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Introduction

Motivation

Filtering, smoothing, and forecasting problems are pervasive in
economics.

Examples:

1 Macroeconomics: evaluating likelihood of DSGE models.

2 Microeconomics: structural models of individual choice with
unobserved heterogeneity.

3 Finance: time-varying variance of asset returns.

However, �ltering is a complicated endeavor with no simple and exact
algorithm.
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Introduction

Environment I

Discrete time t 2 f1, 2, ...g .

Why discrete time?

1 Economic data is discrete.

2 Easier math.

Comparison with continuous time:

1 Discretize observables.

2 More involved math (stochastic calculus) but often we have extremely
powerful results.
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Introduction

Environment II

States St .

We will focus on continuous state spaces.

Comparison with discrete states:

1 Markov-Switching models.

2 Jumps and continuous changes.

Initial state S0 is either known or it comes from p (S0;γ) .

Properties of p (S0;γ)? Stationarity?
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State Space Representations

State Space Representations

Transition equation:

St = f (St�1,Wt ;γ)

Measurement equation:

Yt = g (St ,Vt ;γ)

f and g are measurable functions.

Interpretation. Modelling origin.

Note Markov structure.
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State Space Representations

Shocks

fWtg and fVtg are independent of each other.

fWtg is known as process noise and fVtg as measurement noise.

Wt and Vt have zero mean.

No assumptions on the distribution beyond that.

Often, we assume that the variance of Wt is given by Rt and the
variance of Vt by Qt .
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State Space Representations

DSGE Models and State Space Representations

We have the solution of a DSGE model:

St = P1St�1 + P2Zt
Yt = R1St�1 + R2Zt

This has nearly the same form that

St = f (St�1,Wt ;γ)

Yt = g (St ,Vt ;γ)

We only need to be careful with:

1 To rewrite the measurement equation in terms of St instead of St�1.

2 How we partition Zt into Wt and Vt .

Later, we will present an example.
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State Space Representations

Generalizations I

We can accommodate many generalizations by playing with the state
de�nition:

1 Serial correlation of shocks.

2 Contemporaneous correlation of shocks.

3 Time changing state space equations.

Often, even in�nite histories (for example in a dynamic game) can be
tracked by a Lagrangian multiplier.
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State Space Representations

Generalizations II

However, some generalizations can be tricky to accommodate.

Take the model:
St = f (St�1,Wt ;γ)

Yt = g (St ,Vt ,Yt�1;γ)

Yt will be an in�nite-memory process.
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State Space Representations

Conditional Densities

From St = f (St�1,Wt ;γ) , we can compute p (St jSt�1;γ).

From Yt = g (St ,Vt ;γ), we can compute p (Yt jSt ;γ) .

From St = f (St�1,Wt ;γ) and Yt = g (St ,Vt ;γ), we have:

Yt = g (f (St�1,Wt ;γ) ,Vt ;γ)

and hence we can compute p (Yt jSt�1;γ).
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Filtering

Filtering, Smoothing, and Forecasting

Filtering: we are concerned with what we have learned up to current
observation.

Smoothing: we are concerned with what we learn with the full sample.

Forecasting: we are concerned with future realizations.

Jesús Fernández-Villaverde (PENN) Filtering and Likelihood July 10, 2011 11 / 79



Filtering

Goal of Filtering I

Compute conditional densities: p
�
St jy t�1;γ

�
and p (St jy t ;γ) .

Why?

1 It allows probability statements regarding the situation of the system.

2 Compute conditional moments: mean, st jt and st jt�1, and variances
Pt jt and Pt jt�1.

3 Other functions of the states. Examples of interest.

Theoretical point: do the conditional densities exist?
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Filtering

Goals of Filtering II

Evaluate the likelihood function of the observables yT at parameter
values γ:

p
�
yT ;γ

�
Given the Markov structure of our state space representation:

p
�
yT ;γ

�
=

T

∏
t=1
p
�
yt jy t�1;γ

�
Then:

p
�
yT ;γ

�
= p (y1jγ)

