"Reconciling Hayek's and Keynes' views of recessions" by Beaudry Galizia Portier

> Discussion by Iván Werning @ NBER SI EFG 2014

Key Ideas

- High (excessive?) past accumulation
 lower activity today
- Q: Efficient?
- A: No.
- Feedback loop (Chamley, 2013)
 precautionary lower spending
 risk of unemployment
 Keynesian conclusions, but without sticky prices

Hayek and Keynes

- Hayek's liquidationist view
 - recession due to excessive boom
 - let recession run its course
 - stimulus only prolongues the adjustment
- Keynesian view
 - recession inefficient
 - stimulus warranted
- This paper
 - sides with former description
 - sides with latter prescription

Two Modules

- Precautionary Savings
- Labor market

Discussion

- Review precautionary saving feedbacks General equilibrium, market clearing Monetary model: zero lower bound Labor market friction wage determination matching technology • Policy implications
- Open questions

Precautionary Savings Module

Standard Model

- Standard model
 - infinite horizon t=0,1,2....
 - consumption, labor, no capital (add t=0 durable later)
 - comparable: New Keynesian model
- Idiosyncratic uncertainty in income
 - precautionary savings
 - general equilibrium?
- "Krugman Trick"
 - assume at t=1 and beyond: efficient
 - uncertainty only at t=0

 ∞ $\sum \beta^t \left(U(c_t) - v(\ell_t) \right)$ t=0 $y^i = y + u^i$

 $U(c) = -e^{-c}$

 ∞ $\sum \beta^t \left(U(c_t) - v(\ell_t) \right)$ t=0 $y^i = y + u^i$

$U'(c_t) = \beta R_t \mathbb{E}\left[U'(c_{t+1})\right]$

 $U(c) = -e^{-c}$

 ∞ $\sum \beta^t \left(U(c_t) - v(\ell_t) \right)$ t=0 $y^i = y + u^i$

 $U'(c_t) = \beta R_t \mathbb{E}\left[U'(c_{t+1})\right]$ $U'(c_t) = \mathbb{E}U'(ra_{t+1})\,\beta R\,U'(\bar{y})$

 $U(c) = -e^{-c}$

 $\beta^t \left(U(c_t) - v(\ell_t) \right)$ t=0 $y^i = y + u^i$

 $U'(c_t) = \beta R_t \mathbb{E}\left[U'(c_{t+1})\right]$ $U'(c_t) = \mathbb{E}U'(ra_{t+1})\,\beta R\,U'(\bar{y})$ $ra_{t+1} = rR\left(y^{i} - c\right) = rR\left(y + u^{i} - c\right) = rRu^{i}$

 $U(c) = -e^{-c}$

 $\beta^t \left(U(c_t) - v(\ell_t) \right)$ t=0 $y^i = y + u^i$ $U'(c_t) = \beta R_t \mathbb{E}\left[U'(c_{t+1})\right]$ $U'(c_t) = \mathbb{E}U'(ra_{t+1})\,\beta R\,U'(\bar{y})$

 $U(c) = -e^{-c}$

 $ra_{t+1} = rR\left(y^i - c\right) = rR\left(y + u^i - c\right) = rRu^i$

 $\begin{array}{c} \longrightarrow U'(c) = \hat{\beta}(\sigma) R U'(y_{t+1}) \\ \hat{\beta}(\sigma) = \mathbb{E} U'(r R u) \beta \end{array}$

Feedback Loop

 $\sigma(C) \longrightarrow \beta(C) \equiv \hat{\beta}(\sigma(C))$

Feedback Loop

$\sigma(C) \longrightarrow \beta(C) \equiv \hat{\beta}(\sigma(C))$

 $U'(C) = \beta(C) R U'(y')$

Feedback Loop

$\sigma(C) \longrightarrow \beta(C) \equiv \hat{\beta}(\sigma(C))$

$U'(C) = \beta(C) R U'(y')$

- Multiplicity possible
 - authors shy away... perhaps they shouldn't
- Chamley (beautiful paper)
 - dynamics from good to bad equilibrium
 - stuck in bad equilibrium
 - Policy implications?
- This paper
 - simpler
 - more policy implications

Amplification

Add "durable"
endowment of good at t=0
demand shifter

adjusts $U'(X + y) = \beta(y) RU'(\bar{y})$

Monetary Economy

- Monetary Economy
 - sticky prices; demand determined output
 - Fed controls interest rate
- Fed response crucial
 - no change in interest rate: feedback loops
 - responsive monetary policy: optimum
- Hayek, Keynes and... Friedman?

Labor Market Module

• Feedback *without* sticky prices and ZLB?

- Feedback *without* sticky prices and ZLB?
- Paper...
 - labor market frictions
 - delivers constant interest rate!

- Feedback *without* sticky prices and ZLB?
- Paper...
 - labor market frictions
 - delivers constant interest rate!

