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1 Introduction

Most of the literature on general equilibrium asset pricing theory is premised on the

assumption that risk aversion is constant across maturities. We investigate whether the

standard tool box of asset pricing can be generalized to accommodate risk preferences

that di↵er across temporal horizons, and whether such a generalization has the potential

to address observed patterns in asset prices.

Inspired by ample experimental evidence that subjects are more risk averse to im-

mediate than to delayed risks,1 Eisenbach and Schmalz (2014) introduce a two-period

model with horizon-dependent risk aversion and show it is conceptually orthogonal to

other non-standard preferences such as non-exponential time discounting (Phelps and

Pollak, 1968; Laibson, 1997), time-varying risk aversion (Constantinides, 1990; Campbell

and Cochrane, 1999), and a preference for the timing of resolution of uncertainty (Kreps

and Porteus, 1978; Epstein and Zin, 1989, (EZ)). In the present paper, we investigate

the impact of horizon-dependent risk aversion preferences on asset prices in a dynamic

framework. The conceptual di�culties of solving a multi-period model with dynamically

inconsistent preferences are numerous. To start, the commonly used recursive techniques

in finance and macroeconomics only apply to dynamically consistent preferences. At the

same time, the only dynamically consistent time-separable preference is the special case

in which risk aversion is constant across horizons.2 In an e↵ort to overcome these di�-

culties, we use techniques in the spirit of Strotz (1955) to solve the problem of a rational

agent with horizon-dependent risk aversion preferences in a setting without time sepa-

rability. Such an agent is dynamically consistent for deterministic payo↵s, so that only

uncertain payo↵s induce time inconsistency. Unable to commit to future behavior but

being aware of her preferences and perfectly rational, the agent optimizes today, taking

into account reoptimization in future periods. Solving for the subgame-perfect equilib-

rium of the intra-personal game yields a stochastic discount factor (SDF) that nests the

standard Epstein and Zin (1989) case, with an new multiplicative term representing the

discrepancy between the continuation value used for optimization at any period t versus

the actual valuation at t+ 1.

1See, e.g., Jones and Johnson (1973); Onculer (2000); Sagristano et al. (2002); Noussair and Wu
(2006); Coble and Lusk (2010); Baucells and Heukamp (2010); Abdellaoui et al. (2011). See Eisenbach
and Schmalz (2014) for a more thorough review.

2As a result, combining time-separability with horizon-dependent risk aversion in a dynamic model
necessarily introduces inconsistent time preferences, which precludes isolating the e↵ect on asset prices
of horizon-dependent risk preferences.
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We investigate the implications of horizon-dependent risk aversion on both the level

and on the term structure of risk premia. We find the model can match risk prices in levels,

very much in line with the long-run risk literature (Bansal and Yaron, 2004; Bansal et al.,

2013) based on standard Epstein and Zin (1989) preferences. Further, we find that the term

structure of equity risk premia is non-trivial if and only if the economy features stochastic

volatility. In such a setting, the horizon dependent risk aversion model can explain a

downward-sloping term structure of equity risk premia, as documented empirically (see

the literature review below). Interestingly, this e↵ect is solely driven by a downward-

sloping term structure of the price of volatility risk, which is a testable prediction.

We test the key predictions of our model using both index options and the cross-section

of stock prices. Using S&P 500 index options, we estimate the price of volatility risk at

di↵erent maturities, using both a parametric GMM approach, based on the option pricing

model of Heston (1993), as well as a model-free approach that measures Sharpe ratios of

straddle returns at various maturities. Both approaches confirm the horizon-dependent

risk aversion model’s predictions that the price of volatility risk is negative and that its

term structure is decreasing in absolute value. Specifically, the GMM estimate of the

price of volatility risk is strongly negative for short maturities but close to zero for longer

maturities with the term structure flattening out beyond a maturity of 150 days: volatility

risk is priced, but mainly at short maturities. The same result arises in the non-parametric

estimation: we show the Sharpe ratios of at-the-money straddles are strongly negative for

straddles with short maturities, but close to zero for maturities beyond six months.

On the cross-section of stock returns, we use the link between the value premium

and the term structure of risk premia proposed by Lettau and Wachter (2007): since

growth stocks have payo↵ uncertainty at longer horizons than value stocks, they load

relatively more on risk prices at longer horizons, and a downward-sloping term structure

of risk prices automatically generates a value premium. Since our horizon-dependent risk

aversion model predicts the term structure of risk prices is driven by volatility risk, the

value premium should be greater for stocks with more exposure to volatility risk. Our

empirical analysis confirms this prediction: we find the value premium for stocks with

high exposure to volatility risk is 28 percent larger than for stocks with low exposure to

volatility risk.

The paper proceeds as follows. Section 2 is a review of the existing literature. Section

3 presents a two-period model that illustrates the intuition of some of our result. Section

4 presents the dynamic model, Section 5 our formal results for the pricing of risk and its
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term-structure. The empirical results are in Section 6. Section 7 concludes.

2 Related Literature

This paper is the first to solve for equilibrium asset prices in an economy populated

by agents with dynamically inconsistent risk preferences. It complements Luttmer and

Mariotti (2003), who show that dynamically inconsistent time preferences of the kind

examined by Harris and Laibson (2001); Luttmer and Mariotti (2003) have little power to

explain cross-sectional variation in asset returns. (Given cross-sectional asset pricing in-

volves intra-period risk-return tradeo↵s, it is indeed quite intuitive that horizon-dependent

time preferences are not suitable to address puzzles related to cross-sectional variation in

returns.)

Our formal results on the term structure of risk pricing are consistent with patterns

uncovered by a recent empirical literature. Van Binsbergen et al. (2012) show the Sharpe

ratios for short-term dividend strips are higher than for long-term dividend strips; see

also van den Steen, 2004; van Binsbergen and Koijen, 2011; Boguth et al., 2012.3 These

empirical findings have led to a vigorous debate, because they appear to be inconsistent

with traditional asset pricing models.