T

∏
t=2
p
�
yt jy t�1;γ

�
=

Z
p (y1js1;γ) dS1

T

∏
t=2

Z
p (yt jSt ;γ) p

�
St jy t�1;γ

�
dSt

Hence, knowledge of
�
p
�
St jy t�1;γ

�	T
t=1 and p (S1;γ) allow the

evaluation of the likelihood of the model.
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Filtering

Two Fundamental Tools

1 Chapman-Kolmogorov equation:

p
�
St jy t�1;γ

�
=
Z
p (St jSt�1;γ) p

�
St�1jy t�1;γ

�
dSt�1

2 Bayes�theorem:

p
�
St jy t ;γ

�
=
p (yt jSt ;γ) p

�
St jy t�1;γ

�
p (yt jy t�1;γ)

where:

p
�
yt jy t�1;γ

�
=
Z
p (yt jSt ;γ) p

�
St jy t�1;γ

�
dSt
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Filtering

Interpretation

All �ltering problems have two steps: prediction and update.

1 Chapman-Kolmogorov equation is one-step ahead predictor.

2 Bayes�theorem updates the conditional density of states given the new
observation.

We can think of those two equations as operators that map measures
into measures.
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Filtering

Recursion for Conditional Distribution

Combining the Chapman-Kolmogorov and the Bayes�theorem:

p
�
St jy t ;γ

�
=R

p (St jSt�1;γ) p
�
St�1jy t�1;γ

�
dSt�1R �R

p (St jSt�1;γ) p (St�1jy t�1;γ) dSt�1
	
p (yt jSt ;γ) dSt

p (yt jSt ;γ)

To initiate that recursion, we only need a value for s0 or p (S0;γ).

Applying the Chapman-Kolmogorov equation once more, we get�
p
�
St jy t�1;γ

�	T
t=1to evaluate the likelihood function.
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Filtering

Initial Conditions I

From previous discussion, we know that we need a value for s1 or
p (S1;γ) .

Stationary models: ergodic distribution.

Non-stationary models: more complicated. Importance of
transformations.

Initialization in the case of Kalman �lter.

Forgetting conditions.

Non-contraction properties of the Bayes operator.
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Filtering

Smoothing

We are interested on the distribution of the state conditional on all
the observations, on p

�
St jyT ;γ

�
and p

�
yt jyT ;γ

�
.

We compute:

p
�
St jyT ;γ

�
= p

�
St jy t ;γ

� Z p
�
St+1jyT ;γ

�
p (St+1jSt ;γ)

p (St+1jy t ;γ)
dSt+1

a backward recursion that we initialize with p
�
ST jyT ;γ

�
,

fp (St jy t ;γ)gTt=1 and
�
p
�
St jy t�1;γ

�	T
t=1 we obtained from �ltering.
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Filtering

Forecasting

We apply the Chapman-Kolmogorov equation recursively, we can get
p (St+j jy t ;γ) , j � 1.

Integrating recursively:

p
�
yl+1jy l ;γ

�
=
Z
p (yl+1jSl+1;γ) p

�
Sl+1jy l ;γ

�
dSl+1

from t + 1 to t + j , we get p
�
yt+j jyT ;γ

�
.

Clearly smoothing and forecasting require to solve the �ltering
problem �rst!
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Filtering

Problem of Filtering

We have the recursion

p
�
St jy t ;γ

�
=R

p (St jSt�1;γ) p
�
St�1jy t�1;γ

�
dSt�1R �R

p (St jSt�1;γ) p (St�1jy t�1;γ) dSt�1
	
p (yt jSt ;γ) dSt

p (yt jSt ;γ)

A lot of complicated and high dimensional integrals (plus the one
involved in the likelihood).

In general, we do not have closed form solution for them.

Translate, spread, and deform (TSD) the conditional densities in ways
that impossibilities to �t them within any known parametric family.
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Filtering

Exception

There is one exception: linear and Gaussian case.

Why? Because if the system is linear and Gaussian, all the conditional
probabilities are also Gaussian.

Linear and Gaussian state spaces models translate and spread the
conditional distributions, but they do not deform them.

For Gaussian distributions, we only need to track mean and variance
(su¢ cient statistics).

