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SUMMARY	

	

COOPERATION,	CREATIVITY	AND	CLOSURE	IN	SCIENTIFIC	RESEARCH	NETWORKS 
 

Scientific	 research	 communities	 or	 “invisible	 colleges”	 are	 conceptualized	 in	 this	 paper	 as	 social	
communications	 structures	 formed	 by	 the	 overlapping	 of	 more	 compact	 networks	 of	 personal	
associations	among	 researchers	 in	particular	disciplinary	 fields	of	 inquiry.	Within	 these	 “colleges”	
circulate	ideas	and	opinions	regarding	the	“validity”	of	specific	scientific	propositions	and	research	
methods.	 Transmission	 of	 tacit	 knowledge	 (which	 is	 complementary	 to	 the	 codified	 information	
broadcast	 in	 archival	 publications)	 takes	 place	 through	 local	 social	 network	 connections,	 and	 is	
regarded	 to	 be	 critical	 in	 enabling	 individual	 researchers	 to	 participate	 in,	 and	 contribute	 to	 the	
collective	epistemological	tasks.	Building	on	a	model	proposed	by	David	(1998,	2003),	this	analysis	
posits	 a	 population	 of	 rational	 research	 agents	 engaged	 individually	 in	 continuous	 processes	 of	
experimental	observation	and	Bayesian	inference,	whose	interpretations	of	their	current	empirical	
observations	 are	 influenced	 by	 the	 prevailing	 distribution	 of	 opinion	 expressed	 within	 their	
respective	 local	 social	 networks	 	 Formulation	 of	 this	 structure	 in	 graph	 theoretic	 terms,	 and	
specification	 of	 a	 random	 “local	 opinion	 polling”	 process,	 permits	 the	 application	 of	 results	 from	
Markov	 random	 field	 theory	 to	 show	 how	 probabilistic	 micro‐level	 knowledge	 communication	
behavior	 affects	 the	 capacity	 of	 the	 invisible	 college	 (as	 the	 ensemble	 of	 inter‐linked	 social	
networks)	 to	 attain	 a	 collective	 cognitive	 state	 of	 “closure.”	 The	 latter	 state	 is	 represented	 as	 a	
configuration	 of	 correlated	 belief	 orientations	 in	 regard	 to	 the	 validity,	 or	 invalidity	 of	 particular	
scientific	 propositions.	 This	 stylized,	 highly	 simplified	 model’s	 key	 features	 resemble	 closely	 the	
stochastic	process	known	as	the	“voter	model,”	a	well‐studied	reversible	spin	system	due	to	Clifford	
and	Sudbury	(1973)	and	Holley	and	Liggett	(1975).	It	is	shown	that	the	ability	of	the	entire	epistemic	
community	to	arrive	at	 “closure”	regarding	a	given	question	depends	critically	upon	the	degree	to	
which	its	members’	communication	behaviors	conform	to	the	norms	of	cooperation,	disclosure	and	
universalism	 that	Merton	 (1973)	 identifies	with	 the	 institutionalized	conduct	of	open	science.	But	
the	nature	 of	 the	mechanism	posited	 is	 such	 that	 the	 resulting	 “knowledge	 consensus”	will	 be	 an	
emergent	and	path	dependent	property	of	 the	network	ensemble,	as	has	been	contended	by	more	
recent	contributors	to	the	sociology	of	scientific	knowledge.	
	 	Further	elaboration	of	this	simple	structure	is	focused	upon	characterizing	the	endogenous	
influences	upon	 the	communication	behaviors	of	 the	agents,	 and	deriving	 the	macro‐properties	of	
the	 equivalent	 deterministic	 system	 corresponding	 to	 the	 stochastic	 “voter	 model.”	 Here	 the	
expected	time	for	achieving	closure	and	the	expected	rate	of	“collective	creativity”	attained	through	
the	recombinant	generation	of	ideas	are	key	macro‐level	performance	features.	Along	with	the	size	
of	 the	 global	 ensemble,	 they	 are	 taken	 to	 influence	 behaviors	 governing	 the	 average	 rates	 of	
transmission	 of	 tacit	 knowledge	 and	 opinion	 through	 the	 structure	 of	 inter‐linked	 local	 social	
networks.	With	 the	 size	of	 the	global	network	being	 set	 exogenously,	 a	wide	 range	of	 size‐related	
cognitive	performance	attributes	for	the	invisible	college	may	exist,	each	representing	a	(short‐run)	
equilibrium.	 The	 larger	 among	 these	 systems	 generally	 are	 associated	 with	 greater	 average	
“openness”	at	the	micro	level,	and	higher	rates	of	systemic	creativity.	
	 In	 the	 long	 run,	 however,	 it	 is	 supposed	 that	 those	macro‐properties,	 and	 the	 associated	
expected	 speed	with	which	 closure	 on	new	propositions	 is	 attained,	would	 influence	 the	network	
ensemble’s	 ability	 to	 grow	 by	 drawing	 in	 additional	 qualified	 researchers	 from	 the	 surrounding	
environment.	Such	a	process	of	(lagged)	adjustments	 in	network	size	yields	a	simple	deterministic	
dynamic	model	 that	 is	 found	 to	possess	high‐level	and	 low‐level	equilibrium	states,	both	of	which	
are	locally	stable.	An	autonomously	high	average	propensity	on	the	part	of	researchers	to	disclose	
knowledge	promotes	dynamics	 that	 lead	 to	 the	 system’s	high‐level	 attractor.	But,	 seemingly	 small	
policy	interventions	can	adversely	“shock”	a	communicative	and	creative	scientific	network,	causing	
it	 to	 shrink	 until	 it	 can	 survive	 only	 as	 a	 much	 smaller,	 less	 open	 and	 less	 creative	 research	
community.	The	concluding	section	discusses	the	salient	limitations	of	this	heuristic	model,	and	the	
respects	in	which	its	structure	may	be	elaborated,	and	the	resulting	systems’	properties	studied	by	
means	of	stochastic	simulation. 
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1. Modeling	the	Workings	of	Open	Science	Communities:	Motivation	and	Background	
	
		 1.1	The	pursuit	of	knowledge	and	the	sources	of	technological	change	
	

Economists	 seeking	 to	 understand	 the	 sources	 of	 technological	 change	 have	 focused	
their	 attention	 upon	 the	 dynamics	 of	 the	 diffusion	 of	 innovations,	 and	 the	 generation	 and	
distribution	of	knowledge	underpinning	the	development	and	commercial	introduction	of	new	
products	of	production	methods.	Quite	rightly,	their	quest	for	clearer	vision	of	the	insides	of	the	
“black	boxes”	of	technology,	and	of	innovation	will	continue	to	command	the	major	share	of	the	
analytical	and	empirical	attention	devoted	to	providing	firmer	microeconomic	 foundations	 for	
the	theories	of	endogenous	economic	growth.1		
	

By	 comparison	 with	 what	 has	 been	 learned	 already	 concerning	 institutional	
arrangements	 and	 business	 strategies	 affecting	 corporate	 R&D	 investments,	 and	 the	
mechanisms	enabling	private	appropriation	of	research	benefits,	 it	 remains	surprising	 that	so	
much	less	is	known	about	the	institutional	infrastructures	and	micro‐motives	that	influence	the	
allocation	of	economic	resources	within	the	domain	of	non‐commercial,	“academic”	science.	The	
“science	base,”	as	the	publicly	funded	civilian	R&D	sector	has	come	to	be	referred	to	in	Britain,	
remains	a	sphere	of	activity	that	economic	analysis	tends	to	discuss	more	in	terms	of	its	external	
effects	than	its	internal	workings.2	Research	of	an	exploratory	character,	undertaken	to	discover	
new	 phenomena,	 or	 to	 explain	 the	 fundamental	 properties	 of	 physical	 systems,	 is	 cited	 as	 a	
source	 of	 directly	 useful	 innovations	 in	 instrumentation,	 or	 in	 generic	 techniques	 valued	 in	
applied	 research	 –	 such	 as	 synchrotron	 radiation,	 and	 restriction	 enzyme	methods	 for	 “gene‐
splicing.”	Indirect	cognitive	contributions	of	a	fundamental	character	also	are	seen	to	raise	the	
expected	marginal	rate	of	return	on	 investment	 in	applied	R&D,	by	establishing	“possibilities”	
that	 may	 have	 practical	 application,	 such	 as	 the	 photo‐electric	 effect	 described	 by	 Einstein’s	
paper	 in	Annalen	der	Physik	 (1915);	 and,	 also,	 in	 definitively	 excluding	 time‐wasting	 traps	 as	
physical	“impossibilities”	–	as	in	the	case	of	machines	of	perpetual	motion,	and	some	among	the	
myriad	conceivable	configurations	for	the	bases	in	the	structure	of	the	DNA	molecule.3			

	
Despite	 the	cognitive	significance	of	 the	activities	of	“the	science	base,”	and	despite	 its	

quantitative	 importance	 as	 the	 locus	 of	 employment	 and	 the	 training	 ground	 for	 expensively	
educated	 researchers,	 the	 discipline	 of	 economics	 still	 is	 in	 the	 early	 stages	 of	 a	 program	 of	
systematic	inquiry	into	the	ways	that	the	pursuit	of	reliable	knowledge	is	carried	on	within	“the	
Republic	of	Science.”4	Although	the	latter	domain	forms	a	critical	part	of	modern	“social	systems	

                                                 
1	See	Rosenberg	1982,	1994	on	the	“black	box	of	technology;	Aghion	and	Howitt	1998,	and	Aghion	and	
Tirole	1998	on	“the	black	box	of	innovation.”	But	see,	also,	David	1994	on	“reopening	another	black	box”	–		
the	economics	of	exploratory	(academic)	research.	
2	This		focus	upon	the	“externalities”	created	by	fundamental	research	in	science	derives	in	large	part	
from	the	preoccupation	of	the	economics	literature	with	arguments	for	public	subsidies	for	such	
activities.	See,	e.g.,	David	2001,	in	exemplification.		

3	Crick	1988:pp.	139ff	offers	the	case	of	DNA	in	illustration	of	his	argument	that	physical	science	theory	is	
of	more	help	to	biologists	in	establishing	impossibilities	than	in	guiding	researchers	to	the	particular	
solution	that	had	been	found	“by	Nature.”		

4	 One	 active	 part	 of	 this	 program	 is	 (self‐)	 identified	 with	 “the	 new	 economics	 of	 science,”	 following	
Dasgupta	 and	David	 (1987,	 1994),	who	 took	up	Polanyi’s	 (1962)	 conceptualization	of	 “the	Republic	 of	
Science”	 in	describing	 the	domain	of	 interest.	 See	also,	 for	 further	explorations	of	 this	 territory:	Arora,	
David	and	Gambardella	 (1998);	Arora	and	Gambardella	(1994,	1998);	Cowan,	David	and	Foray	(2000),	
Cowan	and	Jonard	(2001),	Dalle	(2000),	David	(1994,	1995,	1996,	1998);	David	and	Foray	(1995);	David,	
Geuna	 and	 Steinmueller	 (1995);	 David,	 Mowery	 and	 Steinmueller	 (1992);	 Gambardella	 (1994);	
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of	innovation,”	it	is	one	whose	characteristic	internal	properties	cannot	simply	be	inferred	from	
an	understanding	of	the	economics	of	industrial	research	and	development.5		
	
	

1.2	The	logic	of	open	science	as	a	mode	of	organizing	research		
	

Within	university‐based	research	communities,	especially,	there	are	recognized	a	quite	
distinctive	set	of	norms	and	conventions	that	constitute	a	well‐delineated	professional	ethos	to	
which	 scientists	 generally	 are	 disposed	 to	 publicly	 subscribe,	 whether	 or	 not	 their	 own	
behaviors	always	conform	 literally	 to	 its	 strictures	governing	 the	organization	and	conduct	of	
research.	 The	 norms	 of	 the	 Republic	 of	 Science	 that	 have	 famously	 been	 articulated	 by	 the	
sociologist	 Robert	 K.	 Merton	 sometimes	 are	 conveniently	 summarized	 under	 the	 mnemonic	
CUDOS:	communalism,	universalism,	disinterestedness,	originality,	skepticism.6		

	
The	“communal”	ethos	emphasizes	 the	cooperative	character	of	 inquiry,	 stressing	 that	

the	 accumulation	 of	 reliable	 knowledge	 is	 an	 essentially	 social	 process,	 however	 much	
individuals	may	strive	to	contribute	to	it.	The	force	of	the	universalist	norm	is	to	render	entry	
into	 scientific	 work	 and	 discourse	 open	 to	 all	 persons	 of	 “competence”	 regardless	 of	 their	
personal	 and	 ascriptive	 attributes.	A	 second	 aspect	 of	 “openness”	 concerns	 the	 disposition	 of	
knowledge:	 the	 full	disclosure	of	 findings,	 and	methods,	 form	a	key	aspect	of	 the	cooperative,	
communal	program	of	inquiry.	Full	disclosure,	in	turn	serves	the	ethos	legitimating	and,	indeed,	
prescribing	 what	 Merton	 called	 “organized	 skepticism”;	 it	 supports	 the	 expectation	 that	 all	
claims	 to	 have	 contributed	 to	 the	 stock	 of	 reliable	 knowledge	 will	 be	 subjected	 to	 trials	 of	
replication	and	verification,	without	insult	to	the	claimant.	The	“originality”	of	such	intellectual	
contributions	 is	 the	 touchstone	 for	 the	 acknowledgment	 of	 individual	 scientific	 claims,	 upon	
which	collegiate	reputations	and	the	material	and	non‐pecuniary	rewards	attached	to	such	peer	
evaluations	are	based.	
	
	 By	considering	the	economic	logic	of	the	organization	of	knowledge‐producing	activities,	
one	may	make	a	start	towards	grasping	the	connection	between	the	existence	of	a	social	system	
distinguished	by,	and	 in	some	manner	regulated	by	these	norms,	and	the	 importance	that	has	
been	 attributed	 to	 non‐commercially	 driven,	 exploratory	 science	 among	 the	 sources	 of	
technological	progress.	Indeed,	it	is	possible	in	just	such	terms	to	give	a	complete	functionalist	
account	of	 the	 institutional	 complex	 that	 characterizes	modern	 science.7	 In	brief,	 the	norm	of	
“openness”	 is	“incentive	compatible”	with	a	collegiate	reputational	reward	system	based	upon	
accepted	claims	to	priority;	and	it	 is	conducive	to	 individual	strategy	choices	whose	collective	
congruence	 reduces	 excess	 duplication	 of	 research	 efforts,	 and	 enlarges	 the	 domain	 of	
informational	 complementaries.	 This	 brings	 socially	 beneficial	 “spill‐overs”	 among	 research	
programs,	and	abets	rapid	replication	and	swift	validation	of	novel	discoveries.	The	advantages	
of	treating	new	findings	as	“public	goods”	in	order	to	promote	the	faster	growth	of	the	stock	of	
knowledge,	thus,	are	contrasted	with	the	requirements	of	secrecy	for	the	purposes	of	securing	a	

                                                                                                                                                        
Trajtenberg,	Henderson	and	Jaffee	(1992).	Some	of	the	foregoing	receive	notice	in	the	wider	survey	of	the	
economics	of	science	by	Stephan	(1996).	
5	On	the	concept	of	“social	systems	of	innovation”	see	Amable,	BarrJ	and	Boyer	(1997).	International	
differences	in	many	dimensions	of	innovation	activity,	both	as	to	its	industrial	organization	and	
performance,	are	finely	delineated	in	this	work.	Yet,	apart	from	noting	the	tendency	of	scientific	
specialization	to	be	aligned	with	the	areas	of	concentration	in	patenting	activity,	very	little	notice	is	given	
to	issues	pertaining	to	corresponding	similarities	and	differences	in	the	structure	and	performance	of	
“the	science	base;”	actually,	quantitative	patterns	of	“scientific	specialization”	are	inferred	from	those	in	
patenting,	rather	than	gauged	from	bibliometric	analysis	of	scientific	publications	(see	pp.4,	249‐254).		

6	See	Merton	1973:	esp.	Ch.	13;	Merton	1986:	Pt.	III.	On	CUDOS,	see	Ziman	1994,	p.	177.	
7		See,	e.g.,	Dasgupta	and	David	1987,	1994;	David	1993.	
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monopoly	over	 the	use	of	new	 information	 that	may	be	directly	or	 indirectly	exploited	 in	 the	
production	of	goods	and	services.		
	

This	 functionalist	 juxtaposition	 suggests	 a	 logical	 basis	 for	 the	 existence	 and	
perpetuation	of	 institutional	 and	 cultural	 separations	between	 two	normatively	differentiated	
communities	of	research	practice,	the	open	“Republic	of	Science”	and	the	proprietary	“Realm	of	
Technology”:	 the	 two	 distinctive	 organizational	 regimes	 serve	 different	 and	 potentially	
complementary	 societal	 purposes.	Rather	 baldly	 stated,	 the	 first	 regime	 is	well	 suited	 for	 the	
purpose	of	maximizing	the	rate	of	growth	of	stocks	of	reliable	knowledge,	whereas	the	second	is	
better	designed	to	maximize	the	flow	of	economic	rent	from	existing	knowledge.	In	the	long	run,	
neither	can	continue	 to	 function	 fruitfully	 in	 isolation	 from	the	other.	This	being	 the	case,	 the	
challenge	for	science	and	technology	policy	may	be	construed	as	one	of	keeping	these	two	sub‐
systems	 linked	 and	 in	 symbiotic	 balance,	 so	 that	 the	 performance	 of	 social	 systems	 of	
innovation	 as	 a	 whole	 do	 not	 become	 degraded.	 In	 preparation	 for	 such	 a	 task	 it	 will	 be	
important	 to	 try	 to	 redress	 the	 comparative	 deficiency	 in	 our	 knowledge	 of	 the	 workings	 of	
open	science	research	communities.	That	is	the	larger	purpose	to	which	this	paper	is	addressed.		
	