Our micro-founded model of preferences implies a downward slopping pricing of risk,

in a simple endowment economy. By contrast, other approaches typically generate the

desired implications by making structural assumptions about the economy or about the

priced shocks driving the stochastic discount factor directly. For example, in a model

with financial intermediaries, Muir (2013) uses time-variation in institutional frictions

to explain why the term structure of risky asset returns changes over time. Ai et al.

(2013) derive similar results in a production-based RBC model in which capital vintages

face heterogeneous shocks to aggregate productivity; Zhang (2005) explains the value

premium with costly reversibility and a countercyclical price of risk. Other production-

based models with implications for the term structure of equity risk are, e.g. Kogan and

Papanikolaou (2010); Gârleanu et al. (2012); Kogan and Papanikolaou (2014); Favilukis

and Lin (2013). Similarly, Belo et al. (2013) o↵er an explanation why risk levels and thus

risk premia could be higher at short horizons; by contrast, our contribution is about risk

prices. Croce et al. (2007) use informational frictions to generate a downward-sloping

3Giglio et al. (2013) show a similar pattern exists for discount rates over much longer horizons using
real estate markets. Lustig et al. (2013) document a downward-sloping term structure of currency carry
trade risk premia.
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equity term structure.

Lettau and Wachter (2007) propose that a downward-sloping term structure of risk

prices can explain the value premium, because growth stocks load more on long-horizon

risk than value stocks. The stochastic discount factor in that model is assumed to vary

exogenously, and is not derived from preferences as in our model. Relatedly, Dechow et al.

(2004) and Da (2009) present empirical results consistent with the idea that the value

premium exists because value stocks have a shorter duration than growth stocks. We

exploit this evidence when testing the horizon dependent risk aversion model prediction

in Section 6.

The predictions of our model do not rely on the possibility of rare disasters, which

is an assumption that some have argued may be more di�cult to verify empirically.

Also, our results are furthermore distinguishable from several alternative explanations for

a downward-sloping term structure of equity risk premia: in our model, volatility risk

is the only driver for a downward-sloping term structure of equity risk. Our empirical

results linking the value premium to exposure to volatility risk is a first step in testing

the strict, and unique, predictions of our general equilibrium model, which does not rely

on exogenously varying parameters. Our predictions for the risk-pricing levels are also

consistent with Campbell et al. (2012), who show that volatility risk is an important

driver of asset returns in a CAPM framework, and Ang et al. (2006); Adrian and Rosenberg

(2008); Bollerslev and Todorov (2011); Menkho↵ et al. (2012); Boguth and Kuehn (2013),

who examine the relation between volatility risk and returns.

Our empirical analysis of index option returns may be the most direct evidence of a

downward-sloping term structure of the unit price of volatility risk, as opposed to the

term structure of risk premia, which are the product of price and quantity of risk at

di↵erent horizons. Recent papers by Dew-Becker et al. (2014) and Cheng (2014) also

point to a decreasing term structure for the pricing of volatility risk, yet, they do so over

longer horizons, using di↵erent data sources or di↵erent methodologies than the present

study. These results supplement earlier studies of volatility risk premia, such as those by

Amengual (2009) and Ait-Sahalia et al. (2012).4

4We omit a review of the large literature on variance risk premia more generally, including the seminal
works by Coval and Shumway (2001); Carr andWu (2009), and the link to political uncertainty (Amengual
and Xiu, 2013; Kelly et al., 2014).
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3 Static Model

As discussed in Eisenbach and Schmalz (2014), introducing horizon-dependent risk aver-

sion into a time separable model with more than two periods necessarily introduces

horizon-dependent inter-temporal tradeo↵s similar to quasi-hyperbolic discounting. This

is undesirable, as we want to study the e↵ects of horizon-dependent risk aversion in iso-

lation. Our general model in Section 4 solves this problem by dropping time separability,

though this comes at the cost of more analytical complexity and less intuitive clarity. Here

we present a simple model with time separability and uncertainty both in the immediate

and proximate future to illustrate the e↵ect of horizon-dependent risk aversion on risk

pricing.

Consider a two-period model with uncertainty in both periods. The agent has time

separable expected utility U

t

in period t = 0, 1 given by

U

0

= E

⇥
v(c

0

) + �u(c
1

)
⇤

and U

1

= E

⇥
v(c

1

)
⇤
,

where v and u are von Neumann-Morgenstern utility indexes and v is more risk averse

than u. At the beginning of period 0 the agent forms a portfolio of two risky assets and a

risk free bond. Asset 0 is a claim on consumption in period 0 while asset 1 is a claim on

consumption in period 1. Consumption in the two periods is i.i.d. Denoting the prices of

the two assets by p

0

and p

1

, respectively, the first-order conditions for the agent’s portfolio

choice yield:

E

⇥
v

0(c
0

)
�
c

0

� p

0

�⇤
= 0

and E

⇥
�u

0(c
1

)
�
c

1

� (1 + r) p
1

�⇤
= 0.

Eisenbach and Schmalz (2014) show the equilibrium prices p
0

, p
1

and r satisfy:

p

0

< (1 + r) p
1

.

In this two-period setting, horizon-dependent risk aversion therefore leads to an equilib-

rium term-structure of risk premia that is downward sloping.