Kalman �lter accomplishes this goal e¢ ciently.
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Kalman Filtering

Linear Gaussian Case

Let the following system:

Transition equation

st = Fst�1 + Gωt , ωt � N (0,Q)

Measurement equation

yt = Hst + υt , υt � N (0,R)

Assume we want to write the likelihood function of yT = fytgTt=1.
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Kalman Filtering

The State Space Representation is Not Unique

Take the previous state space representation.

Let B be a non-singular squared matrix conforming with F .

Then, if s�t = Bst , F
� = BFB�1, G � = BG , and H� = HB�1, we can

write a new, equivalent, representation:

Transition equation

s�t+1 = F
�s�t + G

�ωt , ωt � N (0,Q)

Measurement equation

yt = H�s�t + υt , υt � N (0,R)
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Kalman Filtering

Example I

AR(2) process:

yt = ρ1yt�1 + ρ2zt�2 + συυt , υt � N (0, 1)

Model is not apparently not Markovian.

However, it is trivial to write it in a state space form.

In fact, we have many di¤erent state space forms.
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Kalman Filtering

Example I

State Space Representation I:�
yt

ρ2yt�1

�
=

�
ρ1 1
ρ2 0

��
yt�1

ρ2yt�2

�
+

�
συ

0

�
υt

yt =
�
1 0

� � yt
ρ2yt�1

�
State Space Representation II:�

yt
yt�1

�
=

�
ρ1 ρ2
1 0

��
yt�1
yt�2

�
+

�
συ

0

�
υt

yt =
�
1 ρ2

� � yt
yt�1

�

Rotation B =
�
1 0
0 ρ2

�
on the second system to get the �rst one.
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Kalman Filtering

Example II

MA(1) process:

yt = υt + θυt�1, υt � N
�
0, σ2υ

�
, and Eυtυs = 0 for s 6= t.

State Space Representation I:�
yt

θυt

�
=

�
0 1
0 0

��
yt�1

θυt�1

�
+

�
1
θ

�
υt

yt =
�
1 0

� � yt
θυt

�
State Space Representation II:

st = υt�1

yt = sxt + υt

Again both representations are equivalent!
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Kalman Filtering

Example III

Now we explore a di¤erent issue.

Random walk plus drift process:

yt = yt�1 + β+ συυt , υt � N (0, 1)

This is even more interesting: we have a unit root and a constant
parameter (the drift).

State Space Representation:�
yt
β

�
=

�
1 1
0 1

��
yt1
β

�
+

�
συ

0

�
υt

yt =
�
1 0

� � yt
β

�
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Kalman Filtering

Some Conditions on the State Space Representation

We only consider stable systems.

A system is stable if for any initial state s0, the vector of states, st ,
converges to some unique s�.

A necessary and su¢ cient condition for the system to be stable is
that:

jλi (F )j < 1
for all i , where λi (F ) stands for eigenvalue of F .
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Kalman Filtering

Introducing the Kalman Filter

Developed by Kalman and Bucy.

Wide application in science.

Basic idea.

Prediction, smoothing, and control.

Di¤erent derivations.
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Kalman Filtering

Some De�nitions

De�nition

Let st jt�1 = E
�
st jy t�1

�
be the best linear predictor of st given the history

of observables until t � 1, i.e., y t�1.

De�nition

Let yt jt�1 = E
�
yt jy t�1

�
= Hst jt�1 be the best linear predictor of yt given

the history of observables until t � 1, i.e., y t�1.

De�nition

Let st jt = E (st jy t ) be the best linear predictor of st given the history of
observables until t, i.e., st .
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Kalman Filtering

What is the Kalman Filter Trying to Do?

Let assume we have st jt�1 and yt jt�1.

We observe a new yt .

We need to obtain st jt .

Note that st+1jt = Fst jt and yt+1jt = Hst+1jt , so we can go back to
the �rst step and wait for yt+1.

Therefore, the key question is how to obtain st jt from st jt�1 and yt .
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Kalman Filtering

A Minimization Approach to the Kalman Filter

Assume we use the following equation to get st jt from yt and st jt�1:

st jt = st jt�1 +Kt
�
yt � yt jt�1

�
= st jt�1 +Kt

�
yt �Hst jt�1

�
This formula will have some probabilistic justi�cation (to follow).