	
1.3	Overview:	from	local	micro‐behaviors	to	macro‐network	dynamics	
	

	 Scientific	research	communities	may	be	studied	as	social	networks	within	which	ideas	
or	statements	circulate,	acquire	validity	as	reliable	knowledge,	and	are	recombined	to	generate	
further	new	ideas.	Personal	communications	networks	also	form	the	locus	for	the	transmission	
of	tacit	knowledge	and	skills	requisite	to	the	interpretation	and	operationalization	of	scientific	
statements.	This	paper	builds	upon	an	abstract,	highly	stylized	account	of	the	communications	
structure	 of	 larger	 ensembles	 of	 research	 scientists	 formed	 by	 the	 interconnections	 among	
more	 localized,	 interpersonal	 networks	 in	 which	 their	 professional	 activities	 are	 embedded.	
Such	an	account	has	been	explored	in	previous	work,	employing	graphic‐theoretic	apparatus	to		
describe	the	structure	of	the	social	networks	through	which	transactions	in	tacit	knowledge	are	
conducted,	and	results	Markov	random	field	theory	to	extract	some	implications	of	micro‐level	
communications	strategies	for	the	ensemble’s	collective	epistemological	performance.8	
	

Social	 networks	 have	 come	 to	 be	 modeled	 in	 many	 contexts	 involving	 strategic	
interdependence,	where	these	structures	are	represented	as	conveying	information,	and	forging	
mutual	 trust	 through	repeated	transactions	–	even	though	the	connections	among	the	players	
are	 highly	 localized	 and	 can	 be	 presumed	 to	 be	 effected	 without	 sophisticated	 technological	
supports.	A	number	of	lines	of	inquiry	in	game	theory	also	have	converged	upon	local	network	
structures,	 as	 the	 terrain	 for	 analysing	 the	 equilibrium	 properties	 of	 games	 characterized	 by	
strategic	 complementaries	 and	 interactive	 learning	on	 the	part	 of	 players.9	 Interest	 there	has	
ocused	 upon	 the	 strategic	 problem	 that	 arises	when	 it	 is	 assumed	 that	 each	 player	 interacts	
directly	 with	 only	 some	 subset	 of	 the	 entire	 ensemble	 –	 those	 in	 the	 player’s	 immediate	
“vicinity,”	but	that	the	players	are	unable	to	adapt	their	behaviors	to	deal	individualistically	with	
each	 of	 their	 “neighbors”.	 In	 such	 circumstances	 every	 player	 must	 select	 a	 strategy	 that	 is	
uniform	with	 regard	 to	 all	 their	neighbors.	Within	 the	 social	network	 context	 such	a	 strategy	
choice	 could	 become	 generalized	 as	 a	 behavioral	 “norm.”	 This	 has	 heightened	 interest	 in	
studying	 the	conditions	under	which	 the	dynamics	of	 local	 interaction	games	of	 this	kind	will	
give	 rise	 to	 equilibria	 characterized	 by	 correlated	 beliefs	 or	 behaviors,	 in	 both	 deterministic	
decision	frameworks	and	in	dynamic	stochastic	settings.	Models	of	the	latter	sort	typically	make	
use	of	 results	 from	Markov	 random	 field	 theory	 to	 show	how	 local	 network	 externalities	 can	
                                                 
	
9 	See,	among	early	examples		Anderlini	and	Ianni	(1993),	Blume	(1993),	Ellison	(1993),	Bala	and	Goyal	
(1995),	Morris	(1996).	For	expositions	and	overviews	of	the	social	and	economic	networks	literature,	see	
Goyal	(2007),	Jackson	(2008,	2011).		  
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lead	 to	 de	 facto	 standardization	 in	 choices	 of	 production	 methods	 and	 the	 spontaneous	
formation	of	conventions.10	As	will	be	seen,	 the	present	paper	 is	 thus	situated	 in	that	broader	
stream	of	the	recent	economics	literature.	
	

The	 main	 goal	 of	 the	 analysis	 developed	 in	 David	 (1998,	 2002)	 was	 to	 show	 how	
behaviors	regarding	the	disclosure	of	knowledge	and	current	scientific	opinion	by	the	individual	
agents,	 and	 their	 receptivity	 to	 corresponding	 flows	 of	 information	 conveyed	 by	members	 of	
their	personal	networks,	would	affect	the	capacity	of	the	entire	ensemble	to	attain	a	collective	
cognitive	state	of	“scientific	closure.”	What	 is	meant	by	“closure”	 is	simply	the	emergence	of	a	
preponderant	 “consensus.”	 This	 epistemological	 condition	 is	 therefore	 represented	 as	 a	
configuration	 of	 correlated	 belief	 orientations	 among	 the	 members	 of	 a	 certain	 epistemic	
community	identified	with	a	particular	scientific	field,	in	regard	to	the	validity	or	the	invalidity	
of	 particular	 scientific	 propositions.	 The	 existence	 of	 a	 past	 record	 of	 matters	 on	 which	
informed	opinion	approached	substantial	unanimity,	and	the	prospects	of	 the	ensemble	being	
able	 to	 achieve	 comparable	 successes	 in	 the	 case	 of	 new	 propositions,	 constitute	 collective	
cognitive	 coherence;	 these	 conditions	 justify	 labelling	 as	 “an	 invisible	 college”	 what	 would	
otherwise	be	merely	an	aggregation	of	researchers.		

	
Within	the	context	of	the	model,	the	ability	to	reach	“closure”	in	that	sense	can	be	seen	

to	depend	critically	upon	the	degree	to	which	the	epistemic	community’s	members	conform	in	
their	communication	behaviors	 to	 the	norms	of	cooperation,	disclosure	and	universalism	 that	
Merton	 (1973)	 identified	 with	 the	 institutionalized	 conduct	 of	 open,	 “modern”	 science.	 This	
conclusion	follows	as	a	formal	proposition	from	the	close	resemblance	between	the	properties	
of	a	particular	stochastic	process	known	as	the	“voter	model,”	and	the	stylized	account	offered	
in	David	(1998,	2002,	2003)	of	the	way	that	researchers’	interpretations	of	their	observational	
and	 experimental	 data	 are	 shaped	 (probabilistically)	 by	 the	 distribution	 of	 peer‐opinion	 and	
related	tacit	knowledge	in	their	local	communication	networks.		

	
The	 structural	 underpinnings	 of	 the	 preceding	 analysis	 that	 is	 to	 be	 carried	 forward	

here	 are	 reviewed	 in	 the	 next	 two	 sections	 of	 the	 paper.	 Section	 2	 summarizes	 the	 basis	 for	
adopting	that	characterization	of	the	probabilistic	communication	strategies	of	the	 individuals	
forming	tacit	knowledge	networks.	It	also	proposes	an	algorithmic	representation	of	the	role	of	
local	peer	opinion	 in	a	Bayesian	 inferential	procedure	 followed	by	empirical	 researchers,	 and	
suggests	conditions	on	the	structure	of	reputational	rewards	that	would	 induce	the	 individual	
agents	 to	 adopt	 strategies	 of	 “cognitive	 conformism.”	 Section	 3	 briefly	 reviews	 the	 formal	
properties	 of	 the	 suggested	 probabilistic	 process	 of	 consensus	 formation,	 by	 showing	 its	
correspondence	to	the	formal	structure	of	the	so‐called	“linear	voter	model.”	The	latter	is	a	well‐
known	 reversible	 spin	 system	 introduced	 by	 Clifford	 and	 Sudbury	 (1973)	 and	 Holley	 and	
Liggett	(1975),	the	properties	of	which	been	thoroughly	investigated	both	by	mathematical	and	
stochastic	simulation	methods	(e.g.,	by	Liggett	1985	and	Durrett	1988,	respectively).		

	
A	brief	digression	 is	undertaken	 in	Section	4,	back‐tracking	a	bit	 in	order	 to	report	on	

some	 more	 recent	 results	 that	 have	 been	 obtained	 for	 modifications	 and	 extensions	 of	 the	
classic	Voter	Model	(discussed	in	section	2).	One	of	these,	the	“non‐linear	voter	model,”	allows	
for	 the	 probability	 that	 while	 an	 individual	 adopting	 a	 particular	 belief‐orientation	 will	 be	
influenced	 positively	 by	 the	 preponderance	 current	 opinion	 in	 her	 local	 social	 network,	 the	
mapping	from	community	to	agent	may	not	be	strictly	linear.	A	second	extension	introduces	the	
possibility	 of	 “bias”	 favoring	 one	 of	 the	 binary	 alternatives	 in	 the	 probabilistic	 processes	 of	
individual	 opinion‐reorientation.	 Doing	 so	 allows	 the	 stylized	 modeling	 framework	 to	
accommodate	 the	position	 taken	by	 the	 “realists”	 in	 recent	 the	 “culture	wars”	 concerning	 the	

                                                 
10	See	David	(1988,	1992),	Kirman	(1992),	David	and	Foray	(1993,	1994),	Dalle	(1995),	David,	Foray	

and	Dalle	(1997),	Ellison	and	Fudenberg	(1995),	Brock	and	Durlauf	(1997).		
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nature	 and	 authority	 of	 scientific	 knowledge:	 namely,	 that	 the	 methodology	 of	 empirical	
research	 (an	 important	 hallmark	 of	 modernity)	 yields	 a	 palpable	 drift	 towards	 closer	
correspondence	 between	 objective	 realities	 of	 the	 world	 the	 cognitive	 content	 of	 those	
propositions	 upon	 which	 invisible	 colleges	 reach	 consensuses	 (“closures”	 of	 the	 collective	
epistemological	evolution).	In	other	words,	embracing	the	“social	constructivist”	perceptions	of	
the	potent	influence	of	consensus‐reinforcing	pressures	within	communities	engaged	in	normal	
science,	 and	 allowing	 for	 the	 problems	 of	 ambiguity	 arising	 from	 experimental	 and	
observational	error,	does	not	undermine	the	claim	that	such	communities	are	able	to	not	only	
arrive	 at	widespread	 agreements,	 but	 tend	 to	 approach	 reliable	 agreements	 about	 the	 actual	
(“true”)	workings	of	the	physical	world.	 	A	number	of	the	properties	of	the	linear	voter	model,	
especially	 the	conditions	 for	 the	existence	of	extremal	equilibria	where	belief	orientations	are	
perfectly	 correlated,	 and	 the	 variation	of	 the	 expected	 speed	of	 achieving	 consensus	with	 the	
number	of	nodes	in	the	global	network,	are	found	to	carry	over	from	the	classic	Voter	Model	to	
these	non‐linear	 extensions,	where	 there	 is	 both	 “noise”	 and	 feed‐back	 from	experimentation	
that	 results	 in	 persistent	 drift	 favoring	 one	 of	 the	 multiplicity	 of	 	 claims	 around	 which	 a	
consensus	could	be	formed.11	

		
Section	5	extends	the	Voter	Model	representation	of	a	consensus	formation	process	in	a	

different	direction,	elaborating	it	by	specifying	feedback	relationships	whereby	the	macro‐level	
performance	 characteristics	 of	 the	 global	 network	 affect	 the	 micro‐level	 communication	
behaviors	 of	 the	 research‐agents	 in	 their	 respective	 local	 social	 networks.	 In	 the	 most	
elementary	formulation,	the	latter	are	described	by	the	endogenous	alterations	that	occur	in	the		
mean	 probabilities	 of	 sending	messages	 and	 receiving	messages,	 or	 “disclosing”	 and	 “reading	
(absorbing)”	tacit	knowledge	in	transactions	with	known	personal	correspondents.	

	
	Further	results	from	Markov	random	field	theory	are	introduced	(in	sub‐section	5.1)	in	

order	 to	 obtain	 specifications	 for	 the	 way	 that	 those	 probabilities	 and	 the	 size	 of	 the	 global	
network	–	measured	as	 the	number	of	 researchers	–	affect	 the	expected	 time	 for	messages	 to	
“percolate”	between	random	pairs	of	researchers	at	nodes	in	the	connected	graph	envisaged	by	
the	linear	Voter	Model.	For	a	community	whose	members	are	homogeneous	in	regard	to	their	
positive	 communication	 probabilities,	 and	 situated	 on	 a	 lattice	 of	 sufficiently	 low	
dimensionality,	this	provides	a	specification	for	the	expected	speed	of	“closure”	with	respect	to	
a	 particular	 scientific	 proposition.	 A	 further	 elaboration	 (in	 sub‐section	 5.2)	 introduces	 the	
possibility	that	the	exchange	of	tacit	knowledge	gives	rise	to	new	propositions,	or	conjectures,	
and	suggests	a	specification	for	the	homogeneous	global	network’s	expected	rate	of	“creativity”	
through	recombinant	generation	of	 ideas.	This	counterpart	of	the	expected	speed	of	closure	is	
specified	 as	 a	 function	 of	 the	 network’s	 size,	 and	 the	mean	 probability	 that	 within	 the	 local	
social	networks	any	agent	having	a	new	idea	will	share	it	freely	when	she	is	contacted.		

	
The	 system	 is	 then	 closed	 (in	 Section	 6.1)	 under	 the	 hypothesis	 that	 the	 micro‐level	

communication	probabilities	of	 the	(homogenous)	agents	will	be	endogenously	determined	 in	
response	to	the	expected	performance	properties	of	the	global	network,	with	regard	to	“closure	
speed	and	creativity.”	The	resulting	closed	stochastic	system	is	then	reduced	to	its	“equivalent	
deterministic	system”	for	the	purposes	of	analysis,	and	it	is	shown	that	parametric	variation	in	
network	size	generates	a	family	of	solutions	for	the	endogenous	variable	describing	the	agents’	
communication	 behaviors	 –	 namely	 the	 mean	 probabilities	 of	 “sending”	 and	 “receiving”	
messages.	

	

                                                 
11 The properties remain subject, as will be seen, to certain important restrictions on the dimensionality of the 
social interaction landscape, as well as upon the parameters governing the expected signal-to-noise ratio of 
prevailing empirical methods, and the subjective relative weight that is accorded by the finding from their own 
application of those methods vis-à-vis the opinions prevailing among  peers belonging to their immediate social 
network.   
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Although	 the	 underlying	 framework	 points	 to	 implementation	 in	 a	 fully	 agent‐based	
stochastic	simulation	model,	such	as	those	which	have	recently	become	more	widely	employed	
in	 the	 social	 sciences,	 this	 is	 no	 small	 step	 and	 has	 been	 left	 for	 future	 research.12	 	 A	 fully	
dynamic	equivalent	deterministic	system	 is	obtained	(in	Section	6.2),	by	modeling	the	influence	
of	 the	 network’s	 emergent	 performance	 properties	 upon	 its	 capacity	 to	 attract	 additional	
members	from	a	surrounding	eligible	population.	The	latter	is	assumed	to	reflect	the	formation	
of	expectations	about	the	benefits	that	potential	members	would	derive,	given	the	expected	rate	
of	 percolation	 of	 “ideas	 and	 opinions”	 and	 the	 rate	 of	 generation	 of	 “new	 ideas”	 within	 the	
network.	Such	benefits	of	membership	must	match	those	obtainable	in	competing	employments	
to	 prevent	 net	 attrition	 from	 reducing	 the	 size	 of	 the	 network,	 and	 must	 exceed	 those	
opportunity	costs	in	order	for	the	network	to	grow.	Hypothesizing	that	such	adjustments	in	the	
net	flow	of	researchers	are	effected	with	lags	rather	than	instantaneously,	yields	a	system	that	is	
shown	to	possess	a	multiplicity	of	equilibria	in	terms	of	size,	macro‐performance	properties	and	
microeconomic	behaviors.	Some	suggestive	 features	of	 the	dynamic	responses	of	 the	 invisible	
college	 to	 “policy‐perturbations”	 are	 examined	 (in	 subsection	 6.3)	 by	 means	 of	 numerical	
simulations.	

	
The	concluding	discussion	(Section	7)	comments	on	the	salient	limitations	of	this	simple	

heuristic	 model,	 and	 the	 respects	 in	 which	 the	 properties	 exhibited	 by	 the	 equivalent	
deterministic	model	may	mask	important	patterns	of	dynamic	behavior	that	might	characterize	
performance	of	the	stochastic	structure.	Other	aspects	of	the	cognitive	performance	of	research	
networks	 in	 which	 knowledge	 generation	 is	 localized	 and	 key	 information	 is	 similarly	
transmitted	 through	 pathways	 of	 social	 communication	 are	 no	 less	 important	 for	 an	
understanding	of	the	workings	of	exploratory	research	communities	than	those	upon	which	this	
paper	focuses.	“Small	worlds”phenomena	in	the	structure	of	social	network	communications	is	
one	of	these	which	could	substantially	modify	the	findings	presented	here.	Another,	with	similar	
potentialities,	 would	 consider	 the	 application	 of	 random	 graph	 theory	 to	 model	 endogenous	
forces	 affecting	 the	 formation	 of	 local	 social	 networks	 that	 channel	 “tacit”	 information	
exchanges	 –	 thereby	 relaxing	 the	 assumption	 of	 exogenously	 formed	 local	 social	 network	
relationships	 that	 underlies	 the	 approach	 taken	 here.	 Still	 a	 third	 line	 of	 extension	 would			
introduce	 one	 or	 more	 latent	 “invisible	 colleges”	 that	 could	 compete	 for	 the	 adherence	 of	
members	of	a	growing	(or	dwindling)	population	of	potential	(i.e.,	qualified)	researchers.		

	
The	possibilities	of	thereby	encompassing	lines	of	 inquiry	opened	by	others,	within	an	

expansion	 of	 the	 basic	 framework	 considered	 here,	 suggest	 an	 extensive	 agenda	 for	 future	
investigations,	 and	 one	 that	 it	 seems	 could	 be	 readily	 pursued	 using	 stochastic	 simulation	
methods	 –	 until	 interesting	 conjectures	 emerged	 that	 could	 become	 the	 targets	 for	 more	
analytically	oriented	students	of	the	new	economics	of	science.		Yet	to	do	so	properly	(which	is	
to	say	persuasively)	would	entail	facing	the	challenge	of	developing	a	richer	agent‐based	model	
that	articulated	a	variety	of	actors	having	institutionalized	functions,	not	all	of	which	proceeded	
in	 lock‐step	with	 the	 iteration	counter	of	 the	simulation	program,	so	 that	 the	dynamics	of	 the	
system	would	 reflect	 complex	 interactions	 among	 processes	moving	 in	 parallel	 through	 time	
with	different	 time‐constants.	 In	 such	a	 construction	 the	actions	of	 the	agents	generating	and	
filtering	 the	 codified	 research	 findings	 that	 form	 the	 evolving	 corpus	 of	 published	
communications	 would	 necessary	 occupy	 at	 least	 as	 much	 attention	 as	 the	 informal	 social	
communications,	 whereas	 the	 existence	 and	 epistemic	 role	 of	 the	 former	 have	 been	 blithely	
presupposed	for	the	purposes	of	rendering	manageable	the	present	exploratory	inquiries.				

	
	

                                                 
     12 On the methodology and promise of agent-based modelling as a research strategy for the social sciences, 
see Epstein (2006). For stygmergic agent-based modelling applied to open source software development 
communities, see Dalle and David (2005, 2007, 2008), a topic related to but distinct from the present paper.   



7 

2. Micro‐foundations:	 Social	 Networks,	 Tacit	 Knowledge,	 and	 the	 Influence	 of	 Peer	
Opinion		

	
		 A	 brief	 discussion	 should	 suffice	 to	 highlight	 key	 features	 of	 the	 social	 channels	 of	
knowledge	 communication	 among	 research	 scientists	 that	 are	 captured,	 or,	 more	 properly	
“caricatured”	 in	 the	 micro‐level	 model	 drawn	 from	 David	 (1998)	 and	 described	 formally	 in	
Section	3	(below).	Starting	from	recognition	of	the	distinct	but	complementary	roles	of	tacit	and	
codified	 knowledge	 in	 the	 conduct	 of	 research,	 we	 consider	 the	 nature	 of	 the	 cognitive	
transactions	 in	 which	 the	 members	 of	 the	 local	 network	 are	 engaged.	 This	 leads	 to	 an	
examination	 (in	 2.1)	 the	 underlying	 incentives	 that	 reinforce	 cooperative	 exchanges	 of	 tacit	
knowledge	 among	 small,	 pre‐existing	 networks	 of	 personal	 correspondents;	 and	 then	 to	 the	
identification	 (in	 2.2)	 of	 special	 conditions	 under	 which	 the	 disclosure	 of	 provisional	
conclusions	 tending	 to	 conform	with	 the	 consensus	 of	 local	 peer	 belief	 emerges	 as	 a	 rational	
reputation‐building	 strategy.	 Extending	 grounds	 for	 attributing	 central	 importance	 to	
“conformity	effects”	in	process	of	consensus	formation,	research	activity	can	be	viewed	(in	2.3)	
as	 an	 iterative	process	of	Bayesian	belief	 that	 revision	 in	 individual	 researchers’	observations	
and	 interpretations	 of	 their	 experimental	 results	 are	 being	 powerfully	 shaped	 by	 a	 priori	
expectations	that	reflect	peer	opinion	concerning	the	subject	under	investigation.		

