Innovation, Reallocation and Growth

Daron Acemoglu Ufuk Akcigit Nick Bloom William Kerr MIT UPenn Stanford Harvard

EF&G - July 13th, 2013

Motivation

- Increased interest in "industrial policy" to support investment, innovation or employment growth.
 - Estimated EU industrial policy in 2010 approximately 9.6% of EU GDP.

- Standard endogenous technological change models suggest that certain types of industrial policies, e.g., support for R&D, should be growth-enhancing and welfare-improving.
- But potential costs: distorted and slower reallocation.

This Paper

- What are the effects of industrial policies on aggregate innovation and productivity growth?
- Main channel: reallocation of factors.
- This investigation requires a framework incorporating:
 - different types of policies ,
 - general equilibrium structure ,
 - exit for less productive firms/products
 - e meaningful heterogeneity at the firm level .

Model

• Unique final good Y :

$$Y = \left(\int_{\mathcal{N}} y_j^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}}.$$

 $\mathcal{N} \subset [0,1]$: set of active product lines.

- Closed economy: C = Y.
- Inelastic labor supply:
 - Unskilled for production: measure 1, earns w^u
 - Skilled for R&D and management: measure L, earns w^s.

Intermediate Good Technology

• Each intermediate good is produced by a **monopolist**:

 $y_{j,f} = q_{j,f} I_{j,f},$

 $q_{j,f}$: productivity, $l_{j,f}$: unskilled workers.

Marginal cost:

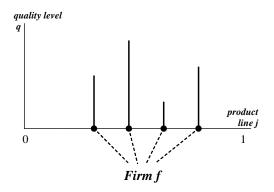
$$MC_{j,f}=rac{w^u}{q_{j,f}}$$

- Fixed cost, ϕ in terms of skilled labor.
- Total cost

$$TC_{j,f}(y_{j,f}) = w^{s}\phi + \frac{w^{u}}{q_{j,f}}y_{j,f}.$$

• Define relative productivity:

$$\hat{q}_j \equiv \frac{q_j}{w^u}.$$


Motivation

Definition of a Firm

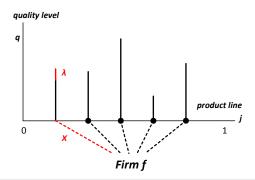
• A firm: collection of productivities and firm type

Firm $f \equiv \{q_f^1, q_f^2, ..., q_f^n; \theta\}$.

 n_f : number of product lines.

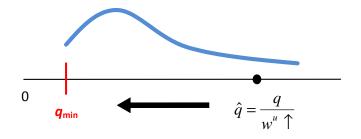
R&D

R&D and Innovation


Innovation rate:

$$X_f = (n_f \theta_f)^{\gamma} h_f^{1-\gamma}.$$

 h_f : number of researchers.


• Innovations are *undirected*. Upon an innovation:

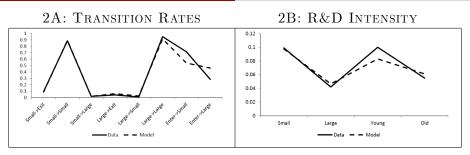
- firm acquires another product line j
- improves its productivity: $q(j, t + \Delta t) = (1 + \lambda) q(j, t)$. 2

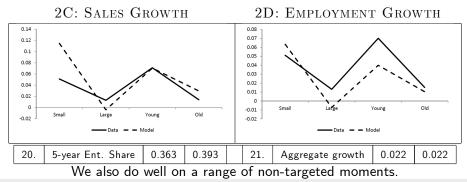
Exit

- Exit happens in three ways:
 - **Organized Creative destruction**. Each product is lost at the rate $\tau > 0$ due to competition.
 - **Exogenous destructive shock** at the rate φ . 2
 - Endogenous obsolescence. Relative quality decreases due to the 3 increase in the wage:

- Endogenous measure of potential entrants, *m*. Successful innovators enter.
- At the entry, each firm draws a management quality heta :

$$heta = \left\{ egin{array}{c} heta^H \ {
m with \ probability} \ lpha \ heta^L \ {
m with \ probability} \ 1-lpha \end{array}
ight.$$
 ,


where $\alpha \in (0, 1)$ and $\theta^H > \theta^L > 0$.


