
Distributional Incentives in an Equilibrium Model of

Domestic Sovereign Default∗

Pablo D’Erasmo

University of Maryland and Federal Reserve Bank of Philadelphia

Enrique G. Mendoza

University of Pennsylvania and NBER

September 19, 2013

Abstract

International historical records on public debt show infrequent episodes of outright

default on domestic debt. Reinhart and Rogoff (2008) document these events and argue

that they constitute a “forgotten history” in Macroeconomics. This paper develops a

theory of domestic sovereign default in which distributional incentives, interacting with

default costs, make default part of the optimal policy of a utilitarian social planner. The

model supports equilibria with debt subject to default risk in which rising wealth inequality

reduces the optimal debt and increases default probabilities and spreads. A quantitative

experiment calibrated to European data shows that, in the observed range of inequality

in the distribution of bond holdings, the model accounts for 1/3rd of the average debt

and spreads of about 400 basis points. Default risk reduces sharply the sustainable debt,

except when the weights in the government’s payoff function value the utility of bond

holders more than their share of the wealth distribution. If the former is sufficiently larger

than the latter, the model supports debt ratios similar to European averages exposed to

low default probabilities.
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1 Introduction

The innovative study by Reinhart and Rogoff (2008) identified 68 episodes in which governments

defaulted outright (i.e. by means other than inflation) on their domestic creditors in a cross-

country database going back to 1750. These domestic defaults occur via mechanisms such as

forcible conversions, lower coupon rates, unilateral reductions of principal, and suspension of

payments. Reinhart and Rogoff also documented that domestic public debt accounts for a large

fraction of total government debt in the majority of countries (about 2/3rds on average), and

that domestic default events were associated with periods of severe financial turbulence, which

often included defaults on external debt, banking system collapses and full-blown economic

crises. Despite of these striking features, they also found that domestic sovereign default is a

“forgotten history” that remains largely unexplored in the Macroeconomics literature.

The ongoing European debt crisis also highlights the importance of focusing research on

domestic sovereign default, because four features of this crisis make it more akin to a domestic

default than to the typical external default that dominates the literature on this subject. First,

countries in the Eurozone are highly integrated in goods and asset markets, and the majority

of their public debt is denominated in their common currency and held by European residents.

Hence, from an European standpoint, default by one or more Eurozone governments means a

suspension of payments to “domestic” agents, instead of external creditors. Second, domestic

public debt-GDP ratios are high in the Eurozone as a whole, and very large in some of its

members, particularly in the countries at the epicenter of the crisis (Greece, Ireland, Italy, Spain

and Portugal). Third, the Eurozone’s common currency and common central bank rule out the

possibility of individual governments resorting to inflation as a means to lighten their debt

burden without an outright default. Fourth, and perhaps most important from the standpoint

of the theory developed in this paper, European-wide institutions such as the ECB and the

European Commission are weighting the interests of both creditors and debtors in assessing the

pros and cons of sovereign defaults by individual countries, and both creditors and debtors are

aware of these institutions’ concern and of their key role in influencing expectations and the

potential for repayment or default.1

This paper proposes a framework for explaining domestic sovereign default motivated by

the key fact that a domestic default entails substantial redistribution across domestic agents,

with all of these agents presumably entering in the payoff function of the sovereign. This is

in sharp contrast with what standard models of external sovereign default assume, particularly

1The analogy with a domestic default is imperfect, however, because the Eurozone is not a single country,
and in particular there is no fiscal entity with tax and debt-issuance powers over all the members. Still, the
situation resembles more a domestic default than an external default in which debtors are not concerned for the
interests of creditors.

2



those based on the classic work of Eaton and Gersovitz (1981). Models in this class approach

default as a decision made by a government with a payoff given by the utility of a representative

home agent, and assuming risk-neutral foreign lenders who are completely disconnected from

the economy they lend to (except for the fact that the lenders bought the home government’s

debt taking a risk neutral bet on the possibility of default). In these models, the effects of a

government default on the welfare of creditors are irrelevant for the sovereign making the default

decision, and both the costs and benefits of default affect all domestic agents in the same way

(since the economy is inhabited by a representative agent).

These observations suggest that standard models of sovereign default face serious limitations

in explaining the forgotten history of domestic debt. In actual domestic defaults and in the

European crisis, governments and institutions making default decisions are taking into account

the implications of the default choice on the welfare of government creditors, and evaluate the

different costs and benefits of default on various groups of domestic agents. Hence, a theoretical

framework aiming to explain domestic default needs to reformulate the government’s strategic

incentives so as to take into account default effects on both creditors and debtors, which in turn

implies that agent heterogeneity also needs to be taken into account.

We propose a two-period model with heterogeneous agents and non-insurable aggregate

risk in which domestic default can be optimal for a utilitarian government that responds to

distributional incentives. A fraction γ of agents start as low-wealth (L) agents and a fraction 1−γ

are high-wealth (H) agents, depending on the size of their initial holdings of government bonds.

The government finances the gap between exogenous stochastic expenditures and endogenous

lump-sum taxes by issuing non-state-contingent debt, retaining the option to default. This

government evaluates the costs and benefits of default according to a utilitarian social welfare

function, which uses γ and 1− γ to weight the welfare of L and H agents respectively. We also

study an extension in which the government’s payoff function has ad-hoc weights, which can be

justified by political economy considerations.

Private agents choose optimally their bond holdings in the first period, taking as given bond

prices and the probability that a default may occur in the second period. The government

chooses how much debt to issue taking into account its inability to commit to repay: First,

it evaluates the agents payoffs under repayment and default given their optimal savings plans

and the government budget constraints. Second, it uses those payoffs to formulate a default

decision rule for the second period that depends on how much debt is issued, the realization of

government expenditures, and the degree of wealth concentration as measured by γ. Third, it

chooses optimally how much debt to issue in the first period to maximize the lifetime utilitarian

expected utility internalizing how the debt choice affects default incentives, default risk and
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the price of bonds. In this environment, the distribution of public debt across private agents

interacts with the government’s optimal default, debt issuance and tax decisions.

Default is optimal when the taxes needed to repay the debt hurts relatively poor agents

more than defaulting hurts relatively rich agents, and this happens when, for a given amount

of debt and wealth concentration, the realization of government expenditures is high enough.

This is necessary but not sufficient, however, for the model to support an equilibrium with debt

subject to default risk. It is also necessary that the government finds it optimal to choose debt

levels in the first period that are left exposed to default risk in the second period, even after

the government internalizes that default risk and how the equilibrium price of bonds responds

to the amount of debt being issued.

A third necessary condition to support an equilibrium with debt exposed to default risk

is that default entails a cost in terms of disposable income. In particular, we show that with

the weighted utilitarian social welfare function, the government will always default if default is

costless. This is because the planner desires the lowest consumption dispersion that it can attain,

and this is attained by choosing default. In contrast, when default is costly, if the amount of

consumption dispersion that the competitive equilibrium with repayment supports yields higher

welfare than the default equilibrium net of default cost, repayment becomes optimal. In contrast,

we show in the political economy extension that debt can be supported even without default

costs, if the government’s weight on L-type agents is lower than the actual fraction of these

agents in the wealth distribution.

Quantitative results based on a calibration to European data are used to illustrate the model’s

key predictions. The benchmark model with utilitarian social welfare displays default risk that is

increasing in the level of wealth concentration. Hence, lower public debt is sustainable as γ rises.

Because of default risk, the sustainable debt is significantly lower than what the same model

supports at the same levels of wealth inequality and with the same government expenditure

shocks but without default risk. Some of the optimally chosen debt positions over a range of

values of γ exhibit zero default risk, and some are exposed to a positive probability of default.

The latter are lower and tend to be associated with higher levels of wealth inequality. In the

range of empirically relevant ratios of the fraction of agents who own government bonds, the

model supports debt ratios about 1/3rd of the average European debt ratio at spreads close to

400 basis points. Qualitatively these results are robust to changes in the government’s initial

debt and initial level of expenditures, and the size of default costs, but quantitatively they vary.

In the political economy extension, for given government weights pinning down its preference

for redistribution, the debt is an increasing function of observed wealth inequality, instead

of decreasing as in the utilitarian benchmark. This is because the incentives to default get
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weaker as the government’s weight on L-type agents falls increasingly below γ. The lower the

weight capturing the government’s preference for redistribution, the higher the debt that can

be supported at every value of γ. These debt amounts can easily exceed those supported in

the utilitarian benchmark by wide margins, and can be of similar magnitude as the European

average with a default probability of about 5 percent.

This work is related to various strands of the large literature on public debt. First, studies

on the role of public debt as a self-insurance mechanism and a vehicle that alters consump-

tion dispersion in heterogeneous agents models without default (e.g. Aiyagari and McGrattan

(1998), Golosov and Sargent (2012)). Second, the literature on external sovereign default using

models in the line of the Eaton-Gersovitz model (e.g. Aguiar and Gopinath (2006), Arellano

(2008), Pitchford and Wright (2012), Yue (2010)) but with the important differences noted

earlier.2 Third, another important strand of the external default literature that focuses on

the role of secondary markets and discriminatory v. nondiscriminatory default (e.g. Broner,

Martin and Ventura (2010) and Gennaioli, Martin and Rossi (2013)).3 Fourth, the literature

on political economy and sovereign default, which also largely focuses on external default (e.g.

Amador (2003), Dixit and Londregan (2000), D’Erasmo (2011) Guembel and Sussman (2009),

Hatchondo, Martinez and Sapriza (2009) and Tabellini (1991)), but includes studies like those

of Alesina and Tabellini (1990) and Aghion and Bolton (1990) that focus on political economy

aspects of government debt in a closed economy.

The rest of this paper is organized as follows: Section 2 describes the payoff functions

and budget constraints of households and government. Section 3 characterizes the model’s

equilibrium and provides an illustration of the mechanism that drives optimal default as a

policy for redistribution. Section 4 presents the benchmark calibration and the quantitative

results for the utilitarian social welfare function. Section 5 discusses the results of a sensitivity

analysis and the political economy extension. The last Section provides conclusions.

2 Model Economy

Consider a two-period economy inhabited by a continuum of agents with aggregate unit mea-

sure. Agents differ in their initial wealth position, which is characterized by their holdings

of government debt at the beginning of the first period. This initial distribution of wealth is

2See also Panizza, Sturzenegger and Zettelmeyer (2009), Aguiar and Amador (2013), and Wright (2013) for
detailed reviews of the sovereign debt literature.

3Default in our setup is also non-discriminatory, because the government cannot discriminate across different
types of agents when it defaults. Our setup differs in that the default decision is driven by the distribution of
debt among domestic agents and the incentives of the government to use debt optimally as redistributive policy.
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exogenous, but the distribution at the beginning of the second period period is endogenously

determined by the agents’ savings choices of the first period. The government is represented by

a social planner with a utilitarian payoff who issues one-period, non-state-contingent debt, levies

lump-sum taxes, and has the option to default. Government debt is the only asset available

in the economy and is entirely held by domestic agents. There is explicit aggregate risk in the

form of shocks to government outlays, and also implicit in the form of default risk, and there is

no idiosyncratic uncertainty.

2.1 Household Preferences & Budget Constraints

All agents have the same preferences, which are given by:

u(c0) + βE[u(c1)], u(c) =
c1−σ

1− σ

where β ∈ (0, 1) is the discount factor and ct for t = 0, 1 is individual consumption. The utility

function u(·) takes the standard CRRA form.

All agents receive a non-stochastic endowment y each period and pay lump-sum taxes τt.

Taxes and newly issued government debt are used to pay for government consumption gt and

repayment of outstanding government debt. We denote the initial supply of outstanding gov-

ernment bonds at t = 0 as B0. Given B0, the initial wealth distribution is defined by a fraction

γ of households who are the L-type individuals with initial bond holdings bL0 , and a fraction

(1 − γ) who are the H-types and hold bH0 , where bH0 =
B0−γbL

0

1−γ
≥ bL0 ≥ 0. Hence, bH0 is the level

of bond holdings by H-type agents that is consistent with market-clearing in the government

bond market at t = 0.