This simple example illustrates how horizon-dependent risk aversion naturally a↵ects

the pricing of risk at di↵erent horizons. There are, however, important limitations to

this example. The setting is subtly di↵erent from standard asset pricing models with

two periods t = 0, 1: there is uncertainty in both periods and a period’s decision is taken
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before the period’s uncertainty resolves. This allows for horizon-dependent risk aversion to

have a term-structure e↵ect without worrying about inconsistent inter-temporal tradeo↵s,

since only one such tradeo↵ arises. However, the period-0 portfolio choice problem above

implicitly assumes that the agent has no opportunity to re-trade the claim to period-1

consumption at the beginning of period 1.

To generalize this setting, the next section presents our fully dynamic model, which

allows for re-trading every-period.

4 Dynamic Model

Our approach is to generalize the model of Epstein and Zin (1989) (hereafter EZ) to

allow for horizon-dependent risk aversion without a↵ecting intertemporal substitution.

Let {�
h

}
h�0

be a decreasing sequence representing risk aversion at horizon h. In period t,

the agent evaluates a consumption stream starting in period t+ h by

V

t,t+h

=

✓
(1� �)C1�⇢

t+h

+ �E

t+h

⇥
V

1��h
t,t+h+1

⇤ 1�⇢
1��h

◆ 1
1�⇢

. (1)

As in the EZ model, utility in period t, i.e. for h = 0, depends on (deterministic) consump-

tion in period t and a certainty equivalent of (uncertain) continuation values in period

t+ 1, and the aggregation of the two periods is with constant elasticity of intertemporal

substitution given by 1/⇢. However, in contrast to the EZ model, certainty equivalents at

di↵erent horizons h are formed with di↵erent levels of risk aversion �
h

. Imminent uncer-

tainty is treated with risk aversion �

0

, uncertainty one period ahead is treated with �

1

and so on.

Note that although the definition of V
t,t+h

in (1) is recursive since it references V
t,t+h+1

,

the preference captured by V

t,t

is not recursive since it doesn’t reference V
t+1,t+1

. This non-

recursiveness is a direct implication of the horizon-dependent risk aversion, in which the

consumption stream starting in t+1 is evaluated di↵erently by the agent’s selves at t and

t+1. We assume the agent is fully rational when making choices in period t to maximize

V

t,t

. This means self t realizes that its evaluation of future consumption given by V

t,t+1

di↵ers from the objective function of V
t+1,t+1

which self t+ 1 will maximize.

For asset pricing purposes, the object of interest is the stochastic discount factor (SDF)

resulting from the preferences in equation (1). We can arrive at the SDF using a standard
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derivation based on the intertemporal marginal rate of substitution:5

⇧
t+1

⇧
t

=
dV

t,t

/dW

t+1

dV

t,t

/dC

t

.

To derive the SDF, we can rely on the fact that both V

t,t+1

and V

t+1,t+1

are homogeneous

of degree one, which implies

dV

t,t+1

/dW

t+1

dV

t+1,t+1

/dW

t+1

=
V

t,t+1

V

t+1,t+1

.

This relationship captures a key element of our model: The marginal benefit of an extra

unit of wealth in period t + 1 di↵ers whether evaluated by self t (the numerator on the

left hand side) or by self t+ 1 (the denominator on the right hand side).

We obtain:

⇧
t+1

⇧
t

= �

✓
C

t+1

C

t

◆�⇢

| {z }
(I)

⇥

0

@ V

t,t+1

E

t

⇥
V

1��0
t,t+1

⇤ 1
1��0

1

A
⇢��0

| {z }
(II)

⇥
✓

V

t,t+1

V

t+1,t+1

◆
1�⇢

| {z }
(III)

.

The SDF consists of three multiplicative parts:

(I) The first term is that of the standard time-separable CRRA model with discount

factor � and constant relative risk aversion ⇢.

(II) The second part originates from the wedge between the risk aversion and the in-

verse of the elasticity of intertemporal substitution, i.e. from the non time separable

framework. It is similar to the standard EZ model, taking risk aversion as the im-

mediate one, �
0

.

(III) The third part is unique to our model and originates from the fact that, with horizon-

dependent risk aversion, di↵erent selves disagree about the evaluation of a given

consumption stream, depending on their relative horizon. Since the SDF ⇧t+1

⇧t
cap-

tures trade-o↵s between periods t and t + 1, the key disagreement is how selves t

and t+ 1 evaluate consumption starting in period t+ 1.

If we set �
h

= � for all horizons h, our SDF for horizon-dependent risk aversion preferences

simplifies to the standard SDF for recursive preferences: it nests the model of EZ which,

5See Appendix A.
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in turn, nests the standard time-separable model for � = ⇢.6

5 Pricing of Risk, and the Term Structure

To derive the pricing of risk under horizon-dependent risk aversion preferences, we consider

a simplified version of the model where risk aversion for immediate risk is given by �, and

by �̃ for all future risks. This framework, and our derivations for risk pricing, easily extends

to a case where risk aversion is decreasing up to a given horizon, after which, for risks

beyond, it remains constant (�̃).

Our general model (1) thus becomes:

V

t

=

✓
(1� �)C1�⇢

t

+ �E

t

h
Ṽ

1��

t+1

i 1�⇢
1��

◆ 1
1�⇢

Ṽ

t

=

✓
(1� �)C1�⇢

t

+ �E

t

h
Ṽ

1��̃

t+1

i 1�⇢
1��̃

◆ 1
1�⇢

.

The second equation is simply the standard EZ framework with risk aversion �̃. If solu-

tions for the recursion on the continuation value Ṽ are derived, the value function V is

automatically obtained from the first equation.

5.1 Unit-EIS closed-from solutions

Closed-form solutions obtain for Ṽ (and thus for V ) in the standard EZ framework, for the

knife-edge case of a unit elasticity of intertemporal substitution. We analyze the wedge

between the continuation value Ṽ
t+1

and the valuation V

t+1

, which a↵ects the SDF in our

framework.