• High-type firms become low-type at the rate $\nu > 0$:

 $\theta^H \to \theta^L$.

Data & Estimation

- Simulated Method of Moments estimation.
- We target 21 moments to estimate 12 parameters.
- Data Sources
 - Longitudinal Business Database (LBD)
 - Census of Manufacturers (CM)
 - NSF firm level R&D Survey
 - USPTO patent data matched to CM.
- Focus on "continuously innovative firms":
 - I.e., either R&D expenditures or patenting in the five-year window surrounding observation conditional on existence.
- 17.055 observations from 9835 firms.
- Accounts for 98% of industrial R&D.

Policy Analysis: Subsidy to Incumbent R&D

TABLE 1. BASELINE MODEL

x ^{entry}	xl	x ^h	т	Φ^{\prime}	Φ^h	$\hat{q}_{I,\min}$	$\hat{q}_{h,\min}$	g	Wel
8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

- Use 1% to subsidize incumbents R&D.
- Compare steady states.

TABLE 2. INCUMBENT R&D SUBSIDY ($s_i = 15\%$)

x ^{entry}	x^{l}	x ^h	т	Φ^{\prime}	Φ^h	$\hat{q}_{l,\min}$	$\hat{q}_{h,\min}$	g	Wel
8.46	3.05	10.56	68.1	70.74	24.96	13.40	0.00	2.23	99.86

Notes: All numbers are in percentage terms.

Policy Analysis: Subsidy to the Operation of Incumbents

TABLE 1. BASELINE MODEL

x ^{entry}	<i>x</i> ^{<i>l</i>}	x ^h	т	Φ^{\prime}	Φ^h	$\hat{q}_{I,\min}$	$\hat{q}_{h,\min}$	g	Wel
8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

• Use 1% of GDP to subsidize operation costs of incumbents:

TABLE 3. OPERATION SUBSIDY $(s_o = 6\%)$

x ^{entry}	<i>x</i> ^{<i>l</i>}	x ^h	т	Φ^{\prime}	Φ^h	$\hat{q}_{l,\min}$	$\hat{q}_{h,\min}$	g	Wel
8.46	2.80	9.59	73.7	71.30	24.52	11.74	0.00	2.22	99.82

• Now an important negative selection effect.

Restricted Optimal Policy

x ^{entry}	x	x ^h	т	Φ^{\prime}	Φ^h	$\hat{q}_{l,\min}$	$\hat{q}_{h,\min}$	g	Wel
8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

TABLE 1. BASELINE MODEL

• Optimal mix of incumbent R&D subsidy and operation subsidy:

TABLE 4. OPTIMAL POLICY ANALYSIS AND WELFARE

	I	NCUMBI	ent Po	DLICIES	$(s_i = 12)$	2%, <i>s</i> _0 =	-264%)	
x ^{entry}	x'	x^h	т	Φ'	Φ^h	$\hat{q}_{l,\min}$	$\hat{q}_{h,\min}$	g	Wel
8.46	3.04	10.21	75.3	62.31	25.53	91.38	54.85	3.11	104.6

Equilibrium

Conclusion

- A new model of micro-level firm and innovation dynamics with reallocation
- New features.
 - Endogenous exit;
 - Reallocation:
 - Selection effect
- The model can be estimated and provides a good fit to the rich dynamics in US microdata.
- It is also useful for policy analysis.
 - Industrial policy directed at incumbents has small negative effects.
 - Optimal policy can substantially improve growth and welfare by taxing continued operation of incumbents leverage the selection effect.

Policy Analysis: Entry Subsidy and Selection

TABLE 1. BASELINE MODEL

x ^{entry}	<i>x</i> ¹	x ^h	т	Φ^{\prime}	Φ^h	$\hat{q}_{l,\min}$	$\hat{q}_{h,\min}$	g	Wel
8.46	2.80	9.58	73.6	71.16	24.53	13.90	0.00	2.24	100

• Use 1% of GDP to subsidize entry:

TABLE 5. ENTRY SUBSIDY ($s_e = 5\%$)

x ^{entry}	<i>x</i> ¹	x ^h	т	Φ^{\prime}	Φ^h	$\hat{q}_{l,\min}$	$\hat{q}_{h,\min}$	g	Wel
8.46	2.73	9.30	75.3	71.16	24.41	15.91	0.00	2.26	100.15