The agents’ budget constraints take different form depending on whether the government

defaults or not. If the government repays, the budget constraints are:

cit + qtb
i
t+1 = y + bit − τt for i = L,H. (1)

In this case, agents collect the payout on their individual holdings of government debt (bit),

receive endowment income y, and pay lump-sum taxes τt, which are uniform across agents. This

net-of-tax resources are used to pay for consumption and purchases of new government bonds

bit+1. If the government defaults, there is no repayment on the outstanding debt and the debt

market closes. The agents’ budget constraints are

cit = (1− φ(gt))y − τt for i = L,H. (2)
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As is standard in the sovereign debt literature, we assume that default imposes an exogenous

cost that reduces income by a fraction φ. This cost φ is often modeled as a function of the

realization of a stochastic endowment income, but since income is constant in this setup, we

model it as a function of the realization of government expenditures gt. In particular, the cost

is an non-increasing, step-wise function: φ(gt) ≥ 0, with φ′(gt) ≤ 0 for gt ≤ µg (where µg is the

average of government expenditures), φ′(gt) = 0 otherwise, and φ′′(gt) = 0. This formulation is

analogous to the step-wise default cost as a function of income proposed by Arellano (2008) and

now widely used in the external default literature, and it also captures the idea of asymmetric

costs of tax collection (see Barro (1979) and Calvo (1988)). Note, however, that for the model

to support equilibria with debt, a linear default cost is sufficient. This non-linear formulation

is useful for the quantitative analysis and for making it easier to compare the model with the

standard external default models.4

2.2 Government

At the beginning of t = 0, the government has outstanding debt B0 and can issue one-period,

non-state contingent discount bonds B1 ∈ B ≡ [0,∞) at the price q0 ≥ 0. Each period it collects

lump-sum revenues τt and pays for gt. Since g0 is known at the beginning of the first period, the

relevant uncertainty with respect to government expenditures is for g1, which is characterized

by a well-defined probability distribution function with mean µg. We do not restrict the sign of

τt, so τt < 0 represents lump-sum transfers.

At equilibrium, the price of debt must be such that the government bond market clears:

Bt = γbLt + (1− γ)bHt for t = 0, 1. (3)

This condition is satisfied by construction in period 0. In period 1, however, the price moves

endogenously to clear the market.

The government has the option to default at t = 1. The default decision is denoted by

d1 ∈ {0, 1} where d1 = 0 implies repayment. The government evaluates the values of repayment

and default as a benevolent planner with a utilitarian social welfare function. The benchmark

case is one with a standard weighted utilitarian payoff γu(cL1 )+(1−γ)u(cH1 ). Other government

payoff functions can aggregate individual utilities with arbitrary weights, which could be justified

by political economy considerations (see Section 5 for details), and can also be extended to

incorporate egalitarian concerns. The government, however, cannot discriminate across the two

4In external default models, the non-linear cost makes default more costly in ”good” states, which alters
default incentives to make default more frequent in ”bad” states and to support higher debt levels.
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types of agents when setting taxation, debt and default policies.

At t = 0, the government budget constraint is

τ0 = g0 +B0 − q0B1, (4)

The level of taxes in period 1 is determined after the default decision. If the government

repays, each household receives the payout on its corresponding bi1 and taxes are set to satisfy

the following government budget constraint:

τd1=0
1 = g1 +B1. (5)

Notice that, since this is a two-period model, equilibrium requires that there are no outstanding

assets at the end of period 1 (i.e. bi2 = B2 = 0 and q1 = 0). If the government defaults, taxes

are simply set to pay for government purchases:

τd1=1
1 = g1. (6)

3 Equilibrium

The analysis of the model’s equilibrium proceeds in three stages. First, we characterize the

households’ optimal savings problem and determine their payoff (or value) functions, taking as

given the government debt, taxes and default decision. Second, we study how optimal govern-

ment taxes and the default decision are determined. Third, we examine the optimal choice of

debt issuance that internalizes the outcomes of the first two stages. To characterize these prob-

lems, we take the values of the initial conditions (g0, B0, b
L
0 ) as exogenous parameters, thereby

reducing the set of relevant states to three key variables: B1, g1 and γ. Hence, we can index the

value of a household as of t = 0, before g1 is realized, by the pair {B1, γ}. Given this, the level

of taxes τ0 is determined by the government budget constraint once the equilibrium bond price

q0 is set. Bond prices are forward looking and depend on the default decision of the government

in period 1, which will be given by the decision rule d(B1, g1, γ).
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3.1 Households’ Problem

Given B1 and γ, a household with initial debt holdings bi0 for i = L,H chooses bi1 by solving

this maximization problem:

vi(B1, γ) = max
bi
1

{
u(y + bi0 − q0b

i
1 − τ0) + (7)

βEg1

[
(1− d1(B1, g1, γ))u(y + bi1 − τd1=0

1 ) + d1(B1, g1, γ)u(y(1− φ(g1))− τd1=1
1 )

]}
.

The term Eg1 [.] in this maximization problem represents the expected payoff across the repay-

ment and default states in period 1. Notice in particular that the payoff in case of default does

not depend on the level of individual debt holdings (bi1), reflecting the fact that the government

cannot discriminate across households when it defaults.

A key feature of the above optimization problem is that agents take into account the possi-

bility of default in formulating their optimal choice of bond holdings. The first-order condition,

evaluated at the equilibrium level of taxes, yields the following Euler equation:

u′(ci0) ≥ β(1/q0)Eg1

[
u′(y − g1 + bi1 − B1)(1− d1(B1, g1, γ))

]
, = 0 if bi1 > 0 (8)

In states in which, given (B1, γ), the value of g1 is such that the government chooses to default

(d1(B1, g1, γ) = 1), the marginal benefit of an extra unit of debt is zero.5 Thus, conditional

on B1, a larger default set (i.e. a larger set of values of g1 such that the government defaults),

implies that the marginal benefit of an extra unit of savings decreases. This implies that,

everything else equal, a higher default probability results in a lower demand for government

bonds, a lower equilibrium bond price, and higher taxes. This has important redistributive

implications, because it implies that when choosing the optimal debt issuance, the government

will internalize how by altering the bond supply it can affect the expected probability of default

and the equilibrium bond prices. Note also that from the households’ perspective, the individual

bond decision has no marginal effect on d1(B1, g1, γ).

The agents’ Euler equation has two other important implications: First, the default risk

premium (defined as q0/β, where 1/β can be viewed as a hypothetical opportunity cost of funds

for an investor, analogous to the role played by the world interest rate in the standard external

default model) generally differs from the default probability, because the agents are risk averse,

instead of risk-neutral as in the standard model, and in the repayment state they are faced

with higher taxation, whereas in the standard model investors are not taxed to repay the debt.

For agents with positive bond holdings, the above optimality condition implies that the risk

5Utility in the case of default equals u(y(1− φ(g1))− g1), and is independent of bi1.
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premium is equal to Eg1 [u
′(y − g1 + bi1 −B1)(1− d1(B1, g1, γ))/u

′(ci0)].
6 Second, it is possible,

as we confirm numerically in Section 4, that for given values of B1 and γ, the government

chooses d1(B1, g1, γ) = 1 for all g1. In this case, the expected marginal benefit of purchasing

government bonds vanishes from the agents’ Euler equation, and hence the equilibrium for that

B1 does not exist, since agents would not be willing to buy debt at any finite price. This result

is also reminiscent of a similar result in standard models of external default, in which rationing

emerges at t for debt levels so high that the government would choose default at all possible

income realizations in t+ 1.

3.2 Government’s Problem

Given that the government lacks the ability to commit to repay, we analyze the government’s

problem following a backward induction strategy by solving first the problem of the government

in the final period t = 1, when default is decided, followed by the optimal debt choice at t = 0,

when the debt issuance is decided. At t = 1, the government chooses to default or not by

solving:

max
d∈{0,1}

{
W d=0

1 (B1, g1, γ),W
d=1
1 (g1, γ)

}
, (9)

where W d=0
1 (B1, g1, γ) and W d=1

1 (B1, g1, γ) denote the values of the social welfare function at the

beginning of period 1 in the case of repayment and default respectively. Using the government

budget constraint to substitute for τd=0
1 and τd=1

1 , and using the weighted utilitarian social

welfare function, the government payoffs can be expressed as:

W d=0
1 (B1, g1, γ) = γu(y − g1 + bL1 − B1) + (1− γ)u(y − g1 + bH1 − B1) (10)

and

W d=1
1 (g1, γ) = u(y(1− φ(g1))− g1). (11)

6With log utility, the debt pricing function with default risk provided in the Appendix can be used to show
that the premium starts lower than the default probability at low default probabilities, and eventually grows
much larger as the probability of default approaches 1.
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Combining the above payoff functions, if follows that the government defaults if this condition

holds:

γ


u(y − g1 +

≤0︷ ︸︸ ︷
(bL1 − B1))− u(y(1− φ(g1))− g1)


+ (12)

(1− γ)


u(y − g1 +

≥0︷ ︸︸ ︷
(bH1 −B1))− u(y(1− φ(g1))− g1)


 ≤ 0

Notice that all households lose g1 of their income to government absorption regardless of the

default choice, and that utility under default is the same for all agents and given by u(y(1 −

φ(g1))− g1).

The distributional effects of a default are implicit in condition (12). Given that debt re-

payment affects the cash-in-hand for consumption of low- and high-wealth agents according to

(bL1 − B1) ≤ 0 and (bH1 − B1) ≥ 0 respectively, it follows that, for a given B1, the payoff under

repayment allocates (weakly) lower welfare to L agents and higher to H agents, and that the

gap between the two is larger the larger is B1. Moreover, since the default payoffs are the

same for both types of agents, this is also true of the difference in welfare under repayment v.

default: It is higher for H agents than for L agents and it gets larger as B1 rises. To induce

default, however, it is necessary not only that L agents have a smaller difference in the payoffs

of repayment v. default, but that the difference is negative (i.e. they must attain lower welfare

under repayment than under default), which requires B1 > bL1 + yφ(g1). This also implies that

taxes under repayment need to be necessarily larger than under default, since τd=0
1 − τd=1

1 = B1.

Since we can re-write the consumption allocations under repayment as cL1 = y − τd=0
1 + bL1

and cH1 = y − τd=0
1 + bH1 , the distributional effects of default can also be interpreted in terms of

how the changes in taxes and wealth caused by a default affect each agent’s consumption (and

hence utility). First, since bH1 > bL1 , default has a larger effect on the net worth of H agents than

L agents (or no effect if bL1 = 0), thus reducing the welfare of the former more than the latter.

Second, with regard to taxes, we established above that for default incentives to make default

optimal, τd=0
1 > τd=1

1 . This still has distributional implications, because, even tough both types

of agents face the same tax, marginal utility is higher for L agents, and thus they suffer more

if taxes rise under repayment. Since repayment requires higher taxes than default, default is

always preferable than repayment for L agents.

The distribution of wealth determines the weight the utilitarian planner assigns to the gains

and losses that default imposes on the different agents. As γ increases, the fraction of L agents
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is larger, and thus the value of repayment for the government decreases because it weights more

the welfare loss that L agents endure under repayment. Note that differences in γ also affect

the date-0 bond decision rules bL1 and bH1 and hence the market price of bonds q0, even for an

unchanged supply of bonds B1.

The distributional mechanism determining the default decision can be illustrated more clearly

by means of a graphical tool that compares the utility levels associated with the consumption

allocations of the default state with those that would be generally efficient. To this end, it

is helpful to express the values of optimal debt holdings as bL1 = B1 − ǫ and bH1 (γ) = B1 +
γ

1−γ
ǫ, for some hypothetical decentralized allocation of debt holdings determined by ǫ ∈ [0, B1].

Consumption allocations under repayment would therefore be cL1 (ǫ) = y− g1 − ǫ and cH1 (γ, ǫ) =

y − g1 +
γ

1−γ
ǫ, so ǫ also determines the decentralized consumption dispersion.

The efficient dispersion of consumption that the social planner would choose is characterized

by the value of ǫSP that maximizes social welfare under repayment, which satisfies this first-order

condition:

u′

(
y − g1 +

γ

1− γ
ǫSP
)

= u′
(
y − g1 − ǫSP

)
. (13)

Hence, the efficient allocations are characterized by zero consumption dispersion, because equal

marginal utilities imply cL,SP=cH,SP = y − g1, which is attained with ǫSP = 0.

Consider now the government’s default decision when default is costless (φ(g1) = 0). Given

that the only policy instruments the government can use, other than the default decision, are

non-state contingent debt and lump-sum taxes, it is straightforward to conclude that default

will always be optimal. This is because default produces identical allocations in a decentralized

equilibrium as the socially efficient ones, since default produces zero consumption dispersion

with consumption levels cL=cH = y − g1. This outcome is invariant to the values of B1, g1,

γ and ǫ (over their relevant ranges). Moreover, in this scenario default also yields the first-

best outcome that attains maximum social welfare. This result also implies, however, that the

model without default costs cannot support equilibria with domestic debt subject to default

risk, because default is always optimal.

The above scenario is depicted in Figure 1, which plots the social welfare function under

repayment as a function of ǫ as the bell-shaped curve, and the social welfare under default

(which is independent of ǫ), as the black dashed line. Clearly, the maximum welfare under

repayment is attained when ǫ = 0 which is also the efficient amount of consumption dispersion

ǫSP . Recall also that we defined the relevant range of decentralized consumption dispersion for

ǫ > 0, so welfare under repayment is decreasing in ǫ over the relevant range.
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Figure 1: Default Decision and Consumption Dispersion
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These results can be summarized as follows:

Result 1. If φ(g1) = 0 for all g1, then for any γ ∈ (0, 1) and any (B1, g1), the social value of

repayment W d=0(B1, g1, γ) is decreasing in ǫ and attains its maximum at ǫSP = 0 (i.e. when

welfare equals u(y − g1)). Hence, default is always optimal for any decentralized consumption

dispersion ǫ > 0, .