Denoting logs by lowercase letters, we consider a Lucas-tree economy, with an exoge-

nous endowment process given by

6An interesting question is the possibility to axiomatize the horizon-dependent risk aversion pref-
erences we propose. The static model in Section 3 could be axiomatized as a special version of the
temptation preferences of Gul and Pesendorfer (2001). Their preferences deal with general disagreements
in preferences at a period 0 and a period 1. In our case, the disagreement is about the risk aversion so an
axiomatization would require adding a corresponding axiom to the set of axioms in Gul and Pesendor-
fer (2001). Our dynamic model builds on the functional form of Epstein and Zin (1989) which capture
non-time-separable preferences of the form axiomatized by Kreps and Porteus (1978). However, our gen-
eralization of Epstein and Zin (1989) explicitly violates Axiom 3.1 (temporal consistency) of Kreps and
Porteus (1978) which is necessary for the recursive structure.
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c

t+1

� c

t

= µ+ �

c

x

t

+ ↵

c

�

t

W

t+1

where the time varying drift, x
t

, and the time varying volatility, �
t

, have evolutions

x

t+1

= ⌫

x

x

t

+ ↵

x

�

t

W

t+1

�

2

t+1

� �

2 = ⌫

�

�
�

2

t

� �

2

�
+ ↵

�

�

t

W

t+1

.

Both state variables are stationary (⌫
x

and ⌫
�

are contracting), and for simplicity, we

assume the three shocks are orthogonal.

Lemma 1. Under these specifications for the endowment economy, and ⇢ = 1, we find:

v

t

� ṽ

t

= �1

2
� (� � �̃)

�
↵

2

c

+ �

2

v

↵

2

x

+  

2

v

↵

2

�

�
�

2

t

, (2)

where �

v

and  

v

are constant functions of the parameters of the model such that:

�

v

= ��

c

(I � ⌫

x

)�1

and

 

v

=
1

2

� (1� �̃)

1� �⌫

�

�
↵

2

c

+ �

2

v

↵

2

x

+  

2

v

↵

2

�

�
.

Observe from equation (2) v

t

< ṽ

t

at all times, as should be expected. Indeed, ṽ
t

is

derived from the standard EZ model with risk-aversion �̃, whereas v
t

is derived from our

horizon-dependent risk aversion model with a higher risk-aversion � > �̃ for immediate

risk. Most striking, the di↵erence in the valuations under the two models is constant when

volatility �
t

is constant. One of the central results of our paper immediately follows.

Corollary 1. Under constant volatility in the consumption process, the ratios Ṽ /V are

constant and therefore do not a↵ect excess returns, both in levels and in the term-structure.

The intuition is that when our time-inconsistent representative agent is aware prices

will be set, the following period, by her next-period self, then the term-structure of prices

is a↵ected by risk-horizon dependent risk-aversion only if unexpected shocks to volatility

can occur.

This result makes clear that the intuition from the simple two-period horizon-dependent

risk aversion model of Section 3 does not trivially extend to the dynamic model. It makes

also clear, however, why the generalized-Epstein and Zin (1989) preferences we employ
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in this paper are necessary to derive interesting predictions. Before we make use of that

feature, we derive one more result under the ⇢ = 1 case.

Proposition 1. In the knife-edge case ⇢ = 1, the stochastic discount factor is:

⇧
t+1

C

t+1

⇧
t

C

t

= �

0

@ Ṽ

1��

t+1

E

t

h
Ṽ

1��

t+1

i

1

A

| {z }
Multiplicative martingale

.

Borovicka et al. (2011) show the pricing of consumption risk, at time t, and for horizon

h is determined by E

t

[⇧
t+h

C

t+h

]. Under the ⇢ = 1 case, the evolution as multiplicative

martingales, for the risk adjusted payo↵s, yields E
t

[⇧
t+h

C

t+h

] independent of the horizon

h and thus a flat term-structure of risk prices, even under time-varying consumption

volatility.

In the following section, we relax the assumption ⇢ = 1, and analyze the term-structure

impact of our horizon-dependent risk-aversion model, under time-varying volatility.

5.2 General Case and Role of Volatility Risk

We consider the general case ⇢ > 0, ⇢ 6= 1, and we approximate the two relations

V

t

=

✓
(1� �)C1�⇢

t

+ �E

t

h
Ṽ

1��

t+1

i 1�⇢
1��

◆ 1
1�⇢

Ṽ

t

=

✓
(1� �)C1�⇢

t

+ �E

t

h
Ṽ

1��̃

t+1

i 1�⇢
1��̃

◆ 1
1�⇢

.

under � ⇡ 1.

When the coe�cient of time discount � approaches one, the recursion in Ṽ can be

re-written as:

E

t

0

@
 
Ṽ

t+1

C

t+1

!
1��̃ ✓

C

t+1

C

t

◆
1��̃

1

A ⇡ �

� 1�⇢
1��̃

 
Ṽ

t

C

t

!
1��̃

,

an eigen-function problem, in which �� 1�⇢
1��̃ is an eigen-value.

Lemma. Under the Lucas-tree endowment process considered in the previous section, this

eigen-function problem admits a unique eigen value, and eigen-function (up to a scalar
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multiplier):

ṽ

t

� c

t

= µ̃+ �

v

x

t

+  

v

�

2

t

where

�

v

= �

c

(I � ⌫

x

)�1

,

 

v

=
1

2

(1� �̃)

1� ⌫

�

�
↵

2

c

+ �

2

v

↵

2

x

+  

2

v

↵

2

�

�
< 0

and

log � = � (1� ⇢)
�
µ+  

v

�

2 (1� ⌫

�

)
�
.

Note the eigen-value solution for � yields � < 1, as desired, for ⇢ < 1.7 It also makes

valid the approximation around one: using the calibration of Bansal and Yaron (2004)

for the consumption process, we obain solutions for � above 0.998 (for any values of ⇢

between 0.1 and 1, and �̃ between 1 and 10).