	
2.1 Informal	knowledge	transactions	inside	“invisible	colleges”	
	

	 Analysis	of	the	economic	logic	of	the	academic	science	reward	system	concurs	with	the	
functionalist	 sociology	 tradition	 in	 studies	 of	 the	 cultural	 ethos	 of	modern	 science,	 by	 laying	
stress	 upon	 the	 centrality	 of	 the	 norm	 of	 public	 disclosure	 of	 knowledge	 among	 those	 who	
belong	to	the	Republic	of	Science.	Thus,	Ziman	(1984:	p.	58)	holds	that	“the	fundamental	social	
institution	of	science	is	thus	its	system	of	communication.”	Accordingly,	much	attention	has	been	
focused	upon	bibliometric	studies	of	patterns	of	transmission	of	information	via	books,	journals,	
other	 archival	 publications,	 in	 an	 effort	 to	 identify	 the	 participants,	 and	 map	 the	 respective	
cognitive	domains	of	 the	 “invisible	colleges”	 in	which	 those	 transactions	arise.	 13	The	common	
features	of	 invisible	colleges	 in	science	are	that	they	remain	quite	fluid	as	to	membership	and	
variable	 in	size,	generally	do	not	become	highly	structured	internally,	and,	 in	 today’s	world	of	
telecommunication	technology	and	cheap	air	travel,	have	become	less	and	less	 localized	along	
institutional,	geographical,	and	national	lines.14	
	

The	 existence	 of	 the	 “broadcast”	 modes	 of	 distributing	 codified	 knowledge	 forms	 an	
essential	background	condition	for	the	personal,	interactive	transactions	among	the	members	of	
modern	 scientific	 research	 communities.	 Rewards	 structures	 for	 participants	 in	 open	 science	
are	tied	to	publication	in	those	media,	as	has	been	noted,	and,	correspondingly	 it	 is	upon	that	
objective	 that	 rivalries	 for	 priority	within	 invisible	 colleges	 tend	 to	 be	 focused.	Within	 these	
extensive	communities	whose	membership	numbers	in	the	hundreds,	however,	there	are	rather	
smaller	 and	 communicatively	more	 compact	 relational	 entities.	 These	 are	 referred	 to	 here	 as	
local	social	research	networks,	or	simply	as	“local	networks”.	The	latter	term	is	appropriate	for	
the	 interactive,	 two‐way	 communications	 flows	 among	 their	 members:	 characteristically,	
information	is	personally	conveyed	in	conversations	via	telephone,	fax	and	email	messages;	but	

                                                 
13	Price	(1965),	Narin	(1976),	van	Raan	(1988),	and	their	followers	in	“scientometrics”	apply	bibliometric	
methods	to	the	study	of	cognitive	structures	in	science,	as	do	some	proponents	of	the	sociology	of	
scientific	knowledge	(SSK).	The	“translation”	school	of	Callon	et	al.	(1989)	holds	that	social	networks	of	
research	and	knowledge	dissemination	have	corresponding	linkages	in	the	cognitive	domain;	that	they	
give	rise	there	to	counterpart	“connected	clusters	of	connected	nodes”	in	co‐citation	networks	formed	
among	papers	published	in	the	scientific	literature,	patent	applications,	and	other	“inscriptions”.	

14	The	same	tendency	has	been	discerned	recently	from	bibliometric	studies	of	formal	scientific	
collaborations.	See,	e.g.,	Katz	(1994),	Katz	and	Martin	(1997),	Hicks	and	Katz	(1996).	
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also	 by	 visiting	 each	 other’s	 laboratories,	meeting	 for	 seminars	 and	workshop	 presentations,	
and	circulating	pre‐publication	drafts	for	private	comment.		

	
Even	when	more	 tightly	 clustered,	 the	 latter	 social	 groupings	 are	 better	 described	 as	

research	 “cliques,”	 than	 as	 organized	 “teams,”	 and	 indeed,	 these	 social	 networks	 may	
encompass	 some	members	who	 belong	 also	 to	 other	 project	 teams.	 By	 comparison	with	 the	
larger,	 invisible	 colleges	 formed	 on	 disciplinary	 and	 sub‐disciplinary	 lines,	 the	 members	 of	
social	networks	in	science	tend	to	be	rather	more	strongly	localized	in	one	or	more	dimensions	
of	 association:	 they	 may	 share	 personal	 histories	 of	 training,	 or	 an	 area	 of	 problem	
specialization,	 or	 geographical	 and	 institutional	 proximity;	 co‐location	 is	 not	 essential,	 but	 it	
affords	more	frequent	opportunities	for	face‐to‐face	communications	and	informal	collaborative	
activity.		
	
	 Within	 the	 more	 restricted	 ambit	 of	 a	 researcher’s	 local	 network	 will	 be	 circulating	
many	 bits	 of	 crucial	 knowledge,	 about	 experimental	 procedures,	 equipment	 functioning,	 data	
analysis	 algorithms,	 database	 codebooks	 –	 all	 of	which	 often	 escape	 being	 fully	 codified	 and	
clearly	 revealed	 in	 published	 accounts	 of	 research	 procedures	 and	 findings.	 Although	 the	
development	and	circulation	of	codified	knowledge	traditionally	was	a	matter	of	central,	indeed,	
of	exclusive	interest	in	philosophical	and	sociological	studies	of	science,	the	significance	of	non‐
codified,	tacit	forms	of	knowledge,	and	their	role	in	the	craft	practice	of	science	has	come	to	be	
more	 generally	 appreciated.	 Tacit	 knowledge,	 as	 conceptualized	 by	 Michael	 Polanyi	 (1966),	
refers	 to	 a	 fact	 of	 common	 perception	 that	 we	 are	 aware	 of	 certain	 objects	 without	 being	
focused	 on	 them.	 Lying	 outside	 the	 zone	 of	 conscious	 attention	 does	 not	make	 them	 the	 less	
important,	 however;	 they	 form	 the	 context	 that	 makes	 focused	 perception	 possible,	
understandable,	and	productive.	
	

Tacit	and	codified	knowledge	should	thus	be	viewed	generally	as	complements,	rather	
than	substitutes	in	human	cognitive	processes.	Both	as	a	matter	of	formal	logic,	and	in	practical	
affairs,	 knowledge	may	 be	 either	 disclosed	 to	 others	 or	 kept	 secret,	 regardless	 of	 whether	 it	
exists	in	codified	form	or	remains	tacit.15	The	view	taken	here	is	that	for	the	ideas	contained	in	
scientific	statements	to	be	understood	and	rendered	operational,	researchers	must	possess	the	
complementary	 tacit	 cognitive	 associations.	 This	 is	 the	 case	 because,	 like	many	 other	 human	
pursuits,	 scientific	 inquiry	 draws	 upon	 sets	 of	 skills	 and	 techniques	 that	 are	 acquired	
experientially	and	 transferred	by	demonstration,	by	personal	 instruction	and	 the	provision	of	
expert	 services.	 Knowledge	 of	 this	 sort	 may	 be	 highly	 precise	 and	 intricate,	 but	 it	 is	 most	
typically	 conveyed	 as	 a	 gestalt,	 and	 referred	 to	 by	 language	 and	 signs	 that	 is	 idiosyncratic,	
rather	than	being	reduced	to	constituent	elements	and	operations	denoted	by	standard	codes	
from	which	might	be	 assembled	programs	of	 implementation.	The	 importance	 of	 this	 kind	of	
“hands‐on”	 experience	 in	many	 laboratory‐	 and	 facility‐based	 research	 disciplines	makes	 the	
problem	of	social	communication	of	tacit	knowledge	especially	germane	for	the	cognitive	work	
of	those	fields.16	
	

                                                 
15	See	David	and	Foray	(1995),	where	three	distinct	dimensions	are	recognized	as	defining	a	space	in	

which	 knowledge	 products	 can	 be	 located:	 the	 codified‐tacit	 axis,	 the	 disclosure‐secrecy	 axis,	 and	 the	
public‐private	property	axis.	The	implications	of	these	dimensions	are	examined	further	in	Cowan,	David	
and	Foray	(2000).	
16	Many	“craft”	aspects	of	scientific	practice	must	be	learned	in	modes	of	instruction	akin	to	an	
“apprenticeship”	by	being	afforded	opportunities	for	first‐hand	observation	of	how	they	are	done,	leading	
to	trials	under	the	guidance	and	supervision	of	experts.	Otherwise,	something	like	the	original	process	of	
acquiring	mastery	of	such	knowledge	has	to	be	repeated	ab	initio,	guided	and	encouraged	only	by	the	
belief	that	others	have	found	this	to	be	possible.	A	striking	instance	of	the	“craft	knowledge”	deployed	in	
science	is	documented	by	Harry	Collins’	(1974)	detailed	and	influential	study	of	the	construction	of	the	
TEA	laser.	See	also	Latour	and	Woolgar	(1979).	
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	 To	simplify	matters	 for	 the	purpose	of	analysis,	 the	model	 formulated	in	David	(1998)	
assumes	that	codified	knowledge	alone	can	be	broadcast	effectively	through	a	variety	of	public	
media	that	identify	the	authors	of	messages	but	are	non‐specific	with	respect	to	the	identities	of	
the	 recipients.	 On	 the	 other	 hand,	 it	 is	 assumed	 that	 messages	 whose	 cognitive	 content	
combines	 uncodified	 (or	 incompletely	 and	 idiosyncratically	 coded	 information)	 with	 some	
codified	scientific	statements	to	which	such	craft	knowledge	and	informal	judgments	relate,	are	
emitted	locally	in	the	first	instance.	Such	mixed‐content	messages	are	thus	held	to	diffuse	first	
within	the	immediate	social	network	neighborhoods	in	which	they	originate.	
	

The	 local	 networks	 described	 here	 are	 not	 regarded	 as	 a	 strategic	 instrument	whose	
primarily	functional	role	is	that	of	“capturing”	and	exploiting	the	benefits	of	tacit	knowledge	for	
its	members.	On	the	contrary,	the	benefits	that	it	provides	for	individual	scientists	qua	research	
workers	 are	 those	 of	 access	 to	 cooperative,	 reciprocated	 transactions	 in	 the	 otherwise	
undisclosed	 knowledge	 possessed	 by	 specialists;	 the	 sharing	 of	 that	 expertise	 enables	 their	
correspondence	to	increase	their	chances	of	solving	complex,	multi‐step	problems	sooner	than	
would	be	the	case	were	they	to	work	in	isolation.	In	keeping	with	this,	it	is	further	supposed	that	
the	local	networks	are	not	autarkic:	by	having	some	members	in	common	with	other,	similarly	
local	social	groups,	they	are	rendered	more	or	less	inter‐communicative.	Thus,	complementary	
packets	 of	 codified	 and	 tacit	 knowledge,	 along	 with	 explicit	 and	 implied	 conjectures	 about	
promising	 lines	 of	 scientific	 inquiry,	 eventually	 do	 percolate	 outward	 from	 particular	 local	
networks	 and	 so	 become	 diffused	 throughout	 the	 wider	 community	 of	 researchers	 that	
constitutes	the	“invisible	college”.	

	
	 Cooperative	behavior	in	the	form	of	technical	knowledge‐sharing	and	the	disclosure	of	
provisional	 scientific	 judgments	 can	 emerge	 and	 be	 sustained	within	 a	 limited	 social	 sphere,	
without	requiring	the	prior	perfect	socialization	of	researchers	to	conform	(altruistically)	to	the	
norm	 of	 full	 disclosure	 and	 cooperation.	 This	 is	 a	 rather	 straightforward	 instance	 in	 which	
insights	from	the	theory	of	repeated	games	are	helpful	 in	accounting	 in	rational	 terms	for	 the	
patterns	of	reciprocated	cooperative	behavior	among	potentially	rivalrous	researchers.17	Small	
cooperative	“networks”	of	information	sharing	can	be	supported	among	researchers	engaging	in	
recurring	problem‐solving	situations	because	pooling	of	information	furthers	the	self‐interest	of	
the	members	 in	 their	 respective	 races	 for	 priority	 against	 researchers	 situated	 outside	 their	
immediate	 “clique”;	 correspondingly,	 individuals	 who	 deviate	 persistently	 by	 withholding	
knowledge,	or	otherwise	behaving	in	opportunistic	ways	to	the	detriment	of	others	from	whom	
they	 have	 drawn	 help,	 risk	 discovery	 and	 the	 future	 denial	 of	 access	 to	 pools	 of	 specialized	
knowledge,	 which	 would	 tend	 to	 place	 them	 at	 a	 considerable	 disadvantage	 in	 problem‐
solving.18	

                                                 
17	Arguments	on	this	proposition,	which	invoke	inter	alia	the	“folk	theorem”	as	applicable	to	the	situation	
of	researchers	contemplating		careers	in	academic	science,		are	developed	with	some	illustrative	detail	in	
David	(1998:	sect.	7.4).	The	so‐called	“folk	theorem”	of	game	theory	holds	that	(if	future	payoffs	are	
discounted	by	each	player	at	a	low	rate)	in	the	“super	game”	obtained	by	repeating	a	finite	two‐person	
game	indefinitely,	any	outcome	that	is	individually	rational	can	be	implemented	by	a	suitable	choice	
among	the	multiplicity	of	Nash	equilibria	that	exist.	See	Rubinstein	(1979,	1980),	Fudenberg	and	Maskin	
(1984).	

18	 	 Thus,	 “circles”	 or	 “networks”	 that	 informally	 facilitate	 the	 pooling	 of	 knowledge	 among	 distinct	
research	 entities	 on	 a	 restricted	 basis	 can	 exist	 as	 exceptions	 to	 both	 the	 dominant	 mode	 of	 “public	
knowledge”	 characterizing	 academic	 Science,	 and	 the	 dominant	 mode	 of	 “proprietory	 knowledge”	
characterizing	industrial	R&D	organizations.	Eric	von	Hippel	(1988)	and	others	have	described	how	firms	
tacitly	 sanction	 covert	 reciprocal	 exchanges	 of	 information	 (otherwise	 treated	 as	 proprietary	 and	
protected	under	the	law	as	trade	secrets)	among	their	respective	engineer‐employees.	The	existence	of	a	
“private	professional	network”	upon	whom	the	engineers	can	call	for	help	is,	in	effect,	a	knowledge	asset	
that	can	be	valuable	 to	her	employer,	even	 though	exploiting	 it	necessitates	exposing	 the	nature	of	 the	
research	problems	upon	which	the	 firm	is	working.	 It	 is	significant	that	 for	employees	engaged	 in	such	
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Such	 considerations,	 however,	 do	 not	 imply	 that	 the	 normative	 content	 of	 Merton’s	

communalistic	 norm	 of	 disclosure	 plays	 no	 essential	 role	 in	 fostering	 cooperation	 among	
citizens	 of	 the	 Republic	 of	 Science.	 Quite	 the	 contrary.	 Networks	 of	 reciprocal	 information‐
sharing	will	be	more	likely	to	form	spontaneously	if	the	potential	participants	start	by	expecting	
others	to	cooperate,	 than	if	 they	expect	“trust”	to	be	betrayed;	game	theory	also	suggests	that	
cooperative	patterns	of	behavior	will	be	sustained	longer	if	participants	have	reason	to	expect	
to	encounter	refusals	to	cooperate	only	in	retaliation	for	their	own	deviations	from	that	norm.19	
Moreover,	the	detection	of	deviant	behavior	warranting	punishment,	and	implementation	of	the	
retribution	 of	 ostracism	 from	 a	 particular	 network,	 will	 have	 more	 broadly	 damaging	
reputational	consequences	when	the	norms	of	behavior	 involved	(i.e.,	 the	“custom”	within	the	
network	in	question)	is	common	knowledge,	and	part	of	the	shared	socialization	among	all	the	
potential	 members	 of	 networks.	 Therefore,	 even	 were	 the	 process	 of	 socialization	 among	
scientists	to	be	weak	and	quite	imperfect,	the	common	“culture	of	Science”	makes	it	much	more	
likely	that	the	rule	of	priority	will	not	tempt	individuals	to	engage	in	opportunistic	withholding	
of	knowledge,	and	instead,	will	engage	the	self‐interest	of	researchers	in	reinforcing	adherence	
to	the	norm	of	disclosure	–	at	least	among	those	restricted	circles	of	colleagues	that	form	his	or	
her	local	social	network.	
	 Two	 sorts	 of	 cognitive	 communications	 flows	 are	 envisaged	 to	 take	 place	 within	 the	
local	social	network	structures	of	this	model.	Information	in	the	form	of	codified	statements	can	
be	passed	between	agents	by	the	act	of	one	of	them	sending	a	message	or	“sharing”	a	piece	of	
knowledge,	 and	 the	 other	 receiving	 or	 “reading”	 it.	 The	 substance	 of	 the	 generic	 message‐
transaction	 comes	 in	 two	 parts:	 the	 first	 component	 contains	 (or	 otherwise	 identifies)	 a	
particular	scientific	statement	–	a	proposition	asserted	in	regard	to	a	phenomenon	in	nature,	or	
about	the	design	of	a	measurement	instrument	or	other	artifact,	an	experimental	procedure,	or,	
perhaps	 a	 logically	 connected	 “bundle”	 of	 such	 statements.	 The	 second	 part	 of	 the	 message	
conveys	 the	 sender’s	 present	 state	 of	 belief	 as	 to	 the	 “reliability”	 or	 “unreliability”	 of	 the	
accompanying	statements.	
	

	Extending	 that	 metaphor,	 one	 may	 imagine	 that	 the	 channels	 of	 communication	 are	
multiplexed,	 and	 thus	 capable	 of	 bundling	 (or	 “packaging”)	 cognitively	 interrelated	
propositions,	so	that	it	would	be	possible	for	the	human	transmitters	and	receivers	to	handle	a	
flow	of	numerous,	more	or	less	concurrent	messages	of	the	foregoing	kind	that	pertain	to	many	
distinct,	and	cognitively	independent	scientific	statements.	Each	of	those	problematics	could	be	
assigned	 to	 its	 own	 “layer”	 over	 the	 network,	 and	 the	 resulting	 information‐processing	
architecture	 thus	 would	 be	 enabled	 to	 simultaneously	 execute	 multiple	 consensus	 building	
routines	in	parallel.20	For	analytical	tractability,	however,	the	model	presented	deals	with	only	
one	such	“layer”	of	discourse.	
	
                                                                                                                                                        
knowledge‐trading	networks,	expert	help	from	peers	outside	the	firm	can	be	professionally	evaluated	and	
reciprocated	in	kind;	one	who	accepted	money	rather	than	professional	assistance	in	repayment	of	help	
which	entailed	disclosed	knowledge	gained	in	the	course	of	her	professional	work,	most	probably	would	
be	dismissed		by	her	employer	and	prosecuted	for	theft	of	trade	secrets.	
19	See	David	(1998:p.130)	on	Axelrod’s	(1984)	findings	regarding	the	effectiveness	of	‘tit‐for‐tat’	
strategies	in	sustaining	cooperative	play	in	the	repeated	Prisoners’	Dilemma.	

