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ABSTRACT

We study the design of mechanisms satisfying two desiderata– incentive compatibility and

privacy. The first is standard and requires that agents are incentivized to report their private

information truthfully. The second, privacy, requires the mechanism not reveal ‘much’ about

any agent’s type to other agents, and hence maintain the privacy of each agent’s private infor-

mation. We propose a notion of privacy we call joint differential privacy; a variant of the robust

differential privacy used in the theoretical computer science literature. We show by construc-

tion that mechanisms satisfying our desiderata exist when the game is ‘large’, i.e. there are a

large number of players, and any player’s action affects any other’s payoff by at most a small

amount. Our mechanism uses no-regret algorithms similar to those studied in Foster & Vohra

[14] and Hart & Mas-Colell [23], and maintains privacy by adding carefully selected noise to

each computation step. Our results imply that in large economies, privacy concerns of agents

can be accomodated at no additional ‘cost’ to the standard incentive concerns.
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1 INTRODUCTION

The fields of mechanism and market design study both the feasibility of, and how to provide incen-
tives to implement a desired outcome when agents have relevant private information. We revisit
this with an additional desideratum motivated by privacy concerns– that no agent’s information be
revealed to any other agent, either directly or by the portion of the outcome that is revealed to any
agent. This is potentially relevant for mechanism design when the underlying private information
is sensitive (e.g. healthcare) or agents presume privacy (e.g. agents’ activity on social networks).
Similarly, if there are (unmodeled) future interactions between the agents, privacy concerns are a
reduced form way to incorporate strategic concerns regarding the future.

Consider a (slightly futuristic) motivating example: imagine a city in which (say) Google Nav-
igation has become the dominant navigation service, with universal adoption. Every morning, each
person in this city enters their starting point and destination into their Google device, receives a set
of directions, and chooses his/her route according to those directions. In this setting our question
reduces to the design of the navigation service such that: 1) Each agent should be incentivized
to report his starting and end points truthfully, and then follow the driving directions provided.
Both misreporting start and end points, and reporting start and end points, but following a different
(shorter) path should be ruled out for each agent. 2) Players are guaranteed the privacy of their
starting and end points, i.e. the mechanism should be such that other player or players cannot infer
‘much’ about a given player’s source or destination based on the directions they received.

Intuitively, these two desiderata are hard to satisfy simultaneously. Sticking with our previous
example, if there are a small number of players and a small number of routes, an agent may be able
to infer others’ source-destination pairs from the suggested route she receives. Conversely, routes
that guarantee privacy (e.g. the recommended route given to a player is selected independently
of others’ reports) may be very different from equilibrium routes. Nevertheless, we show that it
is possible to construct such mechanisms in ‘large markets’, i.e. settings where there are a large
number of agents and agents’ payoffs are insensitive to any single other agent’s choice of action.
A large literature starting from Roberts & Postlewaite [35], and more recently in market design
(e.g. Kojima & Pathak [27], Kojima et al [28] and Azevedo & Budish [2]) studies the provision
of incentives in such large markets, and shows mostly positive results. However, largeness of the
market by itself does not guarantee privacy. Even if agents are small in terms of payoff impacts on
other players, they might be informationally large.1

Our mechanism is based on a combination of two ideas from the literature. The first of these
ingredients is the use of ‘no-regret methods’ to compute equilibria (see, e.g. Foster & Vohra [14]
and Hart & Mas-Colell [23]). Roughly speaking, in these methods, in each period, each player

1See Levine and Pessendorfer [29] for a similar point in a different context.
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gets feedback on his regret, i.e. counterfactual losses (or gains) in payoff if the player had played
a different action than the one he did. He then updates his action to minimize this regret. Viewed
as a centralized algorithm simulating this process for each player, this algorithm computes an
approximate correlated equilibrium of the full information game given each players’ type.2

To guarantee privacy and incentives, we add noise. At each stage of this simulation, our algo-
rithm uses ‘noisy’ regrets, i.e. the actual regret plus appropriately chosen random noise, instead
of the actual regret. By carefully choosing this noise, we can guarantee that 1) agents have incen-
tives to play truthfully in this game, 2) the outcome maintains the privacy of each agent’s private
information, and 3) for each profile of reported types, the algorithm implements an outcome which
is an approximate equilibrium of the induced full information game. Our results show that this is
possible the number of players is large and payoffs of any player are insensitive to others’ actions.

We can now view this algorithm as a mechanism that takes as input each player’s report of (pri-
vate) type; and outputs a suggested action to each player.It implements an approximate correlated
equilibrium of the full information game given players’ reports. Therefore, as in our example,
the mechanism can also be used as a recommender mechanism for a game in which agents take
actions directly. Further, this mechanism has both the desired incentive properties and preserves
the privacy of each agent’s information.

1.1 OVERVIEW OF MODEL AND RESULTS

We consider a setting with non-transferable utility. Each agent has a finite set of actions, and
private information about his own payoff type. Our setting is therefore a ‘private values’ setting–
agents’ payoffs depend on the actions taken by everyone, as well as their private type; other agents’
types do not directly influence their payoffs.3

A centralized planner simultaneously receives reports of type from each agent and proposes an
action to each. We study the design of mechanisms that:

1. Propose an approximate equilibrium of the full information game given the reports (akin
to, for example, the literature on two-sided matchings where mechanisms implement a full
information concept, stability, even though the underlying setting is one of incomplete infor-
mation). Our solution concept here is ε-correlated equilibrium.4

2There are multiple notions of regret. Depending on the type of regret minimized, the algorithm converges to either
approximate correlated or approximate coarse correlated equilibrium of the given game.

3We restrict to these environments since our current proof techniques only apply to this setting. We conjecture that
results of a similar flavor are possible more generally.

4For certain classes of games, this can be extended to ε-Nash equilibria. The main constraint is our proof technique.
We need that the solution concept must be computable by an appropriate distributed algorithm, to which we can add
carefully calibrated noise. In certain special cases, these conditions are satisfied for Nash equilibrium, but in this paper
we restrict our attention to correlated equilibrium so as to maintain generality.
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2. Make it an approximately-dominant strategy for agents to report truthfully.

3. Preserve the privacy of each agent’s private information. Our first contribution is a definition
of what it means to compute an equilibrium privately. This is new to the literature, and is
an extension of differential privacy which is a robust (i.e. demanding) criterion. Roughly
speaking, it requires that no-one learn much about the type of any agent. even if he knows
‘everything else’, i.e. everyone else’s realized type and recommended actions. We give a
definition of differential privacy adapted to our setting in Definition 5, see also discussion
and related work in Section 1.2.

It is easy to see that the goal of computing an approximate equilibrium while preserving the
privacy of the player’s utility functions is hopeless in a 2-player game (or more generally a small
number of players). Therefore we consider ‘large’ n-player games. We define these formally in
Section 2, but roughly speaking, these are n-player games in which for all players i 6= j, i’s choice
of action can affect j’s payoff by at most an additive ±γ. We call γ the sensitivity of the game.
In what follows, we discuss our results for games where γ is O(1/n).5 Examples of such games
include anonymous matching games or more generally games where a player’s payoff depends on
his own action and the distribution of others’ actions.

We consider two equilibrium concepts: coarse correlated equilibrium (CCE), and correlated
equilibrium (CE). The former is ‘less demanding’, and therefore easier to use in proofs to build
intuition. While we get results that are asymptotically of a similar flavor for both, the former has a
rate of convergence faster than the latter.

We also give a computationally efficient mechanism for privately computing α-approximate
versions of both solution concepts in games with k actions where α is O(poly(k)/

√
n).6 Holding

the number of actions fixed, the approximation is O(1/
√
n), or to put it alternately, we get almost

exact equilibria if the number of players n is large. Note that the rate of convergence, O(1/
√
n),

is the same as in the mechanism design in large games literature we mentioned eariler.
For games with a large number of actions the above algorithm is not useful, due to the poly(k)

term in the numerator. For example, in the routing game discussed earlier, the number of actions
available to a player is the number of paths, which can be exponentially large relative to the size of
the graph. For such settings with large numbers of actions, we show that positive results are still
possible as long as the number of possible types for each player is bounded. Formally, we show
that it is possible to ‘privately’ compute an α-approximate equilibrium in a large k-action n-player
game, with U types for each player, where α is O(log k log3/2 |U |/

√
n). However, the mechanism

in this case is computationally inefficient.
5Roughly speaking a function f(n) is said to be O(g(n)) if it grows at most as fast as g(n). Formally, f(n) is

O(g(n)) if there exists a constant M and n such that for any n ≥ n, f(n) ≤Mg(n).
6Poly(k) is shorthand for a polynomial of finite degree in k.
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How tight are our bounds? In other words while our mechanism identifies a certain tradeoff be-
tween privacy and approximation, perhaps one could do better? We answer in the negative– we also
show a matching lower bound: we give a family of n-player 2-action large games in which it is not
possible to privately compute an α-approximate CCE (and therefore an α-approximate CE or an
α-approximate Nash equilibrium) for α� 1/

√
n, showing that even our efficient algorithm gives

nearly the best possible approximation guarantees in the case that k is small (i.e. a fixed number in-
dependent of n). Our inefficient upper bound of course remains tight up to a factor of log k log3/2 U

for arbitrary k-action games with U feasible utility functions. Whether there is an efficient algo-
rithm for privately computing α-approximate equilibria to error α = O(polylog(k, U)/

√
n) is left

as an open question.
What do these results mean in terms of incentive properties? It has been observed previ-

ously that differential privacy implies approximate strategy proofness (McSherry & Talwar [31]).
Roughly speaking, since a player’s report cannot reveal ‘much’ to anyone else, it must be the case
that the distribution over suggested actions to everyone else cannot change by ‘much’ as a function
of any players’ report. Therefore, an ε-jointly differentially private mechanism is also ε-strategy
proof: it is an ε-dominant strategy for any player to report her true type. Since the actions pro-
posed jointly constitute a α-approximate correlated equilibrium of the full information game given
everyone’s reports; it is a ε+ α-approximate Nash equilibrium for everyone to follow the strategy
“truthfully report type, then follow the recommended action”.7 Or results show that it is possible
for both ε and α to asymptote to 0, i.e. for any arbitrarily small degree of privacy ε and approxi-
mateness of equilibrium α, there exists n large enough such that our mechanism can guarantee ε
privacy and α-approximate equilibrium. Therefore, as the size of the game grows large, truthfully
reporting type and following the suggested action approaches an exact Nash equilibrium of the full
information game.

