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Introduction

We have focused on the statistical / econometric issues that arise with
big data

In the time that remains, we want to spend a little time on the
practical issues...

E.g., where do you actually put a 2 TB dataset?

Goal: Sketch some basic computing ideas relevant to working with
large datasets.

Caveat: We are all amateurs
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The Good News

Much of what we've talked about here you can do on your laptop

Your OS knows how to do parallel computing (multiple processors,
multiple cores)
Many �big� datasets are < 5 GB
Save the data to local disk, �re up Stata or R, and o� you go...



How Big is Big?

Congressional record text (1870-2010) ≈50 GB

Congressional record pdfs (1870-2010) ≈500 GB

Nielsen scanner data (34k stores, 2004-2010) ≈5 TB

Wikipedia (2013) ≈6 TB

20% Medicare claims data (1997-2009) ≈10 TB

Facebook (2013) ≈100,000 TB

All data in the world ≈2.7 billion TB



Outline

Software engineering for economists

Databases

Cluster computing

Scenarios



Software Engineering for Economists



Motivation

A lot of the time spent in empirical research is writing, reading, and
debugging code.

Common situations...



Broken Code



Incoherent Data



Rampant Duplication



Replication Impossible



Tons of Versions



This Talk

We are not software engineers or computer scientists.

But we have learned that most common problems in social sciences
have analogues in these �elds and there are standard solutions.

Goal is to highlight a few of these that we think are especially valuable
to researchers.

Focus on incremental changes: one step away from common practice.



Automation



Raw Data

Data from original source...





Manual Approach

Open spreadsheet

Output to text �les

Open Stata

Load data, merge �les

Compute log(chip sales)

Run regression

Copy results to MS Word and save



Manual Approach

Two main problems with this approach

Replication: how can we be sure we'll �nd our way back to the exact
same numbers?
E�ciency: what happens if we change our mind about the right
speci�cation?



Semi-automated Approach

Problems

Which �le does what?
In what order?



Fully Automated Approach

File: rundirectory.bat

stattransfer export_to_csv.stc

statase -b mergefiles.do

statase -b cleandata.do

statase -b regressions.do

statase -b figures.do

pdflatex tv_potato.tex

All steps controlled by a shell script

Order of steps unambiguous

Easy to call commands from di�erent packages



Make

Framework to go from source to target

Tracks dependencies and revisions

Avoids rebuilding components that are up to date

Used to build executable �les



Version Control



After Some Editing

Dates demarcate versions, initials demarcate authors

Why do this?

Facilitates comparison
Facilitates �undo�



What's Wrong with the Approach?

Why not do this?

It's a pain: always have to remember to �tag� every new �le
It's confusing:

Which log �le came from regressions_022713_mg.do?

Which version of cleandata.do makes the data used by

regressions_022413.do?

It fails the market test: No software �rm does it this way



Version Control

Software that sits �on top� of your �lesystem

Keeps track of multiple versions of the same �le
Records date, authorship
Manages con�icts

Bene�ts

Single authoritative version of the directory
Edit without fear: an undo command for everything



Life After Version Control
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Life After Version Control

Aside: If you always run rundirectory.bat before you commit, you
guarantee replicability.



Directories



One Directory Does Everything

Pros: Self-contained, simple

Cons:

Have to rerun everything for every change
Hard to �gure out dependencies



Functional Directories



Dependencies Obvious



One Resource, Many Projects



Keys



Research Assistant Output

county state cnty_pop state_pop region

36037 NY 3817735 43320903 1

36038 NY 422999 43320903 1

36039 NY 324920 . 1

36040 . 143432 43320903 1

. NY . 43320903 1

37001 VA 3228290 7173000 3

37002 VA 449499 7173000 3

37003 VA 383888 7173000 4

37004 VA 483829 7173000 3



Causes for Concern

county state cnty_pop state_pop region

36037 NY 3817735 43320903 1

36038 NY 422999 43320903 1

36039 NY 324920 . 1

36040 . 143432 43320903 1

. NY . 43320903 1

37001 VA 3228290 7173000 3

37002 VA 449499 7173000 3

37003 VA 383888 7173000 4

37004 VA 483829 7173000 3



Relational Databases

county state population

36037 NY 3817735

36038 NY 422999

36039 NY 324920

36040 NY 143432

37001 VA 3228290

37002 VA 449499

37003 VA 383888

37004 VA 483829

state population region

NY 43320903 1

VA 7173000 3

Each variable is an attribute of an element of the table

Each table has a key

Tables are connected by foreign keys (state �eld in the county table)