20	The	condition	of	independence	that	qualifies	the	preceding	formulation	is	not	innocuous.	It	serves	
to	eliminate	the	complications	that	can	arise	from	inter‐layer	“cognitive	spillover”	effects,	especially	those	
of	 the	competitive	or	 “cancellative”	sort	rather	 than	 the	complementary	or	 “additive”	kind;	 these	occur	
where	establishment	of	a	consensus	on	the	reliability	of	the	statement(s)	carried	in	Layer	A	are	likely	to	
prompt	the	disintegration	of	a	previously	form	consensus	regarding	statement(s)	carried	by	Layer	B.	For	
example,	the	initial	establishment	of	scientific	consensus	on	the	reliability	of	propositions	deriving	from	
quantum	 mechanical	 calculations	 about	 the	 behavior	 of	 light	 could	 be	 viewed	 as	 “unsettling”	 prior	
consensuses	regarding	propositions	about	light	that	derived	from	wave	mechanics.	
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It	 is	 important	 to	 emphasize	 a	 further	 simplification:	 the	 nature	 of	 the	 messages	
transmitted	 regarding	 “reliability”	 are	 not	 concerned	 with	 subjective	 probabilities	 as	 to	 the	
ultimate	 “truth”	 of	 a	 specified	 hypothesis,	 nor	 do	 they	 offer	 assessments	 of	 the	 “degree	 of	
reliability”	adhering	to	particular	statements.	At	any	moment	the	researchers	(acting	either	in	a	
team	 organization	 or	 as	 a	 solo	 investigator)	 impose	 a	 binary	 classification	 upon	 whatever	
opinions	they	hold	in	such	matters,	and	so	they	mark	the	cognitive	statements	they	emit	either	
as	 having	 attained	 a	 level	 of	 reliability	 that	 is	 “acceptable”,	 or	 “unacceptable”.	 But	 these	 are	
understood	to	be	provisional	judgments;	their	minds	are	open,	in	the	sense	that	from	moment	
to	moment	they	can	find	cause	to	revise	their	labeling	of	the	same	statement(s).	

	
	 The	 revision	process	 is	precisely	where	 the	cognitive	content	of	 the	messages’	 second	
component	(beliefs)	comes	into	play.	At	 least	two	caricature‐accounts	can	be	given	about	how	
scientific	 inquiry	 is	conducted	 in	 the	world	of	 this	model:	 in	both	 the	researchers	revise	 their	
belief‐orientations	regarding	the	reliability	or	unreliability	of	propositions	under	discussion	in	
ways	 that	 leave	 them	 open	 to	 being	 influenced,	 if	 not	 completely	 “persuaded”	 by	 the	
information	 they	 receive	 as	 to	 the	 beliefs	 held	 by	 correspondents	 in	 their	 immediate	 social	
network.	 The	 following	 sub‐sections	 sketch	 the	 two	 accounts	 offered	 by	David	 (1998)	 in	 this	
connection,	 one	 appealing	 to	 the	 taste	 of	 economists	 	 concerned	 to	 find	 rational	 grounds	 for	
individual	 behaviors,	 the	 other	 framed	 in	 terms	 of	 the	 epistemology	 and	 psychology	 of	
experimental	and	observational	inquiry.	Introducing	further	strategic	considerations	provides	a	
direct	 rationale	 for	 the	 persuasive	 power	 that	 a	 prevailing	 consensus	 for,	 or	 against,	 a	 given	
proposition	might	exert	in	the	formation	of	an	individual	researcher’s	reported	beliefs	about	its	
validity.	 	 Unlike	 the	 foregoing	 arguments	 from	 the	 philosophy	 and	 history	 of	 experimental	
science,	the	following	section	is	more	generically	“economic”	in	its	appeal.		Yet,	it	will	be	evident	
that	two	accounts	are	mutually	compatible	for	present	purposes,	so	that	 it	 is	not	necessary	to	
choose	between	them	
	

2.2 Conformity	to	local	peer	consensus	as	a	reputational	strategy		
	
	 In	 the	spirit	of	arguments	suggested	by	Dasgupta	and	David	(1994),	one	may	suppose	
that	a	scientist	working	in	a	collegiate	reputational	reward	system	would	consider	the	nearer‐
term	reputational	consequences	of	current	actions	(including	expressions	of	scientific	opinion),	
as	well	as	longer‐term	payoff	possibilities	in	the	form	of	lasting	fame	for	“having	gotten	it	right”.	
Whether	a	researcher	will	be	found	to	have	been	“right”	in	the	judgment	of	their	peers	depends	
upon	the	alignment	of	their	recorded	(or	remembered)	beliefs	in	relation	to	the	consensus	that	
existed	at	the	time	among	members	of	the	local	network	to	whom	those	views	were	disclosed;	
and	also	on	the	relationship	of	those	opinions	to	the	global	consensus	that	in	time	may	emerge	
within	the	invisible	college	as	to	the	“truth”	or	“falsity”	of	the	proposition	in	question.		It	is	then	
quite	straightforward	to	envisage	a	structure	of	“expected	reputational	payoffs”	that	makes	it	a	
dominant	strategy	to	be	found	to	have	had	beliefs	conforming	with	those	presently	held	by	most	
of	one’s	local	network,	even	when	the	ethos	of	the	lone	scientific	hero	would	accord	maximum	
kudos	and	immortal	glory	to	a	researcher	who	had	not	conformed	with	local	peer	opinion,	and	
whose	beliefs	 eventually	 came	 to	be	 shared	by	 an	overwhelming	 segment	of	 the	discipline	at	
large.		
	
	 	Consider	 the	 following	 example.	 Let	c	 denotes	 conformity	with	 the	preponderance	 of	
scientific	opinion	in	one’s	local	network,	and	d	denotes	disagreement	with	that	consensus.	For	
expositional	convenience	we	may	examine	the	situation		where	the	prevailing	consensus	holds	a	
particular	 statement,	 S	 to	 be	 “reliable/true”,	 denoted	 by	R.	 (One	 can	 treat	 symmetrically	 the	
opposite	case,	in	which	the	consensus	among	the	agent’s	reference	groups	holds	the	statement	
to	be	“unacceptable/false”,	not‐R	or,	equivalently	W.)		The	consensus	that	can	emerge	eventually	
in	the	global	network,	i.e.,	the	limiting	configuration	of	beliefs	among	members	of	the	invisible	
college,	 may	 either	 hold	 S	 to	 be	 “reliable	 knowledge”,	 denoted	 by	 R,	 or	 not,	 denoted	 by	W	
(“Wrong”).	 But	we	 suppose	 that	 this	 eventual	 determination	 cannot	 be	 known	with	 certainty	



12 

when	 the	 researcher	 is	 deciding	which	 opinion	 to	 offer	 on	 the	matter	 at	 hand.	 The	 incipient	
emergent	 consensus	 is	 that	 sense	 an	 unobserved	 “state	 of	 (social)	 nature”.	 	 If	 the	 individual	
researcher	treats	the	local	network	as	the	reference	group	whose	esteem	matters,	we	then	have	
the	following	notation	for	possible	states,	to	each	of	which	there	will	correspond	“reputational	
payoffs”	for	the	representative	researcher:	
	
	 		 	 	 {c,	R|	S		is	R}=	b1	:	being	right,	with	the	crowd;	
	 		 	 	 {c,	R|	S		is	W}=b2	:	being	wrong,	with	the	crowd;	
	 		 	 	 {d,	R|	S		is	R}=	b3:	being	in	a	minority	and	wrong;	
	 		 	 	 {d,	R|	S		is	W}=b4:	being	in	a	minority	and	right.		
	
A	suitable	general	payoff	structure	for	an	epistemic	community	is	one	that	assigns	greater	value	
to	an	individual	researcher	who	is	found	to	be	“in	the	right”	than	to	one	who	had	embraced	the	
“wrong”	view.	But	it	is	also	plausible	that	being	wrong	in	a	crowd	will	be	deemed	not	as	bad	(for	
her	subsequent	reputational	standing)	as	being	found	to	have	been	wrong	more‐or‐less	on	one’s	
own;	whereas	being	 “lonely	 yet	 right”	 is	 deemed	 to	be	more	 glorious	 (reputationally)	 than	 is	
having	been	correct	among	a	crowd	of	one’s	peers.		This	scheme	of	valuation	of	the	outcomes	of	
the	game	against	(social)	nature	corresponds	to	the	condition:	b4>b1>b2>b3.21	
	
	 Now,	let	2	denote	the	subjective	probability	that	the	 individual	assigns	to	the	outcome	
that	 the	 global	 consensus	 eventually	will	 form	 on	R,	 i.e.,	 holding	 S	 to	 be	 “reliable.”	 Then	 the	
expected	payoff,	Bc,	 to	 an	 individual	whose	 strategy	was	 to	 conform	 to	 the	preponderance	of	
peer	opinion	would	be		

Bc	=	{2b1	‐	(1‐	2	)b2},		
	

whereas	the	corresponding	expected	payoff	for	the	strategy	of	dissenting	is		
	
	 	 	 	 Bd	=	{(1‐	2	)b4		‐	2b3	}	.				
	

It	 follows	 that	 Bc	 >	Bd	 	 	 is	 sufficient	 for	 the	 pure	 strategy	 of	 “conformity”	 to	 maximize	 the	
individual	researcher’s	expected	reputational	payoff;	and	where	the	inequality	is	reversed,	the	
pure	strategy	of	“dissent”	will	be	dominant.	
	

The	sufficient	condition	for	individual	to	“conform”	to	the	prevailing	preponderance	of	
belief	is	readily	obtained.	By	substitution	we	have	
	

		 	 	 	 [(b1		+	b3)	/(b4	+	b2)]	>	[(1‐2)/	2]	,	
	

which	may	be	re‐written	as	
	
	 	 	 	 2		>	(b4	+	b2)	[(b1		+	b3)	+	(b4	+	b2)]‐1		=		2*.	
	

To	 put	 this	 more	 explicitly:	 there	 exists	 a	 critical	 value	 0	 <	 2*	 such	 that	 the	 strategy	 of	
“conforming”	 is	dominant	when	2	>	2*.22	 	Further,	because	the	foregoing	specifications	on	the	
structure	of	the	payoffs	imply	the	inequality	(b1		+	b3)	<	(b4	+	b2),	it	follows	that		2*	>	½.		Figure	
1	depicts	this	proposition	graphically.	
	

                                                 
21		A	reasonable	interpretation	of	this	game	would,	in	addition,	specifiy	that	b1	>	0.	
22		It	is	evident	that	in	the	illustrative	case	presented	here,	the	restrictions	(b4>b1>b2>b3	)	and	b1	>	0	
guarantee	that		0	<	2*	<	1,		so	that		20	[0,1]	can	satisfy	the	sufficient	condition	for	conformity	to	be	
dominant	as	a	pure	strategy.		
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Figure	1.	Conditions	for	dominance	of	conformity	as	a	reputational	strategy	

	
	 	 	 	 	 	

The	intuition	here	is	clear	enough:	as	the	critical	value	of	the	a	priori	probability	that	S	
will	turn	out	to	be	false	is	approached,	i.e.,	2		2	<	½,	the	prospect	of	receiving	the	large	payoff			
{d,	R|W}	=	b4	 for	being	“right	 in	a	minority”	 renders	 the	non‐conformist	 strategy	 increasingly	
attractive	for	an	expected	utility‐maximizing	agent.		Conversely,	when	(‐b4	|b2|)		0,	the	pure	
strategy	of	conformity	becomes	“locked	in”.	There	are	special	circumstances	that	would	“lock‐
in”	 the	agent	 to	 invariant	dissent	 from	the	majority	position	on	 the	 truth	 (and	symmetrically,	
the	 falsity)	 of	 S:	 where	 the	 gain	 from	 being	 right	 when	 conforming	with	majority	 opinion	 is	
matched,	or	over‐matched	by	the	absolute	magnitude	of	the	“penalty”	incurred	for	being	wrong	
in	dissent,	(‐b1|b3|)		0	and	2*		1;	consequently,	the	critical	value	for	dominance	of	dissent	
(1‐	2*)		0	and	can	always	be	satisfied.		But,	so	long	as	all	the	payoffs	remain	positive,	neither	
of	 the	pure	 strategies	 (c,	d)	 can	be	dominant	without	 reference	 to	 the	 researcher’s	 subjective	
probability	evaluation	of	S.	

		
It	 will	 then	 be	 rational	 for	 the	 individual	 researcher	 to	 follow	 a	 “mixed	 strategy,”	 by	

forming	 a	 provisional	 opinion	 on	 the	 question	 under	 consideration	 by	 choosing	 between	 the	
available	 (binary)	 options	 on	 a	 probabilistic	 basis.	 To	 see	 how	 a	mixed‐strategy	 of	 that	 kind	
might	 be	 implemented,	 one	may	 start	 by	 asking	how	 the	 subjective	 estimate	 of	 probability	2	
would	be	formed.	Although	this	point	has	not	surfaced	explicitly	in	the	foregoing	discussion,	it	is	
now	 relevant	 to	 notice	 that	 there	 is	 a	 variety	 of	 stochastic	 processes	 representing	 dynamic	
consensus	 formation	 through	 the	 revision	 of	 opinions	 induced	 by	 the	 interactions	 among	
members	of	a	finite	population	of	agents.	For	some	processes	of	that	kind,	the	configuration	of	
opinions	in	the	entire	ensemble	eventually	will	become	perfectly	correlated	on	one	or	the	other	
of	the	possible	binary	orientations	–	on	either	R,	or	W	in	the	present	example.	Furthermore,	as	
will	 be	 seen	 from	 Section	 3.2,	 below,	 there	 is	 one	 such	 process	 in	 which	 the	 distribution	 of	
binary	opinion‐orientations	prevailing	 at	 the	 start	 of	 the	 process	 constitutes	 the	best	a	priori	
probability	 estimate	 that	 the	 limiting	 outcome	 will	 be	 the	 establishment	 of	 such	 correlation	
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(“closure”)	on,	 say,	 the	option	R.	This	 is	 the	 so‐called	 “Simple	Voter	Model,”	 a	 reversible	 spin	
system	that	is	well‐known	in	the	literature	on	interacting	particle	systems.23	

		
Allowing,	for	the	moment	that	there	is	sufficient	warrant	to	work	with	that	model	of	the	

process	 of	 the	 tacit	 knowledge	 transactions	 among	 the	 members	 of	 an	 invisible	 college,	 the	
preceding	 discussions	 of	 the	 role	 of	 local	 social	 networks	 implies	 that	 the	 initial	 state	 of	
(provisional)	opinions	throughout	the	whole	of	the	“invisible	college”	hardly	would	be	known	to	
any	of	its	members.	The	individual	researchers’	respective	information	fields	on	such	a	matter	
would	 restrict	 them,	 at	 best,	 to	 knowing	 something	 about	 the	 current	 distribution	 of	 opinion	
among	 members	 of	 their	 immediate	 social	 network.	 Nonetheless,	 the	 proportion	 among	 the	
latter	who	presently	say	“R”	when	canvassed	would	provide	the	individual’s	estimate	(2)	of	the	
probability	that	the	invisible	college	as	a	whole	eventually	would	achieve	“closure”	by	accepting	
the	“R‐ness”	(i.e.,	“reliablity”)	of	the	proposition	in	question.		Let	us	see	what	this	would	imply.	

	
2.3	 Cognitive	 communications:	 beliefs,	 Bayesian	 learning,	 and	 conformity	 to	

	 consensus	
	
Postulating	 that	 the	 conditions	 just	 described	 hold	 for	 mixed‐strategy	 micro‐level	

behaviors,	 it	 is	useful	 to	adopt	a	simple	characterization	of	 the	process	of	provisional	opinion	
formation	and	revision,	by	invoking	a	well‐studied	probabilistic	model	of	cellular	automata.	The	
latter	 represent	 the	 collection	 of	 “researcher‐agents”	who	 are	 symmetrically	 situated	 in	 their	
respective	local	networks.		

	
Suppose	these	agents	execute	the	following	algorithm	to	select	a	binary	orientation	with	

regard	to	the	reliability	of	a	pre‐specified	scientific	proposition,	S.	At	a	random	interval	in	time	
each	 agent	 polls	 the	 opinion‐messages	 emitted	 by	 other	 agents	 belonging	 to	 the	 same	 local	
network.	 If	 there	 is	 unanimity	 among	 them	 (either	 on	 the	 reliability	 or	 the	 unreliability	 of	 a	
particular	proposition)	the	polling	agent	accepts	the	local	consensus	and	accordingly	adapts	the	
messages	it	sends	to	neighbors	concerning	the	validity	of	the	proposition	in	question.	When	a	
disagreement	 is	 found	 within	 the	 local	 network,	 an	 agent	 will	 follow	 this	 quasi‐Bayesian	
procedure:	he/she	probabilistically	selects	an	opinion	on	the	given	question	by	a	procedure	that	
is	equivalent	 to	tossing	a	coin	whose	 loading	mirrors	the	division	of	opinion	among	the	set	of	
network‐neighbors.	 By	 so	doing,	 implicitly,	 equal	 influence	 is	 accorded	 to	 the	opinions	 of	 the	
local	reference	network	members,	and,	in	effect,	the	agent	selects	an	orientation	from	the	binary	
options	 with	 probabilities	 that	 are	 proportional	 to	 the	 currently	 observed	 frequency	 of	 that	
orientation	within	the	agent’s	local	network.	The	procedure	described	corresponds	immediately	
to	the	mechanism	postulated	by	the	so‐called	“Voter	Model,”	of	which	more	will	be	said	below	
(in	Section	3).	

	
How	plausible	 is	such	an	obviously	artificial	representation?	By	way	of	an	answer	that	

endeavors	to	address	at	least	some	of	the	“realistic”	concerns	that	the	discussion	of	the	previous	
section	 (2.2)	 is	 likely	 to	 raise	 for	 students	 of	 scientific	 communities,	 an	 alternative,	 “non‐
strategic”	account	may	be	given	of	the	influence	that	information	about	the	distribution	of	local	
peer	opinion	exerts	upon	the	orientation	of	researchers’	judgments	in	regard	to	the	“reliability”	
of	a	particular	cognitive	propositions.	

	
The	 researchers	 in	 this	 story	are	depicted	as	engaging	 in	a	bounded	 form	of	Bayesian	

information‐processing,	 drawing	 inferences	 from	 the	 observations	 generated	 in	 their	 own	
                                                 
23	Strictly	speaking,		as	in	David	(1998,	2002),	the	form	known	as	the	“Simple”	or	“Linear”	Voter	Model	is	
examined	in	Section	3.2	Despite	the	anthropomorphic	allusion	in	the	name,	this	structure	originally	was	
developed	in	a	quite	different	(particle	physics)	context	by	Clifford	and	Sudbury	(1973),	and	Holley	and	
Liggett	(1975).	See	Liggett	(1985),	Ch.5	for	an	overview	and	discussion	of	its	relationship	to	the	class	of	
stochastic	reversible	spin	systems.			
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experiments	and,	possibly	also	from	reports	of	the	inferences	arrived	at	by	others	they	know	to	
have	been	similarly	engaged.	It	is	assumed	that	they	are	all	following	a	common	epistemological	
strategy,	 and	 thus	 refer	 to	 the	 same	 subjective	 probability	 thresholds	 when	 declaring	 some	
particular	 conjecture	 about	 the	 underlying	 “state	 of	 nature”	 to	 be	 “acceptably	 reliable,”	 or	
alternatively	 “not	 reliable.”	 Furthermore,	 the	 existence	 of	 that	 shared	 strategy	 itself	 would	
constitute	a	subject	of	common	knowledge	within	the	community	–	indeed,	it	might	be	said	to	
be	 one	 of	 the	 procedural	 rules	 that	 characterize	 the	 epistemic	 community	 in	 question.	
Consequently,	every	researcher	views	the	a	priori	beliefs	conveyed	by	their	correspondents	to	
have	been	shaped	by	a	Bayesian	revision	process	similar	to	their	own,	and	therefore	to	contain	
data	worth	taking	into	account.	