Finally, note that for several classes of games of applied/practical interest, it is known that
correlated equilibria have good welfare properties. The literature on the price of anarchy studies
the ratio of social welfare (utilitarian) of the socially optimal (possibly non-equilibrium) outcome
to that of the worst equilibrium. For several classes of games, this ratio is ‘small’, including
the routing games discussed as our leading example. See the survey chapter by Rougharden and
Tardos, Chapter 17 of [32] for details and references.

7It is always an ε-approximate Dominant strategy to truthfully report type. It is an ε+α Nash equilibrium to follow
both parts of the two-part strategy, of truthfully reporting, and then following the resulting suggested equilibrium
action.
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1.2 RELATED WORK AND DISCUSSION

MARKET AND MECHANISM DESIGN Our work is closely related to the large body of literature
on mechanism/market design in ‘large games’. This literature looks to exploit the large number of
agents to provide mechanisms which have good incentive properties, even when the small market
versions do not. It stretches back to Roberts & Postlewaite [35] who showed that market (Wal-
rasian) equilibria are approximately strategy proof in large economies. More recently Immorlica
and Mahdian [25] , Kojima and Pathak [27], Kojima, Pathak and Roth [28] have shown that var-
ious two-sided matching mechanisms are approximately strategy proof in large markets. There
are similar results in the literature for one-sided matching markets, market economies, and double
auctions. Azevedo and Budish [2] in a recent paper provide conditions for a mechanism to be
‘strategy proof in the large’, i.e. approximately strategyproof as the game grows large.

By comparison with these works, which study settings where the mechanism designer/princi-
pal can enforce outcomes (or take actions on behalf of participants), we study settings where the
mechanism only suggests an action to participants. This leads to slightly weaker incentive proper-
ties (due to the possibility of ‘double-deviations’). Indeed, if our mechanism could act on behalf
of participants, it would be (ε+α)-approximately strategy proof when a α-approximate correlated
equilibrium is computed while satisfying ε-differential privacy.8

On a related subject, there is literature suggesting that even if the mechanism can enforce
outcomes rather than only suggest an action, other considerations may require the mechanism
to select a ‘equilibrium’ outcome of the underlying game rather than an ‘optimal’ outcome. An
influential body of work, starting with Roth and Xing [40] argues that in two-sided matching
markets, centralized mechanisms that implement a stable outcome (a full information solution
concept) are more resistant to unraveling, i.e. members of the market pre-empting the mechanism
by contracting in advance.

LARGE GAMES Our results hold under two sufficient (and almost necessary) conditions: that
the number of players be ‘large’, and the game be insensitive to O(1/

√
n), i.e. a player’s action

affects the payoff of all others by a small amount. These are closely related to the literature on large
games, see e.g. Al-Najjar and Smorodinsky [1] or Kalai [26]. There has been recent work studying
large games using tools from theoretical computer science (but in this case, studying robustness of
equilibrium concepts)– see Gradwohl and Reingold [17, 18].

DIFFERENTIAL PRIVACY Differential privacy is a recently proposed formalization of privacy. It
was first defined by Dwork, McSherry, Nissim, and Smith [8], and has since become the standard

8In fact, if the participants did not have the option of acting independently of the mechanism (i.e. still playing the
game, but selecting an action without consulting the mechanism), then our mechanisms would be ε-strategyproof.
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privacy “solution concept” in the theoretical computer science literature. It is a quantification of
the worst-case harm that can befall an individual as a result of his decision to allow his data to be
used in some computation, as compared to if he did not provide his data. Roughly speaking, an
algorithm is ε-differentially private if adding/removing/changing the data of a single individual to
a dataset can change the probability of any outcome of the algorithm’s computation by at most a
(1 + ε) factor. Note that this is a worst case notion. It requires this bound even if the adversary
knows the rest of the dataset.9

There is by now a very large literature on differential privacy, which we will not attempt to
survey. Instead, we mention here only the most relevant work. Interested readers can browse the
A. Roth’s lecture notes [36] for a more thorough introduction to the field.

The most well studied problem in differential privacy is that of accurately answering numeric-
valued queries on a data set. A basic result is that any single query that has sensitivity at most
1 (i.e. the addition or removal of a single individual from the data set can change the value of
the query by at most 1) can be answered in a computationally efficient manner while preserving
ε-differential privacy, and introducing error only O(1/ε) (Dwork et al [8]). Another fundamental
result in differential privacy is that it composes gracefully: Any algorithm composed of T sub-
routines, each of which are O(ε/

√
T )-differentially private is itself ε-differentially private [7, 11].

Combined with the previous result, this gives an efficient algorithm for privately answering any T
low sensitivity queries with error that grows only with O(

√
T ), a result which we make use of.

Another line of work has shown that it is possible to privately answer queries much more
accurately using computationally inefficient algorithms [3, 11, 19, 20, 22, 38]. Combining the
results of [22, 38] yields an algorithm which can privately answer arbitrary low sensitivity queries,
interactively as they arrive, with error that scales only logarithmically in the number of queries.
We make use of this when we consider games with large action spaces but small type spaces.

There is also a line of work proving information theoretic lower bounds on the accuracy to
which low sensitivity queries can be answered while preserving differential privacy [5, 6, 9, 12].
Our lower bounds for privately computing equilibria work by reducing the problem to privately
answering queries: we design a game whose only equilibria encode answers to large numbers of
queries about a database.

Finally, related to this paper, there is a recent literature on connections between differential
privacy and game theory. McSherry and Talwar [31] were the first to observe that a differen-
tially private algorithm is also approximately truthful, and to use this fact to design approximately
truthful mechanisms for an unlimited supply auction setting. This line of work was extended by

9An example may be useful. Suppose each individual knows his age, and the algorithm computes the average of
all the items in the data set. This is not differentially private– someone who knows the output of the algorithm can
deduce the age of any one individual (if he knows all others’ ages). Differential privacy thus requires that the mean be
reported with appropriately selected random noise.
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Nissim, Smorodinsky, and Tennenholtz [34] to give mechanisms in several special cases which
are exactly truthful (although no longer privacy preserving) by combining private mechanisms
with non-private mechanisms which explicitly punish non-truthful reporting. Huang and Kannan
[24] showed that the mechanism used by Mcsherry and Talwar (the “exponential mechanism”) is
in fact maximal in distributional range, and so can be made exactly truthful with the addition of
payments. We remark that the immediate connection between privacy and approximate incentive
compatibility leveraged by these works only holds in settings in which the mechanism has the
power to enforce its outcome or otherwise compel actions. The novelty in our work relative to
this line is that our mechanisms implement approximate equilibria of the full information game.
Therefore, truthful reporting and subsequently following the suggested equilibria actions remain
approximate best responses even if the players have the ability to act in the game, independently of

the mechanism. Our results are therefore very general: we are able to implement our mechanisms
in arbitrary large games, without requiring that the mechanism designer claim authority to enforce
actions.

Another interesting line of work considers the problem of designing truthful mechanisms for
agents who explicitly experience a cost for privacy loss as part of their utility function [4, 33,
41]. The main challenge in this line of work is to formulate a reasonable model for how agents
experience cost as a function of privacy. We remark that the approaches taken in the former two
can also be adapted to work in our setting, for agents who explicitly value privacy. Gradwohl
[16] studies the problem of implementation for various assumptions about players’ preference for
privacy and permissible game forms. A related line of work which also takes into account agent
values for privacy considers the problem of designing markets by which analysts can procure
private data from agents who explicitly experience costs for privacy loss [13, 15, 30, 39]. See Roth
[37] for a survey.

1.3 ORGANIZATION OF THIS PAPER

Section 2 outlines the model and gives a formal definition of differential privacy for our setting. It
also defines and lays out some known results about our main workhorse for this paper, no-regret
algorithms. Section 3 shows that no-regret algorithms are ‘tolerant’ to certain types of noise, i.e.
they still converge efficiently. Section 4 then argues that with appropriately chosen noise, the
output of the no-regret algorithm will be differentially private, but still converge to an approximate
equilibrium. It formally lays out the tradeoff between the various parameters we define, i.e. the
sensitivity of the game, the degree of privacy required, how approximate the equilibrium is and the
number of players. It then argues the incentive properties of this mechanism. It then shows that
our bounds are tight, i.e. there cannot exist a mechanism that maintains the same level of privacy
but implements a less approximate (i.e. more exact) equilibrium.
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2 MODEL & PRELIMINARIES

There is a set of n players, {1, 2, . . . , n}, the generic player is indexed i. Player i can take actions
in a set A, |A| = k.10 We denote a generic action by j and a generic action for player i by ai. A
tuple of actions, one for each player, will be denoted a = (a1, a2, . . . an) ∈ An.11

Player i’s payoff function will be denoted ui : An → <. We will restrict attention to ‘insensi-
tive’ games. Roughly speaking a game is γ-sensitive if a player’s choice of action affects any other
player’s payoff by at most γ. Formally:

DEFINITION 1 (γ-Sensitive). A game is said to be γ-sensitive if for any two distinct players i, i′,

any two actions ai, a′i for player i and any tuple of actions a−i for everyone else:

|ui′(ai, a−i)− ui′(a′i, a−i)| ≤ γ. (1)

We should note that the interpretation of several of our results will depend on γ being O(1/n).
This is a satisfied by, for e.g. anonymous matching games, and is standard in the large games
literature. Note, however, that in general our results will be non-trivial so long as γ = o(1/

√
n).

Denote a distribution over An by π, the marginal distribution over the actions of player i by πi,
and the marginal distribution over the (joint tuple of) actions of every player but player i by π−i.
We now present (approximate versions of) two standard solution concepts—correlated and coarse
correlated equilibrium.