The outcome is very different when default is costly. With φ(g1) > 0, default still yields

zero consumption dispersion, but at lower levels of consumption and therefore utility, since

consumption allocations in the default state become cL=cH = (1− φ(g1))y − g1. This does not

alter the result that the first-best social optimum is ǫSP = 0, but what changes is that default

can no longer support the consumption allocations of the first best. Hence, there is now a

threshold amount of consumption dispersion in the decentralized equilibrium, ǫ̂(γ), which varies

with γ and such that for ǫ ≥ ǫ̂(γ) default is again optimal, but for lower ǫ repayment is now

optimal. This is because when ǫ is below the threshold, repayment produces a level of social

welfare higher than the one that default yields.

Figure 1 also illustrates this scenario. The default cost lowers the common level of utility of

both types of agents, and hence of social welfare, in the default state (shown in the Figure as the

blue dashed line), and ǫ̂(γ) is determined where the social welfare under repayment intersects

social welfare under default. If the decentralized consumption dispersion with the debt market
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functioning (ǫ) is between 0 and less than ǫ̂(γ) then the government finds it optimal to repay.

Intuitively, if dispersion is not too large, the government prefers to repay rather than default

since the latter reduces the dispersion of consumption but imposes an income cost on households.

Moreover, as γ increases the domain of W d=0
1 narrows, and thus ǫ̂(γ) falls and the interval of

decentralized consumption dispersions that supports repayment narrows. This is natural because

a higher γ causes the planner to weight more L-types in the social welfare function, which are

agents with weakly lower utility in the repayment state.

These results can be summarized as follows:

Result 2. If φ(g1) > 0, then for any γ ∈ (0, 1) and any (B1, g1), there is a threshold value of con-

sumption dispersion ǫ̂(γ) such that the payoffs of repayment and default are equal: W d=0(B1, g1, γ) =

u(y(1− φ(g1))− g1). The government repays if ǫ < ǫ̂(γ) and defaults otherwise. Moreover, ǫ̂(γ)

is decreasing in γ.

We are now in a position to study how the government chooses the optimal amount of debt

to issue in the first period. At t = 0, the government chooses its debt policy internalizing the

effects we described above and in the discussion of the households’ problem. To be precise, the

government chooses B1 to maximize the “indirect” social welfare function:

W0(γ) = max
B1

{
γvL(B1, γ) + (1− γ)vH(B1, γ)

}
. (14)

where vL and vH are the value or indirect utility functions obtained from solving the households’

problems.

We can provide some intuition about the solution of this maximization problem by rearrang-

ing its first-order condition as follows (assuming that the functions are differentiable):

q0
[
γu′(cL0 ) + (1− γ)u′(cH0 ))

]
− βEg1

[
(1− d1)[γu

′(cL1 ) + (1− γ)u′(cH1 )]
]

+
∂q0
∂B1︸︷︷︸
≤0


γu′(cL0 ) (B1 − bL1 )︸ ︷︷ ︸

≥0

+(1− γ)u′(cH0 ) (B1 − bH1 )︸ ︷︷ ︸
≤0




+βEg1



∆d1


γ [u(y(1− φ(g1))− g1)− u(cL1 )︸ ︷︷ ︸

> or <0

] + (1− γ) [u(y(1− φ(g1))− g1)− u(cH1 )︸ ︷︷ ︸
<0

]





 ≤ 0.

This expression can be broken into four terms. The first two are analogous to those in the first-

order condition of the households. Since they are evaluated from the perspective of the social

planner, they represent the social marginal benefit and cost of one more unit of debt at a given

debt price and default policy of the government. The planner takes into account that, as the
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level of debt increases, all agents pay less taxes today but pay more taxes in the following period,

and agents who buy debt postpone more consumption today. The third term corresponds to the

effect of issuing more debt on the equilibrium price of government bonds. Since L-type agents

are net borrowers ((bL1 − B1) ≤ 0) and H-type agents are net savers ((bH1 − B1) ≥ 0), a lower

value of q0 has a differential effect, with net savers receiving a higher return as the total stock

of government debt increases. This effect also represents a form of pecuniary externality: When

the government is aiming to optimize the choice of resources it can use to redistribute resources

across agents and over time, which are given by q0B1, it internalizes how the price of bonds

responds to its optimal borrowing decision, whereas private agents take bond prices as given.

The fourth term captures the effect at t+1 of a change in the default policy of the government.

A default is always costly for H-type agents who hold higher debt than the average and can

be a benefit or a cost for L-type agents with low or zero debt (recall we showed earlier that

repayment causes a welfare loss for L agents if B1 > bL1 +φ(g1)y, or equivalently if at t = 1 taxes

in the repayment state are higher than in the default state).

If all households are unconstrained in their savings decisions, so that their Euler equations

hold with equality, and ∆d1 = 0, then the above optimality condition simplifies to:

u′(cL0 )

u′(cH0 )
=

−(B1 − bH1 )(1− γ)

(B1 − bL1 )γ
,

Hence, under those assumptions we obtain the intuitive result that the social planner would want

to issue debt at date 0 so as to equalize the ratio of date-0 marginal utilities of consumption

of the two agent types with their weighted relative wealth positions, where relative wealth is

defined as B1 − bi1 for i = L,H . Moreover, if L agents are constrained (i.e. bL1 = 0) but still

∆d1 = 0, then the optimality condition yields this result:

γ
[
q0u

′(cL0 )− βE
[
(1− d1)u

′(cL1 )
]]

︸ ︷︷ ︸
>0

+
∂q0
∂B1

[
γu′(cL0 )B1 + (1− γ)u′(cH0 )(B1 − bH1 )

]
= 0.

Thus, when the borrowing constraint is binding for some agents, the optimal level of debt

issued by the government increases, because at the debt level consistent with the unconstrained

optimality condition the planner would have u′(cL0 )/u
′(cH0 ) > −(1 − γ)(B1 − bH1 )/(γB1), and

hence the marginal benefit of borrowing more to reduce τ0 and allocate more consumption to

L-type agents exceeds the cost of making H-type agents save more to buy the debt.

Finally, the equilibrium bond price is the value of q0(B1, γ) for which, whenever the default
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probability of the government is less than 1, the following market-clearing condition holds:

B1 = γbL1 (B1, γ) + (1− γ)bH1 (B1, γ), (15)

where B1 in the left-hand-side of this expression represents the public bonds supply, and the

right-hand-side is the government bond demand.

3.3 Competitive Equilibrium with Optimal Debt & Default Policy

For a given value of γ, a Competitive Equilibrium with Optimal Debt and Default

Policy is a pair of household value functions vi(B1, γ) and decision rules bi(B1, γ) for i = L,H ,

a government bond pricing function q0(B1, γ) and a set of government policy functions τ0(B1, γ),

τ
d∈{0,1}
1 (B1, g1, γ), d(B1, g1, γ), B1(γ) such that:

1. Given the pricing function and government policy functions, vi(B1, γ) and bi1(B1, γ) solve

the households’ problem.

2. q0(B1, γ) satisfies the market-clearing condition of the bond market (equation (15)).

3. The government default decision d(B1, g1, γ) solves problem (9).

4. Taxes τ0(B1, γ) and τd1 (B1, g1, γ) are consistent with the government budget constraints.

5. The government debt policy B1(γ) solves problem (14).

4 Quantitative Analysis: Benchmark Case

In this Section, we study the model’s quantitative predictions based on a calibration using

European data. The goal is to show whether a reasonable set of parameter values can produce

an equilibrium that supports domestic public debt subject to default risk, and to study how

the properties of this equilibrium change with the model’s key parameters. We conduct this

exercise acknowledging that, as we explain in discussing the results, the simplicity of the model

comes at the cost of limitations that hamper its ability to account for important features of the

data. Hence, we see the results more as an illustration of the potential relevance of the model’s

argument for explaining domestic default rather than as an evaluation of the model’s general

ability to match the observed empirical regularities of domestic debt.

We solve the model with a backward-recursive method. First, taking as given a set of values

of {B1, γ}, we solve for the equilibrium pricing and default functions by iterating on q0, b
i
1 and
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the default decision rule d1 until the date-0 bond market clears when the date-1 default decision

rule solves the government’s optimal default problem (9). Then, in the second stage we complete

the solution of the equilibrium by finding the optimal choice of B1 that solves the government’s

date-0 optimization problem (14). It is important to recall that, as explained earlier, for given

values of B1 and γ, an equilibrium with debt will not exist if the government finds it optimal

to default on B1 for all realizations of government expenditures g1. In these cases, there is no

finite price that clears the government debt market and its expected return is zero.

4.1 Calibration

The model is calibrated to annual frequency. The parameter values that need to be set are those

for the subjective discount factor β, the coefficient of relative risk aversion σ, the stochastic

process of government expenditures, the initial levels of government debt B0 and government

expenditures g0, the level of income y, the fraction of households with initial low wealth γ, their

initial wealth bL0 and the default cost function φ(g1).

The calibrated parameter values are summarized in Table 1.

Table 1: Model Parameters

Parameter Value
Discount Factor β 0.96
Risk Aversion σ 1.00
Output Cost Default φ0 0.0075
Avg. Gov. Consumption µg 0.18
Autocorrel. G ρg 0.88
Std Dev Error σe 0.017
Large G/Y shock g 0.205
Prob. g pg 0.05
Avg. Income y 0.79
Initial Gov. Debt B0 0.935
Low household wealth bL0 0.00

Note: Government expenditures, income and debt values are derived using data from France,
Germany, Greece, Ireland, Italy, Spain and Portugal.

We set preference parameters to standard values (β = 0.96, σ = 1), and to simplify the

analysis we set bL0 = 0.7 The remaining parameters are set so as to approximate some of the

model’s predicted moments to those of a subset of European countries.

7σ = 1 is also useful because, as we show in the Appendix, in the log-utility case we can obtain closed-form
solutions and establish some results analytically.
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The stochastic process of g1 has two components. The first component is a regular shock,

defined by a standard set of realizations and transition probabilities chosen to match those of

a Markov process that approximates an AR(1) model estimated with 1995-2012 data for the

government expenditures-GDP ratio (in logs) in France, Germany, Greece, Ireland, Italy, Spain

and Portugal. This AR(1) process has the standard form:

log(gt+1) = (1− ρg) log(µg) + ρg log(gt) + et

where |ρg| < 1 and et is i.i.d. over time and distributed normally with mean zero and standard

deviation σe. Given the parameter estimates for all countries, we set µg, ρg and σe to the cor-

responding cross-country average. This results in the following values µg = 0.1812, ρg = 0.8802

and σe = 0.017. Given these moments, we set g0 = µg and use Tauchen’s (1986) quadrature

method with 25 nodes to approximate the Markov realizations and transition probabilities that

drive expectations about g1.

The second component of the g1 shocks is an unusually large i.i.d. component g that occurs

with a low probability pg. Defining unusually large shocks as those larger than three standard

deviations in our European dataset of government expenditures-GDP ratios, we identified one

event and set g to match it. This event measured 3.35 standard deviations (of the process

in logs) and coincided with the 2008 global crisis. This implies setting log(g) = log(µg) +

3.35σg = log(0.2051), where σg is the standard deviation of log(gt) (equal to σe/(1 − ρ2g)
1/2).

The probability of this shock is set to match its observed frequency, which was one observation

per country in the 18-year sample, pg = 0.05.

This large g1 shocks captures the fact that the European debt crisis did follow after an

unusually large increase in government expenditures, triggered by financial stabilization policies

in response to the 2008 crisis and expansionary fiscal policies in the aftermath. As we show below,

the expectation of a relatively large g1 realization even with a low probability has important

implications for default incentives. In particular, for any given debt ratio, it makes default more

likely at lower wealth concentration levels (lower γ), and hence allows the model to produce

equilibria with debt exposed to default risk even if default costs are very small.8

Regarding the initial wealth distribution, we show results for γ ∈ [0, 1]. Note, however,

that data for the United States and Europe suggest that the empirically relevant range for

γ is [0.55, 0.85], and hence when taking a stance on a particular value of γ is needed we use

γ = 0.7, which is in the middle of the plausible range. In the United States, the 2010 Survey of

Consumer Finances indicates that only 12% of households hold savings bonds but 50.4% have

8Default costs cannot be removed completely because, as shown in the previous Section, without them the
government always defaults.
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retirement accounts (which are likely to own sovereign bonds). These figures would suggest

values of γ ranging from 50% to 88%. In Europe, comparable statistics are not available for

several countries, but recent studies show that the wealth distribution is highly concentrated

and that the Gini coefficient ranges between 0.55 and 0.85 depending on the country and the

year of the study (see Davies et al. (2009)).9

Average income y is calibrated such that the model’s aggregate resource constraint is consis-

tent with the data when GDP is normalized to one. This implies that the value of households’

aggregate endowment must equal GDP net of fixed capital investment and net exports, since

the latter two are not explicitly modeled. The average for the period 1970-2012 for the same set

of countries implies y = 0.7883.

