International Liquidity and Exchange Rate Dynamics

Xavier Gabaix*       Matteo Maggiori†

June 2014

Abstract

We provide a theory of the determination of exchange rates based on capital flows in imperfect financial markets. Capital flows drive exchange rates by altering the balance sheets of financiers that bear the risks resulting from international imbalances in the demand for financial assets. Such alterations to their balance sheets cause financiers to change their required compensation for holding currency risk, thus impacting both the level and volatility of exchange rates. Our theory of exchange rate determination in imperfect financial markets not only rationalizes the empirical disconnect between exchange rates and traditional macroeconomic fundamentals, but also has real consequences for output and risk sharing. Exchange rates are sensitive to imbalances in financial markets and seldom perform the shock absorption role that is central to traditional theoretical macroeconomic analysis. We derive conditions under which heterodox government financial policies, such as currency interventions and taxation of capital flows, can be welfare improving. Our framework is flexible; it accommodates a number of important modeling features within an imperfect financial market model, such as non-tradables, production, money, sticky prices or wages, various forms of international pricing-to-market, and unemployment.

Keywords: Capital Flows, Exchange Rate Disconnect, Foreign Exchange Intervention, Limits of Arbitrage.

*New York University, Stern School of Business, NBER and CEPR. Email: xgabaix@stern.nyu.edu.
†Harvard University, Department of Economics, NBER and CEPR. Email: maggiori@fas.harvard.edu.

We thank Ariel Burstein, John Campbell, Nicolas Coeurdacier, Alessandro Dovis, Bernard Dumas, Emmanuel Farhi, Luca Fornaro, Kenneth Froot, Nicolae Garleanu, Gita Gopinath, Pierre-Olivier Gourinchas, Nobuhiro Kiyotaki, Anton Korinek, Arvind Krishnamurthy, Maurice Obstfeld, Anna Pavlova, Fabrizio Perri, Hélène Rey, Kenneth Rogoff, Hyun Song Shin, Andrei Shleifer, Jeremy Stein, and seminar participants at various seminars and conferences. We thank Miguel de Faria e Castro and Jerome Williams for excellent research assistance. We gratefully acknowledge the financial support of the Dauphine-Amundi Foundation and the NYU CGEB. Gabaix gratefully acknowledges the NSF support (SES-0820517). Maggiori thanks the International Economics Section, Department of Economics, Princeton University for hospitality during part of the research process for this paper.
We provide a theory of exchange rate determination based on capital flows in imperfect financial markets. In our model, exchange rates are volatile and largely disconnected from traditional macroeconomic fundamentals over the medium term; they are instead governed by financial forces. Global shifts in the demand and supply of assets result in large scale capital flows that are intermediated by the global financial system. The demand and supply of assets in different currencies and the willingness of the financial system to absorb the resulting imbalances are first order determinants of exchange rates. A framework to characterize such forces and their implications for welfare and policy, while desirable, has proven elusive.

In our model, financiers absorb part of the currency risk originated by imbalanced global capital flows. Alterations to the size and composition of financiers’ balance sheets induce them to differentially price currency risk, thus affecting both the level and the volatility of exchange rates. Our theory of exchange rate determination in imperfect financial markets differs from the traditional open macroeconomic model by introducing financial forces, such as portfolio flows, financiers’ balance sheets, and financiers’ risk bearing capacity as first order determinants of exchange rates.

We first present a basic theory of exchange rate financial determination in a two-period two-country model where capital flows are intermediated by global financiers. Each country borrows or lends in its own currency and financiers absorb all currency risk that is generated by the mismatch of global capital flows. Since financiers require compensation for holding currency risk in the form of expected currency appreciation, exchange rates are jointly determined by capital flows and by the financiers’ risk bearing capacity. Our theory, therefore, is an elementary one whereby supply and demand determine a price, the exchange rate, that clears markets.

The exchange rate is disconnected from traditional macroeconomic fundamentals such as imports, exports, output, or inflation; this occurs because these same fundamentals correspond to different equilibrium exchange rates depending on financiers’ balance sheets and risk bearing capacity. An extension to a multi-period model strengthens this intuition by solving the exchange rate as a present value relationship. The exchange rate discounts future current account balances, but the rate of discounting is determined in financial markets and therefore hinges on financiers’ risk bearing capacity and balance sheets. Changes in such capacity affect both the level and volatility of the exchange rate. Financiers both act as shock absorbers, by using their risk bearing capacity to accommodate flows that result from fundamental shocks, and are themselves the source of financial shocks that distort exchange rates.

The financial determination of exchange rates in imperfect financial markets has real consequences for output and risk sharing. To more fully analyze these consequences, we extend the basic model by introducing nominal exchange rates, monetary policy, and both flexible and sticky prices. In the presence of goods’ prices that are sticky in the producers’ currencies, a capital in-
flow or financial shock that produces an overly appreciated exchange rate causes a fall in demand for the inflow-receiving country’s exports and a corresponding fall in output.

Our theory yields novel predictions for policy analysis in the presence of flexible exchange rates. In a financial world, exchange rate movements are dominated by financial factors and seldom perform the benign expenditure switching role that is central to traditional macroeconomic analysis. In fact, the traditional macroeconomic rationale for prescribing pure floating exchange rates is that, in the presence of asymmetric real shocks, the exchange rate acts as a shock absorber by shifting global demand toward the country that has been most negatively affected by the shock via a depreciation of its currency.

By contrast, we show that in our framework the floating exchange rate is itself distorted by imbalances in financial markets and shocks to the financial system’s risk bearing capacity; the exchange rate can often be the vehicle of transmission of financial shocks to the real economy. Our policy analysis suggests that novel trade-offs emerge when financial markets are disrupted or are less developed overall, and when output is far below its potential so that an exchange rate depreciation increases output via an increase in net exports. Heterodox policies, such as large scale currency interventions and capital controls, are shown to be beneficial in these specific circumstances.

We focus on providing a framework that is not only sufficiently rich to analyze the financial forces at the core of our theory in a full general equilibrium model, but also sufficiently tractable as to provide simple pencil-and-paper solutions that make the analysis as transparent as possible. While tractability requires some assumptions, we also verify that the core forces of our framework remain the leading forces of exchange rate determination even in more general setups, where a number of assumptions are relaxed and solutions (in some cases) have to be computed numerically.

Our model makes sense of a number of fundamental issues in open macroeconomics; these include the exchange rate disconnect from macroeconomic fundamentals, external financial adjustment, the failure of purchasing power parity, the failure of the Backus and Smith risk sharing condition, and the carry trade. While these issue have certainly been analyzed in other models, our work provides a different, unified, and tractable perspective.

Our framework is flexible in accommodating a number of modeling features that are important in open economy analysis within an imperfect capital market model, such as non-tradables, production, money, sticky prices or wages, and various forms of international pricing-to-market. In each extension, we focused on simple and tractable modeling to map out in closed form both its basic channels and the interaction with the core forces of the paper. While the results are qualitative, we stress that the framework is versatile and can be easily employed in future research to address a number of open questions in international macroeconomics.
We summarize our contribution as providing a tractable framework for the determination of exchange rates in financial markets via capital flows and the risk-bearing capacity of financiers. Our general equilibrium framework combines financial forces such as risk taking and financial intermediation in imperfect capital markets with the traditional real economy analysis of production, import and export activities. The resulting equilibrium exchange rate is disconnected from traditional macroeconomic fundamentals and is instead connected to financial forces, such as financiers’ balance sheets’ exposures and risk-bearing capacity. A key distinctive feature of our model is the direct relevance of flows, not just stocks, of assets for exchange rate determination. We further show how the core force of the model, limited risk taking by the financiers, can help to rationalize a number of classic issues of international macroeconomics. Based on this framework, we analyze optimal policy and welfare in the presence of both financial and nominal frictions and characterize when and which financial policies can be used to re-equilibrate exchange rates.

**Related Literature**  Two important papers were published in 1976, the now classic exchange rate overshooting model (Dornbusch (1976)) and the portfolio balance theory model (Kouri (1976)). While we incorporate important aspects of the Keynesian tradition upon which Dornbusch builds, our model provides modern foundations to the spirit of Kouri’s portfolio balance theory of exchange rates. Obstfeld and Rogoff (1995) brought the Keynesian approach into modern international economics by providing micro-foundations to the dynamic version of the Mundell-Fleming-Dornbusch model. Their foundations have been essential not only for the analysis of exchange rate determination, but also for that of optimal policy and welfare. However, financial forces play little role in this class of models. In the real version of these models, exchange rates are mostly determined by the demand and supply of domestic and foreign goods. Even in the nominal versions of the models, where the nominal exchange rate is often expressed as the present discounted sum of future monetary policy and other macroeconomic fundamentals, the impact of finance is limited because in most cases the uncovered interest parity holds, the demand for money is tightly linked to consumption expenditures, and/or the model is linearized.

A vast parallel literature has explored the determinants of exchange rates in endowment or real business cycle models following Lucas (1982) and Backus, Kehoe and Kydland (1992). In the context of asset pricing models, Dumas (1992), Lewis (1998), Verdelhan (2010), Colacito and Croce (2011), and Hassan (2013) have explored the relationship between consumption and the real exchange rate following Backus and Smith (1993). Pavlova and Rigobon (2007) analyze a real model with complete markets where countries’ representative agents have logarithmic preferences affected by taste shocks. This branch of the literature has mostly maintained the

---

2. Among others see also: Farhi and Gabaix (2013), Martin (2011), and Stathopoulos (2012).
3. Similar preferences are also used in Pavlova and Rigobon (2008, 2010).
assumption of complete markets. We contribute to this literature not only by providing alternative drivers of exchange rates, financiers’ risk bearing capacity and financial imbalances, which break the link between consumption and the exchange rate, but also by focusing on incomplete and imperfect capital markets. These imperfections are crucial to our welfare and policy analysis in open economies.

Recent economic events, such as the global financial and European crises, have rekindled an interest in the analysis of optimal policy and welfare in open economies. Aguiar, Amador and Gopinath (2009), Farhi, Gopinath and Itskhoki (2014), Farhi and Werning (2012a, b), and Schmitt-Grohé and Uribe (2012) provide innovative analyses of policies such as capital controls, fiscal transfers and fiscal devaluations in the context of the small-open-economy (new-Keynesian) model. We contribute to this literature by analyzing policies in a two-country world where financial flows are direct determinants of exchange rates and where the condition of financial markets is an important policy consideration. We find that public financial policies, which cannot be analyzed under the UIP-assumption, complete markets, or simple forms of market incompletion, can be beneficial in specific circumstances. We characterize the policy instruments (capital controls, currency-swaps, and FX interventions) that can be used to implement these polices.

Relatively little research has been devoted to analyzing the relationship between portfolio flows and exchange rates. Notable exceptions are Evans and Lyons (2002), Jeanne and Rose (2002), and Hau and Rey (2006), who consider the price impact of financial flows under different modeling assumptions: microstructure market making, noise traders, and equity portfolio flows, respectively. These papers solve for exchange rates in a partial equilibrium framework where the goods market, and therefore exports and imports, are omitted from the modeling. Maggiori (2011), and Bruno and Shin (2013) study financial intermediation as an important driver of global risk taking and capital flows. Bacchetta and Van Wincoop (2010) studies the implications of agents that infrequently rebalance their portfolio in an OLG setting. Alvarez, Atkeson and Kehoe (2002, 2009), Maggiori (2011) are models of exchange rates where the frictions, a form of market segmentation, are only present in the domestic money market or funding market.

1 Basic Gamma Model

Let us start with a minimalistic model of financial determination of exchange rates in imperfect financial markets. This simple real model carries most of the economic intuition and core

---

5In a closed economy context, an ongoing research effort has introduced financiers and intermediaries as key drivers of both business cycles and asset prices (Kiyotaki and Moore (1997), Garleanu and Pedersen (2011), Brunnermeier and Sannikov (2013), He and Krishnamurthy (2013)).
modeling that we will then extend to more general set-ups.

Time is discrete and there are two periods: \( t = 0, 1 \). There are two countries, the USA and Japan, each populated by a continuum of households. Households produce, trade (internationally) in a market for goods, and invest with financiers in risk-free bonds in their domestic currency.\(^6\) Financiers intermediate the capital flows resulting from households’ investment decisions. The basic structure of the model is displayed in Figure 1.

**Figure 1: Basic Structure of the Model**

The players and structure of the flows in the goods and financial markets in the Basic Gamma Model.

Intermediation is not perfect because of the limited commitment of the financiers. The limited-commitment friction induces a downward sloping demand curve for risk taking by financiers. As a result, capital flows from households move financiers up and down their demand curve. Equilibrium is achieved by a relative price, in this case the exchange rate, adjusting so that international financial markets clear given the demand and supply of capital denominated in different currencies. In this sense, exchange rates are financially determined in an imperfect capital market.

We now describe each of the model’s actors, their optimization problems, and analyze the resulting equilibrium.

### 1.1 Households

Households in the US derive utility from the consumption of goods according to:

\[
\mathbb{E} [\theta_0 \ln C_0 + \beta \theta_1 \ln C_1],
\]

\(^6\)In the absence of a nominal side to the model, in this section we intentionally abuse the word “currency” to mean a claim to the numéraire of the economy, and “exchange rate” to mean the real exchange rate. Similarly we abuse the words “Dollar or Yen denominated” to mean values expressed in units of non-tradable goods in each economy. As will shortly become clear, even this simple real model is set up so as to generalize immediately to a nominal model.
where \( C \) is a consumption basket defined as:

\[
C_t \equiv [(C_{NT,t})^{\chi_t}(C_{H,t})^{a_t}(C_{F,t})^{\iota_t}]^{\frac{1}{\theta_t}},
\]

(2)

where \( C_{NT,t} \) is the US consumption of its non-tradable goods, \( C_{H,t} \) is the US consumption of its domestic tradable goods, and \( C_{F,t} \) is the US consumption of Japanese tradable goods. We use the notation \( \{\chi_t, a_t, \iota_t\} \) for non-negative, potentially stochastic, preference parameters and we define \( \theta_t \equiv \chi_t + a_t + \iota_t \).

The non-tradable good is the numéraire in each economy and, consequently, its price equals 1 in domestic currency (\( p_{NT} = 1 \)). Non-tradable goods are produced by an endowment process that we assume for simplicity to follow \( Y_{NT,t} = \chi_t \), unless otherwise stated.\(^7\)

Households can trade in a frictionless goods market across countries. Financial markets are incomplete and each country trades a risk-free domestic currency bond.\(^8\) Risk-free here refers to paying one unit of non-tradable goods in all states of the world and is therefore akin to “nominally risk free”.

The households’ optimization problem can be divided into two separate problems. The first is a static problem, whereby households decide, given their total consumption expenditure for the period, how to allocate resources to the consumption of various goods. The second is a dynamic problem, whereby households decide intertemporally how much to save and consume.

The static utility maximization problem takes the form:

\[
\max_{C_{NT,t}, C_{H,t}, C_{F,t}} \chi_t \ln C_{NT,t} + a_t \ln C_{H,t} + \iota_t \ln C_{F,t} + \lambda_t (CE_t - C_{NT,t} - p_{H,t} C_{H,t} - p_{F,t} C_{F,t}),
\]

(3)

where \( CE_t \) is aggregate consumption expenditure, which is taken as exogenous in this static optimization problem and later endogenized in the dynamic optimization problem, \( \lambda_t \) is the associated Lagrange multiplier, \( p_{H,t} \) is the Dollar price in the US of US tradables, and \( p_{F,t} \) is the Dollar price in the US of Japanese tradables. First-order conditions give: \( \frac{\chi_t}{C_{NT,t}} = \lambda_t \), and \( \frac{\iota_t}{C_{F,t}} = \lambda_t p_{F,t} \). Our assumption that \( Y_{NT,t} = \chi_t \), combined with the market clearing condition for non-tradables \( Y_{NT,t} = C_{NT,t} \), implies that in equilibrium \( \lambda_t = 1 \). This yields:

\[
p_{F,t} C_{F,t} = \iota_t,
\]

i.e., the Dollar value of US imports is simply \( \iota_t \).

\(^7\)The assumption, while stark, makes the analysis of the basic model most tractable. We stress that the assumption is one of convenience, and not necessary for the economics of the paper. The reader might find it useful to think of \( \chi \) and \( Y_{NT} \) as constants and the equality between the two as a normalization that makes the closed form solutions of the paper most readable. Section 2 and the appendix provide more general results that do not impose this assumption.

\(^8\)The market structure is enriched in the following sections.
Japanese households derive utility from consumption according to: $E \left[ \theta_0^t \ln C_0^t + \beta^t \theta_1^t \ln C_1^t \right]$, where starred variables denote Japanese quantities and prices. By analogy with the US case, the Japanese consumption basket is: $C_t^t \equiv \left( (C_{NT,t}^*) \chi_t^t (C_{H,t}^*) \xi_t^t (C_{F,t}^*)^\frac{\alpha_t}{\theta_t} \right)^{\frac{1}{\theta_t}}$, where $\theta_t^t \equiv \chi_t^t + a_t^* + \xi_t^t$.

The Japanese static utility maximization problem, reported for brevity in the appendix, together with the assumption $Y_{NT,t}^* = \chi_t^*$, leads to a Yen value of US exports to Japan, $p_{H,t}^* C_{H,t}^* = \xi_t^* e_t - t_t$.

We collect these results in the Lemma below.

**Lemma 1** (Net Exports) Expressed in dollars, US exports to Japan are $\xi_t^* e_t$; US imports from Japan are $t_t$; so that US net exports are $NX_t = \xi_t^* e_t - t_t$.

Note that this result is independent of the pricing procedure (e.g. price stickiness under either producer or local currency pricing). Under producer currency pricing (PCP) and in the absence of trade costs, the US Dollar price of Japanese tradables is $p_H/e$, while under local currency pricing (LCP) the price is simply $p_H^*$. It follows that under financial autarky, i.e. if trade has to be balanced period by period, the equilibrium exchange rate is: $e_t = \frac{\xi_t^*}{\xi_t}$. In financial autarky, the Dollar depreciates ($\uparrow e$) whenever US demand for Japanese goods increases ($\uparrow t$) or whenever Japanese demand for US goods falls ($\downarrow \xi$). This has to occur because there is no mechanism, in this case, to absorb the excess demand/supply of dollars versus yen that a non-zero trade balance would generate.

The dynamic optimization problem of US households is to maximize the utility in equation (1) by choosing their consumption/savings subject to the state-by-state dynamic budget constraint:

$$\sum_{t=0}^{1} R^{-t} (Y_{NT,t} + p_{H,t} Y_{H,t}) = \sum_{t=0}^{1} R^{-t} (C_{NT,t} + p_{H,t} C_{H,t} + p_{F,t} C_{F,t}). \tag{4}$$

The optimization problem leads to a standard optimality condition (Euler equation):

$$1 = E \left[ \beta R \frac{U_t^t C_{NT}}{U_{0,t} C_{NT}} \right] = E \left[ \beta R \frac{\chi_1 / C_{NT,1}}{\chi_0 / C_{NT,0}} \right] = \beta R, \tag{5}$$

where $U_t^t C_{NT}$ is the marginal utility at time $t$ over the consumption of non-tradables. Given our

---

9In this real model, the exchange rate is related to the relative price of non-tradable goods. Section 5.2 provides a full discussion of this exchange rate and its relationship to both the nominal exchange rate, formally introduced in Section 2.1, and the CPI-based real exchange rate.

10Note that we chose the notation so that imports are denoted by $t_t$ and exports by $\xi_t$. 

7
simplifying assumption that \( C_{NT,t} = \chi_t \), the above Euler equation implies that \( R = 1/\beta \). An 
entirely similar derivation yields: \( R^* = 1/\beta^* \).\(^{11}\)

We stress that the aim of our simplifying assumptions is to create a real structure of the basic 
economy that captures the main forces (demand and supply of goods), while making the real side 
of the economy as simple as possible. This will allow us to analytically flesh out the crucial forces 
of the paper in the financial markets in the next sections without carrying around a burdensome real structure. Should the reader be curious as to the robustness of our model to relaxing some of the assumptions made so far, the quick answer is that it is quite robust. We will make such robustness explicit in Section 2, and in the appendix.

1.2 Financiers

Suppose that global financial markets are imbalanced, such that there is an excess supply of 
dollars versus yen resulting from, for example, trade or portfolio flows. Who will be willing to 
absorb such an imbalance by providing Japan those yen, and holding those dollars? We posit that 
the resulting imbalances are absorbed, at some premium, by global financiers.

We assume that there is a unit mass of global financial firms, each managed by a financier. 
Agents from the two countries are selected at random to run the financial firms for a single 
period.\(^{12}\) Financiers start their jobs with no capital of their own and can trade bonds denominated 
in both currencies. Therefore, their balance sheet consists of \( q_0 \) dollars and \(-\frac{q_0}{e_0}\) yen, where \( q_0 \) is 
the Dollar value of Dollar-denominated bonds the financier is long of and \(-\frac{q_0}{e_0}\) the corresponding 
value in Yen of Yen-denominated bonds. At the end of (each) the period, financiers pay their 
profits and losses out to the households.

Our financiers are intended to capture a broad array of financial institutions that intermediate 
global financial markets. These institutions range from the proprietary desks of global invest-
ment banks such as Goldman Sachs and JP Morgan, to macro and currency hedge funds such as 
Soros Fund Management, to active investment managers such as PIMCO and BlackRock. While 
there are certainly significant differences across these intermediaries, we stress their common 
characteristic of being active investors that profit from medium-term imbalances in international 
financial markets, often by bearing the risks (taking the other side) resulting from imbalances 
in currency demand due both to trade and financial flows. They also share the characteristic of

\(^{11}\)It might appear surprising that in a model with risk averse agents the equilibrium interest rate equals the rate of 
time preference. Of course, this occurs here because the marginal utility of non-tradable consumption, in which the 
bonds are denominated, is constant.

\(^{12}\)In this set-up, being a financier is an occupation for agents in the two countries rather than an entirely separate 
class of agents. The selection process is governed by a memoryless Poisson distribution. Of course, there are no 
selection issues in the one period basic economy considered here, but we proceed to describe a more general set-up 
that will also be used in the model extensions.
being subject to financial constraints that limit their ability to take positions, based on their risk bearing capacities and existing balance sheet risks.

It is beyond the scope of this paper to provide the contract-theory foundations that determine which assets and contracts the intermediaries trade in equilibrium. Instead, we take as given the prevalence of frictions and short-term debt in different currencies, and proceed to analyze their equilibrium implications. This direct approach to modeling financial imperfections has a long standing tradition with recent contributions by Kiyotaki and Moore (1997), Gromb and Vayanos (2002), Mendoza, Quadrini and Rios-Rull (2009), Mendoza (2010), Gertler and Kiyotaki (2010), Garleanu and Pedersen (2011).

We assume that each financier maximizes the expected value of her firm:

\[ V_0 = \mathbb{E} \left[ \beta \left( R - R^* e_1 e_0 \right) \right] q_0 = \Omega_0 q_0. \] (6)

In each period, after taking positions but before shocks are realized, the financier can divert a portion of the funds she intermediates. If the financier diverts the funds, her firm is unwound and the households that had lent to her recover a portion 
\[ \frac{1}{\Gamma} \left| \frac{q_0 e_0}{e_0} \right| \] of their credit position 
\[ \frac{q_0 e_0}{e_0} \].