DEFINITION 2 (Approximate Coarse Correlated Equilibrium). Let (u1, u2, . . . un) be a tuple of

utility functions, one for each player. Let π be a distribution over tuples of actions An. We say that

π is an α-approximate coarse correlated equilibrium of the game defined by (u1, u2, . . . un) if for

every player i, and any a′i ∈ A:

E
π

[ui(a)] ≥ E
π−i

[ui(a
′
i, a−i)]− α

DEFINITION 3 (Approximate Correlated Equilibrium). Let (u1, u2, . . . un) be a tuple of utility func-

tions, one for each player. Let π be a distribution over tuples of actions An. We say that π is an

α-approximate correlated equilibrium of the game defined by (u1, u2, . . . un) if for every player

i ∈ [N ], and any function f : A→ A,

E
π

[ui(a)] ≥ E
π

[ui(f(ai), a−i)]− α

10It is trivial to extend our results to the case where agents have different sets of actions, k will then be an upperbound
on the number of actions across agents.

11In general, subscripts will refer indices i.e. players and periods, while superscripts will refer to components of
vectors.
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Let U be the set of all possible utility functions for the players,12 with a generic profile of
utilities u = (u1, u2, . . . un) ∈ Un. A mechanism is a function from a profile of utility functions to
a probability distribution overRn, i.e.M : Un → ∆Rn. HereR is an appropriately defined range
space.

First we recall the definition of (standard) differential privacy, both to provide a basis for our
new definition, and since it will be a technical building block in our algorithms. Roughly speaking,
a mechanism is differentially private if for every u and every i, knowledge of the outputM(u) as
well as u−i does not reveal ‘much’ about ui.

DEFINITION 4 ((Standard) Differential Privacy). A mechanismM satisfies (ε, δ)-differential pri-

vacy if for any player i, any two possibility utility functions for player i, ui and u′i, and any tuple

of utilities for every else u−i and any S ⊆ Rn,

P
M

[(M(ui;u−i)) ∈ S] ≤ eε P
M

[(M(u′i;u−i)) ∈ S] + δ.

We would like something slightly different for our setting. As we suggested earlierM com-
putes an equilibrium of the game specified by u. Each player reports his utility function to the
mechanism. Given a profile of reports u, a n-dimensional vector in range space R is drawn ac-
cording to the distributionM(u). Player i is then given the i’th component of the drawn vector,
which roughly corresponds to his ‘recommended’ strategy.

Given this, we propose a relaxation of the above definition, motivated by the idea the action
recommended to a player is only observed by her. Roughly speaking, a mechanism is jointly

differentially private if, for each player i, knowledge of the other n − 1 recommendations (and
submitted utility functions) does not reveal ‘much’ about player i’s report. Note that this relaxation
is necessary in our setting, since knowledge of player i’s recommended action can reveal a lot of
information about his utility function. It is still very strong- the privacy guarantee remains even if

everyone else colludes against a given player i, so long as i does not himself make the component
reported to him public.

DEFINITION 5 (Joint Differential Privacy). A mechanismM satisfies (ε, δ)-joint differential pri-

vacy if for any player i, any two possible utility functions for player i, ui and u′i, any tuple of

utilities for everyone else u−i and S ⊆ Rn−1,

P
M

[
(M(ui;u−i))−i ∈ S

]
≤ eε P

M

[
(M(u′i;u−i))−i ∈ S

]
+ δ.

An important result we will use is that differentially private mechanisms ‘compose’ nicely, i.e.

12It is trivial to extend our results to the case where agents have different sets of possible utility functions, Ui. U
will then be

⋃n
i=1 Ui.
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that putting together multiple differentially private mechanisms even in an adaptive (rather than
fixed) way, still results in a differentially private mechanism.

DEFINITION 6 (Adaptive Composition [11]). Let u ∈ U be a tuple and A : U → RT be any

algorithm. We sayA is a T -fold adaptive composition of (ε, δ)-differentially private mechanisms if

there exists another algorithm B such thatA(u) can be written as follows— for each t = 1, . . . , T :

1. B(M1, r1, . . . ,Mt−1, rt−1) =Mt.

2. Mt is an (ε, δ)-differentially private mechanism.

3. rt is a draw according toMt(u), rt ∈ R.

4. The output A(u) = (r1, r2, . . . rT ).

Note here that the choice of the tth mechanism is not fixed a priori and can depend on the output
up to t− 1. Hence the ‘adaptive’ nomenclature.

THEOREM 1 (Adaptive Composition [11]). Let A : U → RT be a T -fold adaptive composition of

(ε, δ)-differentially private mechanisms. Then A satisfies (ε′, T δ + δ′)-differential privacy for

ε′ = ε
√

2T ln(1/δ′) + Tε(eε − 1).

In particular, for any ε ≤ 1, if A is a T -fold adaptive composition of (ε/
√

8T ln(1/δ), 0)-

differentially privacy mechanisms, then A satisfies (ε, δ)-differential privacy.

Finally, differentially private mechanisms often involve adding Laplacian random noise.13 We
will denote a (mean 0) and standard deviation σ Laplacian random variable by Lap(σ). The fol-
lowing well known theorem shows that adding Laplacian noise to a insensitive function makes it
differentially private. It follows easily from Definition 4 and the distribution of Laplacian random
variables.

THEOREM 2 (Privacy of Laplacian Noise). Let Q : U → R be any γ-sensitive function. Define the

mechanismM(u) = Q(u) + Lap(σ). If σ = γ/ε, thenM is (ε, 0)-differentially private.

We state a known concentration inequality for Laplacian random variables that will be useful.

THEOREM 3 ([20]). Suppose {Yi}Ti=1 are i.i.d. Lap(σ) random variables, and scalars qi ∈ [0, 1].

Define Y := 1
T

∑
i qiYi. Then for any α ≤ σ,

Pr[Y ≥ α] ≤ exp

(
−α

2T

6σ2

)
.

13A mean 0 Laplacian distribution is the distribution of the difference of two i.i.d. exponential random variables.
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2.1 NO-REGRET ALGORITHMS: DEFINITIONS AND BASIC PROPERTIES

Here we recall some of the basics about no-regret learning. See [32] for a text-book exposition.
Let {1, 2, . . . , k} be a finite set of k actions. Let L = (l1, . . . , lT ) ∈ [0, 1]T×k be a loss matrix

consisting of T vectors of losses for each of the k actions. Let Π =
{
π ∈ [0, 1]k |

∑k
j=1 π

j = 1
}

be the set of distributions over the k actions and let πU be the uniform distribution. An online

learning algorithm A : Π × [0, 1]k → Π takes a distribution over k actions and a vector of k
losses, and produces a new distribution over the k actions. We useAt(L) to denote the distribution
produced by runningA sequentially t−1 times using the loss vectors l1, . . . , lt−1, and then running
A on the resulting distribution and the loss vector lt. That is:

A0(L) = πU ,

At(L) = A(At−1(L), lt).

We use A(L) = (A0(L),A1(L), . . . ,AT (L)) when T is clear from context.
Let π0, . . . , πT ∈ Π be a sequence of T distributions and let L be a T -row loss matrix. We

define the quantities:

λ(π, l) =
k∑
j=1

πjlj,

λ(π0, . . . , πT , L) =
1

T

T∑
t=1

λ(πt, lt),

λ(A(L′), L) = λ(A0(L
′),A1(L

′), . . . ,AT (L′), L).

Note that the notation retains the flexibility to run the algorithmA on one loss matrix, but measure
the loss A incurs on a different loss matrix. This flexibility will be useful later.

Let F be a family of functions f : {1, 2, . . . , k} → {1, 2, . . . , k}. For a function f and a
distribution π, we define the distribution f ◦π to be

(f ◦π)j =
∑

j′:f(j′)=j

πj
′
.

The distribution f◦π corresponds to the distribution on actions obtained by first choosing an action
according to π, then applying the function f .
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Now we define the following quantities:

λ(π1, . . . , πT , L, f) = λ(f ◦π1, f ◦π2, . . . , f ◦πT , L),

ρ(A, L, f) = λ(A, L)− λ(A, L, f),

ρ(A, L,F) = max
f∈F

ρ(A, L, f).

As a mnemonic, we offer the following. λ refers to expected loss, ρ refers to regret. Next, we
define the families Ffixed,Fswap :

Ffixed = {fj(j′) = j, for all j′ | j ∈ {1, 2, . . . , k}}

Fswap = {f : {1, 2, . . . , k} → {1, 2, . . . , k}}

Looking ahead, we will need to be able to handle not just a priori fixed sequences of losses,
but also adapted. To see why, note that for a game setting, a player’s loss will depend on the
distribution of actions played by everyone in that period, which will depend, in turn, on the losses
everyone experienced in the previous period and how everyone’s algorithms reacted to that.

DEFINITION 7 (Adapted Loss). A loss function L is said to be adapted to an algorithmA if in each

period t, the experienced losses lt ∈ [0, 1]k can be written as:

lt = L(l0,A(l0), l1,A(l1), . . . , lt−1,A(lt−1)).

We will make use of the following well-known results from the theory of no-regret algorithms,
which show the existence of algorithms that guarantee low regret even against adapted losses (see
e.g. [32]).

THEOREM 4. There exists an algorithm Afixed such that for any adapted loss L,

ρ(Afixed,L,Ffixed) ≤
√

2 log k
T

. There also exists an algorithmAswap such that ρ(Aswap,L,Fswap) ≤

k
√

2 log k
T

.

2.2 FROM NO REGRET TO EQUILIBRIUM

Let (u1, . . . , un) be utility functions for each of n players. Let S = {(πi,1, . . . , πi,T )}ni=1 be a col-
lection of n sequences of distributions over k actions, one for each player. Let {(li,1, . . . , li,T )}ni=1

be a collection of n sequences of loss vectors l ∈ [0, 1]k formed by the action distribution. More
formally, for every j, lji,t = 1− Eπ−i,t

[ui(j, a−i)]. Define the maximum regret that any player has
to her losses

ρmax(S, L,F) = max
i
ρ(Si, Li,F)

14



where Si = (πi,0, . . . , πi,T ) and Li = (li,1, . . . , li,T ).
Given the collection S, we define the correlated action distribution ΠS be the average distribu-

tion of play. That is, ΠS is the distribution over An defined by the following sampling procedure:
Choose t uniformly at random from {1, 2, . . . , T}, then, for each player i, choose ai randomly
according to the distribution πi,t, independently of the other players.