Kt is called the Kalman �lter gain and it measures how much we
update st jt�1 as a function in our error in predicting yt .

The question is how to �nd the optimal Kt .

The Kalman �lter is about how to build Kt such that optimally
update st jt from st jt�1 and yt .

How do we �nd the optimal Kt?
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Kalman Filtering

Some Additional De�nitions

De�nition

Let Σt jt�1 � E
��
st � st jt�1

� �
st � st jt�1

�0 jy t�1� be the predicting error
variance covariance matrix of st given the history of observables until
t � 1, i.e. y t�1.

De�nition

Let Ωt jt�1 � E
��
yt � yt jt�1

� �
yt � yt jt�1

�0 jy t�1� be the predicting
error variance covariance matrix of yt given the history of observables until
t � 1, i.e. y t�1.

De�nition

Let Σt jt � E
��
st � st jt

� �
st � st jt

�0 jy t� be the predicting error variance
covariance matrix of st given the history of observables until t, i.e. y t .
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Kalman Filtering

The Kalman Filter Algorithm I

Given Σt jt�1, yt , and st jt�1, we can now set the Kalman �lter
algorithm.

Let Σt jt�1, then we compute:

Ωt jt�1 � E
��
yt � yt jt�1

� �
yt � yt jt�1

�0 jy t�1�
= E

0B@ H
�
st � st jt�1

� �
st � st jt�1

�0 H 0
+υt

�
st � st jt�1

�0 H 0
+H

�
st � st jt�1

�
υ0t + υtυ

0
t jy t�1

1CA
= HΣt jt�1H

0 + R
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Kalman Filtering

The Kalman Filter Algorithm II

Let Σt jt�1, then we compute:

E
��
yt � yt jt�1

� �
st � st jt�1

�0 jy t�1� =

E

 
H
�
st � st jt�1

� �
st � st jt�1

�0
+υt

�
st � st jt�1

�0 jy t�1
!

= HΣt jt�1

Let Σt jt�1, then we compute:

Kt = Σt jt�1H
0 �HΣt jt�1H

0 + R
��1

Let Σt jt�1, st jt�1, Kt , and yt , then we compute:

st jt = st jt�1 +Kt
�
yt �Hst jt�1

�
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Kalman Filtering

Finding the Optimal Gain

We want Kt such that minΣt jt .

Thus:
Kt = Σt jt�1H

0 �HΣt jt�1H
0 + R

��1
with the optimal update of st jt given yt and st jt�1 being:

st jt = st jt�1 +Kt
�
yt �Hst jt�1

�
Intuition: note that we can rewrite Kt in the following way:

Kt = Σt jt�1H
0Ω�1

t jt�1

1 If we did a big mistake forecasting st jt�1 using past information (Σt jt�1
large), we give a lot of weight to the new information (Kt large).

2 If the new information is noise (R large), we give a lot of weight to the
old prediction (Kt small).
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Kalman Filtering

Example

Assume the following model in state space form:
Transition equation:

st = µ+ωt , ωt � N
�
0, σ2ω

�
Measurement equation:

yt = st + υt , υt � N
�
0, σ2υ

�

Let σ2υ = qσ2ω.
Then, if Σ1j0 = σ2ω, (s1 is drawn from the ergodic distribution of st):

K1 = σ2ω
1

1+ q
∝

1
1+ q

.

Therefore, the bigger σ2υ relative to σ2ω (the bigger q), the lower K1
and the less we trust y1.
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Kalman Filtering

The Kalman Filter Algorithm III

Let Σt jt�1, st jt�1, Kt , and yt .
Then, we compute:

Σt jt � E
��
st � st jt

� �
st � st jt

�0 jy t� =
E

0BBB@
�
st � st jt�1

� �
st � st jt�1

�0��
st � st jt�1

� �
yt �Hst jt�1

�0 K 0t�
Kt
�
yt �Hst jt�1

� �
st � st jt�1

�0
+

Kt
�
yt �Hst jt�1

� �
yt �Hst jt�1

�0 K 0t jy t

1CCCA = Σt jt�1 �KtHΣt jt�1

where
st � st jt = st � st jt�1 �Kt

�
yt �Hst jt�1

�
.
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Kalman Filtering

The Kalman Filter Algorithm IV

Let Σt jt�1, st jt�1, Kt , and yt , then we compute:

Σt+1jt = FΣt jtF
0 + GQG 0

Let st jt , then we compute:

1 st+1jt = Fst jt

2 yt+1jt = Hst+1jt

Therefore, from st jt�1, Σt jt�1, and yt we compute st jt and Σt jt .

