August 2012.
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The best-fitting processes is an ARMA(1,0):

∆gdpt+1 = 3.25 + 0.37∆gdpt + εt+1, εt+1 ∼ N (0, 14.43)

The log-likelihood is -713.27.
Best-fitting heteroskedastic model For heteroskedastic processes, the best specification

is ARMA(1,0) for growth and GARCH(1) for variance:

∆gdpt+1 = 3.38 + 0.41∆gdpt + εt+1, εt+1 ∼ N (0, σ2t+1)

σ2t+1 = 0.52 + 0.76σ2t + 0.24ε2t

The log-likelihood is -693.90.
For each sample period of each variable we use Augmented Dickey-Fuller (ADF) tests

to check that the series is stationary. This test is based on estimating an AR model for the
data. For each sample we use the best-fitting AR model as the basis for the test. Each of
the series we use passed the stationarity test.
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