To derive the pricing equations, we use the approximation, valid for � close to 1,

V

t

Ṽ

t

⇡
E

t

h
Ṽ

1��

t+1

i 1
1��

E

t

h
Ṽ

1��̃

t+1

i 1
1��̃

.

Theorem 1. Under the Lucas-tree endowment process we considered, and the � ⇡ 1

approximation:

v

t

� ṽ

t

= � (� � �̃)
1� ⌫

�

1� �̃

 

v

�

2

t

< 0

and the stochastic discount factor:

⇡

t,t+1

= ⇡̄

t

� �↵

c

�

t

W

t+1

+ (⇢� �)�
v

↵

x

�

t

W

t+1

+

✓
(⇢� �) + (1� ⇢) (� � �̃)

1� ⌫

�

1� �̃

◆
 

v

↵

�

�

t

W

t+1

where

7Even though  v < 0, the term
�
µ+  v�2 (1� ⌫�)

�
remains positive for all reasonable parameter

values.
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⇡̄

t

= �µ� ⇢�

c

x

t

� (1� ⇢) 
v

�

2 (1� ⌫

�

)

✓
1� (� � �̃)

1� ⌫

�

1� �̃

◆

� ((⇢� �) (1� �)� (1� ⇢) (� � �̃) ⌫
�

)
1� ⌫

�

1� �̃

 

v

�

2

t

.

Our model yields a negative price for volatility shocks, consistent with the existing

long-run risk literature, and the observed data for one-period returns. Observe further

the stochastic discount factor loading on the drift shocks ↵
x

�

t

W

t+1

is una↵ected by the

specificities of our horizon-dependent risk-aversion model: it is exactly the same as in the

standard EZ model. Any novel pricing (both in level and in the term-structure) e↵ects we

obtain derive from the volatility shocks. For this reason, we shut down the drift shocks in

the part that follows, and assume: x
t

= 0, ↵
x

= 0 in the remainder of the paper.

We analyze the pricing of volatility risk in the term-structure. Denote P

t,n

the price

at time t for a claim to the endowment consumption at horizon n, and for all t, P
t,0

= C

t

.

The one-period holding returns for such assets are determined by R

t!t+1,n

= Pt+1,n�1�Pt,n

Pt,n
,

and we note SR

t,n

the conditional sharpe ratio for the one-period holding return at time

t for a claim to consumption at horizon t+ n.

Theorem 2. Pricing in the term-structure is given by:

P

t,n

C

t

= exp
�
a

n

+ A

n

�

2

t

�
,

the conditional Sharpe ratios by:

SR

t,n

=
1� exp

h
�
⇣
r̄ + A�

2

t

�
⇣
⇢� � + (1� ⇢) (� � �̃) 1�⌫�

1��̃

⌘
 

v

A

n�1

↵

2

�

�

2

t

⌘i

q
exp

��
↵

2

c

+ A

2

n�1

↵

2

�

�
�

2

t

�
� 1

,

where r̄ and A are constant (independent of t and n) and A

n

is determined by the initial

condition A

0

= 0 and the recursion:

A

n�1

⌫

�

� A

n

+
1

2

�
↵

2

c

+ A

2

n�1

↵

2

�

�
= A�

✓
⇢� � + (1� ⇢) (� � �̃)

1� ⌫

�

1� �̃

◆
 

v

A

n�1

↵

2

�

.

From Theorem 1 and Theorem 2, observe the pricing of volatility risk and the term-

structure of Sharpe ratios for one-period returns on the consumption claims at various

horizons both depend mostly on the term
⇣
⇢� � + (1� ⇢) (� � �̃) 1�⌫�

1��̃

⌘
 

v

of the model
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Figure 1: Calibrated term-structure. We use the parameters from Bansal and

Yaron (2004) for µ, ⌫
�

, ↵
c

and ↵
�

and ⇢ = 1/1.5. HDRA stands for

“horizon-dependent risk aversion”.

parameters. If the novel term due to the horizon-dependend risk aversion, (1� ⇢) (� � �̃) 1�⌫�
1��̃

,

is dominated by the standard EZ term, ⇢� �, then our model of preferences impacts sig-

nificantly neither the level pricing of volatility risk, nor its term-structure. Our horizon-

dependent risk aversion model impacts prices, and the term-structure, if and only if �̃ is

close to 1, the more so the more persistent the volatility risk.

In Figure 1, we plot the term-structure of the Sharpe ratios of one-period holding

returns on horizon-dependent consumption claims, for various values of the ratio 1�⌫�
1��̃

,

which determines how impactful the variations in risk-aversion across horizons are. For

each value of 1�⌫�
1��̃

, the immediate risk aversion � is chosen such that the pricing of volatility

risk,
⇣
⇢� � + (1� ⇢) (� � �̃) 1�⌫�

1��̃

⌘
 

v

, remains always the same as in the standard EZ

model with risk aversion � = 10. Figure 1 makes clear our horizon-dependent risk-aversion

model can generate a downward slopping term-structure for the Sharpe ratios of one-

period holding returns of consumption clains, whereas the standard EZ model generates

a flat term-structure (a result that has been highlighted in the existing literature, most

recently by Dew-Becker et al. (2014)). Observe, however, for such a term-structure e↵ect

to arise noticably, the long-horizon risk aversion �̃ must be very close to one (log utility
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model). To match the pricing of volatility risk of the standard EZ model, the di↵erence

in risk aversion between the immediate horizon and the long-run horizon must become

very large, unrealistically so under the very persistent volatility calibration of Bansal and

Yaron (2004).8

Under the endowment economy we assume, the horizon-dependent risk aversion model

has very specific implications for the level and term-structure of the pricing of risk. If

volatility is constant through time, our model does not a↵ect the pricing of risk. Even

with time-varying volatility, our model a↵ects solely the loading of the stochastic discount

factor on the volatility shocks. The pricing of the immediate consumption shock and of the

drift shocks are unchanged from the standard EZ model. On the other hand, the pricing

of the volatility shocks present a clear downward slopping term-structure, in contrast to

the standard EZ model. The testable implications of our model is thus 1) there is a term-

structure in the pricing of the volatility risk; and 2) any term-structure e↵ect observed in

Sharpe ratios of returns on a given market must come from the covariations with volatility

risk only. Section 6 analyses how well these implications hold in the data, and provides

supportive evidence.