Since creditors, when lending to the financier, correctly anticipate the incentives of the financier to divert funds, the financier is subject to a credit constraint of the form:

\[ \frac{V_0}{e_0} \geq \frac{q_0}{e_0} \quad \Gamma \left| \frac{q_0 e_0}{e_0} \right| = \Gamma \left( \frac{q_0 e_0}{e_0} \right)^2. \]

As will become clear below, our functional assumption regarding the diversion of funds is not only one of convenience, but also stresses the idea that intermediaries are able to divert more and more funds as their balance sheets increase. Limited commitment constraints in a similar spirit have been popular in the literature; for earlier use as well as foundations see among others: Caballero and Krishnamurthy (2001), Kiyotaki and Moore (1997), Hart and Moore (1994), and

---

13We derive this value function explicitly in the appendix. Here we only stress that this function does not require financiers to be risk neutral; in fact, it actually corresponds to the way in which US households would value currency trading, i.e their Euler equation.

14Given that the balance sheet consists of \( q_0 \) dollars and \( -\frac{q_0 e_0}{e_0} \) yen, the Yen value of the financier’s liabilities is always equal to \( \frac{q_0 e_0}{e_0} \), irrespective of whether \( q_0 \) is positive or negative; hence the use of absolute value in the text above. More formally, the financier’s creditors can recover a Yen value equal to: \( \max \left( 1 - \Gamma \left| \frac{q_0 e_0}{e_0} \right|, 0 \right) \left| \frac{q_0 e_0}{e_0} \right| \). See the appendix for further details.

15It is outside the scope of this paper to provide deeper foundations for this constraint. However, such foundations could potentially be achieved in models of financial complexity where bigger balance sheets lead to more complex positions. In turn, these more complex positions are more difficult and costly for creditors to unwind when recovering their funds in case of a financier’s default.
The constrained optimization problem of the financier is:

$$\max_{q_0} V_0 = \mathbb{E} \left[ \beta \left( R - R^* \frac{e_1}{e_0} \right) \right] q_0, \quad \text{subject to} \quad V_0 \geq \Gamma \frac{q_0^2}{e_0}. \tag{7}$$

Since the value of the financier’s firm is linear in the position $q_0$, while the right hand side of the constraint is convex in $q_0$, the constraint always binds.\(^{16}\) Substituting the firm’s value into the constraint and re-arranging (using $R = 1/\beta$), we find: $q_0 = \frac{1}{\Gamma} \mathbb{E} \left[ e_0 - e_1 \frac{R^*}{R} \right]$. Integrating the above demand function over the unit mass of financiers yields the aggregate financiers’ demand for assets: $Q_0 = \frac{1}{\Gamma} \mathbb{E} \left[ e_0 - e_1 \frac{R^*}{R} \right]$. We collect this result in the Lemma below.\(^{17}\)

**Lemma 2** (Financiers’ downward sloping demand for dollars) The financiers’ constrained optimization problem implies that the aggregate financial sector optimal demand for Dollar bonds versus Yen bonds follows:

$$Q_0 = \frac{1}{\Gamma} \mathbb{E} \left[ e_0 - e_1 \frac{R^*}{R} \right]. \tag{8}$$

The demand for dollars decreases in the strength of the dollar (i.e. increases in $e_0$), controlling for the future value of the Dollar (i.e. controlling for $e_1$). Notice that $\Gamma$ governs the ability of financiers to bear risks; hence in the rest of the paper we refer to $\Gamma$ as the financiers risk bearing capacity. The higher $\Gamma$, the lower the financiers’ risk bearing capacity, the steeper their demand curve, and the more segmented the asset market. To understand the behavior of this demand, let us consider two polar opposite cases. When $\Gamma = 0$, financiers are able to absorb any imbalances, i.e. they want to take infinite positions whenever there is a non-zero expected excess return in currency markets. So uncovered interest rate parity (UIP) holds: $\mathbb{E} \left[ e_0 - e_1 \frac{R^*}{R} \right] = 0$. When $\Gamma \uparrow \infty$, then $Q_0 = 0$; financiers are unwilling to absorb any imbalances, i.e. they do not want to take any positions, no matter what the expected returns from risk-taking.

Since $\Gamma$, the financiers’ risk bearing capacity, plays a crucial role in our theory, we refer hereafter to the setup described so far as the **basic Gamma model**.

\(^{16}\)Intuitively, given any non-zero expected excess return in the currency market, the financier will want to either borrow or lend as much as possible in Dollar and Yen bonds. The constraint limits the maximum position and therefore binds. We make the very mild assumption that the model parameters always imply: $\Omega_0 \geq -1$. That is, we assume that the expected excess returns from currency speculation never exceed 100% in absolute value. This bound is several order of magnitudes greater than the expected returns in the data (of the order of 0-6%) and has no economic bearing on our model. See appendix for further details.

\(^{17}\)This demand function could generate deviations not only from perfect risk-taking but also from arbitrage conditions such as covered interest rate parity (CIP). To prevent the existence of these simple arbitrages, we could also assume the existence of arbitrageurs who can freely enter into all risk-less trades. They eliminate trivial arbitrages. As a result, CIP holds. Informally, those arbitrageurs are not constrained because their trades are so simple that their monitoring is very easy.
We stress that the above demand function not only captures the spirit of international financial intermediation via the microfoundation of the constrained portfolio problem, but also behaves in aggregate similarly to the demand of a CARA agent with risk aversion $\Gamma$. Similar demand functions have been central to the limits of arbitrage theory of De Long et al. (1990a,b), Shleifer and Vishny (1997), and Gromb and Vayanos (2002).

For simplicity, we assume (for now and for much of this paper) that financiers rebate their profits and losses to the Japanese households, not the US ones. This asymmetry gives much tractability to the model, at fairly little cost to the economics.19

Before moving to the equilibrium, let us stress that the structure of the economy described in this Section and the previous one and depicted in Figure 1, while clearly stylized, is meant to capture the fundamental structure of international currency and bond markets. These markets are not only over-the-counter and highly intermediated, but also concentrated in the hands of a few large financial players such as Goldman Sachs, Soros Fund Management or PIMCO. Consequently, these players are likely to act as the marginal agent in pricing currencies.

We also emphasize that we are modeling the ability of these players to bear substantial risks over a horizon that ranges from a quarter to a few years. Our model is silent on the high frequency market-making activities of currency desks in investment banks. To make this distinction intuitive, let us consider that the typical daily volume of foreign exchange transactions is estimated to be $5.3$ trillion.20 This trading is highly concentrated among the market making desks of banks and is the subject of attention in the market microstructure literature pioneered by Evans and Lyons (2002). While these microstructure effects are interesting, we completely abstract away from these activities by assuming that there is instantaneous and perfect risk sharing across financiers, so that any trade that matches is executed frictionlessly and nets out. We are only concerned with the ultimate risk, most certainly a small fraction of the total trading volume, which financiers have to bear over quarters and years because households’ demand is unbalanced.21

---

18 Formally, it is equivalent to the first order approximation of CARA demand around a constant volatility of asset returns.
19 For completeness, note that this assumption had already been implicitly made in deriving the US households’ inter-temporal budget constraint in equation (4). This assumption is relaxed in the appendix, where we solve for general and symmetric payoff functions numerically.
21 This is consistent with evidence that market-making desks in large investment banks, for example Goldman Sachs, might intermediate very large volumes on a daily basis but are almost always carrying no residual risk at the end of the business day. In contrast, proprietary trading desks (before recent changes in legislation) or investment management divisions of the same investment banks carry substantial amounts of risk over horizons ranging from a quarter to a few years. These investment activities are the focus of this paper. Similarly, our financiers capture the risk-taking activities of hedge funds and investment managers that have no market making interests and are therefore not the center of attention in the microstructure literature.
1.3 Supply and Demand of Assets: Equilibrium Exchange Rate

Recall that for simplicity we are for now only considering imbalances resulting from trade flows (imbalances from portfolio flows will soon follow). The key equations of the model are the financiers’ demand:

\[ Q_0 = \frac{1}{\Gamma} \mathbb{E} \left[ e_0 - e_1 \frac{R^*}{R} \right], \]

and the equilibrium “flow” demand for dollars in the Dollar-Yen market at times \( t = 0, 1 \):

\[ \xi_0 e_0 - \iota_0 + Q_0 = 0, \]

\[ \xi_1 e_1 - \iota_1 - RQ_0 = 0. \]

Equation (10) is the market clearing equation for the Dollar against Yen market at time zero. It states that the net demand for Dollar against Yen has to be zero for the market to clear. The net demand has two components: \( \xi_0 e_0 - \iota_0 \), from US net exports, and \( Q_0 \), from financiers. Recall that we assume that US households do not hold any currency exposure: they convert their Japanese sales of \( \xi_0 \) yen into dollars, for a demand \( \xi_0 e_0 \) of dollars. Likewise, Japanese households have \( \iota_0 \) dollars worth of exports to the US and sell them, as they only keep Yen balances. At time one, equation (11) shows that the same net-export channel generates a demand for dollars of \( \xi_1 e_1 - \iota_1 \); while the financiers need to sell their dollar position \( RQ_0 \) that has accrued interest at rate \( R \).

We now explore the equilibrium exchange rate in this simple setup.

**Equilibrium exchange rate: a first pass**

To streamline the algebra and concentrate on the key economic content, we assume for now that \( \beta = \beta^* = 1 \), which implies \( R = R^* = 1 \), and that \( \xi_t = 1 \) for \( t = 0, 1 \). Adding equations (10) and (11) yields the US external intertemporal budget constraint:

\[ e_1 + e_0 = \iota_0 + \iota_1. \]

Taking expectations on both sides: \( \mathbb{E}[e_1] = \iota_0 + \mathbb{E}[\iota_1] - e_0 \). From the financiers’ demand equation we have:

\[ \mathbb{E}[e_1] = e_0 - \Gamma Q_0 = e_0 - \Gamma (\iota_0 - e_0) = (1 + \Gamma) e_0 - \Gamma \iota_0. \]

---

22These assumptions are later relaxed in Sections 2.2 and in the appendix where households are allowed to have (limited) foreign currency positions.

23At the end of period 0, the financiers own \( Q_0 \) dollars and \(-Q_0/e_0\) yen. Therefore, at the beginning of period one, they hold \( RQ_0 \) dollars and \(-R^*Q_0/e_0\) yen. At time one, they unwind their positions and give the net profits to their principals, which we assume for simplicity to be the Japanese households. Hence they sell \( RQ_0 \) dollars in the Dollar-Yen market at time one.
where the second equality follows from equation (10). Equating the two expressions for the
time-one expected exchange rate, we have:

$$E[e_1] = t_0 + E[t_1] - e_0 = (1 + \Gamma)e_0 - \Gamma t_0.$$ 

Solving this linear equation for the exchange rate at time zero, we conclude:

$$e_0 = \frac{(1 + \Gamma)t_0 + E[t_1]}{2 + \Gamma}.$$ 

We define $$\{X\} \equiv X - E[X]$$ to be the innovation to a random variable $$X$$. Then, the exchange rate at time $$t = 1$$ is:

$$e_1 = t_0 + t_1 - e_0 = t_0 + E[t_1] + \{t_1\} - e_0$$

$$= \{t_1\} + t_0 + E[t_1] - \frac{(1 + \Gamma)t_0 + E[t_1]}{2 + \Gamma} = \{t_1\} + t_0 + \frac{(1 + \Gamma)E[t_1]}{2 + \Gamma}.$$ 

We collect these results in the Proposition below.

**Proposition 1** (Basic Gamma equilibrium exchange rate) Assume that $$\xi_t = 1$$ for $$t = 0, 1$$, and that interest rates are zero in both countries. The exchange rate follows:

$$e_0 = \frac{(1 + \Gamma)t_0 + E[t_1]}{2 + \Gamma},$$

$$e_1 = \{t_1\} + \frac{t_0 + (1 + \Gamma)E[t_1]}{2 + \Gamma},$$

where $$\{t_1\}$$ is the time-one import shock. The expected Dollar appreciation is:

$$E\left[\frac{e_0 - e_1}{e_0}\right] = \frac{\Gamma(E[t_1] - t_0)}{(1 + \Gamma)t_0 + E[t_1]}.$$ 

Depending on $$\Gamma$$, the time-zero exchange rate varies between two polar opposites: the UIP-based and the financial-autarky exchange rates, respectively. Both extremes are important benchmarks of open economy analysis, and the choice of $$\Gamma$$ allows us to modulate our model between these two useful benchmarks. $$\Gamma \uparrow \infty$$ results in $$e_0 = \frac{t_0}{\xi_0}$$, which we have shown in Section 1.1 to be the financial autarky value of the exchange rate. Intuitively, financiers have so little risk-bearing capacity that no financial flows can occur between countries and, therefore, trade has to be balanced period by period. When $$\Gamma = 0$$, UIP holds and we obtain $$e_0 = \frac{t_0 + E[t_1]}{2}$$. Intuitively, financiers are so relaxed about risk taking that they are willing to take infinite positions in currencies whenever there is a positive expected excess return from doing so. UIP only imposes a constant exchange rate in expectation $$E[e_1] = e_0$$; the level of the exchange rate is then obtained by additionally
using the inter-temporal budget constraint in equation (12).

To further understand the effect of $\Gamma$, notice that at the end of period 0 (say, time $0^+$), the US net foreign asset (NFA) position is $N_{0^+} = \xi_0e_0 - t_0 = \frac{E[t_1] - t_0}{2 + \Gamma}$. Therefore, the US has positive NFA at $t = 0^+$ iff $t_0 < E[t_1]$. If the US has a positive NFA position, then financiers are long the Yen and short the Dollar. For financiers to bear this risk, they require a compensation: the Yen needs to appreciate in expectation. The required appreciation is generated by making the Yen weaker at time zero. The magnitude of the effect depends on the extent of the financiers’ risk bearing capacity ($\Gamma$), as formally shown here by taking partial derivatives:

$$\frac{\partial e_0}{\partial \Gamma} = \frac{t_0 - E[t_1]}{(2 + \Gamma)^2} = -\frac{N_{0^+}}{2 + \Gamma}.$$

We collect the result in the Proposition below.

**Proposition 2** (Effect of financial disruptions on the exchange rate) In the basic Gamma model, we have: $\frac{\partial e_0}{\partial \Gamma} = -\frac{N_{0^+}}{2 + \Gamma}$, where $N_{0^+} = \frac{E[t_1] - t_0}{2 + \Gamma}$ is the US net foreign asset (NFA) position. When there is a financial disruption ($\uparrow \Gamma$), countries that are net external debtors ($N_{0^+} < 0$) experience a currency depreciation ($\uparrow e$), while the opposite is true for net-creditor countries.

Intuitively, net external-debtor countries have borrowed from the world financial system, thus generating a long exposure for financiers to their currencies. Should the financial system’s risk bearing capacity be disrupted, these currencies would depreciate to compensate financiers for the increased (perceived) risk. This modeling formalizes a number of external crises where broadly defined global risk aversion shocks, embodied here in $\Gamma$, caused large depreciations of the currencies of countries that had recently experienced large capital inflows. Della Corte, Riddiough and Sarno (2014) offer empirical evidence consistent with our theoretical predictions. They show that net-debtor countries’ currencies have higher returns than net-creditors’ currencies and that net debtor countries’ currencies tend to be on the receiving end of carry trade related speculative flows.

To illustrate how the results derived so far readily extend to more general cases, we report below expressions allowing for stochastic US export shocks $\xi_t$, as well as non-zero interest rates. Several more extensions can be found in Section 2.

**Proposition 3** With general trade shocks and interest rates ($t_t, \xi_t, R, R^*$), the values of exchange rate at times $t = 0, 1$ are:

$$e_0 = \frac{E \left[ \frac{t_0 + \frac{t_1}{R}}{\xi_1} \right] + \Gamma t_0}{R^*}; \quad e_1 = E[e_1] + \{e_1\},$$

(14)
where we again denote by \( \{X\} \equiv X - \mathbb{E}[X] \) the innovation to a random variable \( X \), and

\[
\mathbb{E}[e_1] = \frac{R}{R^*} \mathbb{E} \left[ \frac{R^*}{\xi_1} \left( t_0 + \frac{t_1}{R} \right) \right] + \Gamma \xi_0 \mathbb{E} \left[ \frac{R^*}{\xi_1} \frac{t_1}{R} \right], \tag{15}
\]

\[
\{e_1\} = \left\{ \frac{t_1}{\xi_1} + R \frac{t_0 - \mathbb{E} \left[ \xi_0 \frac{R^*}{\xi_1} \right]}{\mathbb{E} \left[ \frac{R^*}{\xi_1} \left( \xi_0 + \frac{\xi_1}{R^*} \right) \right] + \Gamma \xi_0} \right\}. \tag{16}
\]

1.3.1 Supply and Demand Matter in the Gamma Model: the Impact of Portfolio Flows

We now further illustrate how the supply and demand of assets do matter for the financial determination of the exchange rate. We stress the importance of portfolio flows in addition, and perhaps more importantly than, trade flows for our framework. The basic model so far has focused on current account, or net foreign asset, based flows; we introduce here pure portfolios flows that alter the countries’ gross external positions. We focus here one the simplest form of portfolio flows from households. The rest of the paper, as well as the appendix, extends this minimalistic section to more general flows.

Consider the case where Japanese households have, at time zero, an inelastic demand (e.g. some noise trading) \( f^* \) of Dollar bonds funded by an offsetting position \(-f^*/e_0\) in Yen bonds. The flow equations are now given by:

\[
\xi_0 e_0 - t_0 + Q_0 + f^* = 0, \quad \xi_1 e_1 - t_1 - RQ_0 - Rf^* = 0. \tag{17}
\]

The financiers’ demand is still \( Q_0 = \frac{1}{R} \mathbb{E} \left[ e_0 - \frac{R^*}{R} e_1 \right] \). The equilibrium exchange rate is derived in the Proposition below.

**Proposition 4** (Gross capital flows and exchange rates) Assume \( \xi_t = R = R^* = 1 \) for \( t = 0, 1 \).

*With an inelastic time-zero additional demand \( f^* \) for Dollar bonds by Japanese households, the exchange rates at times \( t = 0, 1 \) are:

\[
e_0 = \frac{(1 + \Gamma) t_0 + \mathbb{E}[t_1] - \Gamma f^*}{2 + \Gamma}, \quad e_1 = \{t_1\} + \frac{t_0 + (1 + \Gamma) \mathbb{E}[t_1] + \Gamma f^*}{2 + \Gamma}.
\]

Hence, additional demand \( f^* \) for dollars at time zero induces a Dollar appreciation at time zero, and subsequent depreciation at time one. However, the time-average value of the Dollar is unchanged: \( e_0 + e_1 = t_0 + t_1 \), independently of \( f^* \).*

**Proof.** Define: \( \tilde{t}_0 \equiv t_0 - f^* \), and \( \tilde{t}_1 \equiv t_1 + f^* \). Given equations (17), our “tilde” economy is isomorphic to the basic economy considered in equations (10) and (11). For instance, import
demands are now \( \tilde{t}_t \) rather than \( t_t \). Hence, Proposition 1 applies to this “tilde” economy, thus implying that:

\[
e_0 = \frac{(1 + \Gamma) \tilde{t}_0 + \mathbb{E}[\tilde{t}_1]}{2 + \Gamma} = \frac{(1 + \Gamma) t_0 + \mathbb{E}[t_1] - \Gamma f^*}{2 + \Gamma},
\]

\[
e_1 = \{ \tilde{t}_1 \} + \frac{\tilde{t}_0 + (1 + \Gamma) \mathbb{E}[\tilde{t}_1]}{2 + \Gamma} = \{ t_1 \} + \frac{t_0 + (1 + \Gamma) \mathbb{E}[t_1] + \Gamma f^*}{2 + \Gamma}.
\]

An increase in Japanese demand for Dollar bonds needs to be absorbed by financiers, who correspondingly need to sell Dollar bonds and buy Yen bonds. To induce financiers to provide the desired bonds, the Dollar needs to appreciate on impact as a result of the capital flow, in order to then be expected to depreciate, thus generating an expected gain for the financiers’ short Dollar positions. This example emphasizes that our model is an elementary one where a relative price, the exchange rate, has to move in order to equate the supply and demand of two assets, Yen and Dollar bonds.

This framework can analyze concrete situations, such as the recent large scale capital flows from developed countries into emerging market local-currency bond markets, say by US investors into Brazilian Real bonds, that put upward pressure on the receiving countries’ currencies. While such flows and their impact on currencies have been paramount in the logic of market participants and policy makers, they had thus far proven elusive in a formal theoretical analysis.

Hau, Massa and Peress (2010) provide direct evidence that plausibly exogenous capital flows impact the exchange rate in a manner consistent with the Gamma model. They show that, following a restating of the weights of the MSCI World Equity Index, countries that as a result experienced capital inflows (because their weight in the index increased) saw their currencies appreciate.

To stress the difference between our basic Gamma model of the financial determination of exchange rates in imperfect financial markets and the traditional macroeconomic framework, we next illustrate two polar cases that have been popular in the previous literature: the UIP-based exchange rate, and the complete market exchange rate.

**Financial Flows in a UIP Model.** Much of the now classic international macroeconomic analysis spurred by Dornbusch (1976) and Obstfeld and Rogoff (1995) either directly assumes that UIP holds or effectively imposes it by solving a first order linearization of the model.\(^{24}\) The closest analog to this literature in the basic Gamma model is the case where \( \Gamma = 0 \), such that UIP holds by assumption. In this world, financiers are so relaxed, i.e. their risk bearing capacity is so ample, about supplying liquidity to satisfy shifts in the world demand for assets that such shifts

\(^{24}\)Intuitively, a first order linearization imposes certainty equivalence on the model and therefore kills any risk premia such as those that could generate a deviation from UIP.
have no impact on expected returns. Consider the example of US investors suddenly wanting to buy Brazilian real bonds; in this case financiers would simply take the other side of the investors’ portfolio demand with no effect on the exchange rate between the Dollar and the Real. In fact, equation (18) confirms that if $\Gamma = 0$, then portfolio flow $f^*$ has no impact on the equilibrium exchange rate.

**Financial Flows in a Complete Market Model.** Another strand of the literature has analyzed risk premia predominantly under complete markets. We now show that the exchange rate in a setup with complete markets (and no frictions) but otherwise identical to ours is constant, and therefore trivially not affected by the flows.

**Lemma 3** (Complete Markets) *In an economy identical to the set-up of the basic Gamma model, other than the fact that financial markets are complete and frictionless, the equilibrium exchange rate is constant: $e_t = \nu$, where $\nu$ is the relative Negishi weight of Japan.*

Here, we only sketch the logic and the main equations; a full treatment is relegated to the appendix. Under complete markets, the marginal utility of US and Japanese agents must be equal when expressed in a common currency. Intuitively, the full risk sharing that occurs under complete markets calls for Japan and the US to have the same marginal benefit from consuming an extra unit of non-tradables. In our set-up, this risk sharing condition takes a simple form: $\frac{\chi_t}{C_{nt,t}} e_t = \nu$, where $\nu$ is a constant. Simple substitution of the conditions $C_{nt,t} = \chi_t$ and $C^*_{nt,t} = \chi^*_t$ shows that $e_t = \nu$, i.e. the exchange rate is constant.