- Feedback without sticky prices and ZLB?
- Paper...
 - labor market frictions
 - delivers constant interest rate!
- Ignore uncertainty for a moment (pooling income)
 not key...
 - ... before getting amplification, we need a platform
 - ... add it back later

 $\Pi^*\left(1,\frac{w}{p}\right) = \Phi$

$$\Pi^*\left(1,\frac{w}{p}\right) = \Phi \quad \longrightarrow \quad \frac{u}{p}$$
$$\Pi^*\left(1,\frac{w}{p}\right) = \Phi \quad \longrightarrow \quad \frac{w}{p}$$

$$pF'(\ell) = w$$
$$v'(\ell) = \beta U'(c')w$$

$$\Pi^*\left(1,\frac{w}{p}\right) = \Phi \longrightarrow \frac{w}{p}$$
$$pF'(\ell) = w \longrightarrow \ell$$

$$v'(\ell) = \beta U'(c')w \longrightarrow u$$

$$\Pi^*\left(1,\frac{w}{p}\right) = \Phi \longrightarrow \frac{w}{p}$$

$$pF'(\ell) = w \longrightarrow \ell \qquad p$$

$$v'(\ell) = \beta U'(c')w \longrightarrow w$$

 $U'(X + y) = \beta p U'(c')$ $c = N(F(\ell) - \Phi)$

$$U'(X + y) = \beta p U'(c') \longrightarrow Y$$
$$c = N(F(\ell) - \Phi) \longrightarrow N$$

$$U'(X + y) = \beta p U'(c') \longrightarrow Y$$
$$c = N(F(\ell) - \Phi) \longrightarrow N$$

Note: risk not needed for inefficiency or constant consumption

$$U'(X + y) = \beta p U'(c') \longrightarrow Y$$
$$c = N(F(\ell) - \Phi) \longrightarrow N$$

<u>Note</u>: risk not needed for inefficiency or constant consumption <u>Intuition or Magic?</u>

• Special assumptions? Concern?

- Special assumptions? Concern?
- Labor market...
 - Nash or ex-post Walrasian
 - Leontief and infinite elastic entry
 - static one shot

- Special assumptions? Concern?
- Labor market...
 - Nash or ex-post Walrasian
 - Leontief and infinite elastic entry
 - static one shot
- Implications...
 - high wage rigidity...
 - ... high wage flexibility needed (Leontief)

- Special assumptions? Concern?
- Labor market...
 - Nash or ex-post Walrasian
 - Leontief and infinite elastic entry
 - static one shot
- Implications...
 - high wage rigidity...
 - ... high wage flexibility needed (Leontief)

- Special assumptions? Concern?
- Labor market...
 - Nash or ex-post Walrasian
 - Leontief and infinite elastic entry
 - static one shot
- Implications...
 - high wage rigidity...
 - ... high wage flexibility needed (Leontief)
- What happens away from this?

Competitive Search

- Competitive Search
 - Firms post wage schedules
 - Workers direct their search
- Known to be efficiency in many settings
- <u>Here</u>: efficient if no uncertainty (e.g. pooling)
- <u>Result</u>: with Leontief matching and competitive search

efficiency consumption rises with X

Other Matching

• Leontief

extreme wage flexibility needed
Nash or ex-post Walrasian not enough

• Cobb-Douglas...

- Nash bargaining
- Hosios condition: efficiency

• Ex post Walrasian?

 $\frac{\mu(N)}{N}\Pi^*\left(1,\frac{w}{p}\right) = \Phi$

$$pF'(\ell) = w$$
$$v'(\ell) = \beta U'(c')w$$

$U'(X+y) = \beta p U'(c')$

$$c = \mu(N)F(\ell) - N\Phi$$

Х

Other Wage Determination

- Wage rigidity may be feature, not bug (Hall)
 fix W/P → throw out labor supply
 needed: smooth matching technology
- Implication
 - employment pinned down...
 - ... output determined
 - ... consumption determined...
 - ... interest rate adjusts

No Risk	Ex-Post Walras	Competitive Search	"Hall" (fixed w/p)
Leontief	$\int c \int Y$ R	$ \uparrow c \checkmark Y \\ \checkmark R $	
Cobb Douglas	$ \mathbf{\uparrow} c \mathbf{\checkmark} Y \\ \mathbf{\checkmark} R $	$ \mathbf{\uparrow}_{C} \mathbf{\checkmark}_{Y} \\ \mathbf{\checkmark}_{R} $	$ \begin{array}{c} \uparrow c Y \\ \checkmark R \end{array} $

with risk	No Risk	Ex-Post Walras	Competitive Search	"Hall" (fixed w/p)
	Leontief	$ \int c \int Y \\ \land R $	$ \begin{array}{c} $	
	Cobb Douglas	$ \oint c \bigvee Y \\ \bigvee R $	$ \mathbf{\uparrow}_{C} \mathbf{\checkmark}_{Y} \\ \mathbf{\checkmark}_{R} $	$\int c Y \\ \checkmark R$

with risk	No Risk	Ex-Post Walras	Competitive Search	"Hall" (fixed w/p)
	Leontief	$\int c \int Y$ $\uparrow R$	$ \begin{array}{c} $	
	Cobb Douglas		$ \begin{array}{c} \uparrow c \checkmark Y \\ \checkmark R \end{array} $	$\int c Y$ $\bigvee R$

NORMATIVE	Ex-Post Walras	Competitive Search	"Hall" (fixed w/p)
Leontief	$c < c^*$	$c = c^*$?
Cobb Douglas	$\begin{array}{c} c < c^* \\ c > c^* \end{array}$?	$c > c^*$?
Labor Wedge

- Two *intensive* margin distortions...
 - fictitious margin: labor vs present consumption
 - actual margin: labor vs future consumption
- Definition of labor wedge
 - fictitious margin
 - intertemporal distortion
- Labor market is distorted, but
 - due to low entry of firms (jobs / vacancies)
 - along extensive margin, not intensive margin

Policy Implications

Policy Implications

- Feedback due to uncertainty
 - stop feedback by unemployment insurance
 - better consumption sharing...
 - ... improves efficiency consumption level
 - efficiency in labor market

- May not go all the way to efficient
 - government spending?
 - labor market policies?

Summary

- <u>Very</u> nice paper, lots to think about!
- Two modules
 - precautionary feedback: need fix R
 - labor market friction: fixes R
- How generality / plausible is the mechanism?
- Policy implication:
 - unemployment insurance
 - government spending
 - labor market policies?