The following well known theorem (see, e.g. [32]) relates ρmax to the equilibrium concepts
(Definitions 2 and 3):

THEOREM 5. If the maximum regret with respect to Ffixed is small, i.e. ρmax(S, L,Ffixed) ≤ α, then

the correlated action distribution ΠS is an α-approximate coarse correlated equilibrium. Similarly,

if ρmax(S, L,Fswap) ≤ α, then ΠS is an α-approximate correlated equilibrium.

3 NOISE TOLERANCE OF NO-REGRET ALGORITHMS

In this section we show that no-regret algorithms are tolerant to addition of ‘some’ noise, that is
we still get good regret bounds with respect to the real losses if we run the no-regret algorithm on
noisy losses (real losses plus low-magnitude noise).

Let L ∈ [0, 1]T×k be a loss matrix. Define L = L+1
3

(entrywise) and note that L ∈ [1
3
, 2
3
]T×k.

The following states that running A on L doesn’t significantly increase the regret with respect to
the real losses.

LEMMA 1. For every algorithm A, every family F , and every loss matrix L ∈ [0, 1]T×k,

ρ(A(L), L,F) ≤ 3ρ(A(L), L,F).

In particular, for every L ∈ [0, 1]T×k

ρ(Afixed(L), L,Ffixed) ≤
√

18 log k

T
and ρ(Aswap(L), L,Fswap) ≤ k

√
18 log k

T
.

PROOF. Let π0, . . . , πT ∈ Πk be any sequence of distributions and let f : {1, 2, . . . , k} →
{1, 2, . . . , k} be any function. Then

ρ(π0, . . . , πT , L, f) = λ(π0, . . . , πT , L)− λ(f ◦π0, . . . , f ◦πT , L)

= 3
(
λ(π0, . . . , πT , L)− λ(f ◦π0, . . . , f ◦πT , L)

)
= 3

(
ρ(π0, . . . , πT , L, f)

)
.

The second equality follows from the definition of λ and from linearity of expectation. The Lemma
now follows by setting (π0, . . . , πT ) = AT (L), taking a maximum over f ∈ F , and plugging in
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the guarantees of Theorem 4.

In light of Lemma 1, for the rest of this section we will take L to be a loss matrix in [1
3
, 2
3
]T×k.

This rescaling will only incur an additional factor of 3 in the regret bounds we prove. LetZ ∈ RT×k

be a real valued noise matrix. Let L̂ = L+Z (entrywise). In the next section we will consider the
case where Z is an arbitrary matrix with bounded entries. Then we will prove a tighter bound for
the case where Z consists of independent draws from a Laplace distribution.

3.1 GENERAL NOISE

The next lemma states that when a no-regret algorithm is run on a noisy sequence of losses, it does
not incur too much additional regret with respect to the real losses.

LEMMA 2 (Regret Bounds in the Presence of Bounded Noise). Let L ∈ [1
3
, 2
3
]T×k be any loss

matrix. Let Z = (zjt ) ∈ [−b, b]T×k be an arbitrary matrix with bounded entries, and let L̂ = L+Z.

Let A be an algorithm. Let F be any family of functions. Then

ρ(A(L̂), L,F) ≤ ρ(A(L̂), L̂,F) + 2b.

PROOF. Let (π0, . . . , πT ) be any sequence of distributions and let f : {1, 2, . . . , k} →
{1, 2, . . . , k} be any function. Then:

ρ(π0, . . . , πT , L, f)− ρ(π0, . . . , πT , L̂, f)

= (λ(π0, . . . , πT , L)− λ(f ◦π0, . . . , f ◦πT , L))− (λ(π0, . . . , πT , L̂)− λ(f ◦π0, . . . , f ◦πT , L̂)).

= (λ(π0, . . . , πT , L)− λ(π0, . . . , πT , L̂)) + (λ(f ◦π0, . . . , f ◦πT , L̂)− λ(f ◦π0, . . . , f ◦πT , L̂))

=

(
1

T

T∑
t=1

k∑
j=1

πjt (l
j
t − l̂

j
t )

)
+

(
1

T

T∑
t=1

k∑
j=1

(f ◦πt)j(ljt − l̂
j
t )

)
(by definition of λ)

=

(
1

T

T∑
t=1

K∑
j=1

πjt z
j
t

)
+

(
1

T

T∑
t=1

k∑
j=1

(f ◦πt)jzjt

)
(by definition of z) (2)

≤ b

(
1

T

T∑
t=1

K∑
j=1

πjt

)
+ b

(
1

T

T∑
t=1

K∑
j=1

(f ◦πt)j
)

(∀j, t |zjt | ≤ b)

= 2b,

where the final equality follows from the fact that πt, f ◦πt are probability distributions.

COROLLARY 1. Let L ∈ [1
3
, 2
3
]T×k be any loss matrix and let Z ∈ RT×k be a random matrix such

that PZ
[
Z ∈ [−b, b]T×k

]
≥ 1− β for some b ∈ [0, 1

3
], and let L̂ = L+ Z. Then
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1. PZ
[
ρ(Afixed(L̂), L,Ffixed) >

√
2 log k
T

+ 2b

]
≤ β

2. PZ
[
ρ(Aswap(L̂), L,Fswap) > k

√
2 log k
T

+ 2b

]
≤ β

3.2 LAPLACIAN NOISE

Having handled the case of general noise, we will now prove a tighter bound on the additional
regret in the case where the entries of Z are iid samples from a Laplace distribution.

LEMMA 3 (Regret Bounds for Laplace Noise). Let L ∈ [1
3
, 2
3
]T×k be any loss matrix. Let Z =

(zjt ) ∈ RT×k be a random matrix formed by taking each entry to be an independent sample from

Lap(σ), and let L̂ = L + Z. Let A be an algorithm. Let F be any family of functions. Then for

any η ≤ σ.

P
Z

[
ρ(A(L̂), L,F)− ρ(A(L̂), L̂,F) > η

]
≤ 2|F|e−η2T/24σ2

.

PROOF. Let (π0, . . . , πT ) be any sequence of distributions and let f : {1, 2, . . . , k} →
{1, 2, . . . , k} be any function. Recall by (2),

ρ(π0, . . . , πT , L, f)− ρ(π0, . . . , πT , L̂, f) =

(
1
T

T∑
t=1

k∑
j=1

πjt z
j
t

)
+

(
1
T

T∑
t=1

k∑
j=1

(f ◦πt)jzjt

)
. (3)

We wish to place a high probability bound on the quantities:

Yπ0,...,πT =
1

T

T∑
t=1

k∑
j=1

πjt z
j
t .

Changing the order of summation,

Yπ0,...,πT =
∑

a1,...,aT∈A

(
T∏
t=1

πatt

)(
1

T

T∑
t=1

zatt

)
,

the equality follows by considering the following two ways of sampling elements zjt . The first
expression represents the expected value of zjt if t is chosen uniformly from {1, 2, . . . , T} and
then j is chosen according to πt. The second expression represents the expected value of zjt if
(a1, . . . , aT ) are chosen independently from the product distribution π1×π2×· · ·×πT and then at is
chosen uniformly from (a1, . . . , aT ). These two sampling procedures induce the same distribution,
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and thus have the same expectation. Thus we can write:

P
Z

[Yπ0,...,πT > η] ≤ max
a1,...,aT∈A

P
Z

[
1

T

T∑
t=1

zatt > η

]
≤ P

Z

[
1

T

T∑
t=1

z1t > η

]
.

where the second inequality follows from the fact that the variables zjt are identically distributed.
Applying Theorem 3, we have that for any η < σ,

P
Z

[Yπ0,...,πT > η] ≤ e−η
2T/6σ2

. (4)

Let (π0, . . . , πT ) = A(L̂). By Equation (3) we have

P
Z

[
ρ(A(L̂), L, f)− ρ(A(L̂), L̂, f) > η

]
≤ P

Z

[
1

T

T∑
t=1

k∑
j=1

πjt z
j
t > η/2

]
+ P

Z

[
1

T

T∑
t=1

k∑
j=1

(f ◦πt)jzjt > η/2

]
,

≤ 2e−η
2T/24σ2

,

where the last inequality follows from applying (4) to the sequences (π0, . . . , πT ) and (f◦π0, . . . , f◦
πT ). The Lemma now follows by taking a union bound over F .

Finally, we obtain a tighter counterpart of Corollary 1 when the noise is independent Laplacian
noise.

COROLLARY 2. Let L ∈ [1
3
, 2
3
]T×k be any loss matrix and let Z ∈ RT×k be a random matrix

formed by taking each entry to be an independent sample from Lap(σ) for σ < 1
6 log(4KT/β)

and let

L̂ = L+ Z. Then

1. PZ
[
ρ(Afixed(L̂), L,Ffixed) >

√
2 log k
T

+ σ
√

24 log(4k/β)
T

]
≤ β,

2. PZ
[
ρ(Aswap(L̂), L,Fswap) > k

√
2 log k
T

+ σ
√

24k log(4k/β)
T

]
≤ β.

4 PRIVATE EQUILIBRIUM COMPUTATION

Having demonstrated the noise tolerance of no-regret algorithms, we now argue that for appro-
priately chosen noise, the output of the algorithm constitutes a jointly-differentially private mech-
anism, in the sense of Definition 5. We prove two results of this type. First, in Section 4.1 we
consider games with ‘few’ actions per player. While our algorithm for this case is conceptually
more straightforward, it will not be sufficient in certain cases of interest. For example, in the
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routing games we described in the introduction, the set of actions available to a player consists
of all routes between her starting point and her destination. Even if the graph (road network) is
small, the number of feasible routes can be extremely large (exponential in the number of edges
(roads)). However, in such games, the set of types (utility functions) is small (i.e. the set of all
source-destination pairs). Motivated by this observation, in Section 4.2 we consider games with
large action spaces, but bounded type spaces.

4.1 UPPER BOUNDS FOR GAMES WITH FEW ACTIONS

To orient the reader at a high-level, our proof has two main steps. First, we construct a ‘wrapper’
NRLAPLACEA which takes as input the parameters of the game, the reported tuple of utilities,
and any no-regret algorithm A. This wrapper essentially runs the no-regret algorithm A in every
period for each player on noisy losses, i.e. instead of reporting the true loss toA, it reports the loss
plus appropriately chosen Laplacian noise. In Theorem 6 we argue that this constitutes a jointly
differentially private mechanism in the sense of Definition 5. Then, in Theorem 7 and Corollary
3, we argue that this wrapper converges to an approximate coarse correlated equilibrium when the
input algorithm isAfixed, and to an approximate correlated equilibrium when the input algorithm is
Aswap.