### 1.3.2 Flows, not just Stocks, Matter in the Gamma model

In frictionless models only stocks matter, not flows per se. In the Gamma model, instead, flows per se matter. This is a distinctive feature of our model. To illustrate this, consider the case where the US has an exogenous Dollar-denominated debt toward Japan, equal to $D_0$ due at time zero, and $D_1$ due at time one. For simplicity, assume $\beta = \beta^* = R = R^* = \xi_t = 1$ for $t = 0, 1$. Hence, total debt is $D_0 + D_1$. The flow equations now are:

$$e_0 - t_0 - D_0 + Q_0 = 0; \quad e_1 - t_1 - D_1 + Q_1 = 0.$$

The exchange rate at time zero is:

$$e_0 = \frac{(1 + \Gamma) t_0 + \mathbb{E}[t_1]}{2 + \Gamma} + \frac{(1 + \Gamma) D_0 + D_1}{2 + \Gamma}.$$

---

25Formally, the constant is the relative Pareto weight assigned to Japan in the planner’s problem that solves for complete-market allocations.

26The derivation follows from Proposition 6 by defining the pseudo imports as $\bar{t}_t = t_t + D_t$. 

17
Hence, when finance is imperfect ($\Gamma > 0$), both the timing of debt flows, as indicated by the term $(1 + \Gamma)D_0 + D_1$, and the total stock of debt ($D_0 + D_1$) matter in determining exchange rates. The early flow, $D_0$, receives a higher weight $\left(\frac{1+\Gamma}{\Gamma+T}\right)$ than the late flow, $D_1$, $\left(\frac{1}{\Gamma+T}\right)$. In sum, flows, not just stocks, matter for exchange rate determination.

To highlight the contrast, let us parametrize the debt repayments as: $D_0 = F$ and $D_1 = -F + S$. The parameter $F$ alters the flow of debt repayment at time zero, but leaves the total stock of debt ($D_0 + D_1 = S$) unchanged. The parameter $S$, instead, alters the total stock of debt, but does not affect the flow of repayment at time zero. We note that: $\frac{d e_0}{d F} = \frac{\Gamma}{\Gamma+T}$, and $\frac{d e_0}{d S} = \frac{1}{\Gamma+T}$. When $\Gamma \uparrow \infty$, only flows affect the exchange rate at time zero; this is so even when flows leave the total stocks unchanged ($\frac{d e_0}{d F} > 0 = \frac{d e_0}{d S}$). In contrast, when finance is frictionless ($\Gamma = 0$), flows have no impact on the exchange rate, and only stocks matter ($\frac{d e_0}{d F} = 0 < \frac{d e_0}{d S}$). We collect the result in the Proposition below.

**Proposition 5** (Stock Vs flow matters in the Gamma model) Flows matter for the exchange rate when $\Gamma > 0$. In the limit when financiers have no risk bearing capacity ($\Gamma \uparrow \infty$), only flows matter. When risk bearing capacity is very ample ($\Gamma = 0$), only stocks matter.

### 1.3.3 The Exchange Rate Disconnect

The Meese and Rogoff (1983) result on the inability of economic fundamentals such as output, inflation, exports and imports to predict, or even contemporaneously co-move with, exchange rates has had a chilling and long-lasting effect on theoretical research in the field (see Obstfeld and Rogoff (2001)). The disconnect between exchange rates and macro fundamentals is a central feature of the Gamma model. To stress this feature, we here show that two economies with identical macroeconomic fundamentals feature unconnected exchange rates that depend on imbalances in financial markets: i.e. financiers’ risk bearing capacity $\Gamma$ and their balance sheet exposure $Q_0$.

Consider a world, which we call *Tranquil Times*, where financiers’ risk-bearing capacity is $\Gamma_T > 0$ and the starting intermediary balance sheet is $Q_0^- = -f < 0$. Consider an alternate world, which we call *Distressed Times*, where financial imbalances are higher ($Q_0^- = -(f + \Delta f) < 0$, where $\Delta f > 0$) and financiers’ risk bearing capacity is lower ($\Gamma_D > \Gamma_T$). We stress that the two economies have otherwise identical fundamentals.

Simple algebra, entirely similar to the derivations in the previous sections, reveals that:

$$e_0^T - e_0^D \propto (\Gamma_D - \Gamma_T)(E[t_1] - t_0 + 2f) + \Gamma_D(2 + \Gamma_T)\Delta f,$$

(18)

Some forecastability of exchange rates using traditional fundamentals appears to occur at very-long horizons (e.g. 10 years) in Mark (1995) or for specific currencies, such as the US Dollar, using transformations of the balance of payments data (Gourinchas and Rey (2007b), Gourinchas, Govillot and Rey (2010)).
The first term on the right hand side has two components: $E[\iota_1] - \iota_0 + 2f$ summarizes the common fundamentals of the two economies, while $(\Gamma_D - \Gamma_T)$ highlights that the same fundamentals imply different exchange rates based on different financiers’ risk bearing capacities.\(^{28}\) The second term on the right hand side of equation (18) shows that different starting balance sheets for financiers also lead to different equilibrium exchange rates.\(^{29}\)

While the Meese and Rogoff (1983) negative result on the empirical relevance of traditional macroeconomic models of exchange rate determination has held up remarkably well, recently new evidence has been building in favor of a strong relationship between capital flows and exchange rates. In addition to the instrumental variable approach in Hau, Massa and Peress (2010) discussed earlier, Froot and Ramadorai (2005), Hong and Yogo (2012), and Kim, Liao and Tornell (2014) find that flows and financiers’ positions provide information about expected currency returns. Froot and Ramadorai (2005) show that medium-term variation in expected currency returns is mostly associated with capital flows, while long-term variation is more strongly associated with macroeconomic fundamentals. Hong and Yogo (2012) show that speculators’ positions in the futures currency market contain information that is useful, beyond the interest rate differential, to forecast future currency returns. Kim, Liao and Tornell (2014) show that information extracted from the speculators’ positions in the futures currency market helps to predict exchange rate changes and improves over the random-walk forecast even at relatively short horizons (6 to 12 months).

### 1.3.4 Endowment Economy

Very little has been said so far about output; we now close the general equilibrium by describing the output market. To build up the intuition for our framework, we consider here a full endowment economy, and consider production economies under both flexible and sticky prices in Section 3.

Let all output stochastic processes \(\{Y_{NT,t}, Y_{H,t}, Y^*_{NT,t}, Y_{F,t}\}_{t=0}^1\) be exogenous strictly-positive endowments. Assuming that all prices are flexible and that the law of one price (LOP) holds, one has: \(p_{H,t} = p^*_{H,t} e_t\), and \(p_{F,t} = p^*_{F,t} e_t\).

\(^{28}\)Recall that whenever $E[\iota_1] - \iota_0 > 0$, trade flows induce financiers to lend in yen and borrow in dollars. Similarly, a positive $f$ represents a short Dollar and long Yen starting imbalance for financiers. Therefore, the term $E[\iota_1] - \iota_0 + 2f$ summarizes, based on the common fundamentals of the two economies, the amount of dollars that financiers are short of. Consider the case when $E[\iota_1] - \iota_0 + 2f > 0$ and financiers are, therefore, short dollars. In this case, the lower the risk bearing capacity (the higher $(\Gamma_D - \Gamma_T)$), the more the Dollar has to appreciate at time zero to induce financiers to hold their positions via expected capital gains ($e^D_0 - e^D_T$).

\(^{29}\)Since $\Delta f > 0$, financiers are shorter Dollar and longer Yen in the Distressed than in the Tranquil economy. This additional financial imbalance requires an appreciated Dollar at time zero in the Distressed economy compared to the Tranquil one in order for financiers to intermediate the flows. The strength of this effect depends on the level of the risk bearing capacity of the two economies (the term $(\Gamma_D (2 + \Gamma_T))$: the lower the risk bearing capacity, the stronger the effect.
Summing US and Japanese demand for US tradable goods \((C_{H,t} = \frac{a_t}{p_{H,t}}\) and \(C^*_{H,t} = \frac{\xi_t}{p_{H,t}}\), respectively, which are derived as \(C_{F,t} = \frac{\nu_t}{p_{F,t}}\) in section 1.1), we obtain the world demand for US tradables: \(D_{H,t} = C_{H,t} + C^*_{H,t} = a_t + \xi_t\). Clearing the goods market, \(Y_{H,t} = D_{H,t}\), yields the equilibrium price in dollars of US tradables: \(p_{H,t} = \frac{a_t + \xi_t}{Y_{H,t}}\). An entirely similar argument yields: \(p^*_t = \frac{a^*_t + \iota_t}{Y_{F,t}}\).

2 Nominal Exchange Rate, Interest Rates, and Capital Flows

We now extend the basic Gamma model from the previous section to account for the nominal side of the economy, direct (but limited) trading of foreign currency bonds by the households, and for a preexisting stock of external debt. Each of the extensions is not only of interest on its own, but also explores the flexibility of our framework by incorporating a number of features that are important in open-economy analysis within an imperfect-market general-equilibrium model.

We introduce each extension separately starting from the basic Gamma model and derive the extended version of the flow equations in the bond market (extensions of equations (10-11)). In all cases, except in the nominal extension of the model, the financiers’ demand equation (equation (8)) is unchanged from the basic Gamma model. Finally, we solve in closed form for the equilibrium exchange rate resulting jointly from all extensions.

2.1 Nominal Exchange Rate

We have thus far considered a real model; we now investigate a nominal version of the Gamma model where the nominal exchange rate is determined, similarly to our baseline model, in an imperfect financial market.\(^{30}\)

We assume that money is only used domestically and that its demand is captured, in reduced form, in the utility function of consumers in each country.\(^{31}\) The US consumption basket is now modified to include a real-money-balances term: \(C_t = \left[ \frac{M_t}{P_t} \right]^{\theta_t} (C_{NT,t})^{\lambda_t} (C_{H,t})^{a_t} (C_{F,t})^{\iota_t} \frac{1}{\pi_t} \), where \(M_t\) is the amount of money held by the households and \(P_t\) is the nominal price level so

\(^{30}\)Notice that we have indeed set up the “real” model in the previous sections in such a way that non-tradables in each country play a role very similar to money and where, therefore, the exchange rate is rather similar to a nominal exchange rate (see Obstfeld and Rogoff (1996)[Ch. 8.3]). In this section we make such analogy more explicit. Section 5.2 provides a full discussion of the CPI-based real exchange rate in our model. Alvarez, Atkeson and Kehoe (2009) provide a model of nominal exchange rates with frictions in the domestic money markets, while our model has frictions in the international capacity to bear exchange-rate risk.

\(^{31}\)A vast literature has focused on foundations of the demand for money; such foundations are beyond the scope of this paper and consequently we focus on the simplest approach that delivers a plausible demand for money and much tractability.
that \( \frac{M}{p} \) is real money balances.\(^{32}\) We maintain the normalization of preference shocks by setting \( \theta_t \equiv \omega_t + \chi_t + a_t + \xi_t \). Correspondingly, the Japanese consumption basket is now: \( C^*_t \equiv \left[ \begin{array}{c} \frac{M^*_t}{p^*_t} \\
\frac{C^*_t}{p^*_t} \end{array} \right] \beta_t^\omega (C^*_t)^a_t (C^*_t)^\chi_t (C^*_t)^\xi_t \).

Money is the numéraire in each economy, with local currency price equal to 1. The static utility maximization problem is entirely similar to the one in the basic Gamma model of Section 1.1, and standard optimization arguments lead to demand functions: \( M_t = \frac{\omega_t}{\chi_t} \); \( p_{NT,t} C_{NT,t} = \frac{\chi_t}{\omega_t} \); \( p_{F,t} C_{F,t} = \frac{\chi_t}{\omega_t} \), where, we recall from earlier sections, \( \lambda_t \) is the Lagrange multiplier on the households’ static budget constraint. Money demand, in the top equation, is proportional to total nominal consumption expenditures; the coefficient of proportionality, \( \omega_t \), is potentially stochastic.

Let us define \( m_t \equiv \frac{M_t}{\omega_t} \) and \( m^*_t \equiv \frac{M^*_t}{\omega_t} \), where \( M_t \) and \( M^*_t \) are the money supplies. Notice that since money (as in actual physical bank notes) is non-tradable across countries or with the financiers (but bonds that pay in units of money are tradable with the financiers as in the previous sections), the money market clearing implies that the central bank can pin down the level of nominal consumption expenditure (\( m_t = \lambda_t^{-1}, m^*_t = \lambda_t^{*-1} \)).\(^{33}\) It is convenient to consider the cashless limit of our economies by taking the limit case when \( \{M_t, M^*_t, \omega_t, \omega^*_t\} \downarrow 0 \) such that \( \{m_t, m^*_t\} \) are finite.\(^{34}\) The nominal exchange rate \( e_t \) is again defined as the strength of the Yen, so that an increase in \( e_t \) is a Dollar depreciation.\(^{35}\)

US nominal imports in dollars are: \( p_{F,t} C_{F,t} = \frac{\chi_t}{\omega_t} = t_t m_t \). Similarly, Japanese demand for US tradables is: \( p^*_{F,t} C^*_{F,t} = \xi_t m^*_t \). Hence, US nominal exports in dollars are: \( p^*_{H,t} C^*_{H,t} e_t = \xi^*_t e_t m^*_t \). We conclude that US nominal net exports in dollars are: \( NX_t = \xi^*_t e_t m^*_t - t_t m_t \).

The key equations to solve for the equilibrium nominal exchange rate are the flow equations in the international bond market:

\[
\xi_0 e_0 m^*_0 - t_0 m_0 + Q_0 = 0; \quad \xi_1 e_1 m^*_1 - t_1 m_1 - R Q_0 = 0,
\]

\(^{32}\)See section 5.2 for details on the price index.

\(^{33}\)The central bank in each period chooses money supply after the preference shocks are realized so that \( m \) and \( m^* \) are policy variables. We abstract here from issues connected with the zero lower bound (ZLB) on nominal interest rates.

\(^{34}\)Notice the duality between money in the current setup and non-tradable goods in the basic Gamma model of Section 1. If \( M_t = \omega_t \) and \( C_{NT,t} = \chi_t \), one recovers the equations in Section 1, because the demand for money implies \( \lambda_t = 1 \), in which case the demand for non-tradables implies that \( p_{NT,t} = 1 \).

\(^{35}\)We intentionally abuse the notation by denoting the nominal exchange rate by \( e_t \), the same symbol used for the exchange rate in the basic Gamma model. This allows the notation to be simpler and for the basic concepts of the paper to be more easily compared across a number of different extensions.
and the extended financiers’ demand curve:

\[ Q_0 = \frac{m_0^*}{\Gamma} E \left[ e_0 - e_1 \frac{R^*}{R} \right]. \]  

Finally, the nominal interest rates are given by the households’ intertemporal optimality conditions (Euler Equations):

\[ 1 = E \left[ \beta R \frac{U'_{1,CNT}}{U'_{0,CNT}} / \frac{p_{NT,0}}{p_{NT,1}} \right] = E \left[ \beta R \frac{\chi_1/C_{NT,1}}{\chi_0/C_{NT,0}} \frac{p_{NT,0}}{p_{NT,1}} \right] = \beta R E \left[ \frac{m_0}{m_1} \right], \]

so that \( R^{-1} = \beta E \left[ \frac{m_0}{m_1} \right]. \) Similarly, \( R^*{-1} = \beta^* E \left[ \frac{m_0^*}{m_1^*} \right]. \) These interest rate determination formulas extend those in equation (5) to the nominal setup.

### 2.2 Capital Flows

Section 1 focused, for simplicity, on capital flows originated by trade in the goods market. Section 1.3.1 provided a first extension to pure portfolio flows by allowing for a time-zero inelastic, or noise, demand by Japanese households for Dollar bonds in the amount of \( f^*. \)

In this section we allow households to directly trade foreign bonds, albeit in limited amounts.\(^{37}\) These flows alter the composition of the countries’ foreign assets and liabilities, thus extending results in Section 1 that focused on current account or net capital flows. We consider here demand functions for foreign bonds that depend on all fundamentals, but that do not directly depend on the exchange rate. These demand functions still allow the model to be solved in closed form. Rather than providing precise foundations for the many possible forms that these demands could take, we focus on a general theory of how they impact the equilibrium exchange rate.\(^{38}\)

We allow the demand functions for foreign bonds from US and Japanese households, denoted by \( f \) and \( f^* \) respectively, to depend on all present and expected future fundamentals. We use the shorthand notation \( f \) and \( f^* \) to denote the generic functions: \( f(R, R^*, t, \xi, ...) \) and \( f^*(R, R^*, t, \xi, ...) \). For example, demand functions that load on a popular trading strategy, the carry trade, that invests in high interest rate currencies while funding the trade in low interest rate currencies can be expressed as \( f = b + c(R - R^*) \) and \( f^* = d + g(R - R^*) \), for some constants

---

\(^{36}\)Intuitively, scaling by \( m_0^* \) makes sure that the real demand is invariant to the level of the money supply. See appendix for further details.

\(^{37}\)While it is important that the households are not allowed to optimally trade unlimited amounts in foreign currency in order to avoid sidestepping the financial intermediation that is at the core of this paper, limited direct trading or buy-and-hold positions can easily be accommodated in the model.

\(^{38}\)The appendix extends the present results to demand functions that depend on the exchange rate directly by solving the model numerically.
The flow equations in the bond market are now given by:

\[ e_0 \xi_0 - t_0 + Q_0 + f^* - f e_0 = 0; \quad e_1 \xi_1 - t_1 - RQ_0 - R f^* + R^* f e_1 = 0. \]

The above flow equations highlight that the demand for Dollar bonds at time zero is increasing in the Japanese households’ demand for these bonds \((f^*)\) and decreasing in the US households’ demand for Yen bonds \((f)\) that is funded by a corresponding short position in US bonds \((-f e_0)\). The flows are reversed at time 1 after interest has accrued and at the new equilibrium exchange rate \(e_1\).

### 2.3 External Debt, Currency Denomination, and Financial Adjustment

We consider here the impact of external debt and of its currency denomination on equilibrium exchange rates. We allow each country to start with a stock of foreign assets and liabilities. The US net foreign liabilities in dollars are \(D^{US}\) and Japan net foreign liabilities in yen are \(D^J\). The flow equations, therefore, are now extended to be:

\[ e_0 \xi_0 - t_0 + Q_0 - D^{US} + D^J e_0 = 0; \quad e_1 \xi_1 - t_1 - RQ_0 = 0. \]

Notice that \(D^{US}\) and \(D^J\) enter the equations at time \(t = 0\) because the stock of debt has to be intermediated and the different signs with which they enter correspond to their respective currency denomination.\(^{40}\)

### 2.4 Equilibrium Exchange Rate in the Extended Setup

When we include all the extensions to the basic Gamma model considered in the previous Sections 2.1-2.3, the flow equations for the Dollar-Yen market become:

\[ m^*_0 \xi_0 e_0 - m_0 t_0 + Q_0 + f^* - f e_0 - D^{US} + D^J e_0 = 0, \]

\[ m^*_1 \xi_1 e_1 - m_1 t_1 - RQ_0 - R f^* + R^* f e_1 = 0. \]

\(^{39}\)Possible microfoundations for these strategies range from the “boundedly rational” households who focus on the interest rate when investing without considering future exchange rate changes, to rational models of portfolio delegation where the interest rate is an observable variable that is known, in equilibrium, to load on the sources of risk of the model (see Section 5.1). Dekle, Hyeok and Kiyotaki (2014) employ the reduced form approach and put holdings of foreign bonds in the utility function of domestic agents.

\(^{40}\)We could have alternatively assumed that only a fraction \(\alpha\) of the debt had to be intermediated in which case we would get a flow of \(\alpha D\) at time zero and a flow \((1 - \alpha)RD\) at time 1.
The above equations in conjunction with the financiers’ extended demand curve, equation (19), can be used to solve for the equilibrium exchange rate. We show in the Proposition below that the solution method, even in this more general case, follows the simple derivation of the basic model by representing the current economy as a “pseudo” basic economy. We also note that these results do not impose that \( Y_{NT, t} = \chi_t \) and \( Y^*_{NT, t} = \chi^*_t \), thus generalizing the analysis in Section 1.

Proposition 6  **In the richer model above (with money, portfolio flows, external debt, and shocks to imports and exports) the values for the exchange rates \( e_0 \) and \( e_1 \) are those in Proposition 3, replacing imports \((\iota_t)\), exports \((\xi_t)\), and the risk bearing capacity \((\Gamma)\) by their “pseudo” counterparts \(\tilde{\iota}_t, \tilde{\xi}_t, \tilde{\Gamma}\), defined as: \(\tilde{\iota}_0 \equiv m_{00} \iota_0 + D^US - f^*; \tilde{\xi}_0 \equiv m_{00}^* \xi_0 + D^J - f; \tilde{\iota}_1 \equiv m_{11} \iota_1 + Rf^*; \tilde{\xi}_1 \equiv m_{11}^* \xi_1 + Rf; \tilde{\Gamma} \equiv \Gamma/m_{00}^*\).**

**Proof:** Equations (20)-(21) reduce to the basic flow equations, equations (10)-(11), provided we replace \( \iota_t \) and \( \xi_t \) by \( \tilde{\iota}_t \) and \( \tilde{\xi}_t \). Similarly, equation (19) reduces to equation (8), provided we replace \( \Gamma \) by \( \tilde{\Gamma} \). Then the result follows from the proof of Proposition 3. □

Intuitively, the pseudo imports \(\tilde{\iota}\) are composed of factors that lead consumers and firms to sell dollars and hence “force” financiers to be long the Dollar. An entirely symmetric intuition applies to the pseudo exports \(\tilde{\xi}\).

We collect here a number of qualitative results for the generalized economy. While some properties do not strictly depend on \( \Gamma > 0 \) and therefore can be derived even in UIP models, it is nonetheless convenient to provide a unified treatment in the present model. We assume that \( \tilde{\iota}_t \) and \( \tilde{\xi}_t \) are positive at dates 0 and 1. Otherwise, various pathologies can happen, including the non-existence of an equilibrium (e.g. formally, a negative exchange rate).

Proposition 7  **The Dollar is weaker: 1) (Imports-Exports) when US import demand for Japanese goods \((\iota_t)\) is higher; when Japanese import demand for US goods \((\xi_t)\) is lower; 2) (“Myopia” from an imperfect financial system) higher \(\Gamma\) increases the effects in point 1) by making current imports matter more than future imports; 3) (Debts and their currency denomination) when US net external liabilities in dollars \((D^US)\) are higher; when Japanese net external liabilities in Yen \((D^J)\) are lower; 4) (Financiers’ risk-bearing capacity) when financial conditions are worse \((\Gamma\) is higher), conditional on Japan being a net creditor at time \(0^+\) \((N_{0^+} < 0)\); 5) (Demand pressure) when the noise demand for the Dollar \((f^*)\) is lower, as long as \(\Gamma > 0\); 6) (Interest rates) when the US real interest rate is lower; when the Japanese real interest rate is higher; 7) (Money supply) when the US current money supply \((m_0)\) is higher; when the Japanese current money supply \((m_0^*)\) is lower.**

\(^{41}\)That is, \(\partial e_0/\partial \iota_0\) and \(\partial e_0/\partial \xi_1\) are positive and respectively increasing and decreasing in \(\Gamma\).
Point 3 above highlights a valuation channel to the external adjustments of countries. The exchange rate moves in a way that facilitates the re-equilibration of external imbalances. Interestingly, it is not just the net-external position of a country, its net foreign assets, that matters for external adjustment, but actually the (currency) composition of its gross external assets and liabilities ($D^{US}$ and $D^J$). This basic result is consistent with the valuation channel to external adjustment highlighted in Gourinchas and Rey (2007a,b), Lane and Shambaugh (2010).