6 Empirical Analysis

Our empirical analysis is motivated by the key predictions of our horizon-dependent risk

aversion model. We first examine the price of volatility risk by horizon of the risk. Next, we

examine the predicted relation between stochastic volatility and equity prices. Specifically,

section 6.1 uses index option returns to provide both parametric as well as model-free

estimates of the term structure of volatility risk prices. Section 6.2 shows, in the cross-

section of stock returns, the downward-sloping term structure of equity risk premia is

associated with exposure to volatility shocks.

6.1 The Term Structure of Volatility Risk Prices

This section presents empirical results from index option returns: we provide estimates of

the term structure of the (unit) price of volatility risk. We do so in two alternative ways:

first with a parametric approach, using E�cient Generalized Method of Moments (GMM),

and then with a model-free approach, using short-horizon Sharpe ratios of at-the-money

8This calibration problem can be largely avoided by making the time-varying volatility less persistent
(without changing the volatility’s stationary distribution).
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straddles. A benefit of the former approach is to avoid using Sharpe ratios as a proxy for

the price of risk, which can be problematic when returns are not normally distributed,

and jumps occur (Broadie et al., 2009). A drawback is that a model for option pricing

must be assumed, which, as with any model, comes with limitations.

For both approaches, we test two hypotheses. The first is that the price of volatility

risk is negative: are investors willing to pay a premium to hold an insurance claim against

increases in volatility? In contrast to previous papers that have tested the hypothesis

jointly across several maturities or for specific maturities alone (Carr and Wu, 2009; Coval

and Shumway, 2001), we investigate whether the hypothesis holds at di↵erent maturities

independently. The second hypothesis is that the term structure for the price of volatility

risk is downward-sloping (in absolute value).

We next present a theoretical derivation of the tests we use to investigate the above

hypotheses.

6.1.1 Theory

We base our empirical analysis on the option pricing model of Heston (1993) which extends

the classic model of Black and Scholes (1973) by adding stochastic volatility. Specifically,

we assume the stock price S and volatility V satisfy

dS = Sµ dt+ S

p
V dW

1

,

dV =  (✓ � V ) dt+ �

p
V dW

2

,

dW

1

dW

2

= ⇢ dt,

where µ denotes the return drift,  the speed of mean reversion, ✓ the level to which

volatility reverts, � the volatility of volatility, dW
1

and dW

2

are Brownian Motions, and

⇢ denotes the correlation between shocks to the return and volatility processes.

The no-arbitrage price X of any option satisfies the partial di↵erential equation9

X

t

+
1

2
X

ss

V S

2 +
1

2
X

vv

�

2

V +X

sv

⇢�SV � rX + rX

s

S +X

v

[ (✓ � V )� �] = 0,

where � denotes the volatility risk premium. This total risk premium � can then be

9Subscripts denote partial derivatives.
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Table 1: Summary Statistics for Option Data

Maturity
Number of
Observations

Average
Mid-Price

Average
Bid-Ask Spread

0 - 30 8394 15.62 1.38

30 - 60 7716 31.06 1.90

60 - 90 6682 40.96 2.11

90 - 120 3436 51.83 2.37

120 - 150 2566 57.59 2.29

150 - 180 2370 64.25 2.38

180 - 210 2186 70.32 2.39

210 - 240 2460 75.30 2.43

240 - 270 2270 80.69 2.54

270 - 300 2178 85.18 2.56

300 - 330 2294 89.49 2.63

330 - 360 2312 93.36 2.82

Total 44864 61.03 2.45

The table summarizes for each segment of the term structure the
number of observations, average mid-price, and average bid-ask spread
We use option data from February 1996 to April 2013. Mid-price is the
average of bid-price and ask-price.

decomposed into the unit price of volatility risk �⇤ and the amount of volatility V :

� = �

⇤ ⇥ V

In contrast to existing studies that measure the total variance risk premium �, our interest

is in measuring �⇤, the unit price of volatility risk, at di↵erent horizons. We estimate �⇤

using GMM, and we do so separately at di↵erent horizons using only options that mature

at the respective horizon.

6.1.2 Data Sources and Summary Statistics

We use daily quotes of S&P 500 index options from 1996 to 2011 from OptionMetrics,

and the mid closing price (average of bid and ask) for each day as the option price. The

3-month Treasury yield proxies for the risk-free rate. Table 1 gives summary statistics.

The average mid-price increases with maturity. The average bid-ask spread in dollar terms

also increases almost monotonically with maturity, but not if measured as a percentage

of the mid-price, indicating good liquidity of options up to 360 days maturity. We discard

observations for maturities less than 30 days, because of microstructure noise and jump
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risks concerns. Because liquidity drops significantly beyond 360 days maturity, we drop

such observations. After filtering out options with maturities shorter than 30 days and

longer than 360 days, we are left with 36,470 observations.

6.1.3 Parametric Estimation Using GMM

To estimate the pricing of risk, we use the relation, derived from the no-arbitrage pricing

of X:

�

⇤
p
V�t

�

+ " =
�(X �X

s

S)� r (X �X

s

S)�t

X

v

�

p
V�t

,

where " = �W

2

/

p
�t.