4.1.1 NOISY NO-REGRET ALGORITHMS ARE DIFFERENTIALLY PRIVATE

NRLAPLACEA(ui, . . . un)

PARAMS: ε, δ, γ ∈ (0, 1], n, k, T ∈ N
LET: π1,1, . . . , πn,1 each be the uniform distribution over {1, 2, . . . , k}.

LET: σ =
γ
√

8nkT ln(1/δ)

ε

FOR: t = 1, 2, . . . , T
LET: lji,t = 1− Eπ−i,t

[ui(j, a−i)] for every player i, action j.
LET: zji,t be an i.i.d. draw from Lap(σ) for every player i, action j.
LET: l̂ji,t = lji,t + zji,t for every player i, action j.
LET: πi,t+1 = A(πi,t, l̂i,t) for every player i.

END FOR

OUTPUT: (πi,1, . . . , πi,T ) to player i, for every i.

THEOREM 6 (Privacy of NRLAPLACEA). For anyA, the algorithm NRLAPLACEA satisfies (ε, δ)-

joint differential privacy.

PROOF. Fix any player i, any pair of utility functions for i, ui, u′i, and a tuple of utility functions
u−i for everyone else. To show differential privacy, we need to analyze the change in the distribu-
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tion of the joint output for all players other than i, (π−i,1, . . . , π−i,T ) when the input is (ui, u−i) as
opposed to (u′i, u−i).

It will be easier to analyze the privacy of a modified mechanism that outputs (l̂−i,1, . . . , l̂−i,T ).
Observe that this output is sufficient to compute (π−i,1, . . . , π−i,T ) just by running A. Thus, if
we can show the modified output satisfies differential privacy, then same must be true for the
mechanism as written.

For every player i′ 6= i, action j ∈ {1, 2, . . . , k}, and t ≤ T , we define the query Qji′,t(· |
l̂−i,1, . . . , l̂−i,t−1) on the utility functions (ui, u−i), as well as the output of the mechanism in rounds
1, . . . , t− 1.

Query Qji′,t(ui, u−i | l̂−i,1, . . . , l̂−i,t−1)
Using u−i, ui and l̂−i,1, . . . , l̂−i,t−1, compute lji′,t. Observe that this can be done in the following
steps:

1. Using l̂−i,1, . . . , l̂−i,t−1, A, and u−i, compute π−i,1, . . . , π−i,t−1.

2. Using π−i,1, . . . , π−i,t−1, A, and ui, compute πi,1, . . . , πi,t−1.

3. Using πt−1 = (πi,t−1, π−i,t−1), A, and ui, compute lji′,t.

Observe that the only step of the query computation that directly involves ui is the second.
Changing player i’s utility function from ui to u′i can (potentially) affect πi,t−1, and can (poten-
tially) alter it to an arbitrary state πi,t−1. However, observe that

Qji′,t(ui, u−i | l̂−i,1, . . . , l̂−i,t−1) = 1− E
π−i′,t

[ui′(j, a−i′)]

= 1− E
π−(i,i′),t

[
E
πi,t

[
ui′(j, ai, a−(i′,i))

]]
≤ 1− E

π−(i′,i),t

[
E
πi,t

[
ui′(j, ai, a−(i′,i)) + γ

]]
= Qj

i′,t(u
′
i, u−i | l̂−i,1, . . . , l̂−i,t−1) + γ

where the inequality comes from the fact that ui′ is assumed to be γ-sensitive in the action of player
i (Definition 1), and by linearity of expectation. A similar argument shows:

Qji′,t(ui, u−i | l̂−i,1, . . . , l̂−i,t−1) ≥ Qj
i′,t(u

′
i, u−i | l̂−i,1, . . . , l̂−i,t−1)− γ.

Note two facts about these queries: (1) The answer to Qj
i′,t is exactly lji′,t, thus the noisy output

to these queries (i.e. answer plus Lap(σ)) is indeed equal to the output of the (modified) algo-
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rithm NRLAPLACEA. (2) The noisy losses l̂−i,1, . . . , l̂−i,t−1 have already been computed when the
mechanism reaches round t, thus the mechanism fits the definition of adaptive composition.

Thus, we have shown how to rephrase the output (l̂i′,1, . . . , l̂i′,T ) as computing the answers to
nkT (adaptively chosen) queries on (u1, . . . , un), each of which is γ-sensitive to the input ui. Thus
the Theorem follows from our choice of σ = γε−1

√
8nkT log(1/δ) and Theorems 1 and 2.

4.1.2 NOISY NO-REGRET ALGORITHMS COMPUTE APPROXIMATE EQUILIBRIA

Therefore we have shown how that the this ‘wrapper’ algorithm is jointly differentially private in
the sense of Definition 5. We now proceed to show that using this algorithm with Afixed will result
in an approximate coarse correlated equilibrium (Theorem 7), and that using it with Aswap will
result in an approximate correlated equilibrium (Corollary 3).

THEOREM 7 (Computing CCE). Let A = Afixed. Fix the environment, i.e. the number of players

n, the number of actions k, the sensitivity of the game γ, the degree of privacy desired, (ε, δ), and

the failure probability β. One can then select the number of rounds the algorithm must run, T ,

satisfying:

γε−1
√

8nkT log(1/δ) ≤ 1

6 log(4nkT/β)
, (5)

such that with probability at least 1−β, the algorithm NRLAPLACEAfixed , returns an α-approximate

CCE for:14

α = Õ
(
γε−1

√
nk log(1/δ) log(1/β)

)
. (6)

Before we proceed to the proof, some discussion is appropriate. It is already well known
that no-regret alogrithms converge ‘quickly’ to approximate equilibria– recall Theorems 4 and 5.
In the previous section, we showed that adding noise still leads to low regret (and therefore to
approximate equilibrium). The tradeoff therefore is this. To get a more ‘exact’ equilibrium, the
algorithm has to be run for more rounds. By the arguments in Theorem 6, this will result in a
less private outcome. The current theorem makes precise the tradeoff between the two. Fixing the
various parameters, (5) tells us the number of rounds T the algorithm must run for. Then, (6) tell
us that fixing the desired privacy and failure probability, one can compute an α-approximate CCE
for α = Õ(γ

√
nk).

This is a strongly positive result– in several large games of interest, e.g. anonymous matching
games, γ = O(n−1). Therefore, for games of this sort α = Õ(

√
k/
√
n). If k is fixed, but n is

large, therefore, a relatively exact equilibrium of the underlying game can be implemented, while
still being jointly differentially private to the desired degree.

14Here Õ hides (lower order) poly(log n, log k, log T, log(1/γ), log(1/ε), log log(1/β), log log(1/δ)) factors.
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PROOF OF THEOREM 7. By our choice of the parameter σ, in the algorithm NRLAPLACEAall ,
which is

σ = γε−1
√

8nkT log(1/δ),

and by assumption of the theorem, (5), we have σ ≤ 1/6 log(4nkT/β). Applying Theorem 2 we
obtain:

P
Z

[
ρ(πi,1, . . . , πi,T , Li,Ffixed) >

√
2 log k

T
+ σ

√
24 log(4nk/β)

T

]
≤ β

n

for any player i, where Li is the loss matrix derived from the given utility functions ui and the
distributions {πi,t}i∈[n],t∈[T ]. Now we can take a union bound over all players i, yielding:

P
Z

[
max
i
ρ(πi,1, . . . , πi,T , Li,Ffixed) >

√
2 log k

T
+ σ

√
24 log(4nk/β)

T

]
≤ β,

=⇒ P
Z

[
ρmax(π, L,Ffixed) >

√
2 log k

T
+ σ

√
24 log(4nk/β)

T

]
≤ β.

By Theorem 5, therefore, the empirical distribution of play is a
√

2 log k
T

+ σ

√
24 log(4nk/β)

T
-

approximate coarse correlated equlibrium.
To finish, substitute σ = γε−1

√
8nkT log(1/δ) into the expression above. Therefore, with

probability at least 1− β, no player has regret larger than

α =

√
2 log k

T
+
γ
√

192nk log(1/δ) log(4nk/β)

ε

Since T is a parameter of the algorithm, we can choose T to minimize α. Since α is monotonically
decreasing in T , we would like to choose T as large as possible. However, our argument requires
(5), which (roughly) requires

√
T . 1/γ

√
nk, where we have suppressed dependence on some of

the parameters. By choosing T so that
√
T ∼ 1/γ

√
nk we can make the first term of the error

∼ γ
√
nk, which would make it be of a similar order to the second term. It is easy to verify that we

can choose T is such a way that T satisfies the assumption and the resulting value of α satisfies the
conclusion of the theorem.

By considering Aswap instead of Afixed, we easily get similar results for approximate correlated
equilibrium rather than coarse correlated equilibrium.

COROLLARY 3 (Computing CE). Let A = Aswap. Fix the environment, i.e. the number of play-

ers n, the number of actions k, the sensitivity of the game γ, and the degree of privacy desired,
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(ε, δ). One can then select the number of rounds the algorithm must run T , and two numbers α, β

satisfying:

γε−1
√

8nkT log(1/δ) ≤ 1

6 log(4nkT/β)
, (7)

such that probability at least 1 − β, the algorithm NRLAPLACEAswap , returns an α-approximate

correlated equilibrium for:15

α = Õ

(
γk3/2

√
n log(1/δ) log(1/β)

ε

)

PROOF. Following the same steps as the Proof of Theorem 7, but noting that we are using regret
with respect to Fswap rather than Ffixed, we find that NRLAPLACEAswap will return, with probability
at least 1− β, an α-approximate correlated equlibrium where

α = k

√
2 log k

T
+

∆k
√

384n log(1/δ) log(4kn/β)

ε
.

As in Theorem 7, we will choose T ∼ 1/γ
√
nk to complete the proof.

4.2 UPPER BOUNDS FOR GAMES WITH BOUNDED TYPE SPACES

Recall that in the previous section, we showed that a private equilibrium can be computed with
a O(
√
k/
√
n) approximate equilibrium. While these results are positive for some settings (e.g.

anonymous matching games for large populations), they have no bite in settings where the number
of actions is as large (or larger) than the number of players. The problem is roughly this– with
large numbers of actions, the no-regret algorithm will have to be run ‘many’ times. This would
require that we either sacrifice privacy, or introduce even more noise to ensure privacy, which in
turn would give make the computed equilibrium a worse approximation.

