Payroll Tax and Household Consumption by Chongen Bai and Binzhen Wu

NBER 22nd East Asian Seminar on Economics

discussion by Martin Berka Victoria University and CAMA

National School of Development at Peking University CCER, Beijing, China

June 25, 2011

Contribution

- Paper uses natural and exogenous experiment of phasing-in of social security contributions in Chinese cities
- Estimates a response of consumption and savings to changes in the current social security contributions
 - ► Large personal consumption/income dataset of 101 cities in 9 provinces between 1997 and 2006: total of 30,670 families
 - Richly heterogeneous policy constraint
 - * at city level: contributions phased in at different levels and speeds
 - * at income level: $I < 0.6\overline{I} \Rightarrow ss = 0.6ss(\overline{I}), I > 3\overline{I} \Rightarrow ss = 3ss(\overline{I})$ Implies compulsory contribution rates declining in income for over 45% of sample
- Social security contribution rate lowers consumption, semi-elasticity of about -3.3 (also increases saving). The effect is stronger for poorer families.
 - ► This is a very large number: PIH ⇒ elast=0, consuming your current income ⇒ elast=-1.
 - Proposed justifications: target saving (for house) when credit constrained

Model

Representative consumer with exogenous income stream and prices

$$\max_{c_1,c_2,c_3,a_1,a_2} U(c_1,h_1) + \beta U(c_2,h_2) + \beta^2 U(c_3,h_3)$$

- Scenario: must save in period 1 to buy house in period 2 $h_2 = 1$, $h_1 = h_3 = 0$
 - Period 1: $c_1 + a_1 = (1 t_w t_{ss})w_1 + (1 + r)a_0$
 - ▶ Period 2: $c_2 + a_2 + p = (1 t_w t_{ss})w_2 + (1 + r)a_1$
 - ▶ Period 3: $c_3 = (1+r)a_2 + bB$, $B = t_{ss}(1+r)^2(w_1 + w_2/(1+r))$
- If b > 1, pension contributions earn higher return than r
- Credit constrain: $a_i \geq 0 \ \forall i$
- Two saving motives (retirement, house ownership) are both compulsory in the scenario.

Model

- Consumption smoothing motive drives results
- with social security payments high relative to house price, $a_2 = 0$
- $\frac{\partial c_1}{\partial t_{ss}} > 0$ iff b > 1 and $a_2 > 0$: consumption rises with t_{ss}
 - ▶ social security has a higher-than-market return (and vice versa), and
 - there is savings "left over" after the purchase of the house
- Wealth is unaffected by temporal re-allocation of income if all forms of saving have the same return or if house prices are relatively low
- $\frac{\partial s_1}{\partial t_{ss}}$ is more nuanced, perhaps because they use after-contribution measure of income

Empirical analysis

- Basic regression: $ln(c^i) = c + at_{ss}^i + controls$
- Unobservable job characteristics that cannot be controlled for but influence c
 - Large pensions usually in big and developed companies
 - ► Self-selection: risk-averse save more and also get more secure jobs
- ullet Instrument for t_{ss}^i by city average $\overline{t_{ss}^i}$
- This has a dramatic effect on \hat{a} , which drops from [-0.3, -0.7] to -3.3
- Poorer households have even more negative coefficient than average
- Other sources of heterogeneity (e.g., age) not relevant

Comments: general

- The empirical side of the paper is very detailed
- Thorough analysis of a number of potential sources of heterogeneity
- Very detailed work in constructing the instruments
- First draft: some lack of focus
 - ▶ The elephant in the room, size of the coefficient, is not explained
- What are the possible theoretical explanations for a result this strong?
- Can the house-buying motive explain this?
- Is the selection bias really so strong that the coefficient increases 5-10-fold?
- This needs to be understood, primarily because it is so counter-intuitive

Comments: general

- Main message, if one can explain the magnitude of coefficients: observed behaviour is weakly consistent with a permanent income hypothesis and strong credit constraints for the majority of population.
- "weakly" because it appears that the coefficients change in the direction PIH predicts for the the relevant sub-groups of the population
- But their magnitude contradicts standard PIH without credit constraints