To price X, we use straddles, i.e. combinations of calls and puts with the same strike

prices and maturities. Denote the call price by C and the put price by P , then X = C+P ,

X

s

= C

s

+P

s

and X

v

= C

v

+P

v

. Note that C
s

and C

v

, and P

s

and P

v

denote the “Delta”

and “Vega” of the call and the put, respectively, and can be calculated numerically.10

While � can be estimated, V cannot be directly measured or calculated. However,

we can calibrate the model locally to estimate the initial volatility V

0

; when the period

is short enough, we can then assume V ⇡ V

0

. Empirically, we use option prices in the

neighboring 10 days for calibration. For example, for a call at time t, we calibrate the

model using C(t+ i) for i 2 {�5, . . . , 5}. The objective is to minimize the mean absolute

deviation of the theoretical straddle prices from their empirically observed values:

min
i=5X

i=�5

1

11

���
�
C

theo

(t+ i) + P

theo

(t+ i)
�
�
�
C

mkt

(t+ i) + P

mkt

(t+ i)
� ���

We impose the following constraints to eliminate noise from the observations: 0 <  < 5,

0 < ✓ < 1, 0.01 < �  1, 0.01 < V

0

< 1.11

We denote the pricing of volatility risk as a function of maturity by �⇤
⌧

, where ⌧ is

the maturity. For each ⌧ , we use options with maturities in the neighboring 10 days. For

example, to estimate �⇤
⌧

at a horizon of 30 days, options with maturities ranging from 25

to 35 days are used. The reason for this procedure is to smooth out microstructure noise

arising from possible illiquidity of one option or another. To mitigate the influence of

outliers, we truncate the data used for all estimations at the 1 percent level with respect

to �⇤
⌧

. To accommodate for the non-linear nature of the term-structure for the pricing of

10The formulas are derived and presented in Appendix D.
11See Appendix D for details on the estimation.
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volatility risk, we fit a logarithmic function through the pricing �⇤
⌧

estimates.

The results are given in Figure (2). The pricing of volatility risk is strongly negative for

maturities shorter than 150 days. Beyond 150 days maturity, the price is approximately 0

and the term structure flattens out. We conclude that both null hypotheses are rejected:

the price of volatility risk is negative – though only at short maturities – and the term

structure is downward-sloping (in absolute value).

6.1.4 Model-Free Estimation with Straddle Returns

As the parametric estimation may be biased by model misspecification and the estimation

procedure, we also proceed with an estimation of the sign of the pricing of volatility risk

and of the slope of its term structure – but not a precise estimate of the level of either –

that does not depend on any specific econometric model.12

In the Heston (1993) model above, note �⇤ can be approximated with the Sharpe ratio

of an at-the-money straddle, up to a factor
p
V�t/�:

�

⇤
p
V�t

�

⇡ SR(C + P ).

The factor
p
V�t/� is not measurable without making further assumptions, however, it

is guaranteed to be positive. Moreover, it is the same across maturities, and therefore does

not a↵ect the sign of the slope of the term structure of volatility risk pricing. The Sharpe

ratios of at-the-money straddles provide a qualitative measure for the prices of volatility

risk, in the term structure, though they are not quantitatively comparable to the results

from the parametric estimation of Section 6.1.3.

We use option straddles with maturities ranging from 30 days to 360 days, and regress

the Sharpe ratio estimates on maturity ⌧ to gauge the overall shape of the term structure.

The regression model is

SR⇤
⌧

= �

2

+ �

3

⌧ + "

2

,

where �
2

and �
3

are the intercept and slope coe�cients and "
2

is the error term.13

Recall the estimates are not quantitatively comparable to the parametric estimation,

but the sign is guaranteed to conform. The empirical results are illustrated in Figure 3.

Confirming the previous results from the parametric estimation, the pricing of volatility

12We thank Ralph Koijen for suggesting this measure of volatility risk pricing using at-the-money
straddle returns.

13See Appendix D for details on the estimation.
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risk estimated with the model-free approach is negative for short maturities. The point

estimate is �0.86 at the very short end (30 days), and the 95 percent confidence bounds

are �0.2 and �1.53. At and beyond a maturity of 300 days, the pricing of volatility risk

becomes statistically indistinguishable from 0.

In sum, both the parametric estimation and the model-free approach indicate that

the well-known result that the price of volatility risk is negative is solely driven by short

maturities. Investors are not willing to pay for insurance against increases in volatility risk

beyond 150 days. The model-free results suggest that although any model misspecification

in the parametric estimation part may introduce a quantitative bias, it does not a↵ect

the negativeness and upward slope of the term structure of the price of volatility risk.

6.2 Volatility Risk and the Value Premium

A key implication of our model is that, not only is the pricing of volatility risk downward

slopping in absolute value, as confirmed by the empirical tests of Section 6.1, but also that

it solely impacts the term structure of equity risk premia. In this section we investigate

wether this can be confirmed in the cross-section of stock returns, by checking if stocks

with more exposure to volatility risk show a steeper term structure for risk premia.14

Our approach is based on the link between the value premium and the term structure of

risk premia proposed by Lettau and Wachter (2007). Since our model predicts volatility

risk to be the driver of the term structure of risk premia, we would expect the value

premium to be stronger among stocks with higher exposure to volatility risk. To test

this prediction, we sort stocks into portfolios along two dimensions: (i) their exposure

to volatility shocks and (ii) their book-to-market ratio. Then we check if the well-known

premium of high book-to-market stocks is greater for the portfolios with high exposure

to volatility risk.

To construct the exposure to volatility risk, we first calculate volatility shocks based

on an ARMA(4,4) process fitted to the daily time series of the VIX from January 2nd,

1990 to June 30th, 2014.15 We then estimate volatility betas for all stocks i by regressing

daily returns from CRSP on the VIX shocks:

r

it

= ↵

i

+ �

vol

i

⇥ VIX shock
t

+ "

it

.