4.2.1 THE MEDIAN MECHANISM

To keep notation straight, we will use u = (u1, . . . , uN) to denote the utility functions specified
by each of the n players, and v ∈ U to denote a utility function considered within the mechanism.
Let U = |U|, the size of the set of possible utility functions for any player. In order to specify the
mechanism it will be easier to define the following family of queries first. Let i be any player, j
any action, t any round of the algorithm, and v any utility function. The queries will be specified
by these parameters and a sequence Λ1, . . . ,Λt−1 where Λt′ ∈ Rn×k×U for every 1 ≤ t′ ≤ t − 1.

15Again Õ hides lower order poly(logN, logK, log T, log(1/∆), log(1/ε), log log(1/β), log log(1/δ)) factors.
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Think of Λj
i,t′,v as being the loss experienced by player i, if she decides to play action j, and her

utility is v, given the state of the mechanism in round t′.

Qji,t,v(u1, . . . , uN | Λ1, . . . ,Λt−1)

Using u1, . . . , uN | Λ1, . . . ,Λt−1, compute lji,t,v = 1 − Eπ−i,t
[ui(j, a−i)]. This computation can

be done in the following steps:

1. For every i′ 6= i, use Λj
i′,1,ui′

, . . . ,Λj
i′,t−1,ui′

, A, and ui′ to compute πi′,1, . . . , πi′,t−1.

2. Using π−i,t−1, compute lji,t,v.

Observe that Qj
i,t,v is γ-sensitive for every player i, step t, action j, and utility function v. To

see why, consider what happens when a specific player i′ switches her input from ui′ to u′i′ . In that
case that i = i′, this has no effect on the query answer, because player i’s utility is never used in
computing Qi

t,j,v. In the case that i′ 6= i then the utility function of player i′ can (potentially) affect
the computation of πi′,t−1, and can (potentially) change it to an arbitrary state πi′,t−1. But then γ-
sensitivity follows from the γ-sensitivity of ui, the definition of lji,t,v, and linearity of expectation.
Notice that ui′ does not, however, affect the state of any other players, who will use the losses
Λ1, . . . ,Λt−1 to generate their states, not the actual states of the other players.

There are TnkU such queries. If we were to answer these queries with the Laplace mechanism,
as in the algorithm NRLAPLACE, then we would introduce even more noise to ensure privacy of
all the queries. However, in the case where U is small, we are able to use more privacy-efficient
mechanisms, that can compute differentially private answers to the queries with much less noise
than would be introduced by the Laplace mechanism. One such mechanism is the so-called Median
Mechanism of Roth and Roughgarden [38], paired with the privacy analysis of Hardt and Rothblum
[22].16

THEOREM 8 (Median Mechanism For General Queries [38, 22]). Consider the following R-round

experiment between a mechanismMM , who holds a tuple u1, . . . , uN ∈ U , and a adaptive querier

B. For every round r = 1, 2, . . . , R:

1. B(Q1, a1, . . . , Qr−1, ar−1) = Qr, where Qr is a γ-sensitive query.

2. ar ←R MM(u1, . . . , un;Qr).

For every ε, δ, γ, β ∈ (0, 1], N,R, U ∈ N, there is a mechanismMM such that for every B
16Originally, the median mechanism of [38] was only defined and analyzed for the case of linear queries. A ‘folk’

result, first observed by Hardt and Rothblum [21] is that the Median Mechanism (when instantiated with a net of all
possible size n datasets) can be applied to arbitrary γ-sensitive queries, which immediately yields Theorem 8 when
paired with the privacy analysis of [22]. The simple proof can be found in [10].
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1. The transcript (Q1, a1, . . . , QR, aR) satisfies (ε, δ)-differential privacy.

2. With probability 1 − β (over the randomizations ofMM ), |ar − Qr(u1, . . . , uN)| ≤ αMM

for every r = 1, 2, . . . , R and for

αMM
= 16ε−1γ

√
N logU log(2R/β) log(4/δ).

4.2.2 NOISY NO-REGRET VIA THE MEDIAN MECHANISM

Our mechanism uses two steps. At a high level, there is an inner mechanism,
NRMEDIAN-SHARED, that will use the Median Mechanism to answer each query
Qj
i,t,v

(
· | Λ̂1, . . . , Λ̂t−1

)
, and will output a set of noisy losses Λ̂1, . . . , Λ̂T . The properties of the

Median Mechanism will guarantee that these losses satisfy (ε, δ)-differential privacy (in the stan-
dard sense of Definition 4).

There is also an outer mechanism that takes these losses and, for each player, uses the losses
corresponding to her utility function to run a no-regret algorithm. This is NRMEDIAN which takes
the sequence Λ̂1, . . . , Λ̂T and using the utility function ui will compute the equilibrium strategy
for player i. Since each player’s output can be determined only from her own utility function and
a set of losses that is (ε, δ)-differentially private with respect to every utility function, the entire
mechanism will satisfy (ε, δ)-joint differential privacy.

NRMEDIAN-SHAREDA(u1, . . . uN)

PARAMS: ε, δ, γ ∈ (0, 1], n, k, T ∈ N
FOR: t = 1, 2, . . . , T

LET: l̂ji,t,v =MM

(
u1, . . . , uN ;Qj

i,t,v(· | Λ̂1, . . . , Λ̂t−1)
)

for every i, j, v.

LET: Λ̂j(i, t, v) = l̂ji,t,v for every i, j, v.
END FOR

OUTPUT: (Λ̂1, . . . , Λ̂T ).

THEOREM 9 (Privacy of NRMEDIAN). The algorithm NRMEDIAN satisfies (ε, δ)-joint differen-

tial privacy.

PROOF. Observe that NRMEDIAN can be written as h(u) = (f1(g(u)), . . . , fN(g(u))) where fi
depends only on ui for every player i. (Here, g is NRMEDIAN-SHARED and fi is the i-th iteration
of the main loop in NRMEDIAN). The privacy of the Median Mechanism (Theorem 8) directly
implies that g is (ε, δ)-differentially private (in the standard sense).

Consider a player i and two profiles u,u′ that differ only in the input of player i, and consider
the output (f−i(g(u))). Let S ⊆ Range(f−i) and let R(u) = {o ∈ Range(g) | f−i(o) ∈ S}.
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NRMEDIANA(u1, . . . uN)

PARAMS: ε, δ,∆ ∈ (0, 1], n, k, T ∈ N
LET: (Λ̂1, . . . , Λ̂T ) = NRMEDIAN-SHAREDA(u1, . . . , uN).
FOR: i = 1, . . . , N
LET: πi,1 be the uniform distribution over {1, 2, . . . , k}.

FOR: t = 1, . . . , T

LET: πi,t = A
(
πi,t−1, Λ̂i,t−1,ui

)
END FOR

OUTPUT TO PLAYER i: (πi,1, . . . , πi,T ).
END FOR

Notice that f is deterministic, so R is well-defined. Also notice that R depends only on S and u−i

(in particular, not on ui). Then we have

P
h(u)

[
h−i(u) ∈ S

]
= P

g(u)
[g(u) ∈ R(u) = R(u′)]

≤ eε P
g(u′)

[g(u′) ∈ R(u) = R(u′)] + δ

≤ eε P
h(u)

[
h−i(u′) ∈ S

]
+ δ

where the first inequality follows from the (standard) (ε, δ)-differential privacy of g. Thus, NR-
MEDIAN satisfies (ε, δ)-joint differential privacy.

4.2.3 COMPUTING APPROXIMATE EQUILIBRIA

THEOREM 10 (Computing CCE). Let A be Afixed. Fix the environment, i.e the number of players

n, the number of actions k, number of possible utility functions U , sensitivity of the game γ and

desired privacy (ε, δ). Suppose β and T are such that:

16ε−1γ
√
n logU log(2nkTU/β) log(4/δ) ≤ 1

6
(8)

Then with probability at least 1−β the algorithm NRMEDIANAfixed returns an α-approximate CCE

for:17

α = Õ

(
γ
√
N log3/2 U log(k/β) log(1/δ)

ε

)
.

Again, considering ‘low sensitivity’ games where γ is O(1/n), the theorem says that fix-
ing the desired degree of privacy, we can compute an α-approximate equilibrium for α =

17Here, Õ hides lower order poly(logn, log log k, log T, log logU log(1/γ), log(1/ε), log log(1/β), log log(1/δ))
terms.
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Õ

(
(logU)

3
2 log k√
N

)
. The tradeoff to the old results is in dependence on the number of actions. The re-

sults in the previous section had a
√
k dependence on the number of actions k. This would have no

bite if k grew even linearly in n. We show that positive results still exist if the number of possible
private types is is bounded - the dependence on the number of actions and the number of types is
now logarithmic. However this comes with two costs. First, we can only consider situations where
the number of types any player could have is bounded, and grows sub-exponentially in n. Second,
we lose computational tractability– the running time of the median mechanism is exponential in
the number of players in the game.

PROOF. By the accuracy guarantees of the Median Mechanism:

P
MM

[
∃i, t, j, v s.t. |l̂ji,t,v − l

j
i,t,v| > AMM

]
≤ β

where
αMM

= 16γε−1
√
n logU log(2nkTU/β) log(4/δ)

By (8), αMM
≤ 1/6. Therefore,

P
MM

[
∃i, j, t, v s.t. |l̂ji,t,v − l

j
i,t,v| > 1

6

]
≤ β

Applying Theorem 1 and substituting AMM
, we obtain:

P
Z

[
∃i s.t. ρ(πi,1, . . . , πi,T , L,Ffixed) >

√
2 log k

T
+ 2αMM

]
≤ β

Now we can choose
√
T = (γ

√
n)−1 to conclude the proof.