Setting the initial debt ratio is complicated because in this two-period model the consumption

smoothing mechanism induces a reduction in the optimal government debt relative to the initial

condition B0 even in a deterministic version of the model with stationary consumption. In the

deterministic case, with g0 = g1, the optimal debt choice is decreasing in γ and has an upper

bound of B1 = B0/(1 + β) as γ → 0.10 Moreover, in the model with shocks to g1 but without

default risk (i.e. assuming that the government is committed to repay) the optimal debt choice

is still decreasing in γ and has an upper bound lower than B0/(1 + β) because of risk. Given

this inertia to reduce debt from its initial condition, we set the value of B0 so that the optimal

choice B1(γ) in the absence of default risk with γ = 0.70 matches the median of government

net financial liabilities across the European countries in our dataset for the 1990-2007 period,

which is 35% of GDP.11 This yields B0 = 93.35% as a share of GDP.

The default cost function is formulated in a similar manner as in the recent quantitative

external sovereign default literature by letting φ(g1) take the following form:

φ(g1) =

{
φ0 + (µg − g1)/y if g1 ≤ µg

φ0 otherwise

As in Arellano (2008), this functional form implies that households’ consumption during a default

never goes above a given threshold. In this case, consumption never goes above y(1− φ0)− µg

when the government defaults.

We calibrate φ0 to match an estimate of the observed frequency of domestic defaults. Ac-

9In our model, if bL0 = 0, the Gini coefficient of wealth is equal to γ.
10This occurs because as γ → 0, the model in deterministic form collapses to a representative agent economy

inhabited by H types where the optimal debt choice yields stationary consumption, q0 = 1/β, and B1 = B0/(1+
β). In contrast, an infinite horizon, stationary economy yields B1 = B0 (see Appendix for details).

11We use 2007 because it is the year just before the large surge in debt and government expenditures started
with the 2008 crisis.
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cording to Reinhart and Rogoff (2008), historically, domestic defaults are about 1/4 as frequent

as external defaults (68 domestic v. 250 external in data since 1750). Since the probability of an

external default has been estimated in the range of 3 to 5% (see for example Arellano (2008)),

we estimate the probability of a domestic default at about 1%. The model matches this default

frequency on average when solved over the empirically relevant range of γ′s (γ ∈ [0.55, 0.85])

if we set φ0 = 0.0075. Hence, if default occurs when g1 > µg, the cost of default is 0.75% of

income and consumption falls to (1 − φ0)y − g1, which decreases with g1. On the other hand,

if default occurs when g1 ≤ µg, consumption falls to a constant level given by (1 − φ0)y − µg

independent of g1.

4.2 Results

We examine the quantitative results in the same order in which the backward solution algorithm

works. We start with the second period’s utility of households under repayment and default, the

government’s default decision, and the associated tax policy for a given range of values of B1

(not just the B1 chosen optimally by the government in the first period) and also ranges of g1

and γ. We then move to the first period and examine the households’ decision rules for demand

of government bonds, the equilibrium bond prices and taxes also for given ranges of values

of B1, g1 and γ. Finally, we examine solutions of the full competitive equilibrium including

the optimal government debt issuance B1 for a range of values of γ, and show how the model

produces equilibria with debt exposed to domestic default risk.

4.2.1 Second period default decision and taxes (for given B1)

Using the agents’ optimal choice of bond holdings, we compute the equilibrium utility levels they

attain at t = 1 under repayment v. default for different triples (B1, g1, γ). The differences in

these payoffs are then converted into cardinal measures by computing compensating variations

in consumption that equate utility in the two scenarios. This is analogous to the calculations

typically done to compute welfare effects in representative agent models. In particular, we

compute the individual utility gain of a default on domestic public debt αi(B1, g1, γ) as the

percent increase in consumption that renders an agent i ∈ {L,H} indifferent between the

repayment and the default options for different triples (B1, g1, γ):

αi(B1, g1, γ) =

[
u(y − g1 + bi1 − B1)

u((1− φ(g1))y − g1)

] 1

1−σ

− 1.
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A positive (negative) value of αi(B1, g1, γ) implies that agent i prefers the default (repayment)

option by an amount equivalent to an increase (cut) of αi(·) percent in consumption. Notice

the above formula uses the optimal bi1(B1, g1, γ) that solves the household’s problem, which in

turn is obtained using d1(B1, g1, γ) to compute expected utility at t = 1. Hence, in principle the

calculation can be done for any arbitrary d1(.) function, but we use the one that is consistent

with the optimal plans of the households and the associated equilibrium price.

The individual utility gains of default are aggregated using γ to obtain a utilitarian repre-

sentation of the social welfare gain of default:

α(B1, g1, γ) = γαL(B1, g1, γ) + (1− γ)αH(B1, g1, γ).

A positive value indicates that default induces a social welfare gain and a negative value a loss.

Figure 2 shows intensity plots of the social welfare gain of default for different values of B1

and γ. Panel (i) is for g1 = g
1
set 1 standard deviation below µg, and panel (ii) is for g1 = g1

set 1 standard deviation above µg. The intensity of the color or shading in these plots indicates

the magnitude of the welfare gain according to the legend shown to the right of the plots. The

region shown in dark blue and marked as “No Equilibrium Region”, represents values of (B1, γ)

for which no equilibrium exists for that particular B1. This is because, as we explained earlier,

at the given value of γ the government chooses to default on B1 for all values of g1, and thus

the debt market collapses. In this region, the value of α(B1, g1, γ) is not defined.

These intensity plots illustrate two of the key mechanisms driving the government’s distri-

butional incentives to default: First, fixing γ, higher levels of debt imply higher α(B1, g1, γ).

That is, the welfare gain of default is higher at higher levels of debt, or conversely the gain of

repayment is lower. Second, keeping B1 constant, α(B1, g1, γ) increases with γ, or conversely the

welfare gain of repayment is decreasing in γ. Hence, a higher concentration of wealth increases

the welfare gain of default. This implies that lower levels of wealth dispersion are necessary in

order to trigger default at higher levels of debt.12 For example, when the debt equals 20% of

GDP (B1 = 0.20) and g1 = g, if 0.15 < γ < 0.35 households are better off (in terms of utilitarian

social welfare) if the government defaults, since debt repayment would result in higher taxes

(for γ ≥ 0.35 there is no equilibrium at this level of B1).

The bottom panel in Figure 2 also displays a well-defined transition from a region in which

repayment is optimal (α(B1, g1, γ) < 0) to one where default is optimal (α(B1, g1, γ) > 0) before

moving into the no-equilibrium region. This differs from the top panel, in which the welfare

12Note that the cross-sectional variance of initial debt holdings is given by V ar(b) = B2 γ
1−γ

when bL0 = 0.

This implies that the cross-sectional coefficient of variation is equal to CV (b) = γ
1−γ

, which is increasing in γ for

γ ≤ 1/2.
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gain of default is never positive, so repayment is always optimal. This reflects clearly the fact

that higher levels of government expenditures also weaken the incentives to repay.

Figure 2: Social Welfare Gain of Default α(B1, g1, γ)

Figure 3 shows two panels with the optimal default decision organized in the same way as

the two panels of Figure 2. The plots separate the region where the government chooses to

repay (d(B1, g1, γ) = 0 shown in white), where it chooses to default (d(B1, g1, γ) = 1 in green)

and where the equilibrium does not exist (i.e. the region where the government would choose

to default for all levels of g1, in blue).

These plots illustrate the implications of the mechanisms highlighted in Figure 2 for the

default decision. The repayment region (d(B1, g1, γ) = 0) corresponds to the region with

α(B1, g1, γ) < 0. Hence, the government defaults at higher debt levels for a given value of

γ, or at higher values of γ for a given debt level. Moreover, the two plots show that when

g1 = g1 the government finds it optimal to default for combinations of γ and B1 for which it is

still optimal to repay when g1 = g
1
. Thus, default occurs over a wider set of (B1, γ) pairs at

higher levels of government expenditures, and thus it is also more likely to occur.
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Figure 3: Government default decision d(B1, g1, γ)

We can examine further the behavior of the default decision by computing the value of γ

such that the government is indifferent between defaulting and repaying in period 1 for a given

pair (B1, g1). These indifference thresholds (γ̂(B1, g1)) are plotted in Figure 4 against debt levels

ranging from 0 to 0.50 for three values of government expenditures {g, µg, g}. For any given

(B1, g1), the government chooses to default if γ ≥ γ̂ .

Figure 4: Default Threshold γ̂(B1, g1)
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Figure 4 shows that the default threshold is decreasing in B1. Hence, the government toler-
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ates higher debt ratios without defaulting only if wealth concentration is sufficiently low. Also,

default thresholds are decreasing in g1, because the government has stronger incentives to de-

fault when government expenditures are higher.13 This last feature of γ̂ is very important to

generate default at equilibrium. If, for a given value of B1, the threshold γ̂ is the same for all

values of g1, and γ is higher or equal than the threshold, the government chooses default for

all realizations of g1 at that B1, and as noted already, in this case there is no equilibrium. On

the other hand, if, for a given B1, the threshold is different for different realizations of g1, the

probability of default will be positive but strictly less than 1 when the initial wealth distribution

is in the interval γ ∈
[
γ̂(B1, g), γ̂(B1, g)

)
, so the price of government bonds can be positive and

the government can borrow B1 (i.e there is default with positive probability, but less than 1).

Figure 5: Equilibrium Tax Function τ
d(B1,g1,γ)
1

Figure 5 shows intensity plots of the equilibrium tax functions in period 1, also organized as

the intensity plots of Figure 2. These plots together with those in Figure 3 show an additional

distributional default incentive at work in the model via tax policy: Default entails lower taxation

than repayment as long as debt service is low enough. When the government chooses to default,

the tax is τ1 = g1, while in the repayment states taxes are given by τ1 = g1+B1. Since all agents

pay the same taxes, the lower taxes under default add to the distributional incentives. Figure 5

shows that, for given g1, the repayment scenarios with higher taxes are more likely when a large

13γ̂ approaches zero for B1 sufficiently large, but in Figure 4 B1 reaches 0.50 only for exposition purposes.
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fraction of households hold debt (low γ) and thus benefit from a repayment, or when the debt

is low so that the distributional incentives to default are weak. Moreover, equilibria with higher

taxes are far more likely to be observed at low than at high levels of government expenditures,

because default is far more like with the latter.

4.2.2 First period taxes, bond prices and decision rules for given B1

Figure 6 shows equilibrium bond prices for given values of B1 and their corresponding spreads.

Panel (i) shows q0(B1, γ) as a function of γ for three values of B1 (B1 ∈ {BL, BM , BH} with

BL < BM < BH and BM set to the value that we show later to be the optimal choice of the

government when γ = 0.5, which is denoted = B∗
1(γ = 0.5)). Panel (ii) shows the associated

default spreads or risk premia computed by defining the risk-free interest rate using equilibrium

bond prices obtained solving the model when the government is not allowed to default, but g1

remains stochastic. As explained earlier, at high enough values of γ, for a given B1, the model

cannot support an equilibrium with debt, and hence the bond price functions and spreads are

truncated when this is the case.

Figure 6: Equilibrium Bond Price
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The plots in Figure 6 illustrate three key features of public debt prices in the model:

(i) The equilibrium price is decreasing in B1 (the pricing functions shift downward as B1

rises). This follows from a standard demand-and-supply argument: For a given γ, as the gov-
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ernment borrows more, the price at which households are willing to demand more debt falls and

the interest rate rises. Moreover, since as we show later bL1 = 0 always holds in this calibration,

the marginal investors determining the bond price are the type-H households. Hence, the equi-

librium price must be consistent with the demand for bonds implied by their Euler equation,

which implies that, for any bH0 , as B1 increases, a lower q0 is needed to induce the rise in bH1 that

clears the bond market. Note that this effect is present even if we remove uncertainty from the

model (see the Appendix for proofs showing that q′(B1) < 0 with or without default risk in the

case of logarithmic utility).

(ii) Default risk reduces the price of bonds below the risk-free price and thus induces a risk

premium (see the Appendix again for a proof using logarithmic utility). This is reflected in

the spreads shown in panel (ii). For example, when B1,M and γ = 0.50 the default probability

equals 19.41% and the spread is about 40%. As noted earlier, spreads can be larger than default

probabilities because the government’s creditors are risk averse. Note that if for a given (B1, γ)

pair d(B1, g1, γ) = 0 for all realizations of g1, so that the default probability is zero, there is no

spread by definition, and also the spread is negligible and the prices with and without default

risk are nearly identical if the default probability is low (see Appendix for details).