3 Production and Price Rigidities

We extend here the endowment economy results from Section 1.3.4 to a production economy with and without price rigidities. Production, particularly in the presence of nominal rigidities, will allow us to illustrate the real effects of the financial determination of exchange rates. These effects will be at the core of the welfare and policy analysis in Section 4.

Production Without Price Rigidities. Let us introduce a minimal model of production that will allow us to formalize the effects of the exchange rate on output and employment. While we maintain the assumption that non-tradable goods in each country are given by endowment processes, we now assume that tradable goods in each country are produced with a technology linear in labor with unit productivity. In each country, labor $L$ is supplied inelastically and is internationally immobile.

Simple profit maximization at the firm level yields a Dollar wage in the US of $w_{H,t} = p_{H,t}$. Under flexible prices, goods market clearing then implies full employment $Y_{H,t} = L$ and a US tradable price in dollars of: $p_{H,t}^\circ = \frac{a_t m_t + \xi_t m_t^* e_t}{L}$, where circle in $p^\circ$ denotes a frictionless quantity. Likewise, for Japanese tradables the equilibrium features both full employment $Y_{F,t} = L$ and a Yen price of: $p_{F,t}^\circ = \frac{a^*_t m_t^* + \kappa m_t^*/e_t}{L}$.

Production With Price Rigidities. Let us now assume that wages are “downward rigid” in domestic currency at a preset level of $\{\bar{p}_H, \bar{p}_F^*\}$, where these prices are exogenous. Let us further assume that firms do not engage in pricing to market, so that prices are sticky in producer currency (PCP). Firm profit maximization then implies that: $p_{H,t} = \max\left(\bar{p}_H, p_{H,t}^\circ\right)$; or more explicitly: $p_{H,t} = \max\left(\bar{p}_H, \frac{a_t m_t + \xi_t m_t^*}{\bar{p}_H L}\right)$. Hence:

$$Y_{H,t} = \min\left(\frac{a_t m_t + \xi_t m_t^*}{\bar{p}_H}, L\right). \quad (22)$$

If demand is sufficiently low ($a_t m_t + \xi_t m_t^* e_t < \bar{p}_H L$), then output is demand-determined (i.e., it depends directly on: $e_t, \xi_t, a_t, m_t$, and $m_t^*$) and there is unemployment: $L - Y_{H,t} > 0$. Notice
that in this case the exchange rate has an expenditure-switching effect: if the Dollar depreciates ($e_t \uparrow$), unemployment falls and output expands in the US. Intuitively, since US tradables’ prices are sticky in dollars, these goods become cheap for Japanese consumers to buy when the Dollar depreciates. In a world that is demand constrained, this expansion in demand for US tradable is met by expanding production, thus raising US output and employment.\footnote{Clearly, a similar expression and mechanism apply to Japanese tradables: $Y_{F,t} = \min \left( \frac{a_t m_t}{p_H} + \frac{\xi_t m_t}{p_H}, L \right)$.}

The expenditure switching role of exchange rates has been central to the Keynesian analysis of open macroeconomics of Dornbusch (1976), Obstfeld and Rogoff (1995). In the Gamma model, it is enriched by being the central channel for the transmission of financial forces affecting the exchange rate, such as the risk-bearing capacity and balance sheet of the financiers, into output and employment.

The financial determination of exchange rates has real consequences. Let us reconsider our earlier example of a sudden inflow of capital from US investors into Brazilian Real bonds. The exchange rate in this economy with production and sticky prices is still characterized by equation (18). As previously discussed, the capital inflow in Brazil causes the Real to appreciate \( \frac{\partial e_0}{\partial f} = -\frac{\Gamma}{2\Gamma} < 0 \), and, if the flow is sufficiently strong (\( f \) sufficiently high) or the financiers’ risk bearing capacity sufficiently low (\( \Gamma \) sufficiently high), the appreciation (the increase in \( e_0 \)) can be so strong as to make Brazilian goods uncompetitive on international markets; the corresponding fall in world demand for Brazilian output (\( \downarrow C_H = \frac{\kappa_0}{e_0 p_H} \)) causes an economic slump in Brazil with both falling output and increasing unemployment.\footnote{Devereux and Engel (2003) stressed the absence of exchange rate effects on output under LCP. The empirical evidence shows that, in practice, a combination of PCP, LCP and limited pass-through are present in the data (see Gopinath, Itskhoki and Rigobon (2010), Burstein and Gopinath (2013)). For much of this paper, we focus on PCP as}

\[ Y_{H,t} = \min \left( \frac{a_t m_t}{p_H} + \frac{\xi_t m_t}{p_H}, L \right) \]

\[ NX_t = e_t \xi_t m_t^* - \xi_t m_t \]

\[ Y_{F,t} = \min \left( \frac{a_t m_t}{p_H} + \frac{\xi_t m_t}{p_H}, L \right) \]
4 Welfare and Heterodox Policies

The Gamma model of exchange rates considered so far in the positive analysis has made clear that exchange rates are affected by financial forces and that their behavior can be quite different from that implied by the traditional macroeconomic analysis. We have also shown how the financial determination of exchange rates in imperfect financial markets has real consequences for output and risk sharing.

The Mundellian prescription of pure floating exchange rates rests on the idea that a country hit by a negative (asymmetric) real shock would be helped by a depreciating currency that in turn, under some form of sticky prices, would boost its exports and therefore alleviate the adverse impact of the shock on output and employment. In our model we focused on an alternative scenario whereby financial shocks and imbalances in financial markets might cause an appreciation of a country’s exchange rate and depress its exports and therefore output.

The possibility of such perverse effects of floating exchange rates has been the subject of extensive debates (Rey (2013), Farhi and Werning (2013)), culminating in the threat of currency wars, but its theoretical analysis and the development of policies to improve welfare is still in its infancy. The renewed research effort on analyzing the welfare consequences of capital controls has mostly focused on fixed exchange rate regimes in the context of the small-open-economy new-Keynesian model. Farhi, Gopinath and Itskhoki (2014), Farhi and Werning (2012a, b), Magud, Reinhart and Rogoff (2011), and Schmitt-Grohé and Uribe (2012) provide innovative analyses of policies such as capital controls, fiscal transfers and fiscal devaluations in this context.\footnote{See also the literature on macro-prudential regulation, amongst others: Mendoza (2010), Bianchi (2010), Korinek (2011).}

We analyze welfare and policy in the Gamma model described in the previous sections. In particular, we focus on economic situations where the financial market imperfections that are at the core of our model, namely having $\Gamma > 0$ in the presence of capital flows, play an important role both in the welfare distortions and in the suggested policy reaction.

4.1 Exchange Rate Manipulation

We first show under which conditions direct government interventions in the currency market can affect the equilibrium exchange rate. Then, we derive optimal currency management policy.

For notational simplicity, we set most parameters at 1: e.g. $t_0 = \xi_t = a_t = a_0^* = \beta = \beta^* = 1$. We allow $t_1$ to be stochastic (keeping $E[t_1] = 1$, and setting $a_1^* = t_1$ for symmetry) purely so the most illustrative case. Our qualitative analysis can easily accommodate a somewhat more limited pass-through of exchange rate changes to local prices of internationally traded goods.
that currency trading is risky. The reader is encouraged to proceed keeping in mind the intuition coming from the simpler case in which $t_1$ is not stochastic and set equal to 1.

**Positive analysis** At time 0, the US government intervenes in the currency market visa à vi the financiers: it buys $q$ yen and sells $q e_0$ dollars. By Proposition 6 we immediately obtain the result below (as the government creates a flow $f = -q$ in the currency market):

**Lemma 4** If the US government buys $q$ yen and sells $q e_0$ dollars at time 0, the exchange rates satisfy (for small $q$): $e_0 = 1 + \frac{\Gamma}{2+\Gamma} q + O(q^2)$, and $\mathbb{E}[e_1] = 1 - \frac{\Gamma}{2+\Gamma} q + O(q^2)$.

The intervention’s impact on the *average* exchange rate is only second order: it induces a depreciation at time 0, and an appreciation at time 1. We can call this effect the “boomerang effect”. A currency intervention can change the level of the exchange rate in a given period, but not the average level of the exchange rate over multiple periods.

**Normative analysis** We assume that in the short run, i.e. period $t = 0$, US tradables’ prices are sticky in domestic currency (PCP) as in Section 3; prices are flexible in the long run, i.e. period $t = 1$. We postulate that at time zero the price is downward rigid at a level $\overline{p}_H$ that is sufficiently high as to cause unemployment in the US tradable sector. Japanese tradable prices are assumed to be flexible. Currency intervention can be welfare improving in this economy. 46

**Proposition 8** (FX intervention) Assume that $\Gamma > 0$ and that at time zero US tradable goods are downward rigid at a price $\overline{p}_H$ that is sufficiently high to cause unemployment in the US tradable sector. A US government currency intervention, whereby the government buys $q \in [0, q_{opt}]$ worth of Yen bonds and sells $q e_0$ Dollar bonds at time zero, improves welfare both in the US and in Japan. The welfare improvement is monotonically increasing in the size of the intervention up to size $q_{opt}$, which is the smallest intervention that restores full employment in the US.

Note that there are two preconditions for this intervention to be welfare improving. The first one is that prices are sticky (fixed) in the short run at a level that generates a fall in aggregate demand and induces an equilibrium output below the economy’s potential. This condition, i.e. being in a *demand driven* state of the world, is central to the Keynesian analysis where a depreciation of the exchange rate leads to an increase in output via an increase in export demand. If this condition is satisfied a first order welfare loss would occur even in a world of perfect finance. 47

---

46 We make an ancillary assumption, that the proof of Proposition 8 makes precise. We also assume that $\overline{p}_H$ is above the market clearing price, but not too far above it.

47 Indeed, in this economy (before the government intervention) financiers optimally choose to not trade at all. The exchange rate is at 1, and is expected to remain at 1 on average, so that there are no gains from trading financial assets. Even if US household where to be allowed to directly trade Yen bonds, they would not change the value of the exchange rate.
The second precondition is that financial markets are imperfect, i.e. \( \Gamma > 0 \). Intuitively, \( \Gamma \) regulates the efficacy of an intervention. In fact, recall from Lemma 4 that the ability of the government to affect the time-zero exchange rate is inversely proportional to \( \Gamma \). When markets are perfect \( (\Gamma = 0) \) the government FX policy has no effect on the time-zero exchange rate, even if prices are sticky, because financiers would simply absorb the intervention without requiring a compensation for the resulting risk.\(^{48}\)

Interestingly, the suggested policy is not of the *beggar thy neighbor* type: the US currency intervention, even with its aim to weaken the Dollar, actually increases welfare for both US and Japan. This occurs because the intervention induces first order welfare gains for both US and Japanese consumers by increasing US output, but only induces second order losses due to the ensuing inter-temporal distortions in consumption. We highlight that *currency wars* can only occur when both countries are in a slump and the post-intervention weaker dollar causes a first order output loss in Japan.

More generally, our results highlight that heterodox policies could be welfare improving when the currency appreciation is so strong as to actually cause a slump in domestic employment and when private markets are sufficiently disrupted for the government currency intervention to have a meaningful impact on the exchange rate.

Large-scale currency interventions, outpostenely justified by rationales very similar to the theory provided in this paper, were undertaken by the governments of Switzerland and Israel during the recent financial crisis. Both governments aimed to relieve their currency appreciation in the face of turmoil in financial markets. By most accounts, the interventions successfully weakened the exchange rate and boosted the real economy.\(^{49}\)

### 4.2 Taxing International Finance

We now study a second policy instrument, taxation of the financiers, which is a form of capital controls. We consider a proportional (US) government tax on each financier’s profits; the tax proceeds are rebated lump sum to financiers as a whole. Recall the imperfect intermediation problem in Section 1.2, we now assume that the after-tax value of the intermediary is \( V_t(1 - \tau) \), where \( \tau \) is the tax rate. The financiers’ optimality condition, derived in a manner entirely

\(^{48}\)We note that after the government intervention the financiers are at their optimum and do not want to change their position. However, US households, that had no incentives to trade Yen bonds in the original equilibrium, would want to trade the Yen bonds after the government intervention. Of course, these unlimited trades are not possible due to the frictions in the intermediation process. Therefore the policy success relies on the presence of financial frictions rather than a direct failure of Ricardian equivalence.

\(^{49}\)Israel central bank governor Stanley Fisher remarked: “I have no doubt that the massive purchases [of foreign exchange] we made between July 2008 and into 2010 [...] had a serious effect on the exchange rate which I think is part of the reason that we succeeded in having a relatively short recession.” Levinson (2010)
analogous to the optimization problem in equation (7), is now: $Q_0 = \frac{\mathbb{E}[e_0 - e_1 \frac{R^*}{R}]}{\Gamma} (1 - \tau)$. Notice that this is equivalent to changing $\Gamma$ to an effective $\Gamma_{\text{eff}} \equiv \frac{\Gamma}{1 - \tau}$. Notice that this is equivalent to changing $\Gamma$ to an effective $\Gamma_{\text{eff}} \equiv \frac{\Gamma}{1 - \tau}$. We collect the result in the Lemma below.

**Lemma 5** A tax $\tau$ on finance is equivalent to lowering the financiers’ risk bearing capacity by increasing $\Gamma$ to $\Gamma_{\text{eff}} \equiv \frac{\Gamma}{1 - \tau}$. A higher tax increases the effective $\Gamma_{\text{eff}}$, thus reducing the financiers’ risk bearing capacity.

**Positive analysis** First we note that if the equilibrium before the government intervention features zero risk taking by the financiers ($Q_0 = 0$), as was the case in the economy studied in the previous subsection, then the tax $\tau$ is entirely ineffective. Intuitively, this occurs because there are zero expected profits to tax, and therefore the tax has no effect on ex-ante incentives.

More generally we recall from Proposition 2 that an increase in $\Gamma$, in this case an increase in $\Gamma_{\text{eff}}$ due to an increase in $\tau$, has the opposite effect on the exchange rate depending on whether the financiers are long or short the Dollar to start with, i.e. depending on the sign of $Q_0$ before the tax is imposed. For example, the tax would make the Dollar depreciate on impact if the financiers were long dollars to start with ($Q_0 > 0$), but the same tax would make the Dollar depreciate if the financiers’ had the opposite position to start with. In practice this means that policy makers who are considering imposing capital controls, or otherwise taxing international finance, should pay close attention to the balance sheets of financial institutions that have exposures to their currency. Basing the policy on reduced form approaches or purely on traditional macroeconomics fundamentals can not only be misleading, but might actually generate the opposite outcome for the exchange rate from the desired one.

In order to study the impact of our tax policy, we start from an economy that features active risk taking by the financiers. In the interest of tractability, we focus on a special case of the basic Gamma model of Section 1. Namely, we assume that $\mathbb{E}[t_1] < t_0$ and set all other parameters of the model to 1. We maintain from the previous subsection the assumption that US tradable prices are downward rigid at time 0 and flexible at time 1. In this set-up, the Dollar is so strong compared to the Yen at time zero that US output is below potential and there is unemployment in the US. We study in the Lemma below the impact of the tax policy on the exchange rate.

**Lemma 6** If financiers are taxed at rate $\tau$, the equilibrium exchange rate is:

$$ e_0(\tau) = \frac{(1 + \frac{\Gamma}{1 - \tau}) t_0 + \mathbb{E}[t_1]}{2 + \frac{\Gamma}{1 - \tau}}, \quad e_1(\tau) = \frac{t_0 + \frac{\Gamma}{1 - \tau} \mathbb{E}[t_1]}{2 + \frac{\Gamma}{1 - \tau}} + \{t_1\}. \quad (23) $$

Notice that while the tax affects the equilibrium exchange rate in each period, it has no effect on the average rate across the two periods $e_0 + e_1 = t_0 + t_1$. We, therefore, recover here the
same “boomerang effect” that was noted in the previous section for FX interventions. As $\Gamma_{\text{eff}}$ goes from $\Gamma$ to infinity, i.e. as $\tau$ goes from zero to 1, the time zero exchange rate approaches $t_0$ monotonically from below. Hence, given our assumption that $E[t_1] < t_0$, a tax on capital flows devalues the time zero exchange rate.

**Normative analysis** To keep the analytics to a minimum, we make the countries symmetric by imposing that both have equal taste for foreign tradable goods, $a_t = \xi_t = 1, a_t^* = \iota_t$. We define $\bar{\iota}_0 \equiv P_HL - 1$ as the least-weak value of the Dollar versus the Yen that, in equilibrium, generates full employment in the US. 50

**Proposition 9** (Taxing international finance) Assume that at time zero: the US Dollar is so strong as to induce a fall in US output below potential ($Y_{H,0} < L$), financial markets are imperfect ($\Gamma > 0$), and the US runs a trade deficit ($\iota_0 > E[t_1]$). A US government tax on the financiers’ profits at rate $\tau \in [0, \tau_{\text{opt}}]$, improves welfare in both the US and in Japan. The welfare improvement is monotonically increasing in the tax rate up to the tax rate $\tau_{\text{opt}}$. This rate is the lowest tax rate that ensures full employment: $e_0(\tau_{\text{opt}}) = \bar{\iota}_0$.

Note that there are three preconditions for this policy to be welfare improving. As for the case of an FX intervention described in the previous subsection, two preconditions are that output has to be demand driven and that financial markets have to be imperfect. The latter condition is necessary, but in this case no longer sufficient, for the policy to affect the exchange rate. As the reader will recall from our discussion of Lemma 5, a new condition is necessary, and sufficient jointly with $\Gamma > 0$, for the policy to have an effect: financiers need to have a non-zero exposure to currency before the policy is implemented.

### 4.3 Joint Optimal Monetary and Financial Policy

We have analyzed above optimal financial policy in the form of FX intervention and taxation of international finance in a Gamma world. We analyze here the optimal mix of monetary policy and financial policy.

In order to perform the analysis with minimal algebra, we study a particularly clean case where most model parameters, $(\beta, \beta^*, t, \xi, \ldots)$, are set to 1. We also initialize $m_i = m_i^* = 1$ for $i = 0, 1$. Before the disruption, the equilibrium exchange rates are $e_0 = e_1 = 1$. The US economy starts with rigid (in dollars) tradable prices $P_H$ at a level that just clears the goods market at full employment (i.e., a slightly higher price would lead to unemployment). We assume that the US government’s objective function is: $E[U_0 + U_1] - g(m_0)$, where $U_t$ is the household utility at

50We make the same assumption as in footnote 46. In addition, we assume that $t_0 - E[t_1] > 0$ is not too large.
time $t$ as in equation (1), and $g(m_0)$ is a convex cost of monetary policy surprises, minimal when $m_0 = 1$.\(^{51}\)

We consider two types of “shocks”: an unexpected increase in the Japanese money supply at time zero, from $m_0^* = 1$ to $m_0^* > 1$, while keeping $m_1^*$ constant so that the interest rate $R^*$ falls, and an increase in the pre-set price for US tradables ($\bar{p}_H$).\(^{52}\) We first analyze the monetary shock.

**Proposition 10** (“Benign neglect” of foreign monetary shocks) *If the Dollar appreciation is simply due to a monetary shock (increase in $m_0^*$), then no US policy response is needed ($m_0 = 1$, $q = 0$) to restore full employment. The shock has no real impact, and the economies maintain full employment.*

We next consider the optimal policy reaction to an increase in the pre-set price for US tradables.

**Proposition 11** (Trade-off between FX intervention and monetary accommodation) *Suppose that at time zero $\bar{p}_H$ is downwards rigid at a level above the full-employment flexible price, and that at time 1 it is either: 1) flexible (“short-lasting rigidity”) or 2) rigid (“long-lasting rigidity”). If the rigidity is short-lasting, then the optimal policy reaction combines both FX intervention and monetary policy, where at the optimum $q > 0$ and $m_0 > 1$. The policy relies more heavily on the FX intervention compared to monetary intervention (i.e. $|m_0 - 1|$ is lower) the higher $\Gamma$ is. If the rigidity is long-lasting, then the optimal policy reaction employs only monetary policy. In this case, a currency intervention is welfare reducing.*

Intuitively, FX interventions are more desirable when financial markets are more constrained, because an higher $\Gamma$ makes it is easier for the policy to affect the exchange rate, and when distortions are of shorter duration, because an FX intervention cannot move the exchange rate forever. The reader will recall the “boomerang effect” of a currency intervention: it depreciates the exchange rate at time 0, but then appreciates it at time 1. If the price rigidities are long lasting, in this case last for both periods, then the intervention only generates negative net welfare benefits because of the inter-temporal distortions that it causes.

Note that the government actions would not be taken by the households in the competitive equilibrium. After the shock (in $m_0^*$ or $\bar{p}_H$), there is no incentive for US consumers to intervene and trade the Yen because the (expected) currency returns are zero ($e_0 = R^*\mathbb{E}[e_1]$). The US government chooses to intervene because it internalizes the wage externality (i.e. internalizes the impact on unemployment).

\(^{51}\)These costs could be micro-founded in several ways (price dispersion inefficiencies, inflation cost in terms of wealth redistribution, etc...), but here we take the simpler reduced form approach.

\(^{52}\)For transparency, we abstract here from uncertainty, but it is easy to add fundamental uncertainty, e.g. along the lines of Propositions 8 and 9. Then the Propositions in this subsection hold, up to second order terms in the standard deviation of that fundamental uncertainty.
Hence, there are at least three policy tools, (i) monetary policy (ii) FX interventions, (iii) taxation of finance. In general, all might be used, and FX interventions are particularly potent when $\Gamma$ is high – when financial market are disrupted. While (i) was already well-understood, our analysis allows us to analyze (ii) and (iii) in a way that was difficult in previous treatments that did not have a model of imperfect financial markets.

5 Revisiting Canonical Issues with the Gamma Model

We consider in this section a number of canonical issues of international macroeconomics via the lenses of the Gamma model. While these classic issues have also been the subject of previous literature, our analysis not only provides new insights, but also allows us to illustrate how the framework built in the previous sections provides a unified and tractable rationalization of empirical regularities that are at the center of open-economy analysis.

5.1 The Carry Trade in the Presence of Financial Shocks

In the Gamma model there is a profitable carry trade. Let us give the intuition in terms of the most basic model first and then extend it to a set-up with shocks to the financiers’ risk bearing capacity ($\Gamma$ shocks).

First, imagine a world in which countries are in financial autarky because the financiers have zero risk bearing capacity ($\Gamma = \infty$), suppose that Japan has a 1% interest rate while the US has a 5% interest rate, and that all periods ($t = 0, ..., T$) are ex-ante identical with $\xi_t = 1$ and $t_t$ a martingale. Thus, we have $e_t = t_t$, and the exchange rate is a random walk $e_0 = \mathbb{E}[e_1] = ... = \mathbb{E}[e_T]$. A small financier with some available risk bearing capacity, e.g. a small hedge fund, could take advantage of this trading opportunity and pocket the 4% interest rate differential. In this case, there is a very profitable carry trade. As the financial sector risk bearing capacity expands ($\Gamma$ becomes smaller, but still positive), this carry trade becomes less profitable, but does not disappear entirely unless $\Gamma = 0$, in which case the UIP condition holds. Intuitively, the carry trade in the basic Gamma model reflects the risk compensation necessary to induce the financiers to intermediate global financial flows.