Comments: empirical analysis

- Sometimes difficult to understand what is going on
- Focus on explaining the magnitude of the effect
- Result that coefficient is more negative for poorer households is not surprising
 - Policy: contribution rate declines with income

Comments: empirical analysis

- Strong evidence in support of PIH? In 6.5, rich households see no effect, middle-income average effect, poor very strong effect
 - ▶ Rich are not credit constrained $\Rightarrow t_{ss}$ does not matter for c_t (consumer a constant fraction of wealth).
 - ► This is reassuring, but raises the question of your coefficient again, as elasticity for poor is -5.3
 - ▶ It would be interesting to isolate the portion due to policy design
- Credit constraints, as well as target saving, drive the negative response:
 - ▶ No house and No debt (most likely with access to credit): 0 elasticity
 - ► House & debt (credit constrained): elasticity -9.8
 - ▶ No house & debt (some constrain and without a house): elast -13!
- Ranking of coefficients consistent with PIH under credit constraints
- Magnitude still seems large

Comments: Model

- If one cannot borrow, how is it possible that temporal income re-allocation does not affect consumption? (when b=1)
 - Let $a_0 = 0$ and imagine t_{ss} increases from 0 to 1.
 - ▶ Then, $c_1 = 0$, which would not be optimal with $t_{ss} = 0$
- ullet The utility function in the worked example $U(c)=rac{c^{1-\gamma}}{1-\gamma}$ does not contain H
 - ► Consequently, house payment *P* is effectively a lump-sum tax
 - ▶ This tax (without a benefit) determines direction of $\frac{\partial s_1}{\partial t_{ss}}$
 - ▶ With tax=0, $\frac{\partial s_1}{\partial t_{ss}} \le 0$ for any b, as higher t_{ss} reallocates income for a constrained household
 - ▶ Therefore, I suspect it will be difficult to generate $\frac{\partial s_1}{\partial t_{ss}} > 0$ in the model when h is added into the utility function.

Comments: Model

Other ways to generate positive response of savings to t_{ss}

- Last decades saw a (real) house price boom in China. In a more general setting, this could imply secular increase in the savings rate
 - ▶ In the model, $\frac{\partial s_1}{\partial P} = \frac{1}{Y_1(1+r)(1+d+d^2)} \ge 0$ and $\frac{\partial c_i}{\partial P} < 0$ for i = 1, 2, but this will change with the addition of houses to the utility.
- Real interest rates declined in China from 7% in 1997 to around 2% in 2006 (World Bank)
 - ▶ Decline in wealth
 - ▶ Increases the likelihood of $\frac{\partial s_1}{\partial t_{ss}} \ge 0$ in the current model
- - May be motivated by a strong bequest motive (credit constraints) which is not modeled.
 - ► Alternatively, allowing elderly to sell their house in period 3 would eliminate one saving motive ⇒ OLG framework?
 - One could adjust an existing RA model with infinitely lived households (e.g, Grossman and Laroque 1990)

Small elephant?

- Negative semi-elasticity is vaguely consistent (PIH world) with t_{ss} being an income tax without a benefit
 - ▶ Higher t_{ss} lowers wealth \Rightarrow constrained households need to offset by saving more and consuming less.
- Is t_{ss} clearly separated from overall payroll tax contributions?
- Even if separate, is it clear to employees that an increase in t_{ss} leads to increase in benefits?
- In a PAYG system, there is no clear link between my t_{ss} today and my social security benefits in the future.
- This could be rationalized under PIH
 - ▶ PIH: negative semi-elasticity for unconstrained households
 - Strong constraints may explain elasticity -3.3

Comment about ageing

- If there is nobody there to provide for my pension when I am old, it is understandable that sensitivity of my saving to income shocks increases.
- Does ageing effectively reform a PAYG system into a Fully Funded system?
- If it does, is ageing problem overstated?
- One interpretation of this paper's results may suggest so