COROLLARY 4 (Computing CE). Let A be Aswap. Fix the environment, i.e the number of players

n, the number of actions k, number of possible utility functions U , sensitivity of the game γ, the

desired privacy (ε, δ), and the failure probability β. Suppose T is such that:

16ε−1γ
√
n logU log(2nkTU/β) log(4/δ) ≤ 1

6
(9)

Then with probability at least 1−β the algorithm NRMEDIANAswap returns an α-approximate CCE

for:18

α = Õ

(
γ
√
n log3/2 U log(k/β) log(1/δ)

ε

)
18Here Õ hides lower order poly(logn, log log k, log T, log logU log(1/γ), log(1/ε), log log(1/β), log log(1/δ))

terms.
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PROOF. By the accuracy guarantees of the Median Mechanism:

P
MM

[
∃i, t, j, v s.t. |l̂ji,t,v − l

j
i,t,v| > AMM

]
≤ β

where
αMM

= 16γε−1
√
n logU log(2nkTU/β) log(4/δ)

By (9), αMM
≤ 1/6. Therefore,

P
MM

[
∃i, j, t, v s.t. |l̂ji,t,v − l

j
i,t,v| > 1

6

]
≤ β

Applying Theorem 1 and substituting αMM
, we obtain:

P
Z

[
∃i s.t. ρ(πi,1, . . . , πi,T , L,Ffixed) >

√
2 log k

T
+ 2αMM

]
≤ β

Now we can choose
√
T = k(γ

√
n)−1 to conclude the proof.

4.3 A LOWER BOUND

In the case where γ = O(1/n) and k = O(1), both of our algorithms from the previous Section
compute a differentially private, α-approximate equilibrium for α ∼ 1/

√
n (ignoring all other

parameters). It is natural to ask whether or not we can achieve significantly smaller values of α
using some other algorithm. In this section we prove a lower bound showing that this is not the
case. Specifically, we show that there is no algorithm that privately computes an α-approximate
equilibrium of an arbitrary n-player 2-action game, for α � 1/

√
n log n. In other words, there

cannot exist an algorithm that privately computes a ‘signficantly’ more exact equilibrium.
Our proof is by a reduction to the problem of differentially private subset-sum query release,

for which strong information theoretic lower bounds are known [6, 12]. The problem is as follows:
Consider a database D ∈ {0, 1}n, which we denote (d1, . . . , dn). A subset-sum query q ⊆ [n]

is defined by a subset of the n database entries and asks “What fraction of the entries in D are
contained in q and are set to 1?” Formally, we define the query q as q(D) = 1

n

∑
i∈q di. Given a set

of subset-sum queries Q = {q1, . . . , qm}, we say that an algorithmM(D) releases Q to accuracy

α ifM(D) = (a1, . . . , am) such that |aj = qj(D)| ≤ α for every j ∈ [m].
Dinur and Nissim [6], showed that any differentially private algorithm that releases sufficiently

many subset-sum queries must add a significant amount of noise. A quantitative improvement of
their result is given by Dwork and Yekhanin [12]. They constructed a family QDY of size m =

O(n) such that there is no differentially private algorithm that releases QDY to accuracy o(1/
√
n).
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Thus, a natural approach to proving a lower bound is to show that an algorithm for computing
approximate equilibrium in arbitrary games could also be used to release arbitrary sets of subset-
sum queries accurately. The following theorem shows that a differentially private mechanism to
compute approxmiate equilibrium implies a differentially private algorithm to compute subset-
sums.

THEOREM 11. For any α > 0, if there is an (ε, δ)-jointly differentially private mechanism M
that computes an α-approximate coarse correlated equilibria in (n + m log n)-player, 2-action,

1/n-sensitive games, then there is an (ε, δ)-differentially private mechanismM′ that releases 36α-

approximate answers to any m subset-sum queries on a database of size n.

Applying the results of Dwork and Yekhanin [12], a lower bound on equilibrium computation
follows easily.

COROLLARY 5. Any (ε = O(1), δ = o(1))-differentially private mechanism M that computes

an α-approximate coarse correlated equilibria in n-player 2-action games with O(1/n)-sensitive

utility functions must satisfy α = Ω( 1√
n logn

).

Here, we provide a sketch of the proof of Theorem 11. Let D ∈ {0, 1}n be an n-bit database
and Q = {q1, . . . , qm} be a set of m subset-sum queries. For the sketch, assume that we have an
algorithm that computes exact equilibria. We will split the (n + m) players into n “data players”
and m “query players.” Roughly speaking, the data players will have utility functions that force
them to play “0” or “1”, so that their actions actually represent the database D. Each of the query
players will represent a subset-sum query q, and we will try to set up their utility function in such
a way that it forces them to take an action that corresponds to an approximate answer to q(D). In
order to do this, first assume there are n + 1 possible actions, denoted

{
0, 1

n
, 2
n
, . . . , 1

}
. We can

set up the utility function so that for each action a, he receives a payoff that is maximized when
an a fraction of the data players in q are playing 1. That is, when playing action a, his payoff is
maximized when q(D) = a. Conversely, he will play the action a that is closest to the true answer
q(D). Thus, we can read off the answer to q from his equilibrium action. Using each of the m
query players to answer a different query, we can compute answers to m queries. Finally, notice
that joint differential privacy says that all of the actions of the query players will satisfy (standard)
differential privacy with respect to the inputs of the data players, thus the answers we read off will
be differentially private (in the standard sense) with respect to the database.

This sketch does not address two important issues. The first is that we do not assume that the
algorithm computes an exact equilibrium, only that it computes an approximate equilibrium. This
relaxation means that the data players do not have to play the correct bit with probability 1, and the
query players do not have to choose the answer that exactly maximizes their utility. In the proof
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we show that the error in the answers we read off is only a small factor larger than the error in the
equilibrium computed.

The second is that we do not want to assume that the (query) players have n + 1 available
actions. Instead, we use log n players per query, and use each to compute roughly one bit of the
answer, rather than the whole answer. However, if the query players’ utility actually depends on
a specific bit of the answer, then a single data player changing his action might result in a large
change in utility. In the proof, we show how to compute bits of the answer using 1/n-sensitive
utility functions.

4.4 INCENTIVE PROPERTIES

One of the things touched upon in our introduction was the incentive properties of our proposed
mechanism. It is well understood that differentially private mechanisms are also approximately
strategy proof (This point was initially made in McSherry and Talwar [31]). This will give us the
desired incentive properties in our setting as well. The basic idea is as follows: Fix some player
i considering changing his report. Joint differential privacy implies that fixing the reports of the
other players, for any report of player i, the distribution over actions suggested to players−i cannot
change ‘much’. Therefore player i’s gain from misreporting must also be small. Formally, we have
the following theorem:

THEOREM 12. Consider a (ε, δ)-jointly differentially private mechanismM which computes a α-

correlated equilibrium of the full information game induced by players’ reports. Then:

1. If all players must follow their recommended actions, then it is a (eε − 1) + δ-approximate

dominant strategy for each player to report their type truthfully.

2. It is a (eε− 1) + δ+α-approximate Nash Equilibrium for players to each play the following

strategy– “truthfully report your type to the mechanism, then follow the suggested action”.

Part 1 follows easily from the definition of joint differential privacy and the fact that payoffs
are bounded between 0 and 1. Part 2 follows since the mechanism suggests an α-approximate
correlated equilibrium to the players.

It is easy to select ε, δ and α so that the incentive properties are also ‘good’ for large games. In
particular recall that α is O(

√
log(1/δ)/ε

√
n) (Corollary 3). Selecting e.g. ε of O(n−1/4), and δ

of O(1/n), we have α is Õ(n−1/4). Therefore for large n, the loss from privacy and approximation
of equilibrium computed by this mechanism will asymptote to 0. Further it will be an almost exact
equilibrium for all players to truthfully report their type and then follow the suggested action– the
approximation is ε+ α + δ = Õ(n−1/4).
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A PROOFS

A.1 PROOFS FROM SECTION 3

PROOF OF COROLLARY 1. We will prove only item 1, the proof for 2 is analogous. First, by
the assumption of the theorem, we will have L̂ ∈ [0, 1]T×k except with probability at most β.
Therefore, by Theorem 4,

P
Z

[
ρ(Afixed(L̂), L̂,Ffixed) >

√
2 log k

T

]
≤ β

Further, by Lemma 2, we know that L̂ ∈ [0, 1]T×k implies

ρ(Afixed(L̂), L,F) ≤ ρ(Afixed(L̂), L̂,F) + 2b.

Combining, we have the desired result, i.e.

P
Z

[
ρ(Afixed(L̂), L,Ffixed) >

√
2 log k

T
+ 2b

]
≤ β.
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PROOF OF COROLLARY 2. First, we demonstrate that L̂ ∈ [0, 1]T×k except with probability at
most β, which will be necessary to apply the regret bounds of Theorem 4. Specifically:

P
Z

[
∃zjt s.t. |zjt | >

1

3

]
≤ Tk P

Z

[
|z11 | >

1

3

]
≤ 2Tke−1/6σ ≤ β/2, (10)

where the first inequality follows from the union bound, the second from the definition of Laplacian
r.v.’s and the last inequality follows from the assumption that σ ≤ 1/6 log(4Tk/β).

The Theorem now follows by conditoning on the event L̂ ∈ [0, 1]T×k and combining the regret
bounds of Theorem 4 with the guarantees of Lemma 3. For parsimony, we will only demonstate
the first inequality, the second is analogous. Recall again by Theorem 4, we have that whenever
l̂ ∈ [0, 1]T×k:

ρ(Afixed(L̂), L̂,Ffixed) ≤
√

2 log k

T
.

Further, by Lemma 3, we know that:

P
Z

[
ρ(Afixed(L̂), L,Ffixed)− ρ(Afixed(L̂), L̂,Ffixed) > η

]
≤ 2|Ffixed|e−η

2T/24σ2

= 2ke−η
2T/24σ2

.

Substituting η = σ
√

24 log(4k/β)
T

, we get:

P
Z

[
ρ(Afixed(L̂), L,Ffixed)− ρ(Afixed(L̂), L̂,Ffixed) > η

]
≤ β/2. (11)

The result follows by combining (10) and (11).