In the most basic model, the different interest rates arise from different rates of time preferences, such that $R = \beta^{-1}$ and $R^* = \beta^{*-1}$. Without loss of generality, assume $R < R^*$ so that the Dollar is the “funding” currency, and the Yen the “investment” currency. The return of the carry trade is: $R_c \equiv \frac{R^*}{R} \frac{e_t}{e_0} - 1$. For notational convenience we define the carry trade expected return as $\overline{R^c} \equiv \mathbb{E}[R^c]$. The calculations in Proposition 3 allow us to immediately derive the equilibrium carry trade.
Proposition 12  Assume $\xi_t = 1$. The expected return to the carry trade in the basic Gamma model is:

$$R^c = \Gamma \frac{R^* - E[t_1]}{(R^* + \Gamma) t_0 + \frac{R^*}{\Gamma} E[t_1]}.$$  \hspace{1cm} (24)

Hence the carry trade return is bigger (i) when the return differential $R^* / R$ is larger (ii) when the funding country is a net foreign creditor.

To gain further intuition on the above result, consider first the case where $t_0 = E[t_1]$. The first order approximation to $R^c$ in the case of a small interest rate differential $R^* - R$ is: $R^c = \frac{\Gamma}{2 + \Gamma} (R^* - R)$. Notice that we have both $\frac{\partial R^c}{\partial t_1} > 0$ and $\frac{\partial R^c}{\partial (R^* - R)} > 0$, so that the profitability of the carry trade increases the more limited the risk bearing capacity of the financiers and the larger the interest rate differential.\(^{53}\)

The effects of broadly defined “global risk aversion”, here proxied by $\Gamma$, on the profitability of the carry trade have been central to the empirical analysis of for example Brunnermeier, Nagel and Pedersen (2009), Lustig, Roussanov and Verdelhan (2011), and Lettau, Maggiori and Weber (2013). Here we have shown that the carry trade is more profitable the lower the risk bearing capacity of the financiers; we next formally account for shocks to such capacity in the form of a stochastic $\Gamma$.

In addition to a pure carry force due to the interest rate differential, our model gives a theoretical foundation to the fact that debtor countries’ currencies are riskier (Della Corte, Riddiough and Sarno (2014)). The reader should recall Proposition 2 that showed how net-external-debtor countries’ currencies depreciate whenever risk bearing capacity decreases ($\uparrow \Gamma$). We note here that this effect occurs even if both countries have the same interest rate, thus being theoretically separate from the pure carry trade.

The exposure of the carry trade to financial disruptions  We now expand on the risks of the carry trade by studying a three period ($t = 0, 1, 2$) model with stochastic shocks to the financiers’ risk bearing capacity in the middle period. To keep the analysis streamlined, we take period 2 to be the “long run”. Intuitively, period 2 will be a long-run steady state where countries have zero net foreign assets and run a zero trade balance. This allows us to quickly focus on the short-to-medium-run exchange rate dominated by financial forces and the long-run exchange rate completely anchored by fundamentals. We jump into the analysis, and provide many of the

\(^{53}\)The first effect occurs because, given an interest rate differential, expected returns to the carry trade have to increase whenever the risk bearing capacity of the financiers goes down to induce them to intermediate financial flows. The second effect occurs because, given a level of risk bearing capacity for the financiers, an increase in the interest rate differential will not be offset one to one by the expected exchange rate change due to the risk premium.
We assume that time-1 financial conditions, \( \Gamma_1 \), are stochastic. In the 3-period economy with a long-run last period, the equilibrium exchange rates are:

\[
e_0 = \frac{\Gamma_0 t_0 + \frac{R^*}{R} \mathbb{E}_0 \left[ \frac{\Gamma_1 t_1 + t_2 R^*/R}{\Gamma_1 + 1} \right]}{\Gamma_0 + 1}; \quad e_1 = \frac{\Gamma_1 t_1 + \frac{R^*}{R} \mathbb{E}_1 [t_2]}{\Gamma_1 + 1}; \quad e_2 = t_2. \tag{25}
\]

Recall that the carry-trade return between period 0 and 1 is: \( R^c \equiv \frac{R^*}{R} e_1 - 1 \). Interestingly, in this case the carry trade also has “exposure to financial conditions”. Notice that \( \frac{\partial e_1}{\partial \Gamma_1} < 0 \) in the equations above, so that the Dollar (the funding currency) appreciates whenever there is a negative shock to the financiers’ risk bearing capacity (\( \uparrow \Gamma_1, \downarrow e_1 \)). Since in our chosen parametrization the carry trade is short Dollar and long Yen, we correspondingly have: \( \frac{\partial R^c}{\partial \Gamma_1} < 0 \), the carry trade does badly whenever there is a negative shock to the financiers’ risk bearing capacity (\( \uparrow \Gamma_1 \)). This is consistent with the intuition and the empirical findings in Brunnermeier, Nagel and Pedersen (2009); we obtain this effect here in the context of an equilibrium model. We formalize and prove the results obtained so far in the proposition below.

**Proposition 13** (Determinants of expected carry trade returns) *Assume that \( R^* > R \), \( 1 = t_0 = \mathbb{E}_0 [t_1] \) and \( t_1 = \mathbb{E}_1 [t_2] \). Define the “certainty equivalent” \( \Gamma_1 \) by \( \frac{\Gamma_1 + R^*/R}{\Gamma_1 + 1} \equiv \mathbb{E}_0 \left[ \frac{\Gamma_1 + R^*/R}{\Gamma_1 + 1} \right] \). Consider the returns to the carry trade, \( R^c \), and the corresponding expected return \( \overline{R^c} \equiv \mathbb{E}_0 [R^c] \). We have:

1. An adverse shock to financiers affects the returns to carry trade negatively: \( \frac{\partial R^c}{\partial \Gamma_1} < 0 \).
2. The carry trade has positive expected returns: \( \overline{R^c} > 0 \).
3. The expected return to the carry trade is higher the worse the financial conditions are at time 0 \( (\frac{\partial R^c}{\partial \Gamma_1} > 0) \), the better the financial conditions are expected to be at time 1 \( (\frac{\partial R^c}{\partial \Gamma_1} < 0) \), and the higher the interest rate differential \( (\frac{\partial R^c}{\partial R^*} > 0, \frac{\partial R^c}{\partial R} < 0) \).

**The Fama Regression** The classic UIP regression of Fama (1984) is in levels:

\[
\frac{e_1 - e_0}{e_0} = \alpha + \beta (R - R^*) + \epsilon_1.
\]

---

54 The flow demand equations in the Yen / Dollar market are: \( e_t - t_t + Q_t = 0 \) for \( t = 0, 1 \), and in the long-run period \( e_2 - t_2 = 0 \), with the financiers’ demand for dollars: \( Q_t = \frac{e_t - \mathbb{E}_t [e_{t+1}] R^*}{R_t} \).

55 The regression is most commonly performed in its logarithmic approximation version, but the levels prove more convenient for our theoretical treatment without loss of economic content.
Under UIP, we would find $\beta = 1$. However, a long empirical literature finds $\beta < 1$, and sometimes even $\beta < 0$. The proposition below rationalizes these findings in the context of an equilibrium model.

**Proposition 14** (Fama regression and market conditions) The coefficient of the Fama regression is $\beta = \frac{1 + \Gamma_1 - \Gamma_0}{(1 + \Gamma_1)(1 + \Gamma_0)}$. Therefore one has $\beta < 1$ whenever $\Gamma_0 > 0$. In addition, one has $\beta < 0$ if and only if $\Gamma_1 + 1 < \Gamma_0$, i.e. if risk bearing capacity is very low in period 0 compared to period 1.

Intuitively financial market imperfections always lead to $\beta < 1$ and very bad current market imperfections compared to future ones lead to $\beta < 0$. This occurs because any positive $\Gamma$ leads to a positive risk premium on currencies that the financiers are long of and hence to a deviation from UIP ($\beta < 1$). If, in addition, financial conditions are particularly worse today compared to tomorrow the risk premium is so big as to induce currencies that have temporarily high interest rates to appreciate on average ($\beta < 0$).

### 5.2 Nominal and Real Exchange Rates

We explore here the relationship between the nominal and the real CPI-based exchange rate in our framework. The real exchange rate can be defined as the ratio of two broad price levels, one in each country, expressed in the same numéraire. It is most common to use consumer price indices (CPI) adjusted by the nominal exchange rate, in which case one has: $\mathcal{E} \equiv \frac{P^*e}{P}$. Notice that a fall in $\mathcal{E}$ is a US Dollar real appreciation.

Consider the nominal version of the basic Gamma model in Section 2.1. Standard calculations reported in the appendix imply that the real CPI-based exchange rate is:

$$
\mathcal{E} = \tilde{\theta} \left( \frac{\xi'(p_H^*)^\alpha (p_{NT}^*)^\chi^*}{(p_H)^\alpha (p_{NT})^\chi} \right) e_t,
$$

where $\tilde{\theta}$ is a function of exogenous shocks also reported in the appendix, and primed variables are normalized by $\theta$. The above equation is the most general formulation of the relationship between the CPI-RER and the nominal exchange rate in the Gamma model. If we impose further assumptions, we can drive a useful special case.

**The Basic Gamma Model** Assume that $\omega = \omega^* = 0$ and $p_{NT} = p_{NT}^* = 1$ so that there is no money and the numéraire in each economy is the non-tradable good. Recall that in the basic Gamma model of Section 1 the law of one price holds for tradables, so we have $p_H = p_H^* e$ and $p_F = p_F^* e$. Equation (26) then reduces to: $\mathcal{E} = \tilde{\theta} (p_H)^{\xi'^* - \alpha^*} (p_F)^{\chi'^* - \chi^*} e_t$. This equation describes the relationship between the RER as defined in the basic Gamma model and the CPI-based RER.
Notice that the two are close proxies of each other whenever the baskets’ shares of tradables are symmetric across countries (i.e. $\xi' \approx a'$ and $a^* \approx i'$) and the non-tradable goods are a large fraction of the Japanese overall basket (i.e. $\chi^* \approx 1$).

### 5.3 The Backus and Smith Condition

In the spirit of re-deriving some classic results of international macroeconomics with the Gamma model, let us analyze the Backus and Smith condition (Backus and Smith (1993)). Let us first consider the basic Gamma set-up but with the additional assumption of complete markets as in Lemma 3. Then by equating margin utility growth in the two countries and converting, via the exchange rate, in the same units, we have:

$$\frac{P_0 C_0 / \theta_0}{P_1 C_1 / \theta_1} = \frac{P^*_0 C^*_0 / \theta^*_0}{P^*_1 C^*_1 / \theta^*_1} e_0 e_1.$$  

Re-arranging we conclude:

$$\frac{C_0 / \theta_0}{C_1 / \theta_1} = \frac{C^*_0 / \theta^*_0}{C^*_1 / \theta^*_1} E_0 E_1,$$  

where the reader should recall the definition $E = \frac{P^*_e}{P}$. This is the Backus and Smith condition in our set-up under complete markets: the perfect risk sharing benchmark equation.

Of course, this condition fails in the basic Gamma model because agents not only cannot trade all Arrow-Debreu claims, but also have to trade with financiers in the presence of limited commitment problems. In our framework (Section 1), however, an extended version of this condition holds:

$$\frac{C_0 / \theta_0}{C_1 / \theta_1} = \frac{C^*_0 / \theta^*_0}{C^*_1 / \theta^*_1} E_0 E_1 e_1 e_0.$$  

The simple derivation of this result is reported in the appendix. The above equation is the extended Backus-Smith condition that holds in our Gamma model. Notice that our condition in equation (28) differs from the standard Backus-Smith condition in equation (27) by the growth rate of the “nominal” exchange rate $e_1 e_0$. Since exchange rates are much more volatile in the data than consumption, this omitted term creates an ample wedge between the complete market and the Gamma version of the Backus-Smith condition.

### 6 Conclusion

We presented a theory of exchange rate determination in imperfect capital markets where financiers bear the risks resulting from global imbalances in the demand and supply of international assets. Exchange rates are determined by the balance sheet risks and risk bearing capacity of these financiers. Exchange rates in our model are disconnected from traditional macroeconomic fundamentals, such as output, inflation and the trade balance and are instead more connected
to financial forces such as the demand for assets denominated in different currencies. We have shown how seemingly heterodox policies, such as government interventions in currency markets, can be welfare improving in this context. Our model is tractable, with simple to derive closed form solutions, and can be generalized to address a number of both classic and new issues in international macroeconomic analysis.

References


Farhi, Emmanuel, and Xavier Gabaix. 2013. “Rare Disasters and Exchange Rates.” Unpublished manuscript, Harvard University and NYU.


A.1 Analytical Generalization of the Model

A.1.1 The Exchange Rate with Infinite Horizon

We provide here the infinite-horizon extension of the model. In this model the flow equation is: \( NX_t - RQ_{t-1} + Q_t = 0. \)

**Proposition A.1** (Exchange rate with infinite horizon) Assume a non-negative stochastic process for imports \( \iota_t \) and that \( \xi_t = 1 \) for all \( t \). Denote by \( RQ_{t-1} - 1 \) the accrued net foreign liabilities of the US (denominated in dollars) to be absorbed by the financiers at \( t \). The equilibrium exchange rate is:

\[
e_t = E^t \left[ \sum_{s=t}^{\infty} \Lambda^{s-t} (1 - \Lambda) \iota_s \right] + (1 - \Lambda)RQ_{t-1},
\]

where \( \Lambda \equiv \frac{(1+R+\Gamma) - \sqrt{(1+R+\Gamma)^2 - 4R}}{2R} \). If \( \Gamma = 0 \), then \( \Lambda = \frac{1}{R} \); otherwise, \( \Lambda \) is decreasing in \( \Gamma \).

This Proposition shows that \( \Gamma \) is akin to inducing myopia about future flows. If \( \Gamma = 0 \) so that UIP holds and \( \Lambda = 1/R \), then future flows are discounted at the US interest rate. When \( \Gamma > 0 \), future flows are discounted at a rate higher than this interest rate.

It is interesting to analyze the model in the presence of portfolio flows, \( f^*_s \), along the lines of Sections 1.3.1 and 2.2. Recall that for analytical tractability we assume that these flows can depend on most fundamental variables, e.g. the interest rate, but cannot depend directly on the exchange rate.\(^{56}\) We perform a Taylor expansion in the interest rate differential, linearizing around \( R^*_s = R_s \approx R \), assuming that \( t_s \) is close to its steady state value \( t \), and assuming that \( RQ_{t-1} \) is close to 0, so that we can expand the exchange rate around \( e \equiv \iota \). Then

\[
e_t = E^t \sum_{s=t}^{\infty} \Lambda^{s-t} \left[ (1 - \Lambda) (t_s - f^*_s) + \Lambda e \frac{R^*_s - R_s}{R} \right] + (1 - \Lambda)R_tQ_{t-1}.
\]

The above expression is exact in its treatment of the term in \( (t_s - f^*_s) \), but contains a Taylor expansion in the \( R^*_s - R_s \) term.

This generalizes to an infinite horizon the effects of portfolio flows on the exchange rate, which were the focus of Proposition 7 in the two period model. The Yen is stronger: if Japan is a creditor \( (Q_{t-1} > 0) \); if there is high import demand for Japanese goods \( (t_s > 0) \); if interest rates are higher in Japan than in the US \( (R^*_s - R_s > 0) \); and if there is selling pressure on the Dollar \( (f^*_s < 0) \). Compared to the UIP case, the first effect is amplified, the import-demand and interest-rate effects are simply discounted at a higher rate (we have \( \Lambda < \frac{1}{R} \) in this Gamma model, rather than \( \Lambda = \frac{1}{R} \) in the UIP case). The last effect (the \( f^*_s \) term) is entirely specific to the Gamma model.\(^{57}\)

---

\(^{56}\)Section A.3 provides numerical solutions for the case of portfolio flows that depend directly on the exchange rate.

\(^{57}\)The derivation of equation (A.2) in the Proof section of this appendix provides details for this latter effect.
A.1.1.1 Slow Digestion of Imbalances

To further understand the dynamics of exchange rates, consider a very simple example: there is an initial debt $Q_0$ at time 0, but the model is otherwise deterministic, so that $t_0 = 1, R_t = R^*_t = R$ for all $t$.

**Proposition A.2** (Slow digestion of imbalances when $\Gamma > 0$) Given an initial debt $Q_0$, the dynamics of the exchange rate are: $e_t = 1 + (1 - \Lambda)Q_0 \lambda^t$. US net foreign liabilities evolve according to: $RQ_t = Q_0 \lambda^t$, where $\lambda \equiv R\Lambda$. If $\Gamma = 0$, then $\lambda = 1$, and otherwise $0 < \lambda < 1$.

In the UIP case ($\Gamma = 0$) the debt and the exchange rate are constant. The Dollar is permanently weak. When $\Gamma > 0$, and therefore $\lambda < 1$, the debt slowly shrinks to 0, and the Dollar slowly mean-reverts to its fundamental value with no debt ($e_\infty = 1$). Intuitively, this “slow digestion” occurs because the US has a debt at time zero and the financiers need to be convinced to hold it. Given that interest rates are the same in both countries, the Dollar needs to be expected to appreciate to give a capital gain to the financiers. Hence, the Dollar is weak initially, and it will appreciate as long as there is debt remaining. Indeed, it appreciates until $Q_t = 0$, which happens in the limit as $t \to \infty$. Viewed in a different way, the Dollar is depreciated, so US exports are higher, which allows the US to repay its debt slowly.

Hence, the financial imperfections modeled in this Gamma framework lead to qualitatively different dynamics compared to the traditional UIP case.

A.1.2 Japanese Households and the Carry Trade

In most of the main body of the paper, consumers do not do the carry trade themselves. In this subsection, we analyze the case where Japanese consumers buy a quantity $f$ of Dollar bonds, financing the purchase by shorting an equivalent amount of Yen bonds. We let this demand take the form: $f = b(R - R^*)$.

If $b \geq 0$ the Japanese household demand is a form of carry trade because whenever $R \leq R^*$, we have $f \leq 0$. The flow equations now are:

$$NX_0 + Q + f = 0; \quad NX_1 - R(Q + f) = 0.$$

We summarize the implications for the equilibrium carry trade in the Proposition below.

**Proposition A.3** When Japanese consumers do the carry trade, the expected return to the carry trade in the basic Gamma model is:

$$R = \Gamma \frac{R^* E[t_1] - t_0 + f(1 + R^*)}{(R^* + \Gamma) t_0 + \frac{R^*}{R} E[t_1] - \Gamma f}.$$

Hence the carry trade return is bigger: (i) when $R^*/R$ is higher, (ii) when the funding country is a net foreign creditor, or (iii) when consumers do the carry trade less ($f$ increases).

If consumers do the carry trade on too large a scale ($f$ too negative), then the carry trade becomes unprofitable, $R < 0$. 

A.2
A.2 Further Details for the Main Body of the Paper

A.2.1 Maximization Problem of the Japanese Household

We provide here the details, omitted in Section 1, of the static utility maximization problem of the Japanese household:

$$\max_{C_{NT,t}, C_{H,j}, C_{F,t}} \left( \chi_t^* \ln C_{NT,t} + \xi_t^* \ln C_{H,j,t} + \alpha_t^* \ln C_{F,t} + \lambda_t^* \left( CE_t^* - C_{NT,t} - p_{H,j}^* C_{H,j,t} - p_{F,t}^* C_{F,t} \right) \right),$$

where $CE_t^*$ is aggregate consumption expenditure of the Japanese household, $\lambda_t^*$ is the associated Lagrange multiplier, $p_{H,j}^*$ is the Yen price in Japan of US tradables, and $p_{F,t}^*$ is the Yen price in Japan of Japanese tradables. Standard optimality conditions imply:

$$C_{NT,t}^* = \frac{\chi_t^*}{\lambda_t^*}; \quad p_{H,j}^* C_{H,j,t}^* = \frac{\xi_t^*}{\lambda_t^*}; \quad p_{F,t}^* C_{F,t}^* = \frac{\alpha_t^*}{\lambda_t^*}.$$  

Our assumption that $Y_{NT,t}^* = \chi_t^*$, combined with the market clearing condition for Japanese non-tradables $Y_{NT,t}^* = C_{NT,t}^*$, implies that in equilibrium $\lambda_t^* = 1$. We obtain:

$$p_{H,j}^* C_{H,j,t} = \frac{\xi_t^*}{\lambda_t^*}; \quad p_{F,t}^* C_{F,t}^* = \frac{\alpha_t^*}{\lambda_t^*}.$$  

For completeness, we also report here the dynamic budget constraint of Japanese households (which holds state by state):

$$\sum_{i=0}^1 \frac{C_{NT,t}^* + p_{H,j}^* C_{H,j,t}^* + p_{F,t}^* C_{F,t}^*}{R^{i+1}} \leq \sum_{i=0}^1 \frac{Y_{NT,t}^* + p_{F,t}^* Y_{F,t}^* + \pi_t}{R^{i+1}},$$

where $\pi_t$ are the financiers’ profits remittances.

A.2.2 The Euler Equation when there are Several Goods

We state the general Euler equation when there are several goods (this result is well-known, but we re-derive it for completeness).

With utility $u'(C_t) + \beta u'^{i+1}(C_{t+1})$, where $C_t$ is the vector of goods consumed (for instance, $C_t = (C_{NT,t}, C_{H,j,t}, C_{F,t})$ in our setup), if the consumer is at his optimum, we have:

**Lemma A.1** When there are several goods, the Euler equation is:

$$1 = \mathbb{E}_t \left[ \beta R \frac{u'_{C_{i,j+1}}/p_{i,t+1}}{u'_{C_{i,j}}/p_{i,t}} \right] \text{ for all } i, j.$$  

(A.3)

This should be understood in “nominal” terms, i.e. the return $R$ is in units of the (potentially arbitrary) numéraire.

**Proof.** It is a variant on the usual one: the consumer can consume $d\epsilon$ fewer dollars’ worth (assuming that the “dollar” is the local unit of account) of good $i$ at time $t$ (hence, consume $dc_{i,j,t} = -\frac{d\epsilon}{p_{i,t}}$), invest them at rate $R$, and consume the proceeds, i.e. $Rd\epsilon$ more dollars of good $j$ at time $t + 1$ (hence, consume $dc_{j,j,t+1} = \frac{Rd\epsilon}{p_{j,t+1}}$). The total utility change is:

$$dU = u'_{C_{i,j}} dc_{i,j} + \beta \mathbb{E}_t u'^{i+1}_{C_{j,j+1}} dc_{j,j+1} = \mathbb{E}_t \left( -u'_{C_{i,j}}/p_{i,t} + \beta R u'^{i+1}_{C_{j,j+1}}/p_{j,t+1} \right) d\epsilon.$$  

A.3
At the margin, the consumer should be indifferent, so \( dU = 0 \), hence (A.3). \( \square \)

Applying this to our setup, with \( i = j = NT \), with \( p_{NT,t} = 1 \) and \( u^i_{NT,t} = \frac{\chi}{C_{NT,t}} = 1 \) for \( t = 0, 1 \), we obtain:
\[
1 = E \left[ \beta R \frac{1}{T+1} \right], \text{ hence } R = 1/\beta.
\]

A.2.3 The Financiers’ Demand Function

The financiers’ optimization problem. We clarify here the role of the mild assumption, made in footnote 16, that \( 1 \geq \Omega_0 \geq -1 \). Formally, the financiers’ optimization problem is:
\[
\max_{q_0} V_0 = \Omega_0 q_0, \text{ subject to } V_0 \geq \min \left( 1, \Gamma \frac{|q_0|}{e_0} \right) |q_0|, \text{ where } \Omega_0 \equiv E \left[ 1 - \frac{R^e e_1}{R e_0} \right].
\]

Notice that \( \Omega_0 \) is unaffected by the individual financier’s decisions and can be thought of as exogenous here.