We also compute yt jt�1 and Ωt jt�1 to help (later) to calculate the

likelihood function of yT = fytgTt=1.
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Kalman Filtering

The Kalman Filter Algorithm: A Review

We start with st jt�1 and Σt jt�1. Then, we observe yt and:

Ωt jt�1 = HΣt jt�1H 0 + R

yt jt�1 = Hst jt�1

Kt = Σt jt�1H 0
�
HΣt jt�1H 0 + R

��1
Σt jt = Σt jt�1 �KtHΣt jt�1

st jt = st jt�1 +Kt
�
yt �Hst jt�1

�
Σt+1jt = FΣt jtF 0 + GQG 0

st+1jt = Fst jt

We �nish with st+1jt and Σt+1jt .
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Kalman Filtering

Writing the Likelihood Function

Likelihood function of yT = fytgTt=1:

log p
�
yT jF ,G ,H,Q,R

�
=

T

∑
t=1
log p

�
yt jy t�1F ,G ,H,Q,R

�
=

�
T

∑
t=1

�
N
2
log 2π +

1
2
log
��Ωt jt�1

��+ 1
2

ς0tΩ
�1
t jt�1ςt

�
where:

ςt = yt � yt jt�1 = yt �Hst jt�1
is white noise and:

Ωt jt�1 = HtΣt jt�1H
0
t + R
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Kalman Filtering

Initial conditions for the Kalman Filter

An important step in the Kalman Filter is to set the initial conditions.

Initial conditions s1j0 and Σ1j0.

Where do they come from?

Since we only consider stable system, the standard approach is to set:

s1j0 = s
�

Σ1j0 = Σ�

where s solves:

s� = Fs�

Σ� = FΣ�F 0 + GQG 0

How do we �nd Σ�?

Σ� = [I � F 
 F ]�1 vec(GQG 0)
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Kalman Filtering

Initial conditions for the Kalman Filter II

Under the following conditions:

1 The system is stable, i.e. all eigenvalues of F are strictly less than one
in absolute value.

2 GQG 0 and R are p.s.d. symmetric.

3 Σ1j0 is p.s.d. symmetric.

Then Σt+1jt ! Σ�.
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Kalman Filtering

Remarks

1 There are more general theorems than the one just described.

2 Those theorems are based on non-stable systems.

3 Since we are going to work with stable system the former theorem is
enough.

4 Last theorem gives us a way to �nd Σ as Σt+1jt ! Σ for any Σ1j0 we
start with.
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The Kalman Filter and DSGE models

The Kalman Filter and DSGE models

Basic real business cycle model:

maxE0

∞

∑
t=0

βt flog ct + ψ log (1� lt )g

ct + kt+1 = kα
t (e

zt lt )
1�α + (1� δ) kt

zt = ρzt�1 + σεt , εt � N (0, 1)

Equilibrium conditions:

1
ct
= βEt

�
1
ct+1

�
αkα�1
t+1 (e

zt+1 lt+1)
1�α + 1� δ

��
ψ

lt
1� lt

ct = (1� α) kα
t (e

zt lt )
1�α

ct + kt+1 = kα
t (e

zt lt )
1�α + (1� δ) kt

zt = ρzt�1 + σεt
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The Kalman Filter and DSGE models

The Kalman Filter and Linearized DSGE Models

We loglinearize (or linearize) the equilibrium conditions around the
steady state.

Alternatives: particle �lter.

We assume that we have data on:

1 log outputt

2 log lt

3 log ct

s.t. a linearly additive measurement error Vt =
�
v1,t v2,t v3,t

�0
.

Why measurement error? Stochastic singularity.

Degrees of freedom in the measurement equation.
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The Kalman Filter and DSGE models

Policy Functions

We need to write the model in state space form.