A.2 PROOFS FROM SECTION 4

A.3 PROOF OF THEOREM 11

Given a database D ∈ {0, 1}n, D = (d1, . . . , dn) and m queries Q = {q1, . . . , qm}, we will
construct the following (N = n + m log n)-player 2-action game. We denote the set of actions
for each player by A = {0, 1}. We also use {(j, h)}j∈[m],h∈[logn] to denote the m log n players
{n+ 1, . . . , n+m log n}. For intuition, think of player (j, h) as computing the h-th bit of qj(D).
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Each player i ∈ [n] has the utility function

ui(a) =

1 if ai = di

0 otherwise

That is, player i receives utility 1 if they play the action matching the i-th entry in D, and utility 0

otherwise. Clearly, these are 0-sensitive utility functions.
The specification of the utility functions for the query players (j, h) is somewhat more compli-

cated. First, we define the functions fh, gh : [0, 1]→ [0, 1] as

fh(x) = 1− min
r∈{0,...,2h−1−1}

∣∣x− (2−(h+1) + r2−(h−1))
∣∣

gh(x) = 1− min
r∈{0,...,2h−1−1}

∣∣x− (2−h + 2−(h+1) + r2−(h−1))
∣∣

Each player (j, h) will have the utility function

u(j,h)(a−(j,h), 0) = fh(qj(a1, . . . , an))

u(j,h)(a−(j,h), 1) = gh(qj(a1, . . . , an))

Since q(a1, . . . , an) is defined to be 1/n-sensitive in the actions a1, . . . , an, and fh, gh are 1-
Lipschitz in x, u(j,h) is also 1/n-sensitive.

Also notice that since Q is part of the definition of the game, we can simply define the set of
feasible utility functions to be all those we have given to the players. For the data players we only
used 2 distinct utility functions, and each of the m log n query players may have a distinct utility
function. Thus we only need the set U to be a particular set of utility functions of size m log n+ 2

in order to implement the reduction.
Now we can analyze the structure of α-approximate equilibrium in this game, and show how,

given any equilibrium set of strategies for the query players, we can compute a set of O(α)-
approximate answers to the set of queries Q.

We start by claiming that in any α-approximate CCE, every data player players the action di in
most rounds. Specifically,

CLAIM 1. Let π be any distribution over AN that constitutes an α-approximate CCE of the game
described above. Then for every data player i,

P
π

[ai 6= di] ≤ α.
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PROOF.

P
π

[ai 6= di] = 1− E
π

[ui(ai, a−i)]

≤ 1−
(
E
π

[ui(di, a−i)]− α
)

(Definition of α-approximate CCE)

= 1− (1− α) = α (Definition of ui)

The next claim asserts that if we view the actions of the data players, a1, . . . , an, as a database,
then q(a1, . . . , an) is close to q(d1, . . . , dn) on average.

CLAIM 2. Let π be any distribution over AN that constitutes an α-approximate CCE of the game
described above. Let q ⊆ [n] be any subset-sum query. Then

E
π

[|q(d1, . . . , dn)− q(a1, . . . , an)|] ≤ α.

PROOF.

E
π

[|q(d1, . . . , dn)− q(a1, . . . , an)|] = E
π

[
1

n

∑
i∈q

(di − ai)

]

≤ 1

n

∑
i∈q

E
π

[|di − ai|] =
1

n

∑
i∈q

P
π

[ai 6= di]

≤ 1

n

∑
i∈q

α ≤ α (Claim 1, q ⊆ [n])

We now prove a useful lemma that relates the expected utility of an action (under any distribu-
tion) to the expected difference between qj(a1, . . . , an) and qj(D).

CLAIM 3. Let µ be any distribution over AN . Then for any query player (j, h),∣∣∣∣Eµ [u(j,h)(0, a−(j,h))]− fh(qj(D))

∣∣∣∣ ≤ E
µ

[|qj(a1, . . . , an)− qj(D)|] , and∣∣∣∣Eµ [u(j,h)(1, a−(j,h))]− gh(qj(D))

∣∣∣∣ ≤ E
µ

[|qj(a1, . . . , an)− qj(D)|] .
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PROOF. We prove the first assertion, the proof of the second is identical.∣∣∣∣Eµ [u(j,h)(0, a−i)]− fh(qj(D))

∣∣∣∣
=

∣∣∣∣Eµ [fh(qj(a1, . . . , an))− fh(qj(D))]

∣∣∣∣
≤ E

π
[|qj(a1, . . . , an)− qj(D)|] (fh is 1-Lipschitz)

The next claim, which establishes a lower bound on the expected utility player (j, h) will obtain
for playing a fixed action, is an easy consequence of Claims 2 and 3.

CLAIM 4. Let π be any distribution over AN that constitutes an α-approximate CCE of the game
described above. Then for every query player (j, h),∣∣∣E

π

[
u(j,h)(0, a−i)

]
− fh(qj(D))

∣∣∣ ≤ α, and∣∣∣E
π

[
u(j,h)(1, a−i)

]
− gh(qj(D))

∣∣∣ ≤ α.

Now we state a simple fact about the functions fh and gh. Informally, this asserts that we
can find alternating intervals of width nearly 2−h, that nearly partition [0, 1], in which fh(x) is
significantly larger than gh(x) or vice versa.

OBSERVATION 1. Let β ≤ 2−(h+1). If

x ∈
⋃

r∈{0,1,...,2h−1−1}

(
r2−h + β, (r + 1)2−h − β

)

then fh(x) > gh(x) + β. We denote this region Fh,β . Similarly, if

x ∈
⋃

r∈{0,1,...,2h−1−1}

(
(r + 1)2−h + β, (r + 2)2−h − β

)

then gh(x) > fh(x) + β. We denote this region Gh,β

For example, when h = 3, F3,β = [0, 1
8
− β]∪ [2

8
+ β, 3

8
− β]∪ [4

8
+ β, 5

8
− β]∪ [6

8
+ β, 7

8
− β].

By combining this fact, with Claim 4, we can show that if qj(D) falls in the region Fh,α, then
in an α-approximate CCE, player (j, h) must be playing action 0 ‘often’.

CLAIM 5. Let π be any distribution over AN that constitutes an α-approximate CCE of the game
described above. Let j ∈ [m] and 2−h ≥ 10α. Then, if qj(D) ∈ Fh,9α, Pπ [ai = 0] ≥ 2/3.

Similarly, if qj(D) ∈ Gh,9α, then Pπ [ai = 1] ≥ 2/3.
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PROOF. We prove the first assertion. The proof of the second is identical. If player (j, h) plays
the fixed action 0, then, by Claim 4,

E
π

[
u(j,h)(0, a−(j,h))

]
≥ fh(qj(D))− α.

Thus, if π is an α-approximate CCE, player (j, h) must receive at least fh(qj(D)) − 2α under π.
Assume towards a contradiction that P

[
a(j,h) = 0

]
< 2/3. We can bound player (j, h)’s expected

utility as follows:

E
a←Rπ

[
u(j,h)(a)

]
= P

[
a(j,h) = 0

]
E
π

[
u(j,h)(0, a−(j,h)) | a(j,h) = 0

]
+ P

[
a(j,h) = 1

]
E
π

[
u(j,h)(1, a−(j,h)) | a(j,h) = 1

]
≤ P

[
a(j,h) = 0

](
fh(qj(D)) + E

a←Rπ

[
|qj(a1, . . . , an)− qj(D)| | a(j,h) = 0

])
+ P

[
a(j,h) = 1

](
gh(qj(D)) + E

a←Rπ

[
|qj(a1, . . . , an)− qj(D)| | a(j,h) = 1

])
(12)

= fh(qj(D)) + E
a←Rπ

[|qj(a1, . . . , an)− qj(D)|]− P
[
a(j,h) = 1

]
(fh(qj(D))− gh(qj(D)))

≤ fh(qj(D)) + α− 9αP
[
a(j,h) = 1

]
(13)

< fh(qj(D))− 2α (14)

Line (12) follows from the Claim 3 (applied to the distributions π | a(j,h) = 0 and π | a(j,h) = 1).
Line (13) follows from Claim 2 (applied to the expectation in the second term) and the fact that
qj(D) ∈ Fh,9α (applied to the difference in the final term). Line (14) follows from the assumption
that P

[
a(j,h) = 0

]
< 2/3. Thus we have established a contradiction to the fact that π is an α-

approximate CCE.

Given the previous claim, the rest of the proof is fairly straightforward. For each query j,
we will start at h = 1 and consider two cases: If player (j, 1) plays 0 and 1 with roughly equal
probability, then we must have that qj(D) 6∈ F1,9α ∪ G1,9α. It is easy to see that this will confine
qj(D) to an interval of width 18α, and we can stop. If player (j, 1) does play one action, say 0, a
significant majority of the time, then we will know that qj(D) ∈ F1,9α, which is an interval of width
1/2−9α. However, now we can consider h = 2 and repeat the case analysis: Either (j, 2) does not
significantly favor one action, in which case we know that qj(D) 6∈ F2,9α ∪G2,9α, which confines
qj(D) to the union of two intervals, each of width 18α. However, only one of these intervals will
be contained in F1,9α, which we know contains qj(D). Thus, if we are in this case, we have learned
qj(D) to within 18α and can stop. Otherwise, if player (j, 2) plays, say, 0 a significant majority of
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the time, then we know that qj(D) ∈ F1,9α ∩ F2,9α, which is an interval of width 1/4 − 9α. It is
not too difficult to see that we can repeat this process as long as 2−h ≥ 18α, and we will terminate
with an interval of width at most 36α that contains qj(D).

REMARK 13. We remark that we used O(n) linear queries in proving our lower bound, for
which a lower bound of Ω(1/

√
n) is known for (ε, δ)-differentially private algorithms. Thus, our

Ω(1/
√
n log n) lower bound also applies to games with linear utility functions. However, stronger

lower bounds of Ω(1) are known for answering O(n) low sensitivity nonlinear queries on a bi-
nary valued database [5] while preserving (ε, 0)-differential privacy. We could equally well use the
queries from the lower bound argument of [5] in our construction, to show that no (ε, 0)-jointly
differentially private algorithm can compute an α-approximate CCE to an n-player, 2-action, sen-
sitivity 1/n game for any α < c, where c is some fixed universal constant. This proves a strong
separation between (ε, δ)-private equilibrium computation for δ > 0, and (ε, 0)-private equilibrium
computation. In particular, with (ε, 0)-privacy, it is not possible to compute an approximate equi-
librium where the approximation factor tends to 0 with the number of players, and therefore not
possible to get the “strategyproofness in the large” results that we are able to obtain when δ > 0.
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