Consider the case in which \( \Omega_0 > 0 \), then the optimal choice of investment has \( q_0 \in (0, \infty) \). Notice that \( \Omega_0 \leq 1 \) trivially. Then one has \( V_0 \leq q_0 \). In this case, the constraint can be rewritten as: \( V_0 \geq \Gamma \frac{|q_0|}{e_0} \), because the constraint will always bind before the portion of assets that the financiers can divert \( \Gamma \frac{|q_0|}{e_0} \) reaches 1. This yields the simpler formulation of the constraint adopted in the main text.

Now consider the case in which \( \Omega_0 < 0 \), then the optimal choice of investment has \( q_0 \in (-\infty, 0) \). It is a property of currency excess returns that \( \Omega_0 \) has no lower bound. In this paper, we assume that the parameters of the model are such as that \( \Omega_0 > -1 \), i.e. we assume that the worst possible (discounted) expected returns from being long a Dollar bond and being short a Yen bond is -100%. Economically this is an entirely innocuous assumption given that the range of expected excess returns in the data is approximately [-6%,+6%]. With this assumption in hand we have \( V_0 \leq |q_0|, \) and hence we can once again adopt the simpler formulation of the constraint because the constraint will always bind before the portion of assets that the financiers can divert \( \Gamma \frac{|q_0|}{e_0} \) reaches 1.

The financiers’ value function and households’ valuation of currency trades. We now analyze, in the context of the basic Gamma model of Section 1, the connection between the financiers’ value function, equation (6), and the households’ optimal demand for foreign currency in the absence of frictions. If US households were allowed to trade Yen bonds as well as Dollar bonds we would recover the standard Euler equation:
\[
0 = E \left[ \frac{U_{1,CNT}^j}{U_{0,CNT}^j} \left( R - R^e \frac{e_1}{e_0} \right) \right] = E \left[ \frac{\chi_1}{\chi_0} \frac{C_{NT,1}}{C_{NT,0}} \left( R - R^e \frac{e_1}{e_0} \right) \right] = E \left[ 1 - \frac{R^e e_1}{R e_0} \right],
\]
where the last equality follows from the assumption that \( C_{NT,t} = \chi_t \) and the result that \( \beta R = 1 \) derived in the main text (see equation (5)). US households optimally value the currency trade according to its expected (discounted at \( R \)) excess returns. Notice that this mean-return criterion holds despite the households being risk averse. The simplification occurs because variations in marginal utility are exactly offset by variations in the relative price of non-tradable goods, so that marginal utility in terms of the numéraire (the \( NT \) good) is constant across states of the world.

The reader can verify from our discussion above that, in the absence of frictions, the first order condition for the investment \( q_t \) in the basic Gamma model would be: \( 0 = E \left[ 1 - \frac{R^e e_1}{R e_0} \right] \), where we have again made use of \( \beta R = 1 \). We conclude, therefore, that our assumption about the financiers’ value function reflects the risk adjusted value of the currency trade to the US households. In the absence of frictions the financiers are a “veil” and choose exactly the same currency trade as the US household would choose. It is the friction \( \Gamma > 0 \) that makes the financiers’ problem interesting in our set-up. As pointed out in the numerical generalization

A.4
section of this appendix (Section A.3), more general (and non-linear) value functions would apply depending on who the financiers’ repatriate their profit and losses to. In the main draft, we maintain the assumption that the financiers’ use the US household valuation criterion; this makes the model most tractable while very little economic content is lost. As already shown, the numerical generalizations in this appendix provide robustness checks by solving the non-linear cases.

The financiers’ demand in the extended model. In the main body of the paper, when we consider setups that are more general than the basic Gamma model of Section 1, we maintain the simpler formulation of the financiers’ demand function. We do not directly derive the households’ valuation of currency trades in these more general setups. Our demand functions are very tractable and carry most of the economic content of more general treatments; we leave it for the extension Section A.3 to characterize numerically financier value functions more complex than those analyzed, in closed form, in the main parts of the paper. We provide here a few details regarding the monetary model. We assume that the financiers solve:

\[
\max_{q_0} V_0 = \Omega_0 q_0, \quad \text{subject to } V_0 \geq \min \left(1, \Gamma \frac{|q_0|}{m_0^* e_0} \right)|q_0|, \quad \text{where } \Omega_0 \equiv \mathbb{E}_0 \left[1 - \frac{R^e}{R} e_0 \right].
\]

Notice that \(m_0^*\) is now scaling the portion of nominal assets that the financiers’ can divert to ensure that such fraction is scale invariant to the level of the Japanese money supply and hence the nominal value in Yen of the assets.

A.2.4 A “Short-Run” Vs “Long-Run” Analysis

As in undergraduate textbooks, it is handy to have a notion of the “long run”. We develop here a way to introduce it in our model. We have periods of unequal length: we say that period 0 is short, but period “1” lasts for a length \(T\). The equilibrium flow equations in the dollar-yen market become:

\[
\xi_0 e_0 - \iota_0 + Q_0 = 0,
\]

\[
T (\xi_1 e_1 - \iota_1) - RQ_0 = 0. \quad (A.4)
\]

The reason for the “\(T\)” is that the imports and exports will occur over \(T\) periods. We assume a zero interest rate “within period 1”. This already gives a good notion of the “long run”.\(^{58}\)

Some extra simplicity is obtained by taking the limit \(T \to \infty\). The interpretation is that period 1 is “very long” and period 0 is “very short”. The flow equation (A.4) can be written: \(\xi_1 e_1 - \iota_1 - \frac{RQ_0}{T} = 0\). So in the large \(T\) limit we obtain: \(\xi_1 e_1 - \iota_1 = 0\). Economically, it means the trades absorbed by the financiers are very small compared to the trades in the goods markets in the long run. We summarize the environment and its solution in the following proposition.\(^{59}\)

Proposition A.4 Consider a model with a “long-run” last period. Then, the flow equations become \(\xi_0 e_0 - \iota_0 + Q_0 = 0\) and \(\iota_1 - \xi_1 = 0\), while we still have \(Q_0 = \frac{1}{T} \mathbb{E} \left[e_0 - e_1 \frac{R^e}{R} \right]\). The exchange rates become:

\[
e_0 = \frac{R^e}{R} \mathbb{E} \left[\frac{\iota_1}{\xi_1} \right] + \Gamma \iota_0 \frac{1}{1 + \Gamma \xi_0}; \quad e_1 = \frac{\iota_1}{\xi_1}.
\]

\(^{58}\)The solution is simply obtained by Proposition 3, setting \(\overline{\iota}_1 = T\iota_1, \overline{\xi}_1 = T\xi_1\).

\(^{59}\)One derivation is as follows. Take Proposition 3, set \(\overline{\iota}_1 = T\iota_1, \overline{\xi}_1 = T\xi_1\), and take the limit \(T \to \infty\).
In this view, the “long run” is determined by fundamentals \( e_1 = \frac{n}{\xi} \), while the “short run” is determined both by fundamentals and financial imperfections (\( \Gamma \)) with short-run considerations \( (t_0, \xi_0) \). In the simple case \( R = R^* = \xi^* = 1 \), we obtain: \( e_0 = \frac{\Gamma n + \xi(t)}{\xi + 1} \) and \( e_1 = t_1 \).

**Application to the carry trade with three periods.** In the 3-period carry trade model of section 5.1, we take period 2 to be the “long run”. We assume that in period \( t = 1 \) financiers only intermediate the new flows; stocks arising from previous flows are held passively by the households (long term investors) until \( t=2 \). That allows us to analyze more clearly the dynamic environment. Without the “long-run” period 2, the expressions are less intelligible, but the economics is the same.

### A.2.5 Price Indices, Nominal and Real Exchange Rates

We report here a few details omitted for brevity in Section 5.2.

Let us first derive the price indices \( \{ P, P^* \} \). The US price index \( P \) is defined as the minimum cost, in units of the numéraire (money), of obtaining one unit of the consumption basket:

\[
C_t \equiv \left[ \left( \frac{M_t}{P_t} \right)^{a_k} (C_{NT,t})^{\chi_t} (C_{H,t})^{\chi_t} (C_{F,t})^{\chi_t} \right]^{\frac{1}{\nu}}.
\]

Let us define a “primed” variable as being normalized by the sum of the preference coefficients \( \theta \); so that, for example, \( \chi'_t \equiv \frac{\xi_t}{\theta} \). Substituting the optimal demand for goods (see the first order conditions at the beginning of section 5.2) in the consumption basket formula we have:

\[
1 = \left( \omega' P \right)^{a' t} \left( a + P \right)^{a' t} \left( t + P \right)^{t' t} \left( \chi' P \right) \left( \chi' P_{NT} \right)^{\chi' t}.
\]

Hence:

\[
P = (p_H)^{a' t} (p_F)^{t' t} (p_{NT})^{\chi' t} \left[ (\omega'_t)^{-a'_t} (\xi'_t)^{-\xi'_t} (a'_t)^{-a'_t} (\chi'_t)^{-\chi'_t} \right].
\]

The part in square brackets is a residual and not so interesting. Similarly for Japan, we have:

\[
P^* = (p_H)^{a' t} (p_F)^{t' t} (p_{NT})^{\chi' t} \left[ (\omega'_t)^{-a'_t} (\xi'_t)^{-\xi'_t} (a'_t)^{-a'_t} (\chi'_t)^{-\chi'_t} \right].
\]

The CPI-RER in equation (26) is then obtained by substituting the price indices above in the definition of the real exchange rate \( \varepsilon' \equiv \frac{P^*}{P} \). For completeness, we report below the full expression for the function \( \tilde{\theta} \) that enters in equation (26):

\[
\tilde{\theta}_t = \frac{(\omega'_t)^{-a'_t} (\xi'_t)^{-\xi'_t} (a'_t)^{-a'_t} (\chi'_t)^{-\chi'_t}}{(\omega'_t)^{-a'_t} (\xi'_t)^{-\xi'_t} (a'_t)^{-a'_t} (\chi'_t)^{-\chi'_t}}.
\]

**The Basic Complete Market Model** The main text of the paper illustrated the relationship between the CPI-RER and the definition of the real exchange rate in the basic Gamma model. For completeness we include here a similar analysis for the case of complete and frictionless markets. We maintain all the assumptions from the paragraph on the Basic Gamma model in Section 5.2, except that we now assume markets to be complete and frictionless. Recall from Lemma 3 that we then obtain \( e_t = v^* \). Hence, the CPI-RER now follows: \( \varepsilon = \tilde{\theta} (p_H)^{\xi'_t} (p_F)^{a'_t} (v^*)^{\chi'_t} \). Notice that while the real exchange rate \( e \) is constant in complete markets in the basic Gamma model, the CPI-RER will in general not be constant as long as the CPI baskets are not symmetric and relative prices of goods move.
A.2.6 Derivation of the Extended Backus and Smith Condition

We report here the simple derivation of the extended version of the Backus and Smith condition that holds in the basic Gamma model. The condition in equation (27) can be verified as follows:

\[ \frac{C_0/\theta_0}{C_1/\theta_1} = \frac{C_0^*/\theta_0^* e_0}{C_1^*/\theta_1^* e_0} \iff \frac{P_0C_0/\theta_0}{P_1C_1/\theta_1} = \frac{P_0^*C_0^*/\theta_0^*}{P_1^*C_1^*/\theta_1^*} \iff \frac{1}{1} = \frac{1}{1} = 1, \]

where the first equivalence simply makes use of the definition \( \mathcal{E} \equiv \frac{P_0^*}{\theta_0^*} \), and the second equivalence follows from \( P_tC_t = \theta_t \) and \( P_t^*C_t^* = \theta_t^* \) for \( t = 0, 1 \). These latter equalities (we focus here on the US case) can be recovered by substituting the households’ demand budget functions for goods in the static household budget constraint: \( P_tC_t = C_{NT,t} + p_{HT,t}C_{H,t} + p_{F,t}C_{F,t} = \chi_t + a_t + t_t = \theta_t \).

A.3 Numerical Generalization of the Model

We include here a generalization of the basic Gamma model in Section 1 that relaxes some of the assumptions imposed in the main body of the paper for tractability. This more general model has to be solved numerically. Our main aim is to verify, at least numerically, that all the core forces of the basic model carry through to this more general environment. We also provide a brief numerical simulation of the model. We stress, however, that this is only a numerical example without any pretense of being a full quantitative assessment.

Model Equations

Since the model is a generalization of the basic one, we do not restate, in the interest of space, the entire structure of the economy. We only note here that the model has infinite horizon, symmetric initial conditions (both countries start with zero bond positions), and report below the system of equations needed to compute the solution.

\[ R_{t+1} = \frac{\chi_t/Y_{NT,t}}{\beta_t E_t[\chi_{t+1}/Y_{NT,t+1}]}, \quad (A.5) \]

\[ R_t^* = \frac{\chi_t^*/Y_{NT,t}}{\beta_t^* E_t[\chi_{t+1}^*/Y_{NT,t+1}^*]}, \quad (A.6) \]

\[ Q_t = \frac{1}{E_t} \left[ \left( \alpha \beta_t Y_{NT,t}/\chi_t + (1 - \alpha) \beta_t^* e_t e_{t+1} + \frac{Y_{NT,t}/\chi_t}{Y_{NT,t+1}/\chi_{t+1}} \right) (e_t R_{t+1} - R_{t+1}^* e_{t+1}) \right] (A.7) \]

\[ Q_t = f_t e_t - f_t^* - D_t, \quad (A.8) \]

\[ D_t = D_{t-1} R_t + (\alpha Q_{t-1} - e_{t-1} f_{t-1}) \left( R_t - R_t^* e_t e_{t-1} \right) + e_{t-1} \frac{\xi_t}{\chi_t} Y_{NT,t} - \frac{t_t}{\chi_t} Y_{NT,t}, \quad (A.9) \]

where \( \alpha \) is the share of financiers’ profits repatriated to the US, and \( D \) are the US net foreign assets. This is a system of five nonlinear stochastic equations in five endogenous unknowns \( \{R, R^*, e, Q, D\} \). We solve the system numerically by second order approximation. The exogenous variables evolve according to:

\[ \ln t_t = (1 - \phi_t) \ln t_{t-1} + \sigma_t e_{s,t}; \quad \ln \xi_t = (1 - \phi_{\xi}) \ln \xi_{t-1} + \sigma_{\xi} e_{\xi,t}; \]

\[ f_t = (1 - \phi_f) f_{t-1} + \sigma_f e_{f,t}; \quad f_t = (1 - \phi_{f^*}) f_{t-1} + \sigma_f e_{f^*,t}; \]

\[ \beta_t = \bar{\beta} \exp (x_t); \quad \beta_t = \bar{\beta} \exp (x_t^*); \]

\[ x_t = (1 - \phi_x) x_{t-1} + \sigma_x e_{x,t}; \quad x_t = (1 - \phi_x) x_{t-1}^* + \sigma_x e_{x^*,t} \]
where \([\varepsilon_t, \varepsilon_x, e, f, \varepsilon_{f^*}, \varepsilon_t, \varepsilon_x] \sim N(0,I)\). We assume that all other processes, including the endowments, are constant.

The deterministic steady state is characterized by: \(\{\hat{e} = 1, \hat{R} = \hat{R}^*, \hat{Q} = \hat{D} = \hat{D}^* = 0\}\). In order to provide a numerical example of the solution, we briefly report here the chosen parameter values. We stress that this is not an estimation, but simply a numerical example of the solutions. We set \(\hat{\beta} = 0.985\) to imply a steady state annualized interest rate of 5%. We set the share of financiers’ payout to households at \(\alpha = 0.5\), so that it is symmetric across countries. We set all constant parameters at 1 \((\hat{H} = \hat{Y} = a = a^* = 1)\), except for the value of non-tradables set at 18 \((\hat{Y}_{NT} = \hat{Y}_{NT}^* = \chi = \chi^* = 18)\), so that they account for 90% of the consumption basket. We set \(\Gamma = 0.1\). Finally, we set the shock parameters to: \(\phi_i = \phi_\varepsilon = 0.0018, \sigma_i = \sigma_\varepsilon = 0.0037, \phi_f = 0.0001, \sigma_f = 0.05, \phi_x = 0.0491, \sigma_x = 0.0073\).

We report in Table A.1 below a short list of simulated moments. For a rough comparison, we also provide data moments focusing on the GBP/USD exchange rate and US net exports.

Table A.1: Numerical Example of Simulated Moments

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data</th>
<th>Model, (\Gamma = 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SD(\frac{e_t+1}{e_t} - 1))</td>
<td>0.1011</td>
<td>0.1317</td>
</tr>
<tr>
<td>(\phi(e_t+1, e_t))</td>
<td>0.2442</td>
<td>0.1471</td>
</tr>
<tr>
<td>(\hat{R}^*)</td>
<td>0.0300</td>
<td>0.0388</td>
</tr>
<tr>
<td>(SD(R_t^*))</td>
<td>0.1011</td>
<td>0.1310</td>
</tr>
<tr>
<td>(SD(nx_t))</td>
<td>0.0334</td>
<td>0.0240</td>
</tr>
<tr>
<td>(\phi(nx_t, nx_{t-1}))</td>
<td>0.0708</td>
<td>0.1618</td>
</tr>
<tr>
<td>(SD(R_t))</td>
<td>0.0479</td>
<td>0.0480</td>
</tr>
<tr>
<td>(\phi(R_{t+1}, R_t))</td>
<td>0.1826</td>
<td>0.1819</td>
</tr>
</tbody>
</table>

Data and model-simulated moments. The first column reports the standard deviation and (one minus) autocorrelation of exchange rates, the average carry trade return and its standard deviation, the standard deviation and (one minus) the autocorrelation coefficient of net exports over GDP for the US, and the standard deviation and (one minus) autocorrelation of interest rates. Data sources: exchange rate moments are for the GBP/USD, the carry trade moments are based on Lettau, Maggiori and Weber (2013) assuming the interest rate differential is 5%, the interest rate moments are based on the yield on the 6-month treasury bill minus a 3-year moving average of the 6-month rate of change of the CPI. All data are quarterly 1975Q1-2012Q2 (150 observations). The reported moments are annualized. Model implied moments are computed by simulating 500,000 periods (and dropping the first 100,000). The carry trade moments are computed selecting periods in the simulation when the interest rate differential is between 4% and 6%.

Finally, we provide a numerical example of classic UIP regressions. The regression specification follows:

\[\Delta \ln(e_{t+1}) = \alpha + \beta [\ln(R_t) - \ln(R_t^*)] + \varepsilon_t.\]

\(60\)Note that the deterministic steady state is stationary whenever \(\Gamma > 0\), which we always assume, as shown in Proposition A.2. Similarly the portfolio of the intermediary is determinate via the assumption that households only save in domestic currency and via the limited commitment problem of the intermediary.

\(61\)We set this conservative value of \(\Gamma\) based on a thought experiment on the aggregate elasticity of the exchange rate to capital flows. We suppose that an inelastic short-term flow to buy the Dollar, where the scale of the flow is comparable to 1 year worth of US exports \((i.e., f^* = 1)\), would induce the Dollar to appreciate 10%. The numbers are simply illustrative, but are in broad congruence with the experience of Israel and Switzerland during the recent financial crisis. Let us revert to the basic Gamma model. Suppose that period 1 is a "long run" during which inflows have already mean-reverted (so that the model equations are: \(e_0 - 1 + f^* + Q = 0, e_1 = 1, Q = \frac{1}{\Gamma} (e_0 - e_1)\)). Then, we have \(e_0 = 1 - \frac{1}{\Gamma} f^*.\) Hence, the price impact is \(e_0 - 1 = -\frac{1}{\Gamma} f^* \approx -0.1\). This leads to \(\Gamma \approx 0.1\).

\(62\)The moments are computed by simulating 500,000 periods. We drop the first 100,000 observations (burn-in period).
The above regression is the empirical analog to the theoretical results in Section 5.1.\textsuperscript{63} We find a regression coefficient well below one ($\hat{\beta} = 0.34$), the level implied by UIP. Indeed, on average we strongly reject UIP with an average standard error of 0.42. The regression adjusted $R^2$ is also low at 0.039. The results are broadly in line with the classic empirical literature on UIP. As a reference, if we perform the same regression on the GBP/USD exchange rate for the period from 1975Q1 to 2012Q2 we find a coefficient of 0.42 (standard error equal to 0.24), which is significantly below the UIP value of 1, and $R^2 = 0.014$.