Steps

Store data in normalized format as above

Can use �at �les, doesn't have to be fancy relational database software

Construct a second set of �les with key transformations

e.g., log population

Merge data together and run analysis



To Come

What to do with enormous databases?



Abstraction



Rampant Duplication



Abstracted



Three Leave-Out Means



Copy and Paste Errors



Abstracted



Documentation



Too Much Documentation



Too Much Documentation
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Too Much Documentation



Too Much Documentation



Unclear Code



Self-Documenting Code



Management



A Friendly Chat
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A Friendly Chat



Task Management

Source: Asana.



Parting Thoughts



Code and Data

Data are getting larger

Research is getting more collaborative

Need to manage code and data responsibly for collaboration and
replicability

Learn from the pros, not from us



Databases



What is a Database?

Database Theory

Principles for how to store / organize / retrieve data e�ciently
(normalization, indexing, optimization, etc.)

Database Software

Manages storage / organization / retrieval of data (SQL, Oracle,
Access, etc.)
Economists rarely use this software because we typically store data in
�at �les & interact with them using statistical programs
When we receive extracts from large datasets (the census, Medicare
claims, etc.) someone else often interacts with the database on the
back end



Normalization

�Database Normalization is the process of organizing the �elds and
tables of a relational database to minimize redundancy and
dependency. Normalization usually involves dividing large tables into
smaller (and less redundant) tables and de�ning relationships between
them.�



Bene�ts of Normalization

E�cient storage

E�cient modi�cation

Guarantees coherence

Makes logical structure of data clear



Indexing

Medicare claims data for 1997-2010 are roughly 10 TB

These data are stored at NBER in thousands of zipped SAS �les

To extract, say, all claims for heart disease patients aged 55-65, you
would need to read every line of every one of those �les

THIS IS SLOW!!!
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Indexing

The obvious solution, long understood for book, libraries, economics
journals, and so forth, is to build an index

Database software handles this automatically

Allows you to specify �elds that will be often used for lookups,
subsetting, etc. to be indexed
For the Medicare data, we could index age, gender, type of treatment,
etc. to allow much faster extraction



Indexing

Bene�ts

Fast lookups
Easy to police data constraints

Costs

Storage
Time

Database optimization is the art of tuning database structure and
indexing for a speci�c set of needs



Data Warehouses

Traditional databases are optimized for operational environments

Bank transactions
Airline reservations
etc.

Characteristics

Many small reads and writes
Many users accessing simultaneously
Premium on low latency
Only care about current state
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Data Warehouses

In analytic / research environments, however, the requirements are
di�erent

Frequent large reads, infrequent writes
Relatively little simultaneous access
Value throughput relative to latency
May care about history as well as current state
Need to create and re-use many custom extracts

Database systems tuned to these requirements are commonly called
�data warehouses�



Data Warehouses

In analytic / research environments, however, the requirements are
di�erent

Frequent large reads, infrequent writes
Relatively little simultaneous access
Value throughput relative to latency
May care about history as well as current state
Need to create and re-use many custom extracts

Database systems tuned to these requirements are commonly called
�data warehouses�



Distributed Computing



Distributed Computing

De�nition: Computation shared among many independent processors

Terminology

Distributed vs. Parallel (latter usually refers to systems with shared
memory)
Cluster vs. Grid (latter usually more decentralized & heterogeneous)
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On Your Local Machine