Remember that a loglinear solution has the form:

bkt+1 = p1bkt + p2zt
and

\outputt = q1bkt + q2ztblt = r1bkt + r2ztbct = u1bkt + u2zt
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The Kalman Filter and DSGE models

Writing the Likelihood Function

Transition equation:0@ 1bkt
zt

1A
| {z }

st

=

0@ 1 0 0
0 p1 p2
0 0 ρ

1A
| {z }

F

0@ 1bkt�1
zt�1

1A
| {z }

st�1

+

0@ 0
0
σ

1A
| {z }

G

εt|{z}
ωt

.

Measurement equation:0@ log outputt
log lt
log ct

1A
| {z }

yt

=

0@ log y q1 q2
log l r1 r2
log c u1 u2

1A
| {z }

H

0@ 1bkt
zt

1A
| {z }

st

+

0@ v1,t
v2,t
v3,t

1A
| {z }

υ
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The Kalman Filter and DSGE models

The Solution to the Model in State Space Form

Now, with yT ,F ,G ,H,Q, and R as de�ned before...

...we can use the Ricatti equations to evaluate the likelihood function:

log p
�
yT jγ

�
= log p

�
yT jF ,G ,H,Q,R

�

where γ = fα, β, ρ,ψ, δ, σg .

Cross-equations restrictions implied by equilibrium solution.

With the likelihood, we can do inference!
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Nonlinear Filtering

Nonlinear Filtering

Di¤erent approaches.

Deterministic �ltering:

1 Kalman family.

2 Grid-based �ltering.

Simulation �ltering:

1 McMc.

2 Sequential Monte Carlo.
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Nonlinear Filtering

Kalman Family of Filters

Use ideas of Kalman �ltering to NLGF problems.

Non-optimal �lters.

Di¤erent implementations:

1 Extended Kalman �lter.

2 Iterated Extended Kalman �lter.

3 Second-order Extended Kalman �lter.

4 Unscented Kalman �lter.
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Nonlinear Filtering

The Extended Kalman Filter

EKF is historically the �rst descendant of the Kalman �lter.

EKF deals with nonlinearities with a �rst order approximation to the
system and applying the Kalman �lter to this approximation.

Non-Gaussianities are ignored.
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Nonlinear Filtering

Algorithm

Given st�1jt�1, st jt�1 = f
�
st�1jt�1, 0;γ

�
.

Then:
Pt jt�1 = Qt�1 + FtPt�1jt�1F

0
t

where

Ft =
df (St�1,Wt ;γ)

dSt�1

����
St�1=st�1jt�1,Wt=0

Kalman gain, Kt , is:

Kt = Pt jt�1G
0
t

�
GtPt jt�1G

0
t + Rt

��1
where

Gt =
dg (St�1, vt ;γ)

dSt�1

����
St�1=st jt�1,vt=0

Then

st jt = st jt�1 +Kt
�
yt � g

�
st jt�1, 0;γ

��
Pt jt = Pt jt�1 �KtGtPt jt�1
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Nonlinear Filtering

Problems of EKF

1 It ignores the non-Gaussianities of Wt and Vt .

2 It ignores the non-Gaussianities of states distribution.

3 Approximation error incurred by the linearization.

4 Biased estimate of the mean and variance.

5 We need to compute Jacobian and Hessians.

As the sample size grows, those errors accumulate and the �lter diverges.
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Nonlinear Filtering

Iterated Extended Kalman Filter I

Compute st jt�1 and Pt jt�1 as in EKF.
Iterate N times on:

K it = Pt jt�1G
i 0
t

�
G itPt jt�1G

i 0
t + Rt

��1
where

G it =
dg (St�1, vt ;γ)

dSt�1

����
St�1=s it jt�1,vt=0

and
s it jt = st jt�1 +K

i
t

�
yt � g

�
st jt�1, 0;γ

��
Why are we iterating? How many times?
Then:

st jt = st jt�1 +Kt
�
yt � g

�
sNt jt�1, 0;γ

��
Pt jt = Pt jt�1 �KNt GNt Pt jt�1
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Nonlinear Filtering

Second-order Extended Kalman Filter

We keep second-order terms of the Taylor expansion of transition and
measurement.