A.4 Proofs

A.4.1 Proofs for the Main Body of the Paper

Proof of Proposition 3  The flow equilibrium conditions in the dollar-yen markets are:

$$
\xi_0 e_0 - t_0 + Q_0 = 0, \quad (A.10)
$$
$$
\xi_1 e_1 - t_1 - RQ_0 = 0. \quad (A.11)
$$

Summing $R(A.10)$ and $A.11$ gives the intertemporal budget constraint: $R(\xi_0 e_0 - t_0) + \xi_1 e_1 - t_1 = 0$. From this, we obtain:

$$
e_1 = \xi_1^{-1} (R t_0 + t_1 - R \xi_0 e_0). \quad (A.12)
$$

The equilibrium in the Dollar / Yen market $\xi_0 e_0 - t_0 + \frac{1}{\Gamma} \mathbb{E} [e_0 - \frac{R}{R^*} e_1] = 0$ gives:

$$
\frac{R^*}{R} \mathbb{E} [e_1] = e_0 + \Gamma (\xi_0 e_0 - t_0) = (1 + \Gamma R) e_0 - \Gamma t_0. \quad (A.13)
$$

Combining (A.12) and (A.13),

$$
\mathbb{E} [e_1] = \mathbb{E} [\xi_1^{-1} (R t_0 + t_1)] - \mathbb{E} [\xi_1^{-1}] \xi_0 R e_0 = \frac{R}{R^*} (1 + \Gamma R) e_0 - \frac{R}{R^*} \Gamma t_0,
$$

i.e.

$$
e_0 = \frac{R}{R^*} \Gamma t_0 + \mathbb{E} [\xi_1^{-1} (R t_0 + t_1)] = \frac{(\mathbb{E} [R^* \xi_1^{-1}] + \Gamma) t_0 + \mathbb{E} [\frac{R}{R^*} \xi_1^{-1} t_1]}{(\mathbb{E} [R^* \xi_1^{-1}] + \Gamma) \xi_0 + 1}
$$

$$
= \frac{\mathbb{E} \left[ \frac{R}{\xi_1} \left( t_0 + \frac{u}{\rho} \right) \right] + \Gamma t_0}{\mathbb{E} \left[ \frac{R}{\xi_1} \left( \xi_0 + \frac{u}{\rho} \right) \right] + \Gamma \xi_0}.
$$

We can now calculate $e_1$. We start from its expected value:

$$
\frac{R^*}{R} \mathbb{E} [e_1] = (1 + \Gamma R) e_0 - \Gamma t_0 = (1 + \Gamma \xi_0) \left( \frac{\mathbb{E} \left[ \frac{R}{\xi_1} \right] + \Gamma}{\mathbb{E} \left[ \frac{R}{\xi_1} \right] + \Gamma} \right) t_0 + \mathbb{E} \left[ \frac{R}{\xi_1} \frac{u}{\rho} \right] - \Gamma t_0
$$

\textsuperscript{63}To estimate the regression based on model-produced data, we simulate the model for 500,000 periods, dropping the first 100,000, and then sample at random 10,000 data intervals of length 150. The length is chosen to reflect the data span usually available for the modern period of floating currencies (150 quarters). On each data interval, we estimate the above regression. Finally, we average across the regression output from the 10,000 samples.
In the basic case of Lemma 3, we have

\[ (1 + \Gamma \xi_0) \left( \mathbb{E} \left[ \frac{R^t}{\xi_1^t} \right] + \Gamma \right) - \Gamma \left( \left( \mathbb{E} \left[ \frac{R^t}{\xi_1^t} \right] + \Gamma \right) \xi_0 + 1 \right) t_0 + (1 + \Gamma \xi_0) \mathbb{E} \left[ \frac{R^t}{\xi_1^t} u_H \right] \]

\[ \left( \mathbb{E} \left[ \frac{R^t}{\xi_1^t} \right] + \Gamma \right) \xi_0 + 1 \]

\[ \mathbb{E} \left[ \frac{R^t}{\xi_1^t} \right] t_0 + (1 + \Gamma \xi_0) \mathbb{E} \left[ \frac{R^t}{\xi_1^t} u_H \right] = \left( \mathbb{E} \left[ \frac{R^t}{\xi_1^t} \right] + \Gamma \right) \xi_0 + 1 \]

\[ \mathbb{E} \left[ \frac{R^t}{\xi_1^t} (t_0 + \frac{u_H}{R}) \right] + \Gamma \xi_0 \mathbb{E} \left[ \frac{R^t}{\xi_1^t} u_H \right]. \]

To obtain the time-1 innovation, we observe that \( e_1 = \frac{1}{\xi_1} (R t_0 + t_1 - R^t_0 e_0) \) implies:

\[ \{e_1\} = \left\{ \frac{t_1}{\xi_1} \right\} + R \left( t_0 - \xi_0 e_0 \right) \left\{ \frac{1}{\xi_1} \right\}. \]

As:

\[ t_0 - \xi_0 e_0 = t_0 - \xi_0 \left( \mathbb{E} \left[ \frac{R^t}{\xi_1^t} \right] + \Gamma \right) t_0 + \mathbb{E} \left[ \frac{R^t}{\xi_1^t} u_H \right] = t_0 - \mathbb{E} \left[ \frac{\xi_0 R^t}{\xi_1^t} u_H \right], \]

we obtain:

\[ \{e_1\} = \left\{ \frac{t_1}{\xi_1} \right\} + R \frac{t_0 - \mathbb{E} \left[ \frac{\xi_0 R^t}{\xi_1^t} u_H \right]}{\left( \mathbb{E} \left[ \frac{R^t}{\xi_1^t} \right] + \Gamma \right) \xi_0 + 1} \left\{ \frac{1}{\xi_1} \right\}. \]

**Proof of Lemma 3** We prove the Lemma, in a slightly more general way. In the decentralized allocation, the consumer’s intra-period consumption (3) gives the first order conditions:

\[
\begin{align*}
p_{NT} C_{NT} &= \frac{Z}{\lambda}; & p_{NT}^* C_{NT} &= \frac{Z^*}{\lambda^*}; \\
p_H C_H &= \frac{a}{\lambda}; & p_H^* C_H &= \frac{\xi}{\lambda^*}; \\
e p_t^* C_F &= \frac{1}{\lambda}; & p_{pF}^* C_F &= \frac{a^*}{\lambda^*}.
\end{align*}
\]

(A.14)

so that

\[ e = \frac{C_H \lambda^*}{\xi}. \]

Suppose that the Negishi weight is \( v \). The planner maximizes \( U + v U^* \) subject to the resource constraint; hence, in particular \( \max C_H + C_{H,t} \leq \gamma_{H,t} a \ln C_H + v \xi \ln C_H^* \), which gives the planner’s first order condition \( \frac{a}{C_H} = \frac{v \xi}{C_H^*} \). Hence, in the first best exchange rate satisfies:

\[ e^{FB} = \frac{\lambda^*}{\lambda} = v \frac{p_{NT} C_{NT} / Z}{p_{NT}^* C_{NT}^* / Z^*}. \]

Putting the dates back in for future reference, the first best exchange rate, when the Negishi weights on the US and Japan are \((1, v)\), is

\[ e_{i^{FB}} = \frac{\lambda_i^*}{\lambda_i} = v \frac{p_{NT,i} C_{NT,i} / Z_i}{p_{NT,i}^* C_{NT,i}^* / Z_i^*}. \]

In the basic case of Lemma 3, we have \( \lambda_t = \lambda_t^* = 1 \), so \( e_{i}^{FB} = v \). Note that this is derived under the assumption of identical discount factor \( \beta = \beta^* \). \( \square \)

A.10
Proof of Proposition 7  We first prove a Lemma.

Lemma A.2 In the setup of Proposition 3, $e_0$ is increasing in $t_1$ and $R^*$ and decreasing in $\xi_1$ and $R$; $\frac{\partial e_0}{\partial \xi_1}$ increases in $\Gamma$. In addition, $e_0$ increases in $\Gamma$ if and only the US is a natural net debtor at time $0^+$, i.e. $N_{0^+} \equiv \xi_0 e_0 - t_0 < 0$.

Proof: The comparative statics with respect to $t_1$, $\xi_0$, and $R$ are simply by inspection. We report here the less obvious ones:

$$
\frac{\partial e_0}{\partial \xi_1} = \frac{E \left[ e_0 \xi_0 - t_0 \right]}{\xi_1} = -\frac{E \left[ e_1 \right]}{\frac{\partial \xi_0}{\xi_1} + \frac{\Gamma \xi_0}{R^*} + \frac{\Gamma \xi_0}{R^*}} < 0,
$$

where we made use of the state-by-state budget constraint $e_0 \xi_0 - t_0 + \frac{e_1 \xi_0}{R^*} = 0$. To be very precise, a notation like $\frac{\partial e_0}{\partial \xi_1}$ is the sensitivity of $e_0$ to a small, deterministic increment to random variable $\xi_1$.

$$
\frac{\partial e_0}{\partial R^*} = \frac{E \left[ e_0 - \Gamma Q \right]}{R^*} = \frac{E \left[ e_1 \right]}{\frac{\partial \xi_0}{\xi_1} + \frac{\Gamma \xi_0}{R^*} + \frac{\Gamma \xi_0}{R^*}} > 0,
$$

where we made use of the financiers’ demand equation, $\Gamma Q_0 = E \left[ e_0 - R^* e_1 \right]$, and the flow equation, $\xi_0 e_0 - t_0 + Q_0 = 0$.

We also have,

$$
\frac{\partial e_0}{\partial \Gamma} = -N_{0^+} \frac{1}{1 + R^* E \left[ \frac{\xi_0}{\xi_1} \right] + \xi_0 \Gamma} < 0,
$$

where we made use of the definition $N_{0^+} = e_0 \xi_0 - t_0$. This implies:

$$
\frac{\partial^2 e_0}{\partial \Gamma \partial t_0} = \frac{1}{(R^* E \left[ \frac{\xi_0}{\xi_1} \right] + 1 + \Gamma \xi_0)^2} > 0. \sqcup
$$

This implies all the points of Proposition 7 with two exceptions. The effects with respect to interest rate changes, both domestic and foreign, hold for $f, f^*$ sufficiently small. Finally, we focus on the impact of $f^*$. Simple calculations yield:

$$
\frac{\partial e_0}{\partial f^*} = -\frac{\Gamma}{R^* E \left[ \frac{\xi_0}{\xi_1} \right] + 1 + \Gamma \xi_0} < 0.
$$

We notice that the comparative statics with respect to $f$ are less clear-cut, because $f$ affects the value of $\Gamma \xi_1$, and hence affects risk-taking. However, we have $\frac{\partial e_0}{\partial f} > 0$ for typical values (e.g. $R = R^* = 1, \xi_0 = \xi_1$). \sqcup

Proof of Lemma 4 and Proposition 8  The economy is described by:

$$
e_0 - 1 - qe_0 + Q_0 = 0; \quad e_1 - t_1 + qe_1 - Q_0 = 0.
$$

Using Proposition 6 (with $\bar{\xi}_0 = 1 - q, \bar{\xi}_1 = 1 + q$), we have:

$$
e_0 (q) = 1 + \frac{\Gamma (q + q^2)}{2 + \Gamma (1 - q^2)}, \quad (A.15)
$$

A.11
\[ e_1(q) = 1 + \frac{\Gamma(-q + q^2)}{2 + \Gamma(1 - q^2)} + \frac{\varepsilon}{1 + q}, \]  
(A.16)

where we define \( \varepsilon \equiv t_1 - 1 \), the innovation to \( t_1 \) (recall \( \mathbb{E} t_1 = 1 \)). This implies Lemma 4.

The intervention's impact on the average exchange rate is only second order: it creates a depreciation at time 0, and an appreciation at time 1.

Recall that we assume \( a_t^* = t_i \) to keep the countries symmetric in their demands of tradables, and simplify the algebra. Given equation (A.14) and \( \lambda_t = \lambda^*_t = 1 \), we can define \( s_t \equiv \frac{C_{H,t}}{C_{H,t} + C_{F,t}} = \frac{C_{F,t}}{C_{F,t} + C_{F,t}} \) to be the real US share of consumption in both US or Japanese tradables. This share is equal to:

\[ s_t = \frac{1}{1 + \varepsilon_t}. \]  
(A.17)

By definition, US consumption of good \( g \) is \( C_{g,t} = s_t Y_{g,t} \), where \( Y_{g,t} \) is the world production of good \( g \). US welfare at time \( t \) is (dropping the non-tradables endowment term, and correspondingly setting \( \chi = 0 \) for algebraic convenience):

\[
U_t = a_t \ln C_{H,t} + t_i \ln C_{F,t} = a_t \ln (s_t Y_{H,t}) + t_i \ln (s_t Y_{F,t})
\]

\[ = (a_t + t_i) \ln s_t + a_t \ln Y_{H,t} + t_i \ln Y_{F,t}, \]

and intertemporal US welfare is (using \( a_t = 1 \)):

\[ U(q) = \mathbb{E}[U_0 + U_1] = \mathbb{E} \sum_{t=0}^{1} ((1 + t_i) \ln s_t + \ln Y_{H,t} + t_i \ln Y_{F,t}). \]

US production of tradables at time 0 is (by equation (22)) \( Y_{H,0} = \min \left( \frac{1 + e_0}{p_H}, L \right) \), so \( Y_{H,0} \) increases in \( e \) for \( e \in [0, \bar{e}_0] \), with \( \bar{e}_0 \equiv \bar{p}_H L - 1 \). Hence:

\[ U(q) = \ln \min \left( \frac{1 + e_0(q)}{p_H}, L \right) + h(q) + K, \]  
(A.18)

where \( h(q) \equiv \mathbb{E} \sum_{t=0}^{1} (1 + t_i) \ln s_t \) captures the allocational distortions, and \( K = 3 \ln L \) is a constant independent of policy (as prices are flexible at \( t = 1 \) in the US). Hence, US welfare goes up when its share \( s_t \) is higher and when world production is higher (\( Y_{H,0} \) higher).

We shall see that the intervention on a scale \( q \), by inducing a time-0 Dollar devaluation (i) improves by a first order effect the production at time 0, and (ii) leads only to a second order loss in the total share of consumption \( h(q) \). Hence, the intervention is desirable. In addition, it is desirable also for Japan: Japan benefits from the increase in world production, and experiences only a second order change from the intertemporal distortion. Let us see this analytically.

We define, by analogy with (A.18):

\[ V(q) \equiv \ln \frac{1 + e_0(q)}{p_H} + h(q) + K, \]

so that \( V(q) = U(q) \) when \( \frac{1 + e_0(q)}{p_H} \leq L \), i.e. in the unemployment region. We have: \( V'(0) = \frac{e'_0(0)}{1 + \bar{e}_0(0)} + h'(0) \) and \( e_0(0) = 1 \). Taking the derivative of (A.15) and (A.16) at \( q = 0 \) gives:

\[ e'_0(0) = \frac{\Gamma}{2 + \Gamma}, \]  
(A.19)
\[ e'_1(0) = -\frac{\Gamma}{2 + \Gamma} - \varepsilon. \]  

Hence:

\[ V'(0) = \frac{\Gamma}{2(2 + \Gamma)} + h'(0). \]

Recalling \( t_1 = 1 + \varepsilon \) we then compute:

\[
\begin{align*}
    h'(0) &= \mathbb{E} \sum_{t=0}^{1} (1 + t_t) \left. \frac{d\ln s_t}{dq} \right|_{q=0} \\
&= -2 \frac{e'_0(0)}{1 + e_0(0)} - \mathbb{E} \left[ (2 + \varepsilon) \frac{e'_1(0)}{1 + e(0)} \right] \quad \text{by (A.17)} \\
&= -2 \frac{\Gamma}{2} - \mathbb{E} \left[ (2 + \varepsilon) \frac{\Gamma}{2 + \varepsilon} \right] \\
&= 0.
\end{align*}
\]

This confirms that intertemporal distortions induced are second order.

Given \( V'(0) > 0 \), by continuity, there exists a \( q^{\text{max}} \) such that \( V'(q) > 0 \) for \( q \in [0, q^{\text{max}}] \). We call \( \overline{q}(e(0)) \) the inverse of the function \( e(0) \). Since \( e(0) \) is an increasing function (for \( q \geq 0 \), so is \( \overline{q}(e(0)) \). Recall also that the least-devalued exchange rate that ensures full employment is \( \overline{e}_0 = \overline{p}_H L - 1 \). Define \( \overline{p}_H^{\text{max}} \) such that \( \overline{q}(\overline{p}_H^{\text{max}} L - 1) = q^{\text{max}} \). Finally, recall that \( p^*_H, 0 = \frac{1}{2} \) is the flexible equilibrium price of US tradable. The assumption that there is unemployment initially is equivalent to \( \overline{p}_H < p^*_H, 0 \).

Take an initial price \( \overline{p}_H \in (p^*_H, 0, p^*_H^{\text{max}}) \). To eliminate unemployment caused by \( \overline{p}_H \), the government can perform the intervention \( q^{\text{opt}} = \overline{q}(\overline{p}_H L - 1) \). Now, given that \( \overline{q}(\cdot) \) is increasing and \( \overline{p}_H < \overline{p}_H^{\text{max}} \), we have \( q^{\text{opt}} < q^{\text{max}} \). Given that \( V'(q) > 0 \) for \( q \in [0, q^{\text{max}}] \), and that \( U'(q) = V'(q) \) for \( q \in [0, q^{\text{opt}}] \), we have \( U'(q) > 0 \) for \( q \in [0, q^{\text{opt}}] \). This means that welfare is increasing in the size of the intervention, in the range \( q \in [0, q^{\text{opt}}] \).

**Japanese welfare.** It is intuitive that Japanese welfare will also increase when the US government’s FX intervention devalues the Dollar: Japan enjoys a first-order gain from the increase in US production and experiences only a second-order change from the intertemporal distortion (at least, omitting for now potential Jensen’s terms). Of course, this hinges on the assumption that prices are flexible in Japan. We provide here the more formal arguments.

Defining \( s^*_t \) to be the Japanese share of tradables at \( t \),

\[ s^*_t = 1 - s_t = \frac{e_t}{1 + e_t}. \]

Japanese utility at time \( t \) is (using \( a^*_t = t_t, \xi_t = 1 \)):

\[
U^*_t = a^*_t \ln C^*_H + \xi_t \ln C^*_F = t_t \ln s^*_t Y^*_H + \ln Y^*_F
\]

\[ = (1 + t_t) \ln s^*_t + t_t \ln Y^*_H + \ln Y^*_F. \]

Hence, Japanese welfare is

\[
U^*(q) = \mathbb{E}[U^*_0 + U^*_1] = \mathbb{E} \sum_{t=0}^{1} ((1 + t_t) \ln s^*_t + t_t \ln Y^*_H + \ln Y^*_F)
\]

A.13
defining \( h^* (q) \equiv \mathbb{E} \sum_{t=0}^{1} (1 + \tau_t) \ln s_t^* \). We define, as for the US case, \( V^* (q) \equiv \ln \frac{1 + e_0 (q)}{p_H} + h^* (q) + K \). That implies:

\[
V^* (0) = \frac{e'_0 (0)}{1 + e_0 (0)} + h^* (0) = \frac{\Gamma}{2 (2 + \Gamma)} + h^* (0).
\]

We next calculate \( h^* (0) \). We start with \( \ln s_t^* = \ln \frac{e_t}{1 + e_t} = \ln e_t - \ln (1 + e_t) \), so

\[
\frac{d \ln s_t^*}{dq} \bigg|_{q=0} = e'_t (0) \left[ \frac{1}{e_t (0)} - \frac{1}{1 + e_t (0)} \right] = \frac{e'_t (0)}{e_t (0) (1 + e_t (0))}
\]

and:

\[
h^* (0) = \mathbb{E} \sum_{t=0}^{1} (1 + \tau_t) \frac{d \ln s_t^*}{dq} \bigg|_{q=0}
= \mathbb{E} \sum_{t=0}^{1} (1 + e_t (0)) \frac{e'_t (0)}{e_t (0) (1 + e_t (0))} \text{ using } \tau_t = e_t (0),
= \mathbb{E} \sum_{t=0}^{1} \frac{e'_t (0)}{e_t (0)}
= e'_0 (0) + \mathbb{E} \frac{e'_0 (0) - e}{1 + e} \text{ using } (A.19)-(A.20) \text{ and } e_1 (0) = 1 + \varepsilon
= (e'_0 (0) - 1) \mathbb{E} \frac{e}{1 + e} = \left( \frac{\Gamma}{2 + \Gamma} - 1 \right) \mathbb{E} \frac{e}{1 + e}
= - \frac{2}{2 + \Gamma} \mathbb{E} \frac{e}{1 + e}
\geq 0
\]

because the function \( \frac{x}{1 + x} \) is concave in the domain \( x > -1 \), and \( \mathbb{E} \varepsilon = 0 \), so that \( \mathbb{E} \frac{e}{1 + e} \leq 0 \).

Summing up, we have:

\[
V^* (0) = \frac{\Gamma}{2 (2 + \Gamma)} + h^* (0) \geq \frac{\Gamma}{2 (2 + \Gamma)} > 0
\]

Given \( V^* (0) > 0 \), by continuity, there is a \( q^{\text{max, }*} \) such that \( V^* (q) > 0 \) for \( q \in [0, q^{\text{max, }*}] \). Hence (by the reasoning done above for the US consumer), the Proposition also holds for Japanese welfare (i.e., welfare in both US and Japan increases as \( q \) increases, for \( q \in [0, q^{*\text{opt}}] \)), provided that the initial distortion \( p_H \) is not too great. More specifically, we should have \( p_H \in (p_H^*, p_H^{\text{max}}) \), where we define \( p_H^{\text{max}} \) to be the price such that \( q (p_H^{\text{max}} L - 1) = \min (q^{\text{max}}, q^{\text{max, }*}) \). \( \square \)

**Proof of Proposition 9** The proof is quite similar to that of Proposition 8. Given the countries are symmetric in their taste for foreign tradable goods (\( a_t = \xi_t = 1, a_t^* = \eta_t \)), the share of US consumption for both the US and Japanese tradable good is \( s_t = \frac{1}{1 + \alpha_t} \).

A.14
Intertemporal US welfare is:

\[
U = \mathbb{E}[U_0 + U_1] = \mathbb{E} \left[ \sum_{t=0}^{1} (t_t + a_t) \ln s_t + a_t \ln Y_{H,t} + t_t \ln Y_{F,t} \right],
\]

i.e.

\[
U(\tau) = \ln \min \left( \frac{1 + e_0(\tau)}{p_H}, L \right) + h(\tau) + K, \tag{A.21}
\]

where \(K\) is a constant independent of policy, and \(h(\tau)\) captures the sum of the allocational distortions:

\[
h(\tau) \equiv \mathbb{E} \sum_{t=0}^{1} (1 + t_t) \ln s_t = \mathbb{E} \sum_{t=0}^{1} (1 + t_t) \ln \frac{1}{1 + e_t(\tau)}.
\]

We define:

\[
V(\tau) = \ln \frac{1 + e_0(\tau)}{p_H} + h(\tau) + K,
\]

the counterpart of \(U(\tau)\), without the “min” sign (\(V(\tau)\) is welfare, assuming that the economy is below full employment).

We recall:

\[
e_0(\tau) = \frac{(1 + \frac{\Gamma}{1 - \tau}) t_0 + \mathbb{E}[t_1]}{2 + \frac{\Gamma}{1 - \tau}},
\]

\[
e_1(\tau) = \frac{t_0 + (1 + \frac{\Gamma}{1 - \tau}) \mathbb{E}[t_1]}{2 + \frac{\Gamma}{1 - \tau}} + \{t_1\},
\]

which implies

\[
e'_0(0) = \frac{t_0 - \mathbb{E}[t_1]}{(2 + \Gamma)^2} = -e'_1(0),
\]

so that

\[
h'(0) = -\mathbb{E} \sum_{t=0}^{1} (1 + t_t) \frac{e'_t(0)}{1 + e_t(0)},
\]

\[
h'(0) = -e'_0(0) D,
\]

\[
D \equiv \mathbb{E} \left[ \frac{1 + t_0}{1 + e_0(0)} - \frac{1 + t_1}{1 + e_1(0)} \right]
\]

The marginal impact welfare of a small tax is:

\[
V'(0) = \frac{e'_0(0)}{1 + e_0(0)} + h'(0) = e'_0(0) \left[ \frac{1}{1 + e_0(0)} - D \right].
\]

We observe that when \(\mathbb{E} t_1 = t_0\), then \(e_0(0) = t_0\) and \(e_1(0) = t_1\), so that \(\frac{1 + t_0}{1 + e_0(0)} - \frac{1 + t_1}{1 + e_1(0)} = 0\) and \(D = 0\).

By continuity, when \(|\mathbb{E} t_1 - t_0|\) is small enough, \(D\) is close to 0. Hence, we assume that \(|\mathbb{E} t_1 - t_0|\) is small enough, so that we have \(\frac{1}{1 + e_0(0)} - D > 0\). That implies \(V'(0) > 0\).

The analysis for Japanese welfare is entirely symmetric: the same small tax creates a first-order improvement in Japanese welfare because it increases US tradable output and hence the Japanese equilibrium consumption of US tradable goods, but only creates a smaller distortion in the intertemporal Japanese consumption shares.

\[\text{A.15}\]
Given \( V'(0) > 0 \), by continuity, there is a \( \tau^{\text{max}} \) such that \( V'(\tau) > 0 \) for \( \tau \in [0, \tau^{\text{max}}) \).

We call \( \tau(e_0) \) the inverse of the function \( e_0(\tau) \). Define \( \tilde{p}_H^{\text{max}} \) such that \( \tau(\tilde{p}_H^{\text{max}}L - 1) = \tau^{\text{max}} \). Then, for all \( \tilde{p}_H \in [p_{H,0}, \tilde{p}_H^{\text{max}}] \), we have \( e''(\tau) > 0 \) for \( \tau \in [0, \tau(\tilde{p}_H - 1)] \). This means that welfare is increasing in the size of the intervention. The optimal intervention in that range is \( \tau^{\text{opt}} = \tau(\tilde{p}_H - 1) \), the smallest (positive) tax that restores full employment.