(iii) Bond prices are a non-monotonic function of wealth dispersion: When default risk is

relatively low, bond prices are increasing in γ, but eventually they become a steep decreasing

function of γ. This is a subtle effect driven by how changes in γ affect the demand for government

debt v. the risk of default. Higher γ implies a more dispersed wealth distribution so that H-

type agents become a smaller fraction of the population, and hence they must demand a larger

amount of debt per capita in order to clear the bond market (i.e. bH1 increases with γ), which

pushes prices up. While default risk is low this demand composition effect dominates and thus

bond prices rise with γ, but as γ increases and default risk rises (since higher wealth dispersion

strengthens default incentives), the growing risk premium becomes the dominating force (at

about γ > 0.50) and produces bond prices that fall sharply as γ increases.

Figure 7 plots the date-0 equilibrium taxes as a function of γ for three levels of B1. Recall

that these taxes are derived from the date-0 government budget constraint. Since g0 and B0 are

being kept constant, all the variation in τ0 reflects the negative of the changes in the amount of

resources that access to the debt market provides to the government (−q0B1). Moreover, since

we are plotting τ0 for given B1, the tax variation shown in each curve captures only the effect of

the change in q0 (i.e. each of the plotted tax functions is a reflection of the corresponding price

function in Panel (i) of Figure 6 about the horizontal axis and stretched by a factor of B1). As

a result, taxes are decreasing in γ when bond prices are increasing and viceversa. The reasons

for this non-monotonicity are the same behind the non-monotonicity of bond prices explained
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above. Also, these tax functions are truncated at sufficiently high values of γ for the same reason

as the price functions (the model cannot support an equilibrium with debt).

Figure 7: Equilibrium Tax Policy τ0(B1, γ)
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Interestingly, and in contrast with Figure 6, Figure 7 shows a non-monotonicity of taxes also

with respect to the amount of debt. When wealth dispersion and default risk are relatively low

(γ ≤ 0.40), higher B1 reduces τ0. In this region, access to the public debt market allows the

government to smooth taxation and redistribute, by lowering taxes for everyone, which effectively

increases the relative cash-in-hand of L-type households more than for H-type households. As

γ and default risk increase, however, taxes have to increase as government debt rises, because

the available resources drawn from the debt market (q0(B1, γ)B1) decrease with bond prices.

The government would still like to issue government debt to smooth taxes at t = 0, but this

option is restricted by the default choice the government cannot commit to avoid at t = 1. If

the government could commit to repay, taxes in period 0 would be lower than those depicted in

Figure 7.

Figure 8 shows the households’ equilibrium bond demand decision rules (for given B1) plotted

in the same layout as the bond prices and taxes (i.e. as functions of γ for three values of B1).

This figure shows that in all cases L-type agents are credit constrained (in the sense that their

Euler condition holds with inequality) and choose zero bond holdings. Hence, the equilibrium

decision rules satisfy bL1 = 0 and bH1 = B1

1−γ
. This also means that the H-type households are

the “marginal” investor for the pricing of government bonds. As a result, the convexity of their
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bond decision rules reflects the effects of wealth dispersion on demand composition and default

risk explained earlier. In particular, as γ increases, the demand for bonds of H types grows

at an increasing rate, reflecting the combined effects of higher per-capita demand by a smaller

fraction of H-type agents and a rising default risk premium.

Figure 8: Equilibrium HH bond decision rules bi1
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4.2.3 Full Equilibrium with Optimal Government Debt

Finally, given the solutions for household decision rules, tax policies, bond pricing function

and default decision rule, we can solve for the government’s optimal choice of debt issuance

in period 0 (i.e. the optimal B1 that solves problem (14)) for a range of values of γ. We can

then go back and identify the equilibrium values of the rest of the model’s endogenous variables

that are associated with each optimal debt choice. Figure 9 shows four key components of this

equilibrium: Panel (i) presents the optimal debt issuance in the benchmark model and in an

alternative model with no default risk (i.e. a model where the government chooses risk-free

debt BRF
1 (γ) being committed to repay); Panel (ii) shows the prices at which the equilibrium

debt levels in the benchmark and the risk-free alternative are sold; Panel (iii) shows the default

spreads; and Panel (iv) shows the probability of default. Debt levels marked with a square in

Panel (i) are those that correspond to equilibria with a positive default probability. This occurs
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for γ ≥ 0.65, which includes the empirically relevant range (0.55 < γ < 0.85).

Figure 9: Equilibrium Optimal Government Debt Policy
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Panel (i) shows that optimal debt issuance falls as γ increases in both the benchmark model

with default risk and the model with commitment to repay. This occurs because, as explained

in Section 3, in both cases the government is seeking to reallocate consumption across agents

and across periods by altering the product q(B1)B1 optimally, and in doing this it internalizes

the response of bond prices to its choice of debt. Hence, the government knows that as γ rises

and the demand composition effect strengthens demand for bonds, pushing for higher prices,

it can actually attain a higher q(B1)B1 by choosing lower B1, because doing so contributes to

higher bond prices.

Panel (i) also illustrates that default risk has significant implications for the optimal debt

choice. In particular, the risk of default reduces sharply the optimal choice of B1, and changes

the negative relationship between B1 and γ from concave without default risk to convex with

default risk. As expected, a higher level of wealth concentration strengthens default incentives
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and leads the government to optimally choose lower B1, after taking into account the risk of

domestic default and its distributional implications.

In the range of empirically relevant values of γ, optimal debt ratios range from 5 to 10%,

which is relatively low compared with the calibrated debt ratio of 35 percent for γ = 0.7 in

the model without default risk. Still, the predicted debt ratios about 1/7 to 1/3 of the data

average are notable given the important limitations of this simple two-period setup in trying to

match time-series dynamics of public debt and macro-aggregates. In particular, the model lacks

income- and tax-smoothing effects and self-insurance incentives that are likely to be strong in

a longer time horizon (see Aiyagari and McGrattan (1998)), and, as explained earlier, it has an

upper bound on the optimal debt choice for γ = [0, 1] lower than B0/(1+β) (which is the upper

bound as γ → 0 in the absence of default risk). Moreover, since the model was calibrated to

produce B1 = 0.35 without default risk and the risk of default lowers the optimal debt choice,

it must be that for γ ≥ 0.7 it predicts debt below 0.35.

Panel (i) also illustrates an interesting testable empirical prediction of the model, indicating

a negative conditional relationship between public debt ratios and inequality in the distribution

of public debt holdings. This relationship is conditional on the structure of the model and the

parameters held constant as γ varies in Figure 9.

Panel (ii) shows that bond prices of the equilibrium debt levels range from very low to very

high as the value of γ rises (including even prices sharply above 1 that imply negative real

interest rates on public debt). The behavior of these prices is consistent with the mechanisms

driving bond prices described earlier: When default risk is low (for γ < 0.8), the prices rise

with γ, because in this range an increase in γ triggers two effects that push for higher bond

prices: the demand composition effect, as the per-capita demand for bonds of H-types rises with

γ, and the sharply reduced supply of bonds that the government finds optimal to provide as

default incentives strengthen, even tough it may optimally choose not to default at t = 1 for

any realization of g1. The latter can be observed in that for γ < 0.65 the default probability is

zero (see Panel (iv)), which implies prices that are identical with and without default and zero

spreads (see Panel (iii)).

In the range γ ≥ 0.8 the bond prices at which the optimally chosen debt sells become a

sharply decreasing function of γ, because here the default incentives are strong and make default

risk high. Default probabilities are low in the two equilibria with positive default probability

inside the empirically relevant range of γ, at about 4 percent for γ = 0.65, 0.75, and rise sharply

to above 60 percent for γ ≥ 0.8. The lower default probabilities produce prices slightly below

the risk-free prices and spreads close to 4% in the plausible range of γ, while at the higher

default probabilities the spreads become very large.
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Figure 10 combines the wealth concentration default thresholds γ̂(B1, g1) of Figure 4 with

the optimal debt choices B1(γ) plotted in Figure 9 (inverted) in order to illustrate how the model

selects equilibria in which the optimal debt has also positive default probability. Consider first

the default thresholds. Recall that these are decreasing in g1, and in Figure 10 the lowest

default threshold curve (shown as the red, dashed curve) is associated with the highest possible

realization of g1. It follows, therefore, that if for a given γ in the vertical axis the optimal debt

choice curve (the light blue curve) lies below this lowest default threshold curve, the government

chooses at t = 0 an optimal debt that it repays for sure at t = 1. This is because that given

γ will be lower than the corresponding default threshold. As can be observed, this is the case

for all γ < 0.65, which explains why in Panel (i) all the optimal debts chosen for γ < 0.65 have

zero default risk.

Figure 10: Default Threshold, Debt Policy and Equilibrium Default
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Consider now that as we move from the highest realization of g1 to lower values, the default

threshold curves shift out up to the furthest out curve shown in the Figure (shown in dark blue),

which corresponds to the lowest realization of g1. We can observe that as we move into the range

γ > 0.65, the optimal debt choice moves into the area in between the threshold curves for the

lowest and highest realizations of g1. This is required for a positive default probability to exist.

For example, for a γ > 0.8, the government has chosen a debt amount such that if the realization
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of g1 is sufficiently high, it will imply that γ is higher than at least the lowest default threshold

curve, and thus the government will default if that g1 occurs. Moreover, the default probability

will be higher the closer the optimally chosen debt is to the highest default threshold curve,

because if it passes above it, it would imply that the government will choose to default at t = 1

for all possible realization of g1, even the lowest. As the optimal debt curve approaches this

boundary, default is becoming optimal for lower and lower values of g1 and thus the probability

of default is increasing as default is chosen for more of the support of the distribution of g1.

To summarize: In order for the model to generate default in equilibrium at a given level of

γ, the optimal debt choice B1(γ) needs to be located in between γ̂(B1, g) and γ̂(B1, g). If the

γ that generates B1(γ) lies below γ̂(B1, g), there is no equilibrium default risk, since the wealth

dispersion is lower than required to obtain a default even at the highest value of g1. On the

other hand, we will never observe B1(γ) above the value of γ̂(B1, g), because this means that the

government defaults with certainty, even at the lowest g1. As explained earlier, in this case the

equilibrium does not exist. Values of B1(γ) that lie in between γ̂(B1, g) and γ̂(B1, g) correspond

to cases where there is equilibrium default risk. In these cases, the default probability is higher

than zero but lower than 1, the equilibrium bond price is well defined, and defaults can be

observed in equilibrium for some values of g1.

5 Sensitivity Analysis & Extensions

This Section presents the results of a set of counterfactuals that shed more light on the workings

of the model and also the results of the political economy extension of the benchmark model.

The counterfactuals focus on changes in the initial levels of government debt and expenditures

and in the cost of default. The political economy extension introduces a non-utilitarian planner,

with the aim of capturing some of the political economy mechanisms that could be at work in

domestic defaults in a simple way.

5.1 Sensitivity Analysis

The sensitivity analysis studies how our main results are affected by changes in the initial debt

B0, initial government expenditures g0, and the cost of default parameter φ0.
14

14We also experimented with changes in pg but with omit them because they did not change significantly the
benchmark results.
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5.1.1 Initial Debt Level B0

Figure 11 uses the same layout of Figure 9 to compare the optimal government debt and associ-

ated equilibrium bond prices, spreads and default probability under the benchmark initial debt

(B0 = B0,M = 0.935) and values that are 20% lower and higher (B0,L = 0.748 and B0,H = 1.12

respectively).

Figure 11: Changes in Initial Government Debt B0
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Panel (i) shows that the optimal debt choice is slightly increasing in B0. The government

tries to smooth taxes by issuing more debt as the initial debt level raises, but in all cases the

incentives to default continue to strengthen as γ rises, and this leads the government to choose

lower debt levels. Smaller debts have to be chosen also because the risk of default also shrinks

the set of debt amounts that can be supported at equilibrium as B0 rises. For instance, for

γ > 0.85 the equilibrium does not exist when B0 = B0,H but it exists at lower values of B0.
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Panels (ii)-(iv) show that at the equilibrium debt level, bond prices are higher for higher

B0 as long as default risk is not too high (i.e. for values of γ in the range in which bond prices

for the optimally chosen debt are increasing in γ). This is because higher initial debt increases

the initial wealth of H-type agents (bH0 ), and in turn this requires a higher bond price to clear

the market. This effect is stronger than two other effects that push bond prices in the opposite

direction: First, the slightly higher optimal debt B1 supplied at higher levels of B0. Second, the

lower disposable income of households resulting from the higher date-0 taxes needed to repay

higher levels of B0, which reduces demand for bonds. In contrast, at sufficiently high γ default

risk becomes the main determinant of bond prices, making them fall sharply with B0 = B0,M

and B0 = B0,H . In the case with B0 = B0,L, however, default risk is always negligible, and hence

equilibrium bond prices always rise with γ

5.1.2 Initial Government Expenditures g0

Figure 12 compares the optimal government debt and associated equilibrium bond prices, spreads

and default probability under the benchmark initial value of g0 = µg = 0.181 and two alternatives

that are 1.5 standard deviations above and below it, denoted g0,L = 0.171 and g0,H = 0.192

respectively. The curve for the benchmark spread in panel (iii) is truncated at the top so as to

make visible the differences in spreads in these two scenarios.