Your OS can run multiple processors each with multiple cores

Your video card has hundreds of cores

Stata, R, Matlab, etc. can all exploit these resources to do parallel
computing

Stata

Buy appropriate �MP� version of Stata
Software does the rest

R / Matlab

Install appropriate add-ins (parallel package in R, �parallel computing
toolbox� in Matlab)
Include parallel commands in code (e.g., parfor in place of for in
Matlab)
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On Cluster / Grid

Resources abound

University / department computing clusters
Non-commercial scienti�c computing grids (e.g., XSEDE)
Commercial grids (e.g., Amazon EC2)

Most of these run Linux w/ distribution handled by a �batch scheduler�

Write code using your favorite application, then send it to scheduler
with a bash script
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MapReduce

MapReduce is a programming model that facilitates distributed
computing

Developed by Google around 2004, though ideas predate that

Most algorithms for distributed data processing can be represented in
two steps

Map: Process individual �chunk� of data to generate an intermediate
�summary�
Reduce: Combine �summaries� from di�erent chunks to produce a
single output �le

If you structure your code this way, MapReduce software will handle
all the details of distribution:

Partitioning data
Scheduling execution across nodes
Managing communication between machines
Handling errors / machine failures
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MapReduce: Examples

Count words in a large collection of documents

Map: Document i → Set of (word , count) pairs Ci

Reduce: Collapse {Ci}, summing count within word

Extract medical claims for 65-year old males

Map: Record set i → Subset of i that are 65-year old males Hi

Reduce: Append elements of {Hi}
Compute marginal regression for text analysis (e.g., Gentzkow &
Shapiro 2010)

Map: Counts xij of phrase j → Parameters
(
α̂j , β̂j

)
from

E (xij |yi ) = αj + βjxij

Reduce: Append
{
α̂j , β̂j

}
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MapReduce: Model

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

  

output
file 0

    (6) write

worker
(3) read

worker

  
(4) local write

  

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.

This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1) Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3



MapReduce: Implementation

MapReduce is the original software developed by Google

Hadoop is the open-source version most people use (developed by
Apache)

Amazon has a hosted implementation (Amazon EMR)

How does it work?

Write your code as two functions called map and reduce

Send code & data to scheduler using bash script
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Distributed File Systems

Data transfer is the main bottleneck in distributed systems

For big data, it makes sense to distribute data as well as computation

Data broken up into chunks, each of which lives on a separate node
File system keeps track of where the pieces are and allocates jobs so
computation happens �close� to data whenever possible

Tight coupling between MapReduce software and associated �le
systems

MapReduce → Google File System (GFS)
Hadoop → Hadoop Distributed File System (HDFS)
Amazon EMR → Amazon S3
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Distributed File Systems

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.
Let us explain the interactions for a simple read with refer-

ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.
The client then sends a request to one of the replicas,

most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.
A large chunk size offers several important advantages.

First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.
On the other hand, a large chunk size, even with lazy space

allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.
However, hot spots did develop when GFS was first used

by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space



Scenarios



Scenario 1: Not-So-Big Data

My data is 100 gb or less

Advice

Store data locally in �at �les (csv, Stata, R, etc.)
Organize data in normalized tables for robustness and clarity
Run code serially or (if computation is slow) in parallel
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Scenario 2: Big Data, Small Analysis

My raw data is > 100 gb, but the extracts I actually use for analysis

are << 100 gb

Example

Medicare claims data → analyze heart attack spending by patient by
year
Nielsen scanner data → analyze average price by store by month

Advice

Store data in relational database optimized to produce analysis extracts
e�ciently
Store extracts locally in �at �les (csv, Stata, R, etc.)
Organize extracts in normalized tables for robustness and clarity
Run code serially or (if computation is slow) in parallel

Note: Gains to database increase for more structured data. For
completely unstructured data, you may be better o� using distributed
�le system + map reduce to create extracts.
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Scenario 3: Big Data, Big Analysis

My data is > 100 GB and my analysis code needs to touch all of the

data

Example

2 TB of SEC �ling text → run variable selection using all data

Advice

Store data in distributed �le system
Use MapReduce or other distributed algorithms for analysis
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