	
Therefore,	 the	 distribution	 of	 priors	 underlying	 the	 announced	 binary	 orientations	

among	the	researchers	with	regard	to	the	scientific	proposition	in	question	would	be	subject	to	
revisions	 that	 were	 generated	 in	 two	 ways.	 One	 would	 be	 the	 periodic	 routine	 of	 Bayesian	
“updating,”	based	upon	their	own	calculations	of	the	likelihoods	of	the	results	observed	in	their	
own	experimental	work	and	data	analysis.	The	other	would	reflect	the	(presumed	a	posteriori	
judgments)	 gathered	 from	 the	 distribution	 of	 evaluative	 opinions	 within	 their	 own	 local	
network,	 which,	 in	 turn,	 would	 reflect	 the	 pooling	 of	 categorical	 expressions	 of	 belief	
communicated	by	the	members	of	their	correspondents’	networks.	Inasmuch	as	the	individual	
scientist’s	 conduct	of	experiments	and	 the	 taking	of	observations	are	 likely	 to	occur	with	 less	
frequency	than	the	arrival	of	messages	reporting	the	state	of	opinions	held	by	other	researchers	
in	 her	 network,	 the	 effects	 of	 the	 latter	 might	 well	 be	 expected	 to	 overwhelm	 those	 of	 the	
former.	 This	 could	well	 be	 the	 case	 even	were	 the	 findings	 of	 her	 own	 research	 to	 be	 given	
greater	weight	than	the	informally	communicated	views	held	by	members	of	her	peer	group.	

	
That	considerable	weight	 is	accorded,	de	 facto	 to	peer‐opinion	 in	 the	 interpretation	of	

observational	data,	is	suggested	by	the	doubts	that	sociological,	philosophical,	and	psychological	
studies	have	 raised	concerning	 traditional	 views	of	 the	nature	of	 experimental	 science.	These	
critiques	call	 into	question	the	degree	to	which	scientific	progress	actually	occurs	through	the	
experimental	 refutation	 or	 “invalidation”	 of	 conjectural	 propositions,	 as	 was	 proposed	 in	
Popper’s	 (1959)	 account	 of	 the	 scientific	 discovery	 process.24	 Historians	 of	 science	 have	
contributed	 to	 the	 present	 skepticism	 regarding	 the	 supposedly	 central	 role	 played	 since	 the	
17th	century	by	“crucial	experiments”,	and	the	power	of	unalloyed	“observation”	to	dislodge	an	
established	 consensus	 view.	 Indeed,	 the	 very	 occurrence	 of	 the	 famous	 Tower	 of	 Pisa	
experiment	 –	 whereby	 Galileo’s	 finding	 of	 essentially	 the	 same	 rate	 of	 fall	 of	 two	 unequal	
weights	 dropped	 from	 the	 Tower,	 supposedly	 undermined	 the	 authority	 of	 Aristotelian	
mechanics	–	is	now	suspect;	Alder	and	Coulter’s	(1978)	modern	replication	study	revealed	that	
the	observable	difference	 in	the	speeds	of	 the	objects	over	 their	200‐foot	descent	would	have	
been	too	large	to	justify	Galileo’s	reporting	that	it	was	negligibly	small.25		

	
Similarly,	 through	 the	 work	 of	 Worrall	 (1976),	 revisionist	 history	 of	 science	 now	

instructs	 us	 that	 the	 experiments	 of	 Thomas	 Young	 could	 not	 have	 overturned	 Newton’s	

                                                 
24	See	David	(1998:	pp.	134‐138)	for	further	discussion	of	the	critiques	advanced	by	Kuhn	(1962/1970),	
Lakatos	 (1970)	 and	 Feyerabend	 (1975),	 which	 reinvigorated	 the	 epistemological	 problems	 posed	 for	
Popper’s	(1959)	account	in	the	writings	of	P.	Duhem,	and	by	W.	V.	O.	Quine	(1953).	See	Harding’s	(1976)	
discussion	 of	 the	 so‐called	 “Duhem‐Quine	 problem”	 regarding	 the	 possibility	 of	 scientific	 refutation.	
According	 to	 Franklin’s	 (1986:4,	 106)	 reading	 of	 the	modern	 skepticist	 position,	 whereas	 the	 theory‐
laden	nature	of	 experiments	 and	 “observation”	has	 the	 effect	 of	 opening	 the	whole	 edifice	 of	 scientific	
theory	 to	 the	 risk	 of	 empirical	 refutation,	 particular	 theories	 or	 hypotheses	 could	 thus	 escape	
experimental	falsification.		
	
25	Franklin	(1986:	p.	2,	n.	7),	citing	the	replication	study	by	Alder	and	Coulter	(1978),	goes	on	to	point	out	
that	an	Aristotelian	could	readily	have	modified	the	theory	to	accommodate	the	experimental	data.	



16 

corpuscular	 theory	 of	 light	 and	 so	 established	 the	 wave	 theory,	 if	 only	 because	 corpuscular	
explanations	 were	 available	 for	 both	 interference	 and	 diffraction.26	 There	 are,	 to	 be	 sure,	
striking	counter‐examples	of	instances	in	which	experiments	did	prove	“crucial”	in	overturning	
a	 prevailing	 theoretical	 model.	 But,	 even	 in	 these	 cases	 careful	 historical	 re‐examination	
sometimes	 serves	mainly	 to	 expose	 their	 atypicality,	 and	 highlights	 the	 special	 nature	 of	 the	
circumstances	 that	would	make	 it	 likely	 for	 experimental	 results	 to	 prove	 decisive	 in	 rapidly	
altering	a	scientific	consensus.27	More	generally,	close	examination	of	the	ways	in	which	runs	of	
results	are	generated	in	modern	experimental	physics,	such	as	has	been	undertaken	by	Franklin	
(1986),	reveals	how	the	 latter	can	sometimes	appear	to	 imply	that	parameter	magnitudes	are	
either	 conditioned	 by	 theoretical	 expectations,	 or	 that	 when	 initial	 values	 were	 obtained	 in	
contradiction	 of	 received	 theory,	 extended	 replications	 were	 undertaken	 until	 significant	
alterations	caused	the	magnitudes	to	converge	to	the	theoretical	expectations.		

		
Considerations	of	the	 foregoing	kind	support	the	view	of	behaviors	in	conformity	with	

peer‐opinion	 as	 having	 powerful	 short‐run	 impacts	 in	 the	 process	 of	 scientific	 consensus	
formation.28	The	 interpretation	 this	 suggests	 for	 the	 toss	of	 the	 (local	 opinion‐weighted)	 coin	
envisaged	in	the	Voter	Model	algorithm	(described	at	the	end	of	the	previous	sub‐section,	2.2),	
is	that	this	routine	mimics	the	conduct	of	an	inherently	ambiguous	experiment	or	observational	
procedure.	In	such	a	situation	the	“reading”	of	the	results	generated	would	be	strongly	shaped	
by	 the	 “prior’s”	 held	 by	 the	 individual	 experimenter	 or	 observer	 as	 to	 the	 validity	 of	 the	
hypothesis	 under	 examination.	 Only	 when	 opinion	 in	 the	 local	 peer	 group	 is	 quite	 evenly	
balanced	 would	 the	 testimony	 of	 the	 experiment	 exercise	 potent	 leverage	 upon	 the	
experimenter’s	reported	belief,	but	 then	the	 interpretation	placed	upon	a	“face	value”	reading	
would	still	be	subject	to	some	stochastic	influences.	Of	course,	there	is	a	question	as	to	whether	
such	influences	are	properly	represented	by	the	toss	of	a	“fair”	coin,	as	the	simple	algorithm	of	
the	voter	model	suggests.	trivalof	the	results	remain	uncertain.	

	
But,	even	the	foregoing	simplistic	(and	for	some,	undoubtedly	rather	troubling)	view	of	

the	power	that	the	currently	prevailing	consensus	of	local	peer	opinions	exercises	in	the	work	of		
individual	scientists	should	not	be	dismissed	as	having	 ignoring	element	of	built‐in	correction	
that	operates	in	open	science	research	processes	over	the	longer	run.	Where	the	magnitudes	at	
issue	in	a	particular	scientific	theory	are	“important”	and	relied	upon	widely	in	drawing	out	its	
implications,	 advances	 in	 experimental	 technique	 create	 opportunities	 to	 score	 scientific	
“coups”	 by	 establishing	 a	 new	 and	 different	 value	 from	 the	 ones	 previously	 accepted	 for	 the	
parameters	in	question.	The	greater	is	the	resolution	of	observational	equipment,	and	the	less	
error	 prone	 are	 the	 experimental	 techniques	 and	methods	 of	 data	 analysis,	 the	 higher	 is	 the	
signal‐to‐noise	ratio	from	this	source	of	information,	given	greater	power	for	the	“signals	from	
stationary	 properties	 of	 Nature”	 to	 push	 the	 social	 process	 of	 consensus	 formation	 in	 one	
direction.	 	 Furthermore,	 so	 long	 as	 there	 is	 some	 persisting	 and	 acknowledged	 discrepancy	
between	 the	 theoretical	expectation	and	 the	previous	experimental	 findings,	 there	 is	hope	 for	

                                                 
26	Moreover,	the	early	(pre‐Fresnel)	wave	model	could	not	account	for	the	rectilinear	propagation	of	light,	
which	was	 as	 troublesome	 for	 that	 theory	 as	 interference	was	 for	 the	 corpuscular	model.	 See	Worrall	
(1976),	discussed	by	Franklin	(1986:	pp.	2,	n.	8).	
27	See,	e.g.,	Franklin	(1986:	Ch.1)	on	the	experimental	discovery	of	the	non‐conservation	of	parity	in	the	
weak	interactions	within	the	atom	–		which	supported	Lee	and	Yang’s	(1957)	famous	theoretical	paper	
questioning	the	theory	of	parity	conservation	(mirror	symmetry)	that	the	physics	community	had	
accepted	as	universal,	on	the	basis	of	its	successful	characterization	of	the	strong	and	electromagnetic	
interactions.	
	
28		The	implication	is	that	the	mechanism	of	consensus	formation	in	science	considered	as	a	social	system	
would	be	“neutral”	with	respect	to	the	objective	Truth	of	the	proposition	under	discussion.	This	will	be	
recognized	as	a	central	proposition	asserted	by	adherents	to	the	so‐called	Edinburgh	“Strong	
Programme”	in	the	sociology	of	scientific	knowledge,	following	Bloor’s	(1976)	seminal	formulation.		
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individual	 researchers	 to	 achieve	 peer‐recognition	 and	 enhanced	 professional	 status	 by	
successfully	 reconciling	 the	 two,	 in	 some	novel	way	 or	 another.	 This	 process	may	 be	 seen	 to	
bear	a	resemblance	to	(Lamarkian)	evolutionary	selection,	as	the	distribution	of	opinion	is	the	
counterpart	of	 the	distribution	of	(non‐genetic)	“traits”	 in	a	given	population	whose	members	
are	 interacting	 with	 an	 environment	 fixed	 by	 the	 “reality”	 of	 the	 objective	 physical	 relations	
they	are	studying.	 	Obviously,	the	features	latter	must	display	substantial	stationarity	in	order	
for	 the	 force	 of	 “selection”	 to	 have	 the	 effects	 envisaged	 by	 proponents	 of	 a	 evolutionary	
epistemological	view	of	the	way	science	works.	

	
These	aspects	of	 the	 science	 reward	 structure	 thus	 function	 to	 set	 some	bounds	upon	

unintended	tendencies	that	might	otherwise	push	the	reading	of	empirical	data	into	conformity	
with	 currently	 prevailing	 theoretical	 expectations.	 The	 force	 of	 their	 operation	 imparts	 an	
evolutionary	drift	of	the	dominant	scientific	consensus	towards	closer	and	closer	concordance	
with,	 and	 hence	 a	 more	 reliable	 representation	 of	 underlying	 “physical	 realities.”	 This	 is	 a	
compromise	 position	 in	 the	 “culture	war”	 between	 the	 “social	 constructionist”	 and	 “scientific	
realist”	camps,	whose	 implications	 for	 formal	modeling	can	be	examined	more	explicitly	after	
considering	(in	Section	3)	what	can	be	said	simply	on	the	basis	of	the	unadorned	Linear	Voter	
model	of	consensus	formation.	

	 	

3.	From	Stochastic	Social	Communications	towards	a	Model	of	the	Global	Network		

	
The	strands	of	the	preceding	arguments	can	be	drawn	together	now,	in	order	to	examine	

the	properties	of	the	stochastic	communications	model	to	which	they	lead.	For	this	purpose,	the	
apparatus	 of	 graph‐theoretic	 representation	 of	 connected	 local	 networks	 of	 research	 units	
forming	an	“invisible	college”	 is	briefly	 introduced	(in	3.1).	A	correspondence	 is	 then	asserted	
between	 the	 micro‐level	 network	 interactions	 specified	 by	 the	 preceding	 sections	 and	 the	
Markov	 random	 field	 model	 known	 as	 the	 Voter	 Model.”	 The	 latter’s	 basic	 properties	 are	
reviewed	(in	3.2)	for	the	cases	of	networks	that	can	be	represented	as	one‐	or	two‐dimensional	
connected	 graphs.	 Some	 additional	 properties	 of	 the	 dynamics	 of	 consensus	 formation	 in	
variant	formulations	of	the	Voter	Model	are	commented	upon	(in	3.3),	along	with	the	broader	
significance	 of	 these	 and	 related	 theoretical	 results	 pertaining	 to	 critical	 properties	 of	 other	
stochastic	 structures	 –	 specifically	 those	 deriving	 from	 the	 branch	 of	 probability	 known	 as	
percolation	theory.		

	

3.1	 Graph‐theoretic	 representations	 of	 social	 networks,	 and	 random	 Markov	

	 fields	
	 	
	 For	analytical	and	expositional	simplicity	we	may	begin	with	a	schematic	representation	
of	the	social	space	in	which	are	located	the	agents	constituting	an	invisible	college	of	a	finite	and	
fixed	 size.	 This	 population	 is	 envisaged	 as	 situated	 on	 a	 two‐dimensional	 regular	 lattice.	 Its	
particular	spatial	configuration	is	described	by	a	non‐directed	graph	G,	of	the	kind	encountered	
above	(in	2.2):	there	is	a	total	of	N	nodes	in	the	lattice,	representing	population	of	researchers,	
and	there	are	in	all	N‐1	‘connections’	or	‘channels’		that	run	between	pairs	of	nodes.	
	

Every	node	has	a	set	of	4	communication	channels,	each	providing	a	direct	connection	
with	a	single	agent‐node.	These	“correspondents”	are	situated	respectively	at	the	4	quarters	of	
the	compass	in	relation	to	the	index‐node.	The	channels	connecting	the	nodes	of	this	sub‐graph,	
can	be	made	of	equal	length,	l,	so	that	a	circle	centered	on	the	index	agent,	i	,	having	radius	l	,	can	
be	drawn	to	pass	through	all	of	the	agent‐nodes	that	can	be	reached	directly	by	i’s	personal	hub‐
and‐spoke	communication	network.	The	5	agents	enscribed	within	the	i‐th	circle	in	this	fashion,	
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form	 the	 local	 social	 network	 associated	 with	 its	 hub‐member;	 alternatively,	 this	 5‐agent	
configuration	sometimes	is	referred	to	as	the	index‐agent’s	“von	Neuman	neighborhood.”		
	
	 Another,	similar	5‐agent	von	Neuman	neighborhood	may	be	formed	for	hub‐agent	j,	who	
is	one	of	the	4	nodes	positioned	on	the	perimeter	of	the	i‐th	circle.	The	i‐th	and	the	j‐th	circles	
therefore	 intersect,	 because	 their	 respective	 hub‐agents	 are	 located	 in	 the	 other’s	
neighborhood.	 By	 continuing	 to	 add	 neighborhoods	 in	 this	 modular	 way,	 the	 entire	 square	
lattice	 arrangement	 of	 the	 invisible	 college	may	 be	 constructed.	 To	 keep	 everything	perfectly	
symmetrical	 and	 leave	 no	 nodes	 in	 boundary	 positions,	 the	 resulting	 two‐dimensional	 lattice	
array	can	be	wrapped	around	in	both	the	horizontal	and	vertical	directions,	connecting	the	right	
side	edges	to	nodes	on	the	left,	and	those	on	the	top	side	to	the	nodes	on	the	bottom	–	thereby	
forming	a	two‐dimensional	torus.	
	
	 The	 foregoing	 spatial	 representation	 of	 an	 invisible	 college	 as	 a	 network	 of	 localized	
social	networks	abstracts	from	many	realistic	complications.	Choosing	this	particular	graphical	
form	makes	 the	neighborhoods,	 or	 local	 social	networks	of	each	researcher	symmetrical	with	
those	 of	 all	 the	 others,	 and	 holds	 them	 to	 be	 fixed	 for	 the	 purposes	 of	 the	 analysis.29	 Both	
assumptions	prove	to	be	convenient	as	a	point	of	departure	in	this	line	of	investigation,	which	
perhaps	is	the	most	that	can	be	said	for	making	them.	In	being	grounded	upon	a	static	network	
configuration,	 the	 resulting	model	of	 local	network	 interactions	examined	here	 is	enormously	
simplified,	and	it	must	be	hoped	that	the	gains	in	terms	of	analytical	tractability	compensate	for	
inability	 to	address	phenomena	 that	arise	 in	ensembles	 formed	 from	social	networks	 that	are	
neither	symmetric	nor	constituted	of	homogenous	agents.30		

	
3.2	The	Linear	Voter	Model	and	its	properties	

	
	 The	undeniable	 attraction	of	 the	probabilistic	 routine	 for	opinion	 formation	set	out	 in	
the	preceding	sections	is	that	it	corresponds	directly	with	the	well	studied	linear	“voter	model,”	
a	 reversible	 spin	system	was	 introduced	 in	different	 contexts	by	Clifford	and	Sudbury	 (1973)	
and	Holley	 and	Liggett	 (1975),	 and	 is	 best	 known	 in	 the	 form	 elaborated	by	Harris	 (1978).31	
Leaving	aside	technicalities,	this	framework	can	be	set	out	schematically	as	a	representation	of	
scientific	communication	and	consensus	formation	in	inter‐linked	local	networks.	Following	the	
notation	by	Kinderman	and	Snell	(1980),	we	begin	with	the	basic	definitions	relating	to	Markov	
random	fields.	
                                                 
29	It	would	appear	feasible	to	treat	the	local	social	communication	networks	explicitly	as	coalitions,	and,	
following	 the	 lead	 of	 Kirman,	 Oddou	 and	 Weber	 (1986),	 to	 model	 their	 endogenous	 formation,	 and	
possibly	 also	 their	 ramifying	 interconnections.	This	would	entail	 application	of	 concepts	 and	analytical	
techniques	from	the	branch	of	probability	known	as	random	graph	theory.	See	Bollobás	(1979).	Although	
this	approach	has	not	been	attempted	as	an	extension	of	the	consensus	formation	framework	employed	
in	the	Voter	Model,	the	discussion	in	Section	6	below	notices	the	interesting	use	which	Carayol	and	Dalle	
(2000)	make	of	random	graph	theory	to	model	the	stochastic	process	of	problem	choice	in	science	that	
gives	rise	to	“knowledge	trees.”			
	