14Christina Zafeiridou provided outstanding research assistance on the results presented in this section.
15We use the BIC criterion to determine the number of lags and check up to 8 lags for both MA and

AR.
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Table 2: Average monthly returns

High �vol Low �vol

High BE/ME 0.047 0.039

(0.0063) (0.0056)

Low BE/ME –0.027 –0.020

(0.0056) (0.0035)

Table 3: Di↵erences in returns

High �vol Low �vol Di↵erence

HML 0.074 0.058 0.016

t-statistic 16.42 14.67 2.63

Finally, we sort stocks based on their volatility betas and keep only the top and bottom

quartile.

To sort based on book-to-market ratios, we use monthly CRSP data to calculate

market equity (ME) as well as Compustat data to construct book equity (BE). We then

sort based on BE/ME and keep only the top and bottom decile. This leaves us with

four portfolios: (i) high volatility beta and high book to market, (ii) high volatility beta

and low book to market, (iii) low volatility beta and high book to market, and (iv) low

volatility beta and low book to market.

Table 2 shows the average monthly returns of the four portfolios. Table 3 calculates the

di↵erence in returns between the high book-to-market stocks and the low book-to-market

stocks (HML) separately for the high volatility beta stocks and the low volatility beta

stocks. The well-known value premium is positive and significant for stocks with both

high and low exposure to volatility risk. Our main interest, however, is in the di↵erence

between the value premium among the two categories. As shown in Table 3, the value

premium for stocks with high exposure to volatility risk is 28 percent higher than for

stocks with low exposure to volatility risk and this di↵erence is statistically significant.

This result is not driven by a negative correlation between volatility beta and size, i.e.,

the SMB factor. In fact, firms in the high volatility beta portfolio are larger than firms in

the low volatility beta portfolio. This is true both for the high-value and low-value subsets

within each portfolio.

We conclude that the specific prediction of the horizon dependent risk aversion model

that the value premium is related to volatility risk finds significant support in the data.
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7 Conclusion

We solve for general equilibrium asset prices in an endowment economy in which assets

are priced by an agent with dynamically inconsistent preferences with respect to risk-

return tradeo↵s. We find horizon-dependent risk aversion preferences have a meaningful

impact on asset prices, and have the ability to address cross-sectional puzzles in general

equilibrium asset pricing. In particular, we show the price of risk depends on the horizon if

and only if volatility is stochastic. This insight leads to numerous testable predictions. We

find that the price of volatility risk is negative and its term structure is downward-sloping

in absolute value. Further, we show evidence the value premium is significantly higher

for stocks with higher exposure to aggregate volatility shocks than for stocks with lower

volatility-beta, which is a first step in confirming that the term-structure of risk premia

is driven by exposures to volatility shocks.

We are not aware of competing mainstream general equilibrium models that can pre-

dict these combined e↵ects, and that make similarly detailed and empirically valid pre-

dictions across asset classes. Relaxing the common assumption that risk preferences are

constant across maturities – and specifically, replacing it with the no more flexible as-

sumption that short-horizon risk aversion is higher than long-horizon risk aversion – may

thus be a useful tool in di↵erent subfields of asset pricing research.
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Appendix

A Derivation of the Stochastic Discount Factor

This appendix derives the stochastic discount factor of our dynamic model using an ap-

proach similar to the one used by Luttmer and Mariotti (2003) for non-geometric dis-

counting. In every period t the agent chooses consumption C

t

for the current period and

state-contingent wealth W

t+1

for the next period to maximize current utility V

t,t

subject

to a budget constraint and anticipating optimal choice C

⇤
t+h

in all following periods:

max
Ct,{Wt+1}
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Denoting by �
t

the Lagrange multiplier on the budget constraint for the period-t problem,

the first order conditions are:
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Combining the two, we get an initial equation for the SDF:
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The agent in state s at t+ 1 maximizes
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The Lagrange multiplier �
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is equal to the marginal utility of an extra unit of wealth
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Substituting this into the initial equation for the SDF, we get:
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If optimal consumption is Markov, we can divide by C

t+1,s

and get
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• For the numerator:
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Substituting these into the SDF and canceling we get
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Simplifying and cleaning up notation, we arrive at the same SDF as in the main text:
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B Exact solutions for ⇢ = 1

Suppose the risk aversion parameter di↵ers only for immediate risk shocks: between t and

t+ 1, risk aversion is �, for all shocks further down, risk aversion is �̃.

the model simplifies to:
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and suppose the three shocks are independent. (we can relax)
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C Approximation for � ⇡ 1

Suppose the risk aversion parameter di↵ers only for immediate risk shocks: between t and

t+ 1, risk aversion is �, for all shocks further down, risk aversion is �̃.

the model simplifies to:
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The one-period excess returns on the dividend strips are given by:
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D Details on Estimation of PVR

Closed-form Solution of Price, Delta, and Theta

The closed-form solution to the model is as follows. Denote by P
1

and P

2

pseudo-probabilities.

The integration needs to be solved numerically.
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GMM Estimation of PVR
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Using the e�cient GMM estimator, Ŵ = Ŝ
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To determine the parametric constraints, we start from their empirically feasible

ranges. Because the model is highly nonlinear, the calibration is potentially sensitive

to such constraints. Therefore, we perform sensitivity analysis by slightly adjusting the

lower and upper bounds, and find the constraints above yield the smallest total mean ab-

solute deviation. After the calibration, we obtain an estimated parameter value for every

observation. We can then estimate the pricing of volatility risk using GMM methods, for

options with di↵erent maturities ranging from 30 days to 360 days, separately.
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