Like changes in B0, changes in g0 affect date-0 disposable income via their effect on date-0

taxes. They differ, however, in two key respects: First, changes in g0 affect the expected level of

government expenditures for t = 1, as reflected in changes in the transition probabilities which

are conditional on g0. Second, changes in g0 cannot affect the aggregate wealth of the economy

and the initial bond holdings of H-type agents.

Figure 12 shows that the effects of changes in g0 are not symmetric, even though we chose

symmetric deviations above and below g0. Increases in g0 produce small differences in the

optimally chosen debt B1(γ), except that as γ rises above 0.8 the benchmark case can support

equilibria with debt but the scenario with g0,H cannot. Even tough optimal debt is similar with

the benchmark and high values of g0 in the range of γ in which both exist, the scenario with

high g0,H does not support equilibria with positive default probability. In this scenario, for

γ ≥ 0.8 default is certain to occur and this prevents the government from issuing any debt for

which spreads are positive, and for lower γ the government does not choose to default at any

realization of g1.

In the alternative scenario in which g0 is lower than the mean, the optimally chosen debt is

higher than in the benchmark. A reduction in g0 allows the government to issue more debt in

the initial period because the likelihood of hitting states in which default occurs in the second
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period is lower. As we observe in Panels (ii)-(iv), this increase in the optimal debt results in

higher default probabilities, lower bond prices and higher spreads in the g0,L case relative to the

benchmark, except for high values of γ where default risk has a stronger effect on bond prices

in the benchmark case.

Figure 12: Changes in Initial Government Expenditures g0
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5.1.3 Cost of Default φ0

Panels (i) − (iv) in Figure 13 compare the optimal government debt, bond prices, spreads and

default probability for the benchmark value of the default cost parameter (φ0 = 0.0075) with

a scenario with φ0,L = 0 (i.e. no default cost for cases where g1 > µg) and a case in which the

parameter is twice the size of the benchmark value (φ0,H = 0.015).

Panel (i) in Figure 13 shows that as the cost of default increases the government gains access

to higher levels of optimal debt that allow it to smooth taxes across periods much better than

in the benchmark (even for relatively high levels of γ). This increases in the level of debt are

associated with slightly lower bond prices in the range of γ in which default risk is low and

prices are increasing in γ(see Panel (ii)). On the other hand, for a lower cost of default, the

government issues less debt, partly because the set of possible values of B1 is constrained by

default risk. Panel (ii) shows that despite this lower debt, bond prices are lower than in the
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benchmark. This is because with higher default costs, the lower optimally chosen debt levels

carry higher default probabilities, as shown in in Panel (iv), which in turn are reflected in much

larger spreads (see Panel (iii)). Interestingly, while the three different values of phi0 produce

different optimal debt levels, bond prices, default probabilities and spreads when γ is below

0.8, in all three scenarios default risk rises very rapidly for γ > 0.8 and produces sharply lower

prices, higher default probabilities and large spreads.

Figure 13: Changes in Cost of Default φ0
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5.2 Political Economy Extension

In this extension of the model the weights of the government’s payoff function do not necessarily

match the wealth distribution. This can be viewed as a situation in which, for political reasons

or related factors, the government does not maximize a standard social welfare function. The

government’s welfare weights on L- and H-type households are denoted ω and (1−ω) respectively,

and we refer to ω as the government’s preference for redistribution.
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5.2.1 A Government with Preference for Redistribution

The government’s default decision optimization problem at t = 1 is:

max
d∈{0,1}

{
W d=0

1 (B1, g1, γ, ω),W
d=1
1 (g1)

}
, (16)

whereW d=0
1 (B1, g1, γ, ω) andW d=1

1 (g1) denote the government’s payoffs in the cases of no-default

and default respectively. Using the government budget constraints to substitute for τd=0
1 and

τd=1
1 , the government payoffs can be expressed as:

W d=0
1 (B1, g1, γ, ω) = ωu(y − g1 + bL1 − B1) + (1− ω)u(y − g1 + bH1 −B1) (17)

and

W d=1
1 (g1) = u(y(1− φ(g1))− g1). (18)

Combining the above payoff functions we get a similar default condition as before but with

ω in the place of γ:

ω


u(y − g1 +

≤0︷ ︸︸ ︷
(bL1 − B1))− u(y(1− φ(g1))− g1)


+

(1− ω)


u(y − g1 +

≥0︷ ︸︸ ︷
(bH1 −B1))− u(y(1− φ(g1))− g1)


 ≤ 0

We follow the same approach as before to characterize the optimal default decision graph-

ically. The parameter ǫ is used again to represent the dispersion of hypothetical decentralized

consumption allocations under repayment: cL(ǫ) = y−g1−ǫ and cH(γ, ǫ) = y−g1+
γ

1−γ
ǫ. Under

default the consumption allocations are again cL = cH = y(1 − φ(g1)) − g1. Recall that under

repayment, the dispersion of consumption across agents increases with ǫ, and under default there

is zero consumption dispersion. The repayment government payoff can now be rewritten as:

W d=0(ǫ, g1, γ, ω) = ωu(y − g1 + ǫ) + (1− ω)u

(
y − g1 +

γ

1− γ
ǫ

)
.

As in the model of Section 2, the planner chooses its optimal consumption dispersion ǫSP as

the value of ǫ that maximizes (5.2.1). Since as of t = 1 the only instrument the government can

use to manage consumption dispersion relative to what the decentralized allocations support is

the default decision, it will repay only if doing so allows it to get closer to ǫSP than by defaulting.
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The planner’s optimality condition is now:

u′(cH1 )

u′ (cL1 )
=

u′
(
y − g1 +

γ
1−γ

ǫSP
)

u′ (y − g1 − ǫSP )
=

(
ω

γ

)(
1− γ

1− ω

)
. (19)

This condition implies that optimal consumption dispersion for the planner is zero only if ω = γ.

For ω > γ the planner likes consumption dispersion to favor L types so that cL1 > cH1 , and the

opposite holds for ω < γ.

One key difference in this extension of the model is that it can support equilibria with debt

subject to default risk even without default costs. Assuming φ(g1) = 0, there are two possible

scenarios depending on the relative size of γ and ω. First, if ω ≥ γ, the planner still always

chooses default as in the setup of Section 2. This is because for any decentralized consumption

dispersion ǫ > 0, the consumption allocations feature cH > cL, while the planner’s optimal

consumption dispersion requires cH ≤ cL, and hence ǫSP cannot be implemented. Default

brings the planner the closest it can get to the payoff associated with ǫSP .

In the second scenario ω < γ. In this case, the model can support equilibria with debt even

without default costs. In particular, there is a threshold consumption dispersion ǫ̂ such that

default is optimal for ǫ ≥ ǫ̂, where ǫ̂ is the value of ǫ at which W d=0
1 (ǫ, g1, γ, ω) and W d=1

1 (g1)

intersect. For ǫ < ǫ̂, repayment is preferable because W d=0
1 (ǫ, g1, γ, ω) > W d=0

1 (g1). Thus,

without default costs, equilibria for which repayment is optimal require two conditions: (a) that

the government’s preference for redistribution be smaller than the fraction of L-type agents

(ω < γ), and (b) that the debt holdings chosen by private agents do not produce consumption

dispersion in excess of ǫ̂.

Figure 14 illustrates the outcomes described above. This Figure plots W d=0
1 (ǫ, g1, γ, ω) for

ω R γ. The planner’s default payoff and the values of ǫSP for ω R γ are also identified in the

plot. The vertical intercept of W d=0
1 (ǫ, g1, γ, ω) is always W d=1(g1) for any values of ω and γ,

because when ǫ = 0 there is zero consumption dispersion and that is also the outcome under

default. In addition, the bell-shaped form of W d=0
1 (ǫ, g1, γ, ω) follows from u′(.) > 0, u′′(.) < 0.15

15Note in particular that
∂Wd=0

1
(ǫ,g1,γ,ω)
∂ǫ

R 0 ⇐⇒ u′(cH(ǫ))
u′(cL(ǫ)) R (ω

γ
)( 1−γ

1−ω
). Hence, the planner’s payoff is

increasing (decreasing) at values of ǫ that support sufficiently low (high) consumption dispersion so that u′(cH(ǫ))
u′(cL(ǫ))

is above (below) (ω
γ
)( 1−γ

1−ω
).
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Figure 14: Default decision with non-utilitarian planner (φ = 0)
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Take first a scenario with ω > γ. In this case, the planner’s payoff under repayment is

the dotted bell curve shown in green. Here, ǫSP < 0, because condition (19) implies that the

planner’s optimal choice features cL > cH . Since default is the only instrument available to the

government, however, these consumption allocations are not feasible, and by choosing default

the government attains W d=1, which is the highest feasible government payoff for any ǫ ≥ 0. In

contrast, in a scenario with ω = γ, for which the planner’s payoff function is the red, dashed bell

curve, the planner would choose ǫSP = 0, and default attains exactly the same payoff, so default

is chosen. In short, if the fraction of L-type agents does not exceed the planner’s preference for

redistribution (i.e. ω ≥ γ), the government always defaults for any decentralized distribution of

debt holdings determined by ǫ > 0 and thus equilibria with debt cannot be supported.

In the third scenario with ω < γ, for which the planner’s payoff is the blue bell curve, the

intersection of the downward-sloping segment of W d=0
1 (ǫ, g1, γ, ω) with W d=1 determines the

default threshold ǫ̂ such that default is optimal only in the default zone where ǫ ≥ ǫ̂. Default is

still a second-best policy for the planner, because with it the planner cannot attain W d=0(ǫSP ),

it just gets the closest it can get. In contrast, the choice of repayment is preferable in the

repayment zone where ǫ < ǫ̂,, because in this zone W d=0
1 (ǫ, g1, γ, ω) > W d=1(g1).

Scenarios that would feature ω < γ are not difficult to visualize. Consider, for example,

a social planner with weights that follow from the first-best, complete-markets equilibrium, in

which the distribution of wealth matches the tail value of the agent’s endowments priced with
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Arrow securities. If both types of agents were ex-ante identical, then the social planner’s weights

that would support the first-best competitive equilibrium would be ω = 0.5, which implies a

uniform distribution of wealth and equal consumption for both agent types. On the other hand,

the decentralized distribution of wealth γ that would result from having the same agents trade

in some incomplete-markets environment (e.g. the stationary wealth distribution of a Bewley

economy), would generally feature more L than H types (γ > 0.5). The planner of our example

would then choose to support an optimal amount of consumption dispersion such that cL/cH=[(
ω
γ

) (
1−γ
1−ω

)] 1

σ

< 1.

Consider next the case with default costs, φ(g1) > 0. Here, it is possible to support repayment

equilibria even when ω ≥ γ. As Figure 15 shows, there are thresholds value of consumption

dispersion, ǫ̂, separating repayment from default zones for ω >=< γ, whereas in the previous

Figure this was only the case for ω < γ.

Figure 15: Default decision with non-utilitarian planner when φ(g1) > 0
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It is also evident in Figure 15 that the range of values of ǫ for which repayment is chosen

widens as γ rises relative to ω. Thus, when default is costly, equilibria with repayment require

only the condition that the debt holdings chosen by private agents, which are implicit in ǫ, do

not produce consumption dispersion larger than the value of ǫ̂ associated with a given (ω,γ)

pair. Intuitively, the consumption of H-type agents must not exceed that of L-type agents by

more than what ǫ̂ allows. If it does, the preference for redistribution of the planner takes over,
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and default is optimal.

5.2.2 Quantitative Results

We discuss next a set of quantitative results for this extension of the model with the same set

of calibrated parameter values shown in Table 1 and a range of values of ω. First we examine

the planner’s welfare gain of default (α(B1, g1, γ, ω)), which is constructed in the same way as

before, starting with the welfare gains of default for H- and L-type agents and aggregating them

using the planner’s payoff function. The only differences are in that now all the welfare measures

are also functions of ω and the planner’s payoff uses ω to weight the agents’ utilities.

Figure 16 shows how the planner’s welfare gain of default varies with ω and γ for two different

levels of government debt (B1,L = 0.07 and B1,H = 0.19). The no-equilibrium region, which

exists for the same reasons as before, is shown in dark blue. In this region, at the given values of

γ and ω the government chooses to default on B1 for all values of g1 and thus the debt market

collapses.