30	Morris	(1996),	using	mathematical	tools	other	than	those	employed	below,	has	shown	that	a	number	of	
the	key	properties	of	local	interaction	games,	concerning	the	dynamic	propagation	of	strategies	chosen	in	
particular	 locations,	 and	 the	 existence	 of	 correlated	 equilibria,	 hold	 generally	 for	 a	wide	 class	 of	 local	
(spatial)	 structures.	On	 the	other	hand,	 the	assumptions	of	 symmetry	and	homogeneity	are	not	wholly	
innocuous.	 For	 example,	 Bala	 and	 Goyal	 (1995)	 show	 that	 greater	 symmetry	 increases	 the	 speed	 of	
information	diffusion	in	a	local	interactive	learning	game.	
31	Based	upon	Markov	random	field	 theory,	 this	model	has	 lent	 itself	 to	a	variety	of	applications	 in	 the	
study	 of	 human	 and	 machine	 networks,	 for	 which	 a	 good	 introductory	 discussion	 is	 provided	 by	
Kinderman	 and	 Snell	 (1980).	 More	 recently,	 it	 has	 been	 extended	 to	 the	 analysis	 of	 the	 dynamics	 of	
technological	competitions	in	economic	contexts	that	are	characterized	by		the	existence	of	local	network	
externalities.	See,	inter	alia,	David	(1988,	1993b);	David	and	Foray	(1993).	
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	 Let	G	 =	 (O,T)	be	a	non‐directed	graph,	with	vertices	O	=	 (	o1,	 o2,...,on)	being	 the	 set	of	
nodes	representing	research	organizations,	or	simply	“researchers,”	and	channels		T=(t1,	t2,...,tm)	
representing	 the	 set	 of	 information	 transmission	 channels.	 For	 the	 moment,	 we	 restrict	 the	
discussion	to	connected	graphs	of	social	networks	that	are	defined	in	one	or	two	dimensions.	A	
configuration	x	is	an	assignment	of	an	element	of	the	finite	set	S	to	each	point	of	O.	We	denote	
this	configuration	by	x	=	(xo)	where	xo	is	the	element	of	S	assigned	to	vertex	o.	If	we	let	S	=	[u,	a	]	
represent	 assignments	 of	 the	 two	 possible	 opinion	 orientations	 regarding	 the	 reliability	 of	 a	
given	 scientific	 statement	 (	 a	 standing	 for	 “acceptably	 reliable”,	 u	 for	 “unreliable”),	 a	
configuration	would	be	an	assignment	of	either	ou	or	oa	to	each	of	the	points	in	O.	A	random	field	
p	is	a	probability	measure	p(x)	assigned	to	the	set	X	of	all	configurations,	such	that	p(x)>0	for	
all	x.	By	the	“neighbors”	N(o)	of	the	point	o	we	shall	mean	the	set	of	all	points	o’	in	O	such	that	
(o’o)	is	an	edge.	A	random	field	p	is	called	a	Markov	random	field	if:	

	 	 	 	 p{xo	=	s|xO‐o}	=	p{xo	=	s|xN(o)	}.	

	
That	is,	given	the	values	at	all	other	points	of	O,	the	value	at	o	(either	u	or	a	in	the	example)	can	
be	predicted	from	the	sub‐set	consisting	only	of	the	values	assigned	to	the	neighbors	of	o.	
	
	 Assume	now,	following	the	“voter	model”,	that	associated	with	each	point	of	a	graph	we	
have	 a	 researcher	 or	 research	 unit,	 and	 that	 with	 every	 such	 unit	 there	 is	 a	 reference	 set	
comprised	 of	 other	 units;	 this	 constitutes	 the	 neighborhood	 (i.e.,	 the	 local	 social	 network)	
available	for	polling.	At	random	moments	in	exponential	time,	each	research	unit,	having	polled	
its	 local	 network,	 reassessed	 its	orientation	 in	 regard	 to	 the	 statement	 in	question,	u	 or	a.	At	
these	 times	 it	 will	 commit	 to	 the	 choice	 u	 with	 a	 probability	 equal	 to	 the	 proportion	 of	 u‐
oriented	 research	units	 in	 its	 reference	set,	or,	 correspondingly	 select	 the	other	of	 the	binary	
options.	This	procedure	may	be	seen	to	be	equivalent	 to	random,	equi‐probable	polling	of	 the	
agent’s	neighborhood,	and	the	mimicry	of	the	orientation	of	the	selected	member.	32		
	

The	global	dynamic	process	of	migration	between	the	alternative	orientations	of	opinion	
as	to	the	reliability	or	unreliability	of	a	given	scientific	proposition	is	therefore	represented	as	a	
finite	state	continuous	time	Markov	chain,	with	states	being	configurations	of	the	form:	

	 x	=	(u,	a,	u,	u,	a,...,	u,	a,	u),	where	x(i)	is	the	choice	of	research	unit	i.	

A	number	of	important	properties	of	this	well‐studied	process	may	now	be	briefly	summarized:	

		
	 Property	(1):	It	is	evident	on	even	the	briefest	consideration	that	the	extremal	states	xu	
=	 (u,	u,	u,	 ...,	u,	u,	u)	 and	xa	=	 (a,	a,	a,...,	a,	a),	 in	which	 there	 is	 a	perfect	 correlation	of	beliefs	
throughout	 the	 population,	 constitute	 absorbing	 states	 for	 this	 system.	 Once	 such	 a	 state	 is	
entered,	there	can	be	no	further	change.	The	existence	of	a	multiplicity	(two)	of	absorbing	states	
tells	 us	 plainly	 that	 this	 process	 is	 essentially	 historical,	 in	 the	 sense	 of	 being	 non‐ergodic	 –	 it	
cannot	invariably	shake	loose	from	all	initial	configurations.	
		
	 Property	 (2):	A	 somewhat	 less	 obvious	 proposition,	 also	 true,	 is	 that	 for	 any	 starting	
state	x	 the	 chain	eventually	will	 end	up	 in	either	xu	or	xa.	 Thus,	 in	 the	 limit,	 the	process	must	
become	“locked‐in”	to	one	of	its	extremal	solutions.	The	system	invariably	does	produce	eventual	
“closure”	on	the	scientific	issues	submitted	to	it.	
		
	 Property	 (3):	 There	 exists	 a	 limiting	 probability	 distribution	 over	 the	 macrostates	
(opinion	 configurations)	 of	 the	 system	 which	 is	 non‐continuous,	 such	 that,	 starting	 in	 x,	 the	
probability	that	the	chain	will	end	in	xu	is	equal	to	the	proportion	of	u	in	the	initial	configuration	

                                                 
32	Although	the	intuition	for	this	is	quite	transparent,	David	(1998:	pp.	140‐142)	may	be	consulted	for	
illustrative	examples,	for	a	variety	of	local	network	sizes	and	the	corresponding	connected	graphs.		
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x	(without	regard	to	their	position	in	the	array);	and	the	probability	that	it	will	end	up	in	xa	is	
equal	to	the	proportion	of	a	in	the	initial	configuration	x.	Therefore,	although	subject	to	random	
influences,	the	nature	of	the	asymptotic	macrostate	consensus	in	this	system	can	be	predicted	
(not	 with	 certainty,	 but	 probabilistically)	 from	 information	 on	 the	 initial	 configurations	 of	
opinions.	
		
	 The	most	immediately	salient	implication	of	this	model	is	that	a	formal	connection	can	
be	 established	 between	 the	 social	 organization	 of	 science	 affecting	 the	 communications	
behaviors	 of	 the	 micro‐level	 agents,	 and	 an	 important	 performance	 attribute	 of	 science	
communities	 in	 the	 cognitive	 domain,	 namely,	 the	 ability	 to	 achieve	 “closure”.	 Another	 direct	
result	is	the	support	provided	for	the	view	“the	details	of	history	may	matter”	for	the	cognitive	
development	of	a	scientific	field.	Further,	in	this	light,	the	propensity	of	scientific	communities	
to	remark	especially	on	instances	in	which	new	ideas	have	won	eventual	acceptance	in	the	face	
of	an	 initial	consensus	opposing	 them,	 is	entirely	understandable,	because	at	 least	 in	 the	near	
term,	such	cases	would	constitute	the	rarer	contingencies.	
	
	 Several	technical	qualifications	should	be	noticed	in	regard	to	the	foregoing	properties,	
especially	as	these	also	admit	of	some	interesting	interpretations	 in	the	present	context.	First,	
the	property	of	complete	closure,	in	the	sense	of	perfect	unanimity,	does	not	survive	extension	
of	the	model	to	graphs	of	higher	dimensionality.	From	simulation	studies	it	is	found	substantial	
but	 less‐than‐perfect	 correlations	 in	 orientation	 emerge	 in	 the	 case	 of	 lattices	 on	 a	 three‐
dimensional	torus	(see	Kinderman	and	Snell	1980b).	One	may	surmise,	plausibly	enough,	that	as	
social	 networks	 become	 “less	 compact”	 by	 extending	 into	 still	 higher	 dimensional	 spaces,	
clusters	of	minority	opinion	are	less	likely	to	be	surrounded	by	neighborhoods	of	countervailing	
consensus	 and	 so	 tend	 to	 persist.	 Perhaps	 the	 recurring	 formation	 of	 disciplinary	 sub‐
specialities	in	science	serves	as	a	“social	compacting	process”,	the	latent	function	of	which	is	to	
preserve	network	performance	 in	terms	of	 the	achievement	of	substantially	strong	degrees	of	
consensus,	approaching	unanimity	among	groups	self‐identified	as	“experts.”	On	the	other	side	
of	 the	 coin,	 as	 was	 just	 suggested,	 higher	 dimensional	 social	 networks	 tend	 to	 increase	 the	
likelihood	 of	 “heterodox”	 opinions	 being	 able	 to	 survive	 within	 small	 clusters	 of	 researchers	
who,	 in	 effect,	 shield	 one	 another	 from	 the	 conformity‐inducing	 pressure	 of	 exposure	 to	 the	
preponderance	of	opinion	throughout	the	epistemic	community	at	large.33	
	
	 A	 second	 point	 of	 qualification	 is	 that	 the	 properties	 of	 lock‐in	 to	 closure,	 and	
predictability	 of	 the	 nature	 of	 the	 resolution,	 are	 ones	 that	 strictly	 hold	 only	 for	 finite	
populations.	If	the	population	of	the	network	were	to	be	constantly	growing	at	a	comparatively	
rapid	 rate	 ‐	 strictly,	at	a	pace	rapid	enough	 to	cause	 the	 introduction	of	newcomers	 (who	are	
entering	 the	 field	with	 randomly	 distributed	 beliefs	 about	 the	 scientific	 issues	 of	 the	 day)	 to	
overwhelm	the	pace	of	the	process	of	random	polling	in	the	local	social	networks,	then	closure	
would	no	longer	be	assured.	Under	those	conditions	the	nature	of	the	cognitive	outcome	would	
cease	to	be	predictable	on	the	basis	of	the	system’s	initial	configuration.34		
			

This	 suggests	 a	 further	 respect	 in	 which	 the	 cognitive	 performance	 of	 scientific	
communities	 may	 be	 seen	 to	 depend	 on	 their	 organizational	 dimensions	 and	 dynamic	
attributes.	 Those	 characteristics	 would	 certainly	 have	 to	 include	 the	 rate	 of	 entry	 of	 new	
members	 in	 relation	 to	 the	 speed	 of	 informational	 transactions	 affecting	 the	 revision	 of	
scientific	judgements	within	local	social	networks.	Another	factor	to	be	considered	in	the	same	
connnection	 is	 the	 “pre‐entry	 orientation”	 of	 new	 recruits	 –	 particularly	 in	 reference	 to	 the	
                                                 
33			The	broader	significance	of	this	will	be	further	remarked	upon	below,	in	sub‐section	3.3		
34		Kinderman	and	Snell	(1980)	report	that	probability	theorists	surmise	that	the	dynamics	of	
convergence	to	one	or	the	other	extremal	(uniform	consensus)	configurations	in	a	“large”	finite	system	
would	approximate	those	of	the	infinite	population	case.		Such	systems	continue	to	migrate	back‐and‐
forth	between	the	extremal	states,	albeit	with	very	prolonged	transit	times.	
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prevailing	distribution	of	scientific	opinions	held	by	those	who	currently	constitute	“the	field”.	
Of	course,	once	an	 invisible	college	“stabilizes”	demographically	–	 in	the	sense	that	 its	growth	
rate	 slows	 to	 the	 point	 that	 it	 is	 exceeded	 by	 the	 average	 rate	 of	 internal	 opinion‐polling,	 a	
substantial	consensus	can	be	expected	to	emerge	even	in	the	absence	of	strong	pre‐orientation	
as	a	criterion	of	eligibility	for	entry.	

	
It	 is	 there	 that	 enhanced	 communications	 technology	 may	 prove	 of	 particular	

importance	in	supporting	the	rapid	growth	of	research	communities;	a	speed‐up	of	the	effective	
“polling	rate”	will	permit	the	mobilization	of	additional	(human)	resources	at	a	research	frontier	
to	proceed	more	quickly,	without	jeopardizing	the	network’s	ability	to	reach	closure	on	the	new	
questions	 that	 it	 has	 taken	 up	 for	 investigation.	 Moreover,	 if	 improved	 communications	
technology	 can	 accelerate	 the	 pace	 of	 knowledge	 exchanges	 and	 opinion	 revision	 within	
interlinked	local	networks,	it	becomes	a	functional	substitute	for	pre‐orientation	training	of	new	
citizens	 of	 the	 Republic	 of	 Science	 and	 thus	may	 reduce	 the	 sort	 of	 disciplinary	 training	 that	
tends	to	curtail	heterodoxy	of	opinion	and	the	susceptibility	of	fields	to	radical	reorientations	in	
the	nature	of	consensus	thought.35			
	
	 Yet	another,	and	quite	important	class	of	qualifications	arises	from	closer	consideration	
of	 the	 assumptions	 of	 the	 basic	 voter	model	with	 regard	 to	 the	uniformity	of	 communication	
behaviors	on	the	part	of	the	research‐agents.	These	can	be	brought	out	more	clearly,	however,	
by	 turning	 to	 consider	 the	 properties	 of	 a	 somewhat	 different	 stochastic	 communications	
structure,	one	that	does	not	assume	that	all	the	actors	are	following	the	same	policy	of	openness	
in	their	knowledge	transactions	with	other	members	of	the	community.		
	 	

3.3	 On	 impaired	 communications:	 percolation	 theory	 and	 norms	 supporting	
	 openness	
	
	 The	population	of	researchers	is	portrayed	by	the	basic	voter	model	to	be	homogeneous,	
in	 three	distinct	respects:	 (a)	 the	structure	of	communication	 links	among	them	is	completely	
symmetrical;	(b)	their	interactions	are	assumed	to	take	a	rather	special	form	that	is	tantamount	
to	assuming	that	transmission	of	influence	in	dyadic	transactions	is	deterministic,	even	though	
the	identity	of	the	dyadic	pairing	is	probabilistic	(being	established	by	the	random	polling	of	a	
single	member).36	All	of	the	researchers	are	always	sharing	their	opinions	with	all	who	ask,	as	
all	others	 in	 their	 social	 network	 stand	 ready	 to	do.	Putting	aside	 the	possibility	of	entry,	 the	
source	 of	 randomness	 in	 the	 revisions	 of	 beliefs	 within	 the	 population	 has	 to	 do	 not	 with	
whether	or	not	particular	 researchers	might	be	open	 to	 the	 influence	of	particular	neighbors,	
but	 rather	with	 the	direction	of	 the	 re‐orientation	of	beliefs	 that	 such	 influences	would	bring	
about.	The	concepts	and	terminology	of	percolation	theory	provides	a	precise	way	of	describing	
these	specifications,	and	showing	their	relationship	to	a	more	general	specification	of	the	model.	
	

                                                 
35	For	increases	in	the	density	and	bandwidth	of	communication	channels	to	achieve	such	an	effect,	of	
course,	it	must	be	supposed	that	the	availability	of	information	from	external	correspondence	constitutes	
the	binding	constraint	upon	the	revision	of	beliefs.	Historically,	that	may	well	have	been	so,	and	the	
hypothesized	effects	would	appear	to	be	well	worth	empirical	investigation.	But,	as	Herbert	Simon	and	
many	others	have	pointed	out,	the	super‐abundance	of	information	in	more	recent	times	has	made	
human	“attention”	the	scarce	resource.		

36	This	interpretation	is	not	the	only	one	possible.	The	equivalent	alternative	construction	of	the	Voter	
Model	would	admit	full	canvassing	of	the	index‐agent’s	social	network,	but	selection	of	an	orientation	
(opinion)	using	probability	weights	that	reflect	the	observed	distribution	of	opinions.	In	this	formulation	
the	homogeneity	assumptions	appear	in	the	symmetry	of	the	connected	graphs	describing	every	agent’s	
local	networks,	and	in	the	linear	mapping	from	observed	local	frequencies	to	probability	weights,	
whereby	equal	influence	is	accorded	to	the	opinions	held	by	every	one	of	the	agent’s	“neighbors”.		
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	 The	 term	 percolation	 refers	 to	 the	 dual	 of	 a	 diffusion	 process	 (see	 Grimmet	 1988).	
“Diffusion,”	to	speak	strictly,	refers	to	the	random	movements	of	particles	through	an	ordered,	
non‐random	medium	–	as	in	the	case	of	the	diffusion	of	molecules	of	salt	in	water.	By	contrast,	
the	 term	 “percolation”	 conjures	 up	 the	 image	 of	 droplets	 of	 water	 moving	 under	 the	
deterministic	pull	of	gravity	through	a	disordered,	random	medium	–	such	as	a	 filtration	 tank	
filled	with	sand	and	pebbles	of	different	sizes.	When	the	water,	entering	at	some	source	sites,	
eventually	finds	its	way	into	enough	open	channels	to	pass	throughout,	wetting	the	entirety	of	
the	 interior	 surfaces,	 complete	percolation	 is	 said	 to	 have	 taken	place.	 It	 is	 from	 this	 that	 the	
mathematical	statistics	describing	the	properties	of	analogous	processes	have	acquired	the	label	
“percolation”	theory.		
	
	 Adapting	 the	 notation	 of	 Hammersley	 and	Welsh	 (1980)	 to	 the	Markov	 random	 field	
framework,	 let	G	be	a	graph	in	which	some,	none,	or	all	of	the	connections	(channels	between	
nodes)	may	be	directed.	Thus,	as	before,	G	consists	of	a	set	of	research	units	(corresponding	to	
the	 graph’s	 vertices	 or	 nodes),	 O	 =	 (o1,	 o2,...,on).	 These	 are	 connected	 by	 a	 set	 of	 (possibly	
directed)	edges	 representing	channels	of	 social	 communications,	T	=	 (t1,	 t2,...,tm).	An	operative	
path	in	G	from	a	research	unit	o1	to	another	research	unit,	on,	is	a	finite	sequence	of	this	form:	
	 	 		 	 	 	

{t12	o2	t23	o3	...	t[n‐1]n	on},	
	
where	tij	denotes	a	relational	path	connecting	oi	to	oj.	The	graph	G	is	connected	if	for	each	pair	of	
researchers	oi	and	oj,	there	is	a	path	in	G	from	oi	to	oj.	
	