The part on Japanese welfare is proven by exactly the same arguments as the arguments above, and those of the Japanese welfare part at the end of the proof of Proposition 8. □

**Proof of Proposition 10** Suppose that \( m_0'' \) deviates from its original value, 1, keeping \( m_0^* \) constant. Then, \( R'' = 1/m_0'' \), hence (by Proposition 6) \( e_0'' = 1/m_0'' \), while \( e_1 \) is unchanged at 1. Japanese demand for US exports is unchanged because \( e'_0 m_0'' = 1 \). Hence, the US export market is still in equilibrium with the US at full employment \( (Y_{H,0} = L) \). There is no need for policy intervention to ensure full employment. □

**Proof of Proposition 11** The case of short-lasting rigidity. We follow the notations and procedure of the proof of Proposition 8. To make the proof readable, we simply consider the case with \( t_1 \equiv 1 \). One can restate the arguments of the proof of Proposition 8 for the more general case.

We first derive the exchange rate. The pseudo-imports and exports are:

\[
\tilde{t}_0 = m_0; \quad \tilde{t}_1 = 1;
\]

\[
\tilde{\xi}_0 = 1 - q; \quad \tilde{\xi}_1 = 1 + q.
\]

and the gross interest rates are: \( R = \frac{1}{m_0} \) and \( R'' = 1 \).

The exchange rate is (using Proposition 3 and Proposition 6):

\[
e_0 = \frac{R}{R''} \frac{\mathbb{E}\left[ \frac{\tilde{\xi}_0 + \tilde{\xi}_1}{\tilde{\xi}_1} \right] + \Gamma \tilde{\xi}_0 R''}{\mathbb{E}\left[ \frac{\tilde{\xi}_0 + \tilde{\xi}_1}{\tilde{\xi}_1} \right] + \Gamma \tilde{\xi}_0} = \frac{m_0}{2 + \Gamma(1 + q)} \cdot \frac{2 + \Gamma(1 + q)}{2 + \Gamma(1 - q^2)};
\]

\[
e_1 = \frac{R}{R''} \frac{\mathbb{E}\left[ \frac{R}{\tilde{\xi}_1} \left( \tilde{t}_0 + \tilde{t}_1 \right) \right] + \Gamma \tilde{\xi}_0 R''}{\mathbb{E}\left[ \frac{R}{\tilde{\xi}_1} \left( \tilde{\xi}_0 + \tilde{\xi}_1 \right) \right] + \Gamma \tilde{\xi}_0} = \frac{1}{m_0} \cdot \frac{2 + \Gamma(1 - q)}{2 + \Gamma(1 + q)(1 - q)}
\]

with \( \{e_1\} = 0 \). Hence,

\[
e_0 = m_0 (1 + \eta_0); \quad e_1 = 1 + \eta_1,
\]

where \( \eta_0 = \frac{\Gamma(q + q^2)}{2 + \Gamma(1 - q^2)} \) and \( \eta_1 = \frac{\Gamma(-q + q^2)}{2 + \Gamma(1 - q^2)} \) are the expressions we found in the proof of Proposition 8.

Output is: \( Y_{H,\tau} = \min \left( \frac{\alpha m_0 + \tilde{\xi}_0 e_0 m_0^*}{\tilde{p}_H}, L \right) = \min \left( \frac{m_0 + e_0}{\tilde{p}_H}, L \right) \), i.e.,

\[
Y_{H,\tau} = \min \left( \frac{m_0 (2 + \eta_0)}{\tilde{p}_H}, L \right).
\]

A.16
US welfare is given by (A.18), augmented for the cost of monetary distortions:

\[ U(q) = \ln \min \left( \frac{1+e_0(q)}{p_H}, L \right) + h(q) - g(m_0) + K, \] (A.22)

where \( K = 3 \ln L \) is a constant, and \( h(q) \equiv 2 \sum_{t=0}^{1} \ln s_t \) is the sum of the allocational distortions, with \( s_t \) is the share of the home good going to the US: \( s_t = \frac{1}{1+\eta} \), i.e.

\[ s_t = \frac{1}{2+\eta}. \]

Let us compute a few expressions that will be useful in later derivations. We will use the Taylor expansions below, when \( q \) is small, i.e. when \( \eta_0 \) and \( \eta_1 \) are small:

\[ \eta_0 = \frac{\Gamma 2}{2+\Gamma} q + O(q^2), \]

which implies

\[ q = \frac{2 + \Gamma \eta_0 + O(\eta^2_0)}{\Gamma}, \]

\[ \eta_1 + \eta_0 = \frac{2 \Gamma q^2}{2 \Gamma (1 + q^2)} = \frac{2 \Gamma}{2 + \Gamma} q^2 + O(q^4) \]

\[ = \frac{2 \Gamma}{2 + \Gamma} \left( \frac{2 + \Gamma \eta_0 + O(\eta^2_0)}{\Gamma} \right)^2 + O(q^4) = \frac{2(2 + \Gamma)}{\Gamma} \eta_0^2 + O(\eta^3_0) \]

\[ = 2 \left( \frac{2}{\Gamma} + 1 \right) \eta_0^2 + O(\eta^3_0). \]

We now calculate the distortion term:

\[ \frac{h}{2} = - \sum_{t=0}^{1} \ln s_t = - \sum_{t=0}^{1} \ln \frac{1}{2 + \eta_t} = \ln \left[ (2 + \eta_0) (2 + \eta_1) \right] \]

\[ = \ln \left[ 4 + 2 (\eta_0 + \eta_1) + \eta_0 \eta_1 \right] \]

\[ = \ln \left[ 4 + 2 \left( \frac{2}{\Gamma} + 1 \right) \eta_0^2 + O(\eta^3_0) \right] + \eta_0 \left( -\eta_0 + O(\eta^2_0) \right) \]

\[ = \ln \left[ 4 + \left( \frac{8}{\Gamma} + 3 \right) \eta_0^2 + O(\eta^3_0) \right] \]

\[ = \ln 4 + \left( \frac{2}{\Gamma} + \frac{3}{4} \right) \eta_0^2 + O(\eta^3_0), \]

hence

\[ h = h(\eta_0, \Gamma) = -2 \ln 4 - \left( \frac{4}{\Gamma} + \frac{3}{2} \right) \eta_0^2 + O(\eta^3_0). \] (A.23)

We can now reconsider welfare (A.22). For the purposes of the impact of \( \Gamma \) on the choice of monetary versus FX policy, it is enough to consider the subproblem of achieving a given employment level \( Y_H \), without optimizing for \( Y_H \). The problem is to minimize distortions subject to achieving the desired \( Y_H \leq L \):

\[ \min_{\eta_0, m_0} h(\eta_0) - g(m_0) \text{ s.t. } m_0 (2 + \eta_0) = p_H Y_H. \]
This yields $\eta_0 = \eta_0(m_0) \equiv \eta_0(m_0) - 2$, so that the optimal monetary intervention is:

$$\max_{m_0} W(m_0) = h(\eta_0(m_0)) - g(m_0),$$

so that $W_{m_0} = 0$ and $W_{mm_0} < 0$ at the optimum.

We want to ask: “do we have less reliance on monetary policy (rather than FX intervention) when $\Gamma$ increases?” The answer is yes if $\frac{\partial m_0}{\partial \Gamma} < 0$. Accordingly, we calculate:

$$\text{sign} \left( \frac{\partial m_0}{\partial \Gamma} \right) = \text{sign} \left( \frac{-W_{m_0}\Gamma}{W_{mm_0}m_0} \right) \text{ as } W_{m_0} = 0 \text{ implies } \frac{\partial m_0}{\partial \Gamma} = \frac{-W_{m_0}\Gamma}{W_{mm_0}m_0}$$

$$= \text{sign} \left( W_{mm_0} \right) \text{ as } W_{mm_0} < 0$$

$$= \text{sign} \left( h_{\eta_0,\Gamma}(m_0) \right) = -\text{sign} \left( h_{\eta_0,\Gamma} \right) \text{ since } \eta_0'(m_0) < 0$$

< 0,

since equation (A.23) implies $h_{\eta_0,\Gamma} > 0$ for a small enough, positive intervention.

**Case of the long-lasting rigidity.** Here we simply sketch the argument, given that the detailed analytical forces have been already made explicit in the above proof and the proof of Proposition 8. An FX intervention won’t improve welfare for the following reason: a high intervention to buy Yen today makes the Yen appreciate today (which helps the US) but makes it (by the “boomerang” effect) depreciate tomorrow, by the same amount. Hence, there has been no net help: the welfare impact of $q$ policies is 0 on the unemployment front, and negative on the intertemporal distortion front. Hence, on net, a $q$ policy has negative impact.

Hence, only monetary policy helps, in the usual way: the government wants to partially inflate, i.e.

increase $m_0$ and $m_1$ (even though there’s a cost $g$ of doing so).

**Proof of Proposition 12**

$$\bar{R}^c = \frac{E \left[ R^c e_1 - e_0 \right]}{e_0} = \frac{-\Gamma Q_0}{e_0}$$

$$= \Gamma \left( 1 - \frac{l_0}{e_0} \right) = \Gamma \left( 1 - \frac{l_0}{e_0} \right).$$

Recall that:

$$e_0 = \frac{(R^* + \Gamma) l_0 + \frac{R^*}{R} E \left[ t_1 \right]}{R^* + \Gamma + 1},$$

so that we conclude:

$$\bar{R}^c = \Gamma \left( 1 - \frac{l_0}{e_0} \right) \frac{R^* + \Gamma + 1}{(R^* + \Gamma) l_0 + \frac{R^*}{R} E \left[ t_1 \right]},$$

which, rearranged, gives the announced expression.

**Derivation of 3-period economy exchange rates** We will use the notation:

$$\bar{R}^* = \frac{R^*}{R}.$$

Recall that we assume that in period $t = 1$ financiers only intermediate the new flows; stocks arising from previous flows are held passively by the households (long term investors) until $t=2$. Therefore, from the flow demand equation for $t = 1$, $e_1 - t_1 + Q_1 = 0$, and the financiers’ demand, $Q_1 = \frac{e_1 - \bar{R}^* E[e_3]}{t_1}$, we get an
expression for \( e_1 \):

\[
e_1 = \frac{\Gamma_1 t_1 + R^* e_1}{\Gamma_1 + 1}.
\]

The flow demand equation for \( t = 2 \) gives \( e_2 = t_2 \), so we can rewrite \( e_1 \) as:

\[
e_1 = \frac{\Gamma_1 t_1 + R^* e_1 [t_2]}{\Gamma_1 + 1}.
\]

Similarly for \( e_0 \), we have

\[
e_0 = \frac{\Gamma_0 t_0 + R^* e_0 [e_1]}{\Gamma_0 + 1},
\]

and we can use our expression for \( e_1 \) above to express \( e_0 \) as:

\[
e_0 = \frac{\Gamma_0 t_0 + R^* e_0 \left[ \frac{\Gamma_1 t_1 + R^* t_2}{\Gamma_1 + 1} \right]}{\Gamma_0 + 1}.
\]

\[\square\]

**Proof of Proposition 13** We have already derived Claim 1. For Claim 2, we can calculate, from the definition of carry trade returns \((R^* = \frac{R^* e_1}{e_0} - 1)\) and equation (25):

\[
R^* = (R^* - 1) \Gamma_0 \frac{\Gamma_1 + 1 + R^*}{\Gamma_1 (\Gamma_0 + R^*) + \Gamma_0 + (R^*)^2} > 0.
\]

Hence, the expected carry trade return is positive.

For Claim 3, recall that a function \( \frac{ax + b}{cx + d} \) is increasing in \( x \) iff \( \Delta x = \frac{ad - bc}{(cx + d)^2} > 0 \). For \( \Gamma_0 \),

\[
\Delta \Gamma_0 = (1 + \Gamma_1 + R^*) \left( \Gamma_1 R^* + (R^*)^2 \right) > 0,
\]

which proves \( \frac{\partial R^*}{\partial \Gamma_0} > 0 \).

For \( \Gamma_1 \), the discriminant is

\[
\frac{\Delta \Gamma_1}{(R^* - 1) \Gamma_0} = \Gamma_0 + (R^*)^2 - (1 + R^*) (\Gamma_0 + R^*) = -R^* (1 + \Gamma_0) < 0,
\]

so that \( \frac{\partial R^*}{\partial \Gamma_1} < 0 \).

Finally, for \( R^* \), we simply compute:

\[
\frac{\partial R^*}{\partial R^*} = \frac{\Gamma_0 (1 + \Gamma_0) (1 + \Gamma_1) (2 R^* + \Gamma_1)}{\left( \Gamma_0 (1 + \Gamma_1) + \Gamma_1 R^* + (R^*)^2 \right)^2} > 0. \square
\]

**Proof of Proposition 14** The regression corresponds to: \( \beta = \frac{\partial}{\partial R^*} E \left[ \frac{e_1}{e_0} - 1 \right] \). For simplicity we calculate this derivative at \( R = R^* = \mathbb{E}_t I = 1 \), and with deterministic \( \Gamma_1 = \Gamma_1 \). Equation (25) yields, for those values but keeping \( R^* \) potentially different from 1:

\[
e_0 = \frac{\Gamma_0 + R^* \frac{\Gamma_1 + R^*}{\Gamma_1 + 1}}{\Gamma_0 + 1}, \quad \mathbb{E} e_1 = \frac{\Gamma_1 + R^*}{\Gamma_1 + 1}.
\]

A.19
Calculating $\beta = \frac{\partial}{\partial \beta} E \left[ \frac{\xi_t}{\rho_0} - 1 \right] = \frac{\partial}{\partial \beta} E \left[ \frac{\xi_t}{\rho_0} \right]$ gives:

$$\beta = \frac{1 + \Gamma_1 - \Gamma_0}{(1 + \Gamma_0)(1 + \Gamma_1)}.$$ 

Hence, $\beta \leq \frac{1 + \Gamma_1}{(1 + \Gamma_0)(1 + \Gamma_1)} = \frac{1}{1 + \Gamma_0} < 1$. □

### A.4.2 Proofs for Appendix A.1

**Proof of Proposition A.1** Derivation of equation (A.1). Assume $\xi_t = 1$. We start from the flow equation, $NX_t - RQ_{t-1} + Q_t = 0$, and $Q_t = \frac{E[\xi_t]}{1 + R}$. Hence:

$$\Gamma (e_t - t_t) - R (e_{t-1} - e_t) + e_t - E[e_{t+1}] = 0,$$

i.e.

$$E[e_{t+1}] - (1 + R + \Gamma) e_t + R e_{t-1} + \Gamma t_t = 0.$$ 

The characteristic equation of the (homogenous version) of this second order difference equation is:

$$g(X) = X^2 - (1 + R + \Gamma) X + R = 0,$$ 

and the solutions are:

$$\lambda = \frac{(1 + R + \Gamma) - \sqrt{(1 + R + \Gamma)^2 - 4R}}{2}; \quad \lambda' = \frac{R}{\lambda}.$$ 

We define $\Lambda = \frac{1}{\lambda}$, i.e. $\Lambda = \frac{1}{R}$. The geometry of the solutions of a quadratic equation indicates (via $\lambda < \lambda'$ and $g(1) < 0 < g(0)$) that we have $0 < \lambda < 1 < \lambda'$, hence $\Lambda < \frac{1}{R}$.

It is well-known that the solution is of the type $e_t = AQ_{t-1} + E_t \left[ \sum_{s=t}^{\infty} (B (\lambda')^{s-t} + C \lambda'^{-s}) t_s \right]$, for some constants $A, B, C$. Because $\lambda < 1$, we need $C = 0$, otherwise the sum would diverge. Hence, we can write:

$$e_t = AQ_{t-1} + B E_t \left[ \sum_{s=t}^{\infty} \Lambda^{s-t} t_s \right].$$ 

Also, when $Q_{t-1} = 0$ and $t_s = t$ for all $s \geq t$, we must have $e_t = t$ (indeed, then $e_s$ is constant, so that $Q_s = 0$ and the dollar flow equation gives $e_t - t = 0$). That gives $1 = B \sum_{s=t}^{\infty} \Lambda^{s-t} = \frac{B}{1 - \Lambda}$, i.e. $B = 1 - \Lambda$. Finally, careful examination of the boundary condition at 0 (or use of the analogy $t_0 \equiv t_0 + Q_0^-$) gives $AQ_{-1} = BQ_0^-$, with $Q_0^- \equiv RQ_{-1}$. We conclude:

$$e_t = E_t \left[ \sum_{s=t}^{\infty} \Lambda^{s-t} (1 - \Lambda) t_s \right] + (1 - \Lambda) RQ_{t-1}.$$ 

Another proof is possible, relying on the machinery in Blanchard and Kahn (1980). We sketch that alternative proof here. In terms of the Blanchard-Kahn notation, the system is

$$E_t \left( \begin{array}{c} Q_t \\ e_{t+1} \end{array} \right) = \left( \begin{array}{cc} R & -1 \\ -R & 1 + \Gamma \end{array} \right) \left( \begin{array}{c} Q_{t-1} \\ e_t \end{array} \right) + \left( \begin{array}{c} 1 \\ -\Gamma \end{array} \right) t_t,$$

and the eigenvalues of the matrix are $\lambda_1 = \lambda$, $\lambda_2 = 1/\Lambda$. Then the value of $e_t$ comes from the last equation
Derivation of (A.2). It is enough to prove (A.2) for \(t = 0\). First, the term \(f_s^+\) comes simply from using \(\tilde{t}_s = t_s - f_s^+\) and using (A.1). The more involved term concerns the interest rates. We note \(\rho_t \equiv \frac{R^{s_{t+1}}}{R^{s_t}} - 1\) the interest rate differential. We perform a Taylor expansion in it. The financiers’ demand satisfies:

\[
\Gamma Q_t = E_t \left[ e_t - e_{t+1} \frac{R_e^s}{R_e^s} \right] = E_t \left[ e_t - e_{t+1} (1 + \rho_t) \right] - \rho_t E_t \left[ e_{t+1} \right] = E_t \left[ e_t - e_{t+1} \right] - \rho_t e_s + o(\rho_t)
\]

where we approximate \(E_t \left[ e_{t+1} \right]\) by the steady state value, \(e_s\). For instance, \(e_s = \frac{\lambda}{R}\). Then, the Dollar-Yen balance equation \(N X_t - R Q_{t-1} + Q_t = 0\) becomes (dropping for now the \(o(\rho_t)\) terms):

\[
e_t - t_t - R E_{t-1} [e_{t-1} - e_t] - \rho_{t-1} e_s + \frac{E_t \left[ e_t - e_{t+1} \right]}{\Gamma} = 0,
\]

hence we have the same system as before, replacing \(t_t\) by

\[
\tilde{t}_t \equiv t_t + \frac{e_s}{\Gamma} (\rho_t - R \rho_{t-1}),
\]

using the convention \(\rho_{-1} = 0\) when we calculate \(e_0\) to simplify the boundary conditions. Indeed, we then have:

\[
e_t - \tilde{t}_t - R E_{t-1} [e_{t-1} - e_t] + \frac{E_t \left[ e_t - e_{t+1} \right]}{\Gamma} = 0.
\]

Hence, equation (A.1) gives (when \(R Q_{t-1} = 0\))

\[
e_0 = (1 - \Lambda) E_0 \left[ \sum_{s=0}^{\infty} \Lambda^s t_s \right] = (1 - \Lambda) E_0 \left[ \sum_{s=0}^{\infty} \Lambda^s \tilde{t}_s \right] + H
\]

\[
H = (1 - \Lambda) E_0 \left[ \sum_{s=0}^{\infty} \Lambda^s \frac{e_s}{\Gamma} (\rho_s - R \rho_{s-1}) \right] = (1 - \Lambda) \frac{e_s}{\Gamma} E_0 \left[ \sum_{s=0}^{\infty} \Lambda^s (1 - R \Lambda) \rho_s \right] \text{ by rearranging (by “Abel transformation”)}
\]

\[
= (1 - \Lambda) \frac{e_s}{\Gamma} E_0 \left[ \sum_{s=0}^{\infty} \Lambda^s \rho_s \right],
\]

and

\[
\frac{(1 - \Lambda)(1 - R \Lambda)}{\Gamma} = \left(1 - \frac{\lambda}{R}\right) \frac{(1 - \lambda)}{\Gamma} \text{ using } \Lambda = \frac{\lambda}{R}
\]

\[
= \frac{\lambda^2 - (1 + R) \lambda + R}{R \Gamma}
\]

\[
= \frac{\Gamma \lambda}{R \Gamma} \text{ as } \lambda \text{ satisfies (A.24)}
\]

\[
= \Lambda,
\]

A.21
so

\[ H = \Lambda e_0 \mathbb{E}_0 \left( \sum_{x=0}^{\infty} \Lambda^x \rho_x \right), \]

Hence,

\[
e_0 = (1 - \Lambda) \mathbb{E}_0 \left( \sum_{x=0}^{\infty} \Lambda^x t_x \right) + e_0 \mathbb{E}_0 \left( \sum_{x=0}^{\infty} \Lambda^{x+1} \rho_x \right)
= (1 - \Lambda) \mathbb{E}_0 \left( \sum_{x=0}^{\infty} \Lambda^x t_x \right) + e_0 \mathbb{E}_0 \left( \sum_{x=0}^{\infty} \Lambda^{x+1} \frac{R^* - R_s}{R_s} \right),
\]

up to higher-order terms in \( R^*_s - R_s \). □

Finally, we verify that the \( f^*_s \) impact is present only when \( \Gamma > 0 \). The net present value of the noise traders' demand is 0:

\[
\sum_{x=0}^{\infty} (1 - R) \left( \frac{1}{R} \right)^s \left( t_s + f^*_s \right) = 0,
\]

where \( t_s + f^*_s \) is the holding of the \( f^*_s \) traders at the beginning of time \( t \). As the US net foreign assets are \( N_t = Q_t + F^*_t \), when \( \Gamma = 0 \) (so that \( \Lambda = \frac{1}{R} \)) the expression reduces (when \( t = t_s, r^*_s - r_s = 0 \) for simplicity):

\[
e_t = e + \mathbb{E}_0 \left( \sum_{x=0}^{\infty} (1 - R) \left( \frac{1}{R} \right)^s \left( t_s + f^*_s \right) \right)
= e + \left( 1 - \frac{1}{R} \right) \left( Q_t + F^*_t \right)
= e + \left( 1 - \frac{1}{R} \right) N_t,
\]

hence the actions of the noise traders don’t have an effect when \( \Gamma = 0 \).

**Proof of Proposition A.2** Using Proposition A.1, we have:

\[
e_t = 1 + (1 - \Lambda) R Q_{t-1}.
\]

On the other hand, the equation of motion \( N X_t - R Q_{t-1} + Q_t \) gives: \( e_t + 1 - R Q_{t-1} + Q_t = 0 \), so \( Q_t = \Lambda R Q_{t-1} = \lambda Q_{t-1} \) and

\[ Q_{t-1} = \lambda^t Q_{-1} \]

The debt due at \( t \) is \( Q_t^- = R Q_{t-1} \); so \( Q_t^- = \lambda^t Q_0^- \), and

\[
e_t - 1 = (1 - \Lambda) R Q_{t-1} = (1 - \Lambda) Q_t^- = (1 - \Lambda) \lambda^t Q_0^-
\]

□

**Appendix References**