Figure 16: Planner’s welfare gain of default α(B1, g1, γ, ω)
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In line with the previous discussion, within the region where the equilibrium is well defined,
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the planner’s value of default increases monotonically as its preference for redistribution (ω)

increases, keeping γ constant, and falls as actual wealth concentration (γ) rises, keeping ω

constant. Because of this, the north-west and south-east corners in each of the panels present

cases that are at very different positions on the preference-for-default spectrum. When ω is low,

even for very high values of γ, the government prefers to repay (north-west corner), because the

government puts relatively small weight on L-type agents. On the contrary, when ω is high,

even for low levels of γ, a default is preferred. The two panels also show that for the two values

of B1 considered, the government prefers repayment instead of default when ω = γ, because this

exercise still has the default cost as calibrated in Section 4. It is also interesting to note that

as we move from Panel (i) to Panel (ii), so that debt increases, the set of γ’s and ω’s such that

the equilibrium exists or repayment is preferred (i.e. a negative α(B1, g1, γ, ω)) shrinks. For

example, for ω = 0.40, the equilibrium exists for γ > 0.10 when B1 = B1,L, while it exists only

for γ > 0.25 if B1 = B1,H .

Figure 17 shows the default decision rule induced by the planner’s welfare gains of default,

again as a function of ω and γ for the same two values of B1. The region in white corresponds

to cases where d(B1, g1, γ, ω) = 0, the green region corresponds to d(B1, g1, γ, ω) = 1 and the

blue region corresponds to cases in which there is no equilibrium.

Figure 17: Default Decision Rule d(B1, g1, γ, ω)

In line with the pattern of the government’s welfare gains of default presented in Figure 16,

this Figure shows that when the government’s preference for redistrbution is high enough, the
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government chooses default, and for a given ω the default region is larger the more dispersed is

the wealth distribution (lower γ). Taxes and prices for given values of B1 and ω are linked to

the default decision and γ as in the benchmark model and the intuition behind their behavior

is straightforward. Since the main novelty of this extension arises from how changes in ω affect

government policies for given values of γ, we chose not show them here in order to keep the

discussion brief.

Figure 18: Equilibrium Debt, Prices and Default Probability for different ω
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Panels (i) − (iv) in Figure 18 display three scenarios for the optimal debt levels chosen

by the government in the first period and the associated equilibrium bond prices, spreads and

default probabilities all as functions of γ. The scenario with ω = γ, shown in blue, is just the

baseline case of Section 4, and the other two scenarios consider cases in with the preference for

redistribution is low (ω = ωL = 0.32, shown in red) and high (ω = ωH = 0.68, shown in green)

to illustrate how the model’s predictions are affected by arbitrary changes in planner’s weights.

It is important to note that along the benchmark case both ω and γ vary together because they

are always equal, while in the other two scenarios ω is fixed and γ varies. For this reason, the

line corresponding to the ωL case intersects the benchmark solution when γ = 0.32, and the one
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for ωH intersects the benchmark when γ = 0.68.

Figure 18 shows that the optimal debt level is increasing in γ until γ becomes larger than

0.5 for the ωL case and 0.9 for the ωH case. This is because, following the analysis illustrated in

Figure 15, the incentives to default grow weaker and the repayment zone widens as γ increases

for a fixed value of ω. Moreover, the demand composition effect of higher γ is still present,

so along with the lower default incentives we still have the increasing per capita demand for

bonds of H types. Together these effects drive the increase in the optimal debt choice of the

government. Note, however, that the mechanism wears off around γ = 0.5, with a 40% debt

ratio, for ωL, and γ = 0.9, with a 30% debt ratio, for ωH .

In this model with preference for redistribution, the government is still aiming to optimize

debt focusing on the resources it can reallocate across periods and agents, which are determined

by q(B1)B1, and internalizing the response of bond prices to debt choices.16 This relationship,

however, behaves very differently than in the benchmark model, because now higher optimal

debt is carried at increasing equilibrium bond prices, which leads the planner internalizing the

price response to choose higher debt, whereas in the benchmark model lower optimal debt

was carried at increasing equilibrium bond prices, which led the planner internalizing the price

response to choose lower debt. In the empirically relevant range of γ, and for values of ω lower

than those in that γ range, this model can sustain significantly higher debt than the model with

utilitarian payoff, and close to the observed European average. In the case with ωH , if γ is near

0.8 the government chooses a 20 percent debt ratio that has a 5 percent probability of default.

With that same γ, the planner with ωL chooses a debt ratio of 40 percent with a negligible

default probability.

Similar mechanisms to those explained above account for the fact that, for a given ω, bond

prices are first increasing in γ and then decreasing, as the demand composition effect first

dominates and then is dominated by the increasing bond supply and eventually by default risk.

Spreads are increasing in ω and maintain the property that they are increasing in γ as in the

benchmark.

6 Conclusions

This paper proposes a framework in which domestic sovereign default and public debt subject

to default risk emerge as an equilibrium outcome. In contrast with standard models of sovereign

debt, this framework highlights the role of wealth heterogeneity and the distributional effects of

16When choosing B1, the government takes into account that higher debt increases disposable income for
L-type agents in the initial period but it also implies higher taxes in the second period (as long as default is not
optimal). Thus, the government is willing to take on more debt when ω is lower.
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default across domestic agents in shaping the government’s default incentives. These are features

common to both historical domestic default events and the ongoing European debt crisis.

The framework we developed consists of a two-period model with high- and low-wealth

agents, non-insurable aggregate uncertainty in the form of shocks to government expenditures

and default risk, and a utilitarian government who sets debt, taxes and the default decision

responding to distributional incentives. The government is aware of its inability to commit,

and chooses how much debt to issue optimally, taking into account how the debt chosen in the

first period influences the second period’s default incentives and default probability, and the

feedback of these two into the first period’s equilibrium price of government bonds and default

risk spreads.

In this environment, the distribution of public debt across private agents interacts with the

government’s optimal default, debt issuance and tax decisions. Default is optimal when repaying

hurts relatively poor agents more than defaulting hurts relatively rich agents, and this happens

at optimally-chosen debt ratios if the ownership of public debt is sufficiently concentrated and

government expenditures are relatively high. Under these conditions, the government values

more the social costs implied by the increased taxation that is needed to both service the debt

and pay for government expenditures than the costs associated with wiping out assets owned by

the high-wealth agents. We also showed, however, that distributional incentives alone cannot

support equilibria with debt, but that these can be supported introducing default costs or a

planner with non-utilitarian welfare weights.

Quantitative results based on a calibration to European data show that sustainable debt

falls and default risk rises as the level of wealth concentration rises. Because of default risk,

sustainable debt is much lower than when the government is committed to repay (at the same

levels of wealth inequality). In the range of observed ratios of the fraction of agents who own

government bonds, the model supports debt ratios of about 1/3rd of the average European debt

ratio at spreads close to 400 basis points.

In what we labeled the political economy extension, a non-utilitarian planner displays a pref-

erence for redistribution reflected in the weight it gives to low-wealth agents. Sustainable debt

becomes an increasing function of wealth inequality, instead of decreasing as in the utilitarian

benchmark. This is because incentives to default are weaker when the government’s preference

for redistribution falls increasingly below wealth inequality. In this setup, optimal debt cho-

sen in the observed range of wealth inequality measures can easily exceed those supported in

the utilitarian benchmark by wide margins, and can be of similar magnitude as the European

average with a default probability of about 5 percent.

We see this model as a simple blueprint for further research into models of domestic sovereign
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default driven by distributional incentives and their interaction with agent heterogeneity and

incomplete insurance markets. The two-period environment is a very useful starting point

because of the ease with which it can be analyzed and solved, but it also imposes limitations

on attempts to bring the model to the data. In particular, self-insurance motives, which the

literature shows can produce significant welfare benefits for the existence of public debt markets

(see Aiyagari and McGrattan (1998)), are minimized by the two-period life horizon. In an

infinite horizon model, this mechanism could produce a large, endogenous cost of default that

may support the existence of public debt subject to default risk without exogenous costs of

default and/or political economy considerations. In work in progress we are looking into this

possibility.
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A1 Appendix: The Model without Default Risk and Log-

arithmic Utility

This Appendix derives solutions for a version of the model in which low-wealth (L) types do not

hold any bonds and high-wealth (H) types buy all the debt. We cover first the fully deterministic

case, without any shocks to income or government policies, and no default risk, but government

expenditures may be deterministically different across periods. Government wants to use debt

to relocate consumption across agents and across periods optimally given a utilitarian welfare

function. Ruling out default on initial outstanding debt, the planner trades off the desire to

use debt to smooth taxation for L types (reduce date-0 taxes by issuing debt) against the cost

of the postponement of consumption this induces on H types who save to buy the debt. Log

utility provides closed form solutions. The goal is to illustrate the mechanisms that are driving

the model when default risk and stochastic government purchases are taken out. Later in the

Appendix we derive some results for the model with stochastic government purchases, and make

some inferences for the case with default risk.

A1.1 Fully deterministic model

A1.1.1 Households

A fraction γ of agents are L types, and 1− γ are H types. Preferences are:

ln(ci0) + β ln(ci1) for i = L,H (A.1)

Budget constraints are:

cL0 = y − τ0, cH0 = y − τ0 + bH0 − qbH1 (A.2)

cL1 = y − τ1, cH1 = y − τ1 + bH1 (A.3)

Since L types do not save, the solution to their problem is trivial: they can only consume

what their budget constraints allow. This is important because altering taxes affects disposable

income, which will in turn affect the optimal debt choice of the government. For H types, the

Euler equation is:

q = β
cH0
cH1

(A.4)

For L types, in order to make the assumption that they hold no assets consistent at equilibrium,

it must be the case that they are credit constrained (i.e. they would want to hold negative
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assets). That is, at the equilibrium price of debt their Euler equation for bonds would satisfy:

q > β
cL0
cL1

(A.5)

A1.1.2 Government

The government budget constraints are:

τ0 = g0 +B0 − qB1 (A.6)

τ1 = g1 +B1 (A.7)

The initial debt B0 ≥ 0 is taken as given and the government is assumed to be committed to

repay it.

The social planner seeks to maximize this utilitarian social welfare function:

γ(ln(cL0 ) + β ln(cL1 )) + (1− γ)(ln(cH0 ) + β ln(cH1 )) (A.8)

A1.1.3 Competitive equilibrium in the bond market

A competitive equilibrium in the bond market for a given supply of government debt B1 is given

by a price q that satisfies the market-clearing condition of the bond market: bH1 = B1/(1− γ) .

By construction the same condition is assumed to hold for the initial conditions bH0 and B0.This

implies that the initial wealth of H-types is given by bH0 = B0/(1− γ).

Rewriting the Euler equation of H types using the budget constraint, the government budget

constraints and the bond market-clearing conditions yields:

q = β
y − g0 +

(
γ

1−γ

)
B0 − q

(
γ

1−γ

)
B1

y − g1 +
(

γ
1−γ

)
B1

(A.9)

Hence, the equilibrium price of bonds for a given government supply is:

q(B1) = β
y − g0 +

(
γ

1−γ

)
B0

y − g1 +
(

γ
1−γ

)
(1 + β)B1

(A.10)

Note that this price is not restricted to be lower than 1 (i.e. q(B1) > 1 which implies a

negative real rate of return on government debt can be an equilibrium outcome). In particular,

as γ rises the per capita bond demand of H-types increases and this puts upward pressure on
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bond prices, and even more so if the government finds it optimal to offer less debt than the

initial debt, as we showed numerically and explain further below. As γ → 1, the limit of the

equilibrium price goes to q(B1) =
β

1+β
B0

B1

even tough market-clearing requires the demand of the

infinitesimal small H type to rise to infinity.

After some simplification, the derivative of this price is given by:

q′(B1) =
−q(B1)

(
γ

1−γ

)
(1 + β)

[
y − g1 +

(
γ

1−γ

)
(1 + β)B1

] (A.11)

which at any equilibrium with a positive bond price satisfies q′(B1) < 0 (notice cH1 > 0 implies

that the denominator of this expression must be positive).

Consider now what happens to this equilibrium as the fraction of L-types vanishes. As

γ → 0, the economy converges to a case where there is only an H type representative agent,

and the price is simply q(B1) = β y−g0
y−g1

, which is in fact independent of B1 and reduces to β if

government purchases are stationary. Trivially, in this case the planner solves the same problem

as the representative agent and the equilibrium is efficient. Also, for an exogenously given B0

and stationary g, the competitive equilibrium is stationary at this consumption level:

ch = y − g +

(
γ

1− γ

)
B0

1 + β
(A.12)

and the optimal debt is:

B1 =
B0

1 + β
(A.13)

Hence, in this case consumption and disposable income each period are fully stationary, yet the

optimal debt policy is always to reduce the initial debt by the fraction 1/(1 + β). This is only

because of the two-period nature of the model. With an infinite horizon, the same bond price

would imply that an equilibrium with stationary consumption and an optimal policy that is

simply B1 = B0. It also follows trivially that carrying no initial debt to start with would be

first-best, using lump-sum taxation to pay for g.

A1.1.4 Optimal debt choice

The government’s optimal choice of B1 in the first period solves this maximization problem:

max
B1

{
γ [ln (y − g0 −B0 + q(B1)B1) + β ln (y − g1 − B1)]

+(1− γ)
[
ln
(
y − g0 +

(
γ

1−γ

)
B0 − q(B1)

(
γ

1−γ

)
B1

)
+ β ln(y − g1 +

(
γ

1−γ

)
B1)
]
}

(A.14)
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where q(B1) = β
y−g0+( γ

1−γ )B0

y−g1+( γ

1−γ )(1+β)B1

.

The first-order condition is:

γ
[
u′(cL0 ) [q

′(B1)B1 + q(B1)]− βu′(cL1 )
]

(A.15)

+(1− γ)

(
γ

1− γ

)[
−u′(cH0 ) [q

′(B1)B1 + q(B1)] + βu′(cH1 )
]
= 0

Using the Euler equation of the H types and simplifying:

u′(cL0 ) +

[
u′(cL0 )q(B1)− βu′(cL1 )

q′(B1)B1

]
= u′(cH0 ) (A.16)

This expression is important, because it defines a wedge between equating the two agents’

marginal utility of consumption that the planner finds optimal to maintain, given that the only

instrument that it has to reallocate consumption across agents is the debt. Notice that, since as

noted earlier for L types to find it optimal to hold zero assets it must be that they are ”credit

constrained,” their Euler equation implies that at the equilibrium price: u′(cL0 )q(B1)−βu′(cL1 ) >

0. Hence, the above optimality condition for the planner together with this condition imply that

the optimal debt choice supports u′(cL0 ) > u′(cH0 ) or c
H
0 > cL0 , and notice that from the budget

constraints this also implies B0 − q(B1)B1 > 0, which implies B1/B0 < 1/q(B1). Furthermore,

the latter implies that the optimal debt must be lower than any initial B0 for any q(B1) ≥ 1,

and also for ”sufficiently high” q(B1).

Comparison with no-debt equilibrium: Notice that since B0−q(B1)B1 > 0, the planner

is allocating less utility to L type agents than those agents would attain without any debt.

Without debt, and a tax policy τt = gt, all agents consume y − gt every period, but with debt

L-types consume less each period given that B1 > 0 and B0 − q(B1)B1 > 0. Compared with

these allocations, when the planner finds optimal to choose B1 > 0 is because he is trading off

the pain of imposing higher taxes in both periods, which hurts L types, against the benefit the

H types get of having the ability to smooth using government bonds. Also, B0 − q(B1)B1 > 0

highlights that there is a nontrivial role to the value of B0, because if B0 were zero B1 would

need to be negative which is not possible by construction. Hence, the model only has a sensible

solution if there is already enough outstanding debt (and wealth owned by H type agents) that

gives the government room to be able to improve the H type’s ability to smooth across the two

periods, which they desire to do more the higher is B0.

Comparison with sub-optimal debt equilibrium: By choosing positive debt, the gov-

ernment provides tax smoothing for L types. Given B0 and the fact that B0 − q(B1)B1 > 0,

positive debt allows to lower date-0 taxes, which increases consumption of L types (since
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cL0 = y − g0 − B0 + q(B1)B1). The same policy lowers the consumption of H types (since

cH0 = y − g0 +
(

γ
1−γ

)
(B0 − q(B1)B1)). Hence, debt serves to redistribute consumption across

the two agents within the period. This also changes inter-temporal consumption allocations,

with the debt reducing L types consumption in the second period and increasing H types con-

sumption. Hence, with commitment to repay B0, the debt will be chosen optimally to trade

off these social costs and benefits of issuing debt to reallocate consumption atemporally across

agents and intertemporally.

It is also useful to notice that the demand elasticity of bonds is given by η ≡ q(B1)/ (q
′(B1)B1) ,

so the marginal utility wedge can be expressed as η
[
u′(cL0 )−

βu′(cL
1
)

q(B1)

]
and the planner’s optimal-

ity condition reduces to:

1 + η

[
1−

βu′(cL1 )

q(B1)u′(cL0 )

]
=

u′(cH0 )

u′(cL0 )
(A.17)

Hence, the planner’s marginal utility wedge is the product of the demand elasticity of bonds and

the L-type agents shadow value of being credit constrained (the difference 1 −
βu′(cL

1
)

q(B1)u′(cL
0
)
> 0,

which can be interpreted as an effective real interest rate faced by L-type agents that is higher

than the return on bonds). The planner wants to use positive debt to support an optimal

wedge in marginal utilities only when the demand for bonds is elastic AND L-type agents are

constrained.

A1.2 Extension to Include Government Expenditure Shocks

Now consider the same model but government expenditures are stochastic. In particular, real-

izations of government purchases in the second period are given by the set [g11 < g21 < ... < gM1 ]

with transition probabilities denoted by π(gi1|g0) for i = 1, ...,M with
M∑
i=1

π(gi1|g0) = 1.

A1.2.1 Households

Preferences are now:

ln(ci0) + β

(
M∑

i=1

π(gi1|g0) ln(c
i
1)

)
for i = L,H (A.18)

Budget constraints are unchanged:

cL0 = y − τ0, cH0 = y − τ0 + bH0 − qbH1 (A.19)

cL1 = y − τ1, cH1 = y − τ1 + bH1 (A.20)
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We still assume that L types do not save, so they can only consume what their budget

constraints allow. For H types, the Euler equation becomes:

q = β
M∑

i=1

π(gi1|g0)

(
cH0
cH1

)
(A.21)

For L types, in order to make the assumption that they hold no assets consistent at equilibrium,

their Euler equation for bonds must satisfy:

q > β
M∑

i=1

π(gi1|g0)

(
cL0
cL1

)
(A.22)

A1.2.2 Government

The government budget constraints are unchanged:

τ0 = g0 +B0 − qB1

τ1 = g1 +B1

The initial debt B0 ≥ 0 is taken as given and the government is assumed to be committed to

repay it.

The social planner seeks to maximize this utilitarian social welfare function:

γ

(
ln(cL0 ) + β

M∑

i=1

π(gi1|g0) ln(c
L
1 )

)
+ (1− γ)

(
ln(cH0 ) + β

M∑

i=1

π(gi1|g0) ln(c
H
1 )

)
(A.23)

A1.2.3 Competitive equilibrium in the bond market

A competitive equilibrium in the bond market for a given supply of government debt B1 is given

by a price q that satisfies the market-clearing condition of the bond market: bH1 = B1/(1 − γ)

and the H-types Euler equation.

We can solve the model in the same steps as before. First, rewrite the Euler equation of H

types using their budget constraints, the government budget constraints and the market-clearing

conditions:

q = β

M∑

i=1

π(gi1|g0)



y − g0 +

(
γ

1−γ

)
B0 − q

(
γ

1−γ

)
B1

y − g1 +
(

γ
1−γ

)
B1


 (A.24)
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From here, we can solve again for the equilibrium price at a given supply of bonds:

q(B1) = β

(
y − g0 +

(
γ

1−γ

)
B0

)(M∑
i=1

π(gi
1
|g0)

y−g1+( γ

1−γ )B1

)

1 +
(

γ
1−γ

)
βB1

(
M∑
i=1

π(gi
1
|g0)

y−g1+( γ

1−γ )B1

) (A.25)

As γ → 0 we converge again to the world where there is only an H type representative agent, but

now the pricing formula reduces to the standard formula for the pricing of a non-state-contingent

asset q(B1) = β

(
M∑
i=1

π(gi1|g0)
y−g0
y−g1

)
. As γ → 1 the equilibrium degenerates again into a situation

where market clearing requires the demand of the infinitesimal small H type to rise to infinity.

The derivative of the price at any equilibrium with a positive bond price satisfies q′(B1) < 0.

To show this, define Π(B1) ≡
M∑
i=1

π(gi
1
|g0)

y−gi
1
+( γ

1−γ )B1

which yields Π′(B1) = −
M∑
i=1

π(gi
1
|g0)( γ

1−γ )

(y−gi
1
+( γ

1−γ )B1)
2 < 0.

Then taking the derivative q′(B1) and simplifying we get:

q′(B1) =
β
(
y − g0 +

(
γ

1−γ

)
B0

) [
Π′(B1)− β

(
γ

1−γ

)
(Π(B1))

2
]

(
1 + β

(
γ

1−γ

)
B1Π(B1)

)2 (A.26)

Since Π′(B1) < 0 and positive cH0 implies y − g0 +
(

γ
1−γ

)
B0 > 0, it follows that q′(B1) < 0.

We can also gain some insight into the implicit risk premium (the ratio q(B1)/β)) and the

related question of why the asset price can exceed 1 in this setup. Recall that in fact the

latter was already possible without uncertainty when γ is large enough, because of the demand

composition effect (higher γ implies by market clearing that the fewer H type agents need to

demand more bonds per capita, so the bond price is increasing in γ and can exceed 1). The

issue now is that, as numerical experiments show, an increase in the variance of g1 also results in

higher bond prices, and higher than in the absence of uncertainty, and again for γ large enough

we get both q(B1) > 1 and q(B1)/β > 1. The reason bond prices increase with the variability

of government purchases is precautionary savings. Government bonds are the only vehicle of

saving, and the incentive for this gets stronger the larger the variability of g1. Hence, the price

of bonds is higher in this stochastic model than in the analogous deterministic model because

of precautionary demand for bonds, which adds to the effect of demand composition (i.e. the

price is higher with uncertainty than without at a given γ).
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A1.2.4 Pricing Function with Default

We can also make an inference about what the pricing function looks like in the model with

default risk, because with default we have a similar Euler equation, except that the summation

that defines the term Π(B1) above will exclude all the states of g1 for which the government

chooses to default on a given B1 (and also at a given value of γ). That is, the term in question

becomes ΠD(B1) ≡
M∑

{i:d(B1,gi1,γ)=0}

π(gi
1
|g0)

y−gi
1
+( γ

1−γ )B1

≤ Π(B1), and the pricing function with default

risk is:

qD(B1) = β

(
y − g0 +

(
γ

1−γ

)
B0

)
ΠD(B1)

1 +
(

γ
1−γ

)
βB1ΠD(B1)

≤ q(B1) (A.27)

Moreover, it follows from the previous analysis that this pricing function is also decreasing

in B1 (qD′(B1) < 0), and ΠD′(B1) = −
M∑

{i:d(B1,gi1,γ)=0}

π(gi
1
|g0)( γ

1−γ )

(y−gi
1
+( γ

1−γ )B1)
2 is negative but such that

Π′(B1) ≤ ΠD′(B1) < 0. Also, it is clear from the above pricing functions that if the probability

of default is small, so that are only a few values of i for which d(B1, g
i
1, γ) = 1 and/or the

associated probability π(gi1|g0) is very low, the default pricing function will be very similar to

the no-default pricing function.

A1.2.5 Optimal debt choice

The government’s optimal choice of B1 solves again a standard maximization problem:

max
B1





γ

[
ln (y − g0 −B0 + q(B1)B1) + β

M∑
i=1

π(gi1|g0) ln (y − g1 − B1)

]

+(1− γ)

[
ln
(
y − g0 +

(
γ

1−γ

)
B0 − q(B1)

(
γ

1−γ

)
B1

)

+β
M∑
i=1

π(gi1|g0) ln(y − g1 +
(

γ
1−γ

)
B1)

]





(A.28)

where q(B1) is given by the expression solved for in the competitive equilibrium.

The first-order condition is:

γ

[
u′(cL0 ) [q

′(B1)B1 + q(B1)]− β

M∑

i=1

π(gi1|g0)u
′(cL1 )

]
(A.29)

+(1− γ)

(
γ

1− γ

)[
−u′(cH0 ) [q

′(B1)B1 + q(B1)] + β

M∑

i=1

π(gi1|g0)u
′(cH1 )

]
= 0
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Using the stochastic Euler equation of the H types and simplifying:

u′(cL0 ) [q
′(B1)B1 + q(B1)]− β

M∑

i=1

π(gi1|g0)u
′(cL1 ) = u′(cH0 )q

′(B1)B1 (A.30)

u′(cL0 ) +



u′(cL0 )q(B1)− β

M∑
i=1

π(gi1|g0)u
′(cL1 )

q′(B1)B1


 = u′(cH0 ) (A.31)

This last expression, compared with the similar expression of the planner without uncertainty,

implies that in the planner’s view, the government expenditure shocks only matter to the ex-

tent that they affect the shadow price of the binding credit constraint of the L types. As

before, since for L types to find it optimal to hold zero assets it must be that they are ”credit

constrained,” their Euler equation would imply that at the equilibrium price: u′(cL0 )q(B1) −

β
M∑
i=1

π(gi1|g0)u
′(cL1 ) > 0. Hence, the above optimality condition for the planner together with

this condition imply that the optimal debt choice supports u′(cL0 ) > u′(cH0 ) or cH0 > cL0 , and

notice that from the budget constraints this implies again B0 − q(B1)B1 > 0, which implies

B1/B0 < 1/q(B1). Furthermore, the latter implies that the optimal debt must be lower than

any initial B0 for any q(B1) ≥ 1, and also for ”sufficiently high” q(B1). Thus the optimal debt

choice again has an incentive to be lower than the initial debt.

58