	 Now	construct	a	random	maze	on	G,	as	follows.	Let	each	research	node	o	of	G	be	open,	or	
ready	with	probability	ps	to	transmit	messages	that	can	influence	any	of	its	neighbors’	opinions	
on	the	reliability	of	the	statement	at	issue.	Alternatively,	it	will	be	closed	(unwilling	to	share	its	
present	 knowledge	 on	 the	 question)	with	 probability	 qs	 =	 1‐	 ps.	 Similarly,	 each	 line	 of	 inter‐
personal	 or	 inter‐organizational	 communications	 tij	may	be	 thought	of	 as	potentially	 carrying	
messages	 that	will	be	actually	 “read”	with	probability	pr,	or	 fail	 to	do	so	with	probability	qr	=	
1‐pr.	Furthermore,	we	shall	assume	all	these	events	are	to	occur	independently	of	each	other.	An	
operative	 path,	 D	 =	 {	 t12	 o2	 t23	 o3	 ...t[n‐1]n	 on}	 from	 o1	 to	 on	 is	 said	 to	 be	 “open”	 if	 all	 its	
communication	 links	 are	 functioning	 and	 all	 its	 research	 nodes	 are	 ready	 to	 “share”	 their	
knowledge‐conclusions.	 Thus,	 the	probability	 that	 the	particular	path	D	 is	 operational	 in	 that	
sense	is	given	by	(	pr	ps	)n‐1.		
	
	 Let	 Z	 be	 some	 given	 set	 of	 “source”	 research	 units,	 from	whom	 a	 particular	 “idea”	 or	
scientific	statement	emerges	 into	G.	The	decisions	 to	adopt	 that	statement	as	reliable	(or	not)	
can	 flow	along	any	open	path	 from	a	source	research	unit	and	will	 then	similarly	reorient	 the	
other	 units	 on	 such	 a	 path	 (“wetting”	 them,	 to	 use	 the	 natural	 percolation	 metaphor).	 The	
percolation	probability	P(pr,ps|Z,G)	is	the	probability	that	Z	can	thus	reorient	some	infinite	set	of	
nodes	in	G.	In	the	present	application	context	it	is	natural	to	label	the	parameters	pr,	and	ps,	the	
mean	probabilities	of	“reading,”	and	of	“sending”	or	“sharing”	information,	respectively.	In	other	
words,	 in	 a	 large	 population,	 it	 can	 be	 expected	 that	 a	 proportion	 pr	 are	 receptive	 to	 their	
neighbors’	opinion	on	the	reliability	of	a	statement,	whereas	a	proportion	1‐pr	are	unreceptive.	
The	 transactional	 lines	 (edges)	 of	 G	 connect	 pairs	 of	 (nodes)	 research‐neighbors	 researchers	
and	 the	model	 supposes	 that	 a	 researcher	 already	 committed	 to	 disclosing	 a	 given	 scientific	
position	has	a	chance	ps	of	“infecting”	her	neighbor,	conditional	on	the	latter	being	receptive	or	
open	 to	 receiving	 that	 communication.	 Then	 P(pr,ps|Z,G)	 is	 the	 probability	 that	 a	 provisional	
scientific	opinion	initially	established	in	the	“source”	research	units	of	Z	can	propagate	through	
the	random	maze	on	G	and	thereby	become	adopted	universally.	
	
	 Suppose	 that	Z	 and	G	 are	 fixed,	 that	G	 is	 an	 infinite	 graph,	 and	 adopt	 the	 abbreviated	
notation:	 P(pr,ps|Z,G)	 =	 P	 (pr,	 ps)	 =	 P.	 	 Clearly,	 the	 mixed	 percolation	 probability	 P	 is	 a	
non‐decreasing	function	of	pr	and	ps,	and	it	follows	that:	P	(0,0)	=	P	(1,0)	=	P	(0,1)	=	0,	whereas		
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P	(1,1)	=	1.	Consequently,	P	s(p)	=	P	(ps,	1),	and	P	r(p)	=	P	(1,	pr),	will	denote	the	node	percolation	
and	connection	percolation	probabilities	of	this	system,	respectively.		
	
	 A	 fundamental	 mathematical	 property	 of	 the	 percolation	 process	 is	 that	 there	 exists	
some	critical	values	of	pr	>	p*r	and	ps	>	p*s	beyond	which	there	will	be	a	positive	probability	that	
percolation	occurs,	 but	below	which	 the	percolation	probability	 is	 zero.37	 In	 other	words,	 the	
system	undergoes	a	“phase	transition”	when	these	underlying	critical	probabilities	are	attained.	
There	 are	 corresponding	 critical	 values	 at	 which	 the	 node‐percolation	 and	 edge‐percolation	
probabilities,	respectively,	become	positive.	These	define	the	endpoints	of	a	region	above	which	
a	“mixed‐percolation	process”	(one	for	which	it	is	not	certain	that	either	all	nodes	or	all	edges	of	
the	 graph	 are	 open),	will	 have	 positive	 probability	 of	 achieving	 complete	 percolation.	 This	 is		
depicted	below,	in	Figure	2.	
	

What	these	results	from	percolation	theory	tell	us	in	the	present	context	is	that	there	is	a	
minimum	level	of	persistently	communicative	behavior	that	a	 finite	size	science	network	must	
maintain	 if	 ideas	 are	 to	 percolate	 within	 it,	 so	 that	 closure	 can	 be	 obtained.	 Considerable	
significance	 therefore	 can	 be	 attached	 to	 this	 fundamental	 property	 of	 percolation	 processes.	
For	a	community	of	scientists	 to	exist	as	a	cognitively	functioning	entity,	 it	has	 just	been	seen	
that	there	is	a	formal	necessity	of	attaining	some	critical	measures	of	“expected	connectedness,”	
that	 depend	 upon	 the	 communication	 behaviors	 of	 its	 representative	 constituent.	 A	 second	
pertinent	result	from	percolation	theory	is	that	there	 is	an	important	asymmetry	between	the	
effects	upon	network	performance	of	reducing	the	representative	agent’s	probability	of	sending,	
and	of	receiving	messages.		

	

	
	

                                                 
37	See	Hammersley	and	Welsh	(1980);	Grimmett	(1988).		

Figure 2. Critical boundary for percolation in an infinite graph, G 
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	Thus,	a	given	proportional	reduction	of	the	mean	probability	of	sending	messages	
(node	openness)	has	a	larger	effect	in	degrading	the	percolation	performance	of	the	
system	than	with	the	equi‐proportional	reduction	of	the	mean	probability	of	a	
communication	channel	being	open	(edge	openness).38	In	view	of	this,	the	invisible	
colleges’	first	condition	for	functionality,	in	the	sense	of	its	most	exacting	requirement,	
is	that	the	network	must	maintain	at	least	the	critical	level	of	openness	in	regard	to	the	
behavior	of	a	“representative	node”,	i.e.,	in	the	expected	proportional	composition	of	
member	“types”	with	respect	to	disclosure	of	their	scientific	knowledge.		
	

The	 representative	 researcher,	 of	 course,	 is	 a	 purely	 statistical	 construct	 in	 the	
percolation	model	framework	–	an	average	of	nodes	that	are	permanently	open	and	those	that	
are	permanently	 closed.	 The	 fraction	 of	 those	who,	 being	 closed,	will	 never	 “share”	 (or	 never	
“write”)	what	they	have	learned,	therefore,	must	not	be	allowed	to	exceed	the	critical	level	(1‐
ps*)	 if	 the	 invisible	 college	 is	 to	 retain	 a	 positive	 probability	 of	 reaching	 closure	 on	 scientific	
questions.	 Thus,	 the	 “mix”	 of	 persisting	 behaviors	 is	 a	 critical	 matter	 for	 the	 system.	 	David	
(1998:	section	7.7)	finds	considerable	significance	in	the	fact	that	the	qualitative	performance	of	
this	communication	system	undergoes	this	critical,	discontinuous	degradation	when	the	mixing	
fraction	 passes	 below	 a	 specific	 level,	 especially	 as	 its	 precise	 magnitude	 is	 not	 likely	 to	 be	
known	 in	 advance.	 In	 such	 circumstances	 it	 would	 be	 sensible	 to	 protect	 the	 cognitive	
functionality	of	the	global	network	by	maintaining	a	“safety‐first”	policy	of	selectivity	in	regard	
to	 the	 recruitment	 of	 researchers	 to	 the	 college;	 in	 other	 words,	 impose	 some	 prior	 test	 of	
intrinsic	 propensity	 towards	 “openness”	 concerning	 what	 they	 will	 find	 and	 conclude	 in	 the	
course	of	their	researches.		

		
By	 the	same	 token,	 the	existence	of	 strong	and	universal	norms	requiring	cooperative	

behavior	 on	 the	 part	 of	 researchers,	 especially	 in	 disclosing	 what	 they	 learn,	 and	 a	 reward	
system	 that	 elicits	 such	disclosures	 as	 the	 basis	 for	 establishing	 a	 collegial	 reputation,	would	
serve	as	important	bulwark	protecting	the	invisible	college’s	ability	to	deliver	a	clear	consensus	
on	 the	 questions	 brought	 before	 it.	 Furthermore,	 inasmuch	 as	 ps*	 >	 pr*,	 in	 designing	 the	
incentives	 for	 individual	 behavior	 in	 such	 a	 system,	 it	 is	 reasonable	 from	 the	 viewpoint	 of	
assuring	“connectivity”	that	assuring	the	consideration	by	others	of	one’s	own	“findings”	should	
take	 some	 measure	 of	 precedence	 over	 concerns	 about	 the	 arrangements	 and	 facilities	 that	
affect	the	average	propensity	of	network	members	to	attend	to	each	others’	messages.	Support	
for	norms	(and	reward	systems)	that	maintain	critical	levels	of		social	disclosure	(“sharing”	and	
“publication”)	have	are	in	this	sense	more	potent	in	keep	the	invisible	college’s	global	network	
of	communications	sufficiently	open	to	achieve	consensus,	than	are	inducements	to	receptively	
receive	(“read”)	the	opinions	of	local	network	of	peers.		

	
The	 other	 side	 of	 this	 interpretation	 is	 that	 there	would	 seem	 to	 have	been	 a	 serious	

failure	 of	 understanding	 among	 the	 sociological	 “relativists,”	 and	 others	 who	 similarly	 have	
been	 inclined	 dismiss	 the	 Mertonian	 “norms”	 as	 a	 self‐serving	 ideology	 promulgated	 by	
scientists	 to	 support	 their	 claims	 to	 special	 status	 and	 authority.	 No	 less	 mistaken	 is	 the	
argument	that	the	irrelevance	of	the	supposed	ethos	of	open,	academic	science	is	transparent,	
because	its	norms	are	repeatedly	transgressed	due	to	 fallible	practitioners	of	science	who	are	
pursuing	 their	 material	 self‐interests,	 or	 gripped	 by	 ego‐driven	 compulsions	 in	 rivalries	 for	

                                                 
38	 See	 Hammersley	 and	Welsh	 (1980)	 for	 proof	 of	 the	 generalized	 asymmetry	 theorem.	 Figure	 2	

[adapted	here	 from	David	(1998;	p.151)]	provides	a	graphical	depiction	of	 the	shape	of	 the	continuous	
concave	 boundary	 of	 critical	 values	 –	 i.e.,	 the	 pairs	 (PS*,	 PR*)	 below	which	 the	 percolation	 probability	
P(PS*,	PR*)	=	0,	labelled	the	‘sub‐critical	region.	Notice	that	the	node‐percolation	intercept	on	the	vertical	
line	at	(1.0)	lies	farther	below	(1,1)	than	the	channel‐percolation	intercept	on	the	horizontal	line	at	(0,1)	
lies	to	the	left	of	(1,1).	David	and	Foray	(1993,	1994)	discuss	this	theorem’s	application	in	the	context	of	
technology	diffusion.	Other	applications	can	be	found	in	Ligget	(			
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fame.	It	is	an	evident	sociological	error	to	suppose	that	the	essential	features	of	the	qualitative	
performance	 of	 a	 mode	 of	 social	 organization	 will	 be	 lost	 if	 any	 one	 among	 its	 “norms”	 is	
violated	by	some	members	at	some	points	in	time.	Deviance	is	a	phenomenon	that	is	found	in	all	
institutionalized	social	relations.	Any	system	of	behavioral	norms	that	is	so	rigid	or	non‐robust	
as	 to	be	 incapable	of	 tolerating	some	degree	of	deviant	action	 is	not	 likely	 to	survive	 for	very	
long.	 Furthermore,	 as	 can	 be	 seen	 from	 the	 properties	 of	 the	 Voter	Model,	 some	measure	 of	
intermittent	 (random)	 suspension	 of	 communications	 on	 the	 part	 of	 individual	 agents	 is	 not	
destructive	 of	 the	 collective’s	 ability	 to	 arrive	 at	 “closure”.	 Still	 more	 apposite	 is	 the	 point	
underscored	by	reference	to	the	percolation	model	results.	Even	the	presence	among	the	entire	
population	 of	 research	 workers	 of	 some	 proportion	 who	 remain	 persistently	 non‐
communicative,	 does	 not	 necessarily	 vitiate	 the	 possibility	 that	 knowledge	 and	 provisional	
judgements	can	percolate	throughout	the	imperfect	communications	system.	Thus,	among	those	
who	 are	 only	 transiently	 reticent	 in	 disclosing	 their	 knowledge	 and	 provision	 judgments,	 or	
transiently	non‐receptive	 to	 the	messages	of	particular	 colleagues,	 it	 remains	possible	 for	 the	
process	described	by	the	Voter	Model	eventually	to	effect	substantial	“closure.”39		

	
These	 observations	 point	 to	 a	 formal,	 communications‐theoretic	 rationale	 for	 the	

emphasis	 that	 Merton	 (1973)	 and	 his	 followers	 place	 on	 the	 functional	 importance	 of	 the	
behavioral	norm	of	openness	among	scientists;	and	also	for	the	corresponding	tendency	of	that	
literature	 to	 de‐emphasize	 the	 effects	 of	 particular	 macro‐institutional	 arrangements	 and	
technological	 communications	 capabilities	 upon	 the	 qualitative	 performance	 of	 scientific	
communities	in	the	epistemological	domain.	Still	another	implication	of	the	Mertonian	“norms”	
for	 the	 conduct	 of	 (non‐proprietary)	 research	 is	 brought	 into	 sharper	 focus	 by	 the	 stochastic	
models	presented	here.	Disinterestedness,	universality,	and	disclosure	can	be	seen	to	be	crucial	in	
their	 joint	 effects,	 precisely	 because	 they	 reinforce	 micro‐level	 behaviors	 that	 permit	 the	
tendency	for	more	“objectively	reliable”	consensuses	to	emerge	in	evolutionary	fashion	over	the	
long	 run.	 They	 do	 so	 by	 enjoining	members	 of	 the	 community	 to	 accept	 dissenting	 claims	 as	
worthy	of	examination,	without	regard	for	the	economic,	social,	political	or	nationality	status	of	
the	claimants;	by	insisting	on	disclosure	as	the	condition	for	successful	claims	to	the	reputation‐
based	 rewards	 that	 are	 attached	 to	 priority	 of	 discovery;	 and	 by	 preventing	 secrecy	 and	
selective	 disclosure	 of	 knowledge	 being	 employed	 to	 protect	 a	 provisionally	 established	
consensus	from	reasoned	challenges.	

	
Thus,	the	joint	effect	of	the	norms	characterizing	open	science	is	to	render	it	more	likely	

that	signs	of	the	collisions	between	the	constructs	of	social	communication	and	the	constraints	
implied	 by	 the	 structures	 of	 the	material	 world	 will	 be	 registered,	 and	 circulated	within	 the	
invisible	 college.	 Further,	 the	ethos	and	 reward	system	of	 the	Republic	of	Science	encourages	
the	 perception	 on	 the	 part	 of	 its	 citizens	 that	 such	 signs	 are	 to	 be	 read	 as	 indicating	 the	
existence	 of	 opportunities	 for	 achieving	 greater	 recognition	 and	 reward,	 rather	 than	 areas	
where	 one	 risks	 stumbling	 into	 heresies	 that	 will	 bring	 exclusion	 from	 future	 access	 to	 the	
pooled	knowledge‐resources	of	fellow	scientists.	As	was	suggested	previously,	an	evolutionary	
selection	process	in	the	cognitive	domain	has	a	higher	chance	of	discarding	a	socially	influenced	
consensus	that	recurrently	is	found	to	fit	awkwardly	with	empirical	observations.	Moreover,	so	
long	 as	 some	 substantial	 measure	 of	 diversity,	 or	 disparity	 of	 considered	 opinion	 is	 be	
preserved	among	researchers	who	continue	in	open	communication	with	their	scientific	peers,	
such	 “de‐selections”	will	 occur	 sooner,	 and	 the	 construction	 of	 increasingly	 reliable	 bodies	of	
knowledge	pertaining	to	the	natural	and	made	worlds	therefore	tends	to	proceed	more	swiftly.		
	
	

                                                 
39		Trust	in	that	capability,	of	course,	is	what	has	been	presented	(in	section	2,	above)	as	underpinning	the	
rational	 micro‐level	 strategies	 of	 the	 agents	 engaged	 in	 polling	 their	 respective	 networks	 under	 the	
conditions	stipulated	by	the	basic	Voter	Model.		
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4. Accommodating	Realism	:	A	Non‐Linear	Voter	Model	with	Evolutionary	Drift	
	

4.1	Recognizing	“reality”:	an	evolutionary	resolution	for	the	culture	wars	
	

Perhaps	 too	 optimistically,	 David	 (1998:	 sect.7.5.3)	 proposed	 to	 effect	 a	 compromise	
between	the	positions	of	the	contending	camps	in	the	recent	“culture	wars”	along	the	lines	of	an	
evolutionary	 epistemological	 synthesis	 such	 as	 the	 one	 just	 suggested.	 Under	 the	 proposed	
terms	of	peace,	both	sides	should	agree	that	a	scientific	community	can	arrive	via	generic	“social	
processes”	at	a	consensus	on	the	acceptability	of	certain	statements	about	the	material	world.	
Also,	 there	 are	 some	 rules	 governing	 the	way	 those	 statements	 are	 presented	 and	 treated	by	
members	 of	 the	 community,	 the	 effect	 of	which	 preserves	 the	 possibility	 that	 such	 a	 socially	
constructed	 “truth”	will	 nevertheless	 remain	 open	 to	 revision,	 and	 even	 to	 rejection.	 Indeed,	
there	is	a	long‐run	expectation	that	such	social	constructions	will	be	discarded	should	they	be	
found	repeatedly	to	be	difficult	to	square	with	other	“truths”	–	especially	those	which	possess	a	
higher	measure	of	“fit”	with	the	logical	implications	and	inferences	that	can	be	drawn	from	the	
available	body	of	empirical	observations.		