Theoretically, less biased than EKF.

Messy algebra.

In practice, not much improvement.
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Nonlinear Filtering

Unscented Kalman Filter I

Recent proposal by Julier and Uhlmann (1996).

Based around the unscented transform.

A set of sigma points is selected to preserve some properties of the
conditional distribution (for example, the �rst two moments).

Then, those points are transformed and the properties of the new
conditional distribution are computed.

The UKF computes the conditional mean and variance accurately up
to a third order approximation if the shocks Wt and Vt are Gaussian
and up to a second order if they are not.

The sigma points are chosen deterministically and not by simulation
as in a Monte Carlo method.

The UKF has the advantage with respect to the EKF that no Jacobian
or Hessians is required, objects that may be di¢ cult to compute.
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Nonlinear Filtering

New State Variable

We modify the state space by creating a new augmented state
variable:

St = [St ,Wt ,Vt ]

that includes the pure state space and the two random variables Wt

and Vt .

We initialize the �lter with

s0j0 = E (St ) = E (S0, 0, 0)

P0j0 =

24 P0j0 0 0
0 R0 0
0 0 Q0

35
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Nonlinear Filtering

Sigma Points

Let L be the dimension of the state variable St .

For t = 1, we calculate the 2L+ 1 sigma points:

S0,t�1jt�1 = st�1jt�1

Si ,t�1jt�1 = st�1jt�1 �
�
(L+ λ)Pt�1jt�1

�0.5 for i = 1, ..., L
Si ,t�1jt�1 = st�1jt�1 +

�
(L+ λ)Pt�1jt�1

�0.5 for i = L+ 1, ..., 2L
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Nonlinear Filtering

Parameters

λ = α2 (L+ κ)� L is a scaling parameter.

α determines the spread of the sigma point and it must belong to the
unit interval.

κ is a secondary parameter usually set equal to zero.

Notation for each of the elements of S :

Si = [S si ,Swi ,Svi ] for i = 0, ..., 2L
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Nonlinear Filtering

Weights

Weights for each point:

Wm
0 =

λ

L+ λ

Wc
0 =

λ

L+ λ
+
�
1� α2 + β

�
Wm
0 = X c0 =

1
2 (L+ λ)

for i = 1, ..., 2L

β incorporates knowledge regarding the conditional distributions.

For Gaussian distributions, β = 2 is optimal.
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Nonlinear Filtering

Algorithm I: Prediction of States

We compute the transition of the pure states:

S si ,t jt�1 = f
�
S si ,t jt�1,Swi ,t�1jt�1;γ

�

Weighted state

st jt�1 =
2L

∑
i=0
Wm
i S si ,t jt�1

Weighted variance:

Pt jt�1 =
2L

∑
i=0
Wc
i

�
S si ,t jt�1 � st jt�1

� �
S si ,t jt�1 � st jt�1

�0

Jesús Fernández-Villaverde (PENN) Filtering and Likelihood July 10, 2011 62 / 79



Nonlinear Filtering

Algorithm II: Prediction of Observables

Predicted sigma observables:

Yi ,t jt�1 = g
�
S si ,t jt�1,Svi ,t jt�1;γ

�
Predicted observable:

yt jt�1 =
2L

∑
i=0
Wm
i Yi ,t jt�1
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Nonlinear Filtering

Algorithm III: Update

Variance-covariance matrices:

Pyy ,t =
2L

∑
i=0
Wc
i

�
Yi ,t jt�1 � yt jt�1

� �
Yi ,t jt�1 � yt jt�1

�0
Pxy ,t =

2L

∑
i=0
Wc
i

�
S si ,t jt�1 � st jt�1

� �
Yi ,t jt�1 � yt jt�1

�0
Kalman gain:

Kt = Pxy ,tP�1yy ,t
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Nonlinear Filtering

Algorithm IV: Update

Update of the state:

st jt = st jt +Kt
�
yt � yt jt�1

�
the update of the variance:

Pt jt = Pt jt�1 +KtPyy ,tK
0
t

Finally:

Pt jt =

24 Pt jt 0 0
0 Rt 0
0 0 Qt

35
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Nonlinear Filtering

Grid-Based Filtering

Remember that we have