	
Yet	the	foregoing	discussion	has	simply	pointed	to	one	way	in	which	the	door	might	be	left	

open	 to	 such	 a	 possibility	 ‐‐	 namely,	 by	 the	 likely	 inability	 of	 a	 invisible	 college	whose	 social	
substructure	 was	 sufficiently	 “diverse”	 (i.e.,	 having	 sufficiently	 high	 dimensionality)	 to	
spontaneously	achieve	perfect	correlation	of	its	members	opinions	on	the	scientific	question(s)	
under	 consideration.	 But,	 for	 this	 to	 have	 the	 proposed	 effect,	 more	 is	 required	 than	 simply	
preventing	 the	 consensus	 formation	 process	 envisaged	 by	 the	 voter	 model	 from	 turning	 an	
(objectively)	 wrong	 conjecture	 into	 a	 dogma.	 There	 also	 must	 be	 some	 mechanism	 that	
eventually	steers	 the	process	 toward	 the	set	of	consensuses	 that	are	 found	to	be	“stable”	 in	a	
evolutionary	 sense:	 being	 consistent	 with,	 and	 hence	 sustained	 under	 repeated	 exposure	 to	
challenges.	 The	minimal	mechanism	 to	 effect	 this	would	 rely	 only	 on	 the	proposition	 that	 an	
“objective	 reality”	 (even	 it	 is	 external	 to	 direct	 perception	 by	 the	 members	 of	 the	 research	
community)	 would	 be	 more	 likely	 to	 generate	 empirical	 observations	 whose	 interpretation	
would	 support	 a	 randomly	 chosen	 individual’s	 belief	 in	 its	 “truth”	 than	 in	 the	 opposite	
conviction,	 so	 long	 as	 there	was	 a	 balance	 of	 peer	 opinion	 on	 the	 question.	Hence,	where	 an	
individual	 researcher	 entertained	 the	 reigning	 dominant	 opinion,	 and	 the	 latter	 was	 aligned	
correctly	with	 the	 underlying	 (objective)	 state	 of	 nature,	 exposure	 to	 observational	 evidence	
would	reinforce	the	individual	in	her	acceptance	of	the	globally	dominant	belief	even	though	the	
opposing	 views	happened	 to	be	more‐or‐less	 equally	 represented	within	her	 immediate	 local	
network.	 Conversely,	 where	 the	 same	 balance	 of	 local	 opinion	 prevailed,	 exposure	 to	
observational	evidence	would	work	to	reverse	the	belief	of	an	individual	that	was	not	correctly	
aligned	with	the	underlying	(objective)	state	of	nature.			In	this	way,	although	in	a	probabilistic	
fashion,	over	the	long	run	the	expected	motion	of	the	orientation	of	the	preponderance	of	belief	
among	 the	members	 of	 the	 global	 network	would	 be	 towards	 alignment	with	 the	 underlying	
“reality.”	

	
At	least	two	lingering	doubts	should	be	noted,	concerning	the	efficacy	of	this	mechanism.		

If	 one	 entertains	 the	 idea	 that	 observational	 evidence	 is	 employed	 by	 researchers	within	 the	
framework	of	Bayesian	inference,	it	is	important	to	stipulate	that	the	objectively	“true”	state	of	
nature	be	included	among	the	admissible	states.	This	requires	not	only	that	it	not	be	excluded	as	
a	 matter	 of	 “dogma,”	 but	 also	 that	 the	 research	 paradigm	 (or	 “program”)	 within	 which	 the	
members	of	the	community	are	working	is	sufficiently	comprehensive,	or	“fruitful”	to	allow	for	
it	 among	 the	 operational	 possibilities	 entertained.	 There	 are	 times,	 however,	 when	 practical	
considerations	 limiting	 the	 degree	 of	 resolution	 of	 observational	 instrument,	 or	 the	
computational	constraints	on	the	processing	of	captured	data,	exclude	practical	consideration	of	
some	 possibilities.	 Recognition	 that	 such	 constraints	 are	 binding	 might	 well	 induce	 the	
abandonment	 of	 a	 subject	 of	 inquiry	 accompanied	 by	 declarations	 of	 agnosticism,	 pending	
advances	in	the	needed	scientific	apparatus.	But	studies	in	the	history	of	science	do	not	provide	
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a	 warrant	 for	 assuming	 that	 extended	 and	 inconclusive	 inquiries	 would	 automatically	 be	
truncated	until	more	powerful	empirical	techniques	were	made	available.40		

	
The	 second	 occasion	 for	 doubts	 recapitulates	 the	 worrisome	 problem	 posed	 by	 the	

existence	 of	 experimental	 or	 observational	 errors	 that	 may	 arise	 even	 when	 the	 theory	
underlying	 the	 experimental	 design	 and	 the	 instruments	 employed	 to	 capture	 the	 data	 are	
correct.	 There	 are	 implementation	 failures,	 or	 technical	 imperfections	 that	 may	 introduce	
“noise,”	 and	 worse,	 “bias”	 into	 the	 observations.	 Hence,	 the	 supposition	 that	 there	 will	 be	 a	
persistent	direction	to	the	evolutionary	“drift”	–	under	the	pressure	of	inconsistencies	between	
beliefs	 and	 the	 data	 that	 are	 generated	 in	 experimental	 and	 observational	 encounters	 with	
(objective)	 reality	–	 is	 implicitly	optimistic	about	 the	secular	perfection	of	empirical	methods.	
On	 this	 score,	 studies	 in	 the	 history	 of	 science	 are	 rather	more	 supportive	 of	 a	 progresssive,	
“Whiggish”	reading	of	the	long‐run	record.	

	
This	 would	 appear	 to	 redound	 at	 least	 as	 much	 to	 the	 credit	 of	 the	 forces	 making	 for	

greater	 technological	 sophistication	 as	 to	 the	 advancement	 of	 scientific	 understanding	per	 se.		
Needless	to	say,	the	two	do	not	always	proceed	hand‐in‐hand	and	we	might	well	consider	how	
seriously	 the	 evolutionary	 epistemic	 drift	 toward	 “truth”	 can	 be	 compromised	 by	 the	
persistence	 of	 an	 invariant	 margin	 of	 error	 in	 the	 available	 experimental	 or	 observational	
evidence.	To	do	this,	it	will	be	useful	to	formally	represent	a	collective	belief	formation	process	
in	which	scientific	peer	opinion	within	local	networks	tempers	–	or,	alternatively,	is	tempered	
by	‐‐	individual	researchers’	reading	of	imperfect	evidence	which	is	subject	to	a	given	margin	of	
experimental	or	observational	error.				
	
	
	
	
	
Note: The text  for section 4, subsections 4.2 and 4.3, and sections 5‐7,  is not 
available,  but  extracts of  key material  appears  (below)  in  the  accompanying 
presentation that has been appended following the References.  
	 	

                                                 
40	In	the	absence	of	this,	i.e.,	where	the	true	state	is	not	among	the	set	of	admissible	priors,	there	is	
nothing	to	guarantee	that	in	the	limit	a	Bayesian	updating	of	beliefs	would	the	a	posteriori	probablity	
distribution	to		converge	on	the	“true”	state.	For	further	discussion		see	David,	2000,	where	it	is	shown	
that	the	absence	of	Bayesian	learning	in	the	usual	“cognitive”	sense	does	not	exclude	the	possibility	of	
strongly	adaptive	behavior	in	the	modal	behavior	of	a	population	whose	individual	member’s	sequential	
actions	were	guided	by	a	strictly	Bayesian	process	of	inference.			
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  PERCOLATION IN SOCIAL COMMUNICATION SYSTEMS 
 

 “Percolation” processes are dual to diffusion – as they involve systematic motion in a disordered 
medium  -- akin to moving from one side to the other of a 
region on which a random maze has been imposed. The maze could represent 
a connected graph (forming a lattice) in which some nodes or channels have been randomly blocked, 
preventing messages from passing.  If the mean probability of a randomly selected node, or a channel, 
being permanently blocked is above some critical level, percolation does not occur.   
 The simulation model of local social communications presented here specifies a “transient maze” 
(rather than one that is fixed): randomly drawn nodes and connecting channels remain closed with mean 
probabilities PS and PR , respectively, for only the iteration concerned. The effect is to slow the formation 
of consensus, never to completely block it.  
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  CONFORMITY AS A RATIONAL STRATEGY: A RATIONALE FOR THE VOTER MODEL 
 
SPECIFYING CONDITIONS FOR “CONFORMITY” TO BE A DOMINANT STRATEGY 
 Notation: 
c  denotes conformity with the preponderance of scientific opinion in the research-agent’s local social network; 
d  denotes disagreement with that consensus ; 
R  denotes a state of (social) nature in which a particular statement, S eventually is found by global consensus to be 

“reliable/true”; 
W  (equivalently, not-R) denotes a state in which S eventually is found by global consensus to be “unreliable/false”  
  denotes the individual’s subjective probability assigned to the outcome that the global consensus eventually forms 

on R, i.e., holding S to be “reliable” 
 

The representative research-agent treats the local network as the reference group whose esteem 
matters, and the corresponding “reputational payoffs” for the strategies are: 

   
     {c, R| S  is R}= b1 : being right, with the crowd; 

     {c, R| S  is W}=b2 : being wrong, with the crowd; 

     {d, R| S  is R}= b3: being in a minority and wrong; 

     {d, R| S  is W}=b4: being in a minority and right.  
 

Restrictions on the structure of reputational rewards:  
 

    b4>b1>b2>b3  ,       where b1> 0.  
 

Remark: The restrictions assign greater value to an individual researcher who is found to be “in the right” than to one who 
embraced the “wrong” view, and requires that a “penalty” cannot be incurred for having been “in the right.” But, being 
wrong in a crowd is not as bad (for subsequent reputational standing) as being found to have been “in the wrong” 
more-or-less on one’s own; being “lonely yet right” is reputationally more glorious than being correct among a crowd 
of one’s peers.  



CONDITIONS FOR “CONFORMITY” TO BE A DOMINANT STRATEGY – continued 
 

Expected reputational pay-offs, conditional on strategy choices in the “game against nature”:  
 
The agent’s expected payoffs  conditional on the  strategy of  conforming with/   dissenting from  with 

the preponderance of local peer opinion, are respectively   
c = {b1 - (1- )b2},  
and 
    d = {(1- )b4  - b3 } . 
    
Sufficient conditions for the strategy of “conformity”: 
 

c > d   is sufficient for the strategy of “conformity” to maximize the individual researcher’s expected 
reputational payoff (whereas the pure strategy of “dissent” will be dominant when    c < d).  

 
The sufficient condition is readily obtained by substitution:  
 
     [(b1  + b3) /(b4 + b2)] > [(1-)/ ] , 
which also may be expressed  as 
 
      > (b4 + b2) [(b1  + b3) + (b4 + b2)]

-1  =  *  . 
 

Remarks:   (i)There exists a critical value 0 < * s.t. “conforming” is the dominant strategy when  > *. 

(ii) Restrictions (b4>b1>b2>b3 ) and b1 > 0 guarantee that  0 < * < 1,  and hence the sufficient condition for 

conformity can be met by     [0,1] . .  

(iii) The restriction also imply (b1  + b3) < (b4 + b2), from which it follows that  * > ½. 



CONDITIONS FOR “CONFORMITY” TO BE A DOMINANT STRATEGY – continued 

 
  



 
Notes on Accommodating ‘Realism’ (section 4): 
 
A Non-Linear Voter Model with Evolutionary Drift 
   
   

  4.1 Recognizing “reality”: an evolutionary resolution for the 
   culture wars 

 
4.2 Modeling evolutionary “drift” in micro-level Bayesian belief 
 formation shaped by imperfect experimental evidence and the pull 
 of peer conformity   
 
4.3 Stochastic simulation results for the non-linear voter model with 
 noisy experiment-driven drift 



ALLOWING “REALITY” TO AFFECT CONSENSUS IN A MODIFIED “VOTER MODEL” 
  
The David-Waterman “Science Simulator” (Version 2, 2001) models the scientific community as a 
network of researchers (or research groups) interconnected by various paths of communication.  Each 
researcher is a node in the network connected by arcs to some set of other researchers' nodes.  A 
researcher need not be in communication with all other researchers in the community, just some group 
of scientists whose opinions matter. 
 

 Every researcher is assumed to favor – i.e., believe in the greater reliability of one of two competing 
“scientific propositions” (called her "theory choice"). These can take the simple form such as “the model 
(M) is correct” vs. “model M is not correct”.  All researchers begin with a randomly selected belief about 
M’s correctness.  The simulation generates the evolution of the configuration of the agents’ beliefs over a 
fixed period of time, as the outcome of a stochastic process that is a variant of reversible “spin system” 
known as “the linear voter model.”  
 

 At each instance in time, a researcher is selected (randomly) to revise her “theory orientation” as 
follows: the researcher polls the theory choices of those researchers in her local social network, and 
selects a theory-orientation with probability equal to the portion of polled researchers who hold  that 
theory to be correct.  But rather than giving full weight to the “consensus” of her (polled) social group, the 
randomly selected “orientation” can be given a positive weight (0 < w < 1). This is equivalent to allowing 
an stochastic term to “perturb” the consensus message, and the distribution of that shock can have a 
mean bias reflecting the “reality” – as if it were the feedback from uncertain experimental observations. 
 
 All nodes and channels in the “community” graph are “open” with finite probability, and the question 
of interest is the speed and extent of complete percolation, convergence to “closure”, and its relationship 
to network size.  This is evaluated for a system where nodes and channels are open (ps = pr = 1).   

 



        
  
 

  Remark: Yellow curve is fitted to Simple Voter Model (simulated by D‐W_SCI‐SIMl, without experimental shocks
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Network Size (N) vs. Mean Time to Convergence (TTC)
[ Bias = 0.95, Cutoff at 100% consensus, Cylinder]

Bias/Weight=0 line of fit: TTC=k*[ln(N)*N^2]^b



 

 

Means generated by varying  the cut‐off  for the cutoff degree of Consenus in simulation runs 
of the Simple Voter Model with  a finite 13x13 square lattice (d=2) on a cylinder: N =169.  



 
  Caution in re entries for N= 144. The algorithm that retrieves and process the  D&W_SCI‐SIM output is suspect. 
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Network Size (N) vs. Mean Time to Convergence (TTC)
[ Bias = 0.95, Cutoff at 100% consensus, Cylinder]

Bias/Weight=0 Weight=0.1

Weight=0.2 line of fit: TTC=k*[ln(N)*N^2]^b



 
 

M
ea

n
 T

im
e 

to
 C

o
n

ve
rg

en
ce

N

Network Size (N) vs. Mean Time to Convergence (TTC)
[ Bias = 0.95, Cutoff at 100% consensus, Cylinder ]

Weight=0.3 Weight=0.4

Weight=0.6 Weight=0.8

Line of Fit for Bias/Weight=0 Weight=1.0
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Weight vs. Mean Time to Convergence
[ Bias = 0.95, Cutoff at 100% consensus, Cylinder]

N=100 N=64 N=25
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Weight Given to Empirical Evidence

Weight vs. Mean Relative Cluster Size 
during first 1000 iterations

[ Bias = 0.95, Cutoff at 100% consensus, Cylinder]

Theory 1 - N=100 Theory 1 - N=64 Theory 1 - N=25

Theory 2 - N=100 Theory 2 - N=64 Theory 2 - N=25



Towards Specification of the Dynamic Behavior of a Simple and Complete Knowledge‐Generating System 
 
  COMMUNICATION TRANSACTIONS AND GROWTH IN A SCIENTIFIC COMMUNITIES 
 

 Structural Assumptions on the Communication System 
 
 i)   The system is a connected graph with agents (at nodes) linked (by channels) to neighboring agents. 
 
 ii)  Every agent has two functional modes in regard to current messages: “writing” and “reading”. 
 
 iii) An agent in either mode can be in one of two states with regard to that mode:  

  “sending” or “not sending” messages if in writing mode; “receiving” or “not receiving” messages if in reading mode. 
 
 INTUITIONS FOR AN ELEMENTARY DYNAMICAL SYSTEM 
 

 More regularly open pathways for communications between randomly selected agents increase the expected speed of 
“news” percolation. 
 

 Faster expected arrival of “news” makes readers monitor channels more frequently; cet. par., it makes the network more 
attractive to readers. 
 

 Larger network audiences (having more, and more attentive readers) encourage more frequent transmissions of 
messages from writers; cet. par., it makes the network more attractive to writers. 
 

 In larger networks, cet. par., the expected time taken for complete percolation will be greater. 
 

 In larger networks, cet. par., there will be a higher expected rate of emergence of novel ideas, produced by 
recombination of ideas transmitted by the agents. 
 

 A higher expected rate of arrival of “new news” – reaching one randomly located agent from another randomly located 
originating agent – makes the network more attractive to join, for both readers and writers. 

 
Remark: Dynamical systems with strong positive feedbacks are potentially unstable. Small shocks can trigger growth, or 

collapse.



   Structure of the Equivalent Deterministic System --  
 With N Research-Agents on a Torus of Low Dimensionality   

 
Rate of percolation, or “closure” speed: 
 

 S = S (N, ps , pr   ) 
 

Rate of “creativity” (generation of new ideas): 
 

 K = F (N, ps ) 
 

Rate of arrival of new “reliable” knowledge at a random node of the network: 
 

S ·K = F (N, ps , pr ) 
 

Homogeneous agents’ induced knowledge-sharing propensity: 
 

 ps  - ps
0 = G (N, pr ) 

 
Homogeneous agents’ induced knowledge-monitoring and -absorbing propensity:  
 

Pr – pr
0 = H ( [F (N, ps , pr   )]) 

 

Equilibrium (consistent) communication propensities for a network of size N:  
 

 Q (ps*, pr*  | N )  =  0 
 

Endogenous network size adjustments: 
 

   N    [N t+1  - N t]   =  Z ( N, ps , pr |  Pt ,  0 )  ,     for  Pt  = P . 



 

Specifications for the Equivalent Deterministic System  
 

 Expected “Consensus” or “Closure” Speed of Network N 

 
3N
pkpp,p,NS sr

sr      0k          

 
 Expected “Creativity” of Network N 
 

    Np
s

sN,pK 2      10  ,   10       
   

 Expected Rate of Arrival of New Ideas at Random Site in Network N 
 

        SKp,pNF rs              
   

 Determination of Homogeneous Probabilities of Knowledge Communication 
 

 -- for “Writing and Disclosing”: 
 

   10 ,pNpbminp srs    ,   0b , 0             
 
 -- for “Receiving and Reading”: 

 

    10 ,pp,pNFaminp rrsr    , 0a , 10                
 



 
Network Growth: Specifications of the Distributed Lag “Stock Adjustment”Model    
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For the stationary population case  P  =  Pt  for all t , there is a solution set: 
 
, that will satisfy 0  =  N . 

) N (  ) N (  =]   N  -  N [    N  - 1
t* 1 + tt1 + t 

       

  ,P  }]  (t) p   ,) (t p   ,N [   {  =  N trst* 1 + t     

  M<  0     ,(t)})  - { exp      M+  (1 / 1  =  )  ( t 

- (t))} p   ,(t) p  ,NF( ]  (t))p    + (t) p (  {[  = (t) rstsrr 
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r s  =    (  ,  ,    ) Pp pN N     
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Pr* as function of N: with Ps0=Pr0=0
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Pr* vs N: with Ps0=0.2, w=0.1 
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(Pr*,Ps*) parametric in N: with Ps0=Pr0=0
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(Pr*,Ps*) parametric in N with Ps0 shifted up to 0.2
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Pr as function of N with system evolution
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Pr as function of N with system evolution
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Pr as function of N with system evolution
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Pr as function of N with system evolution
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Pr as function of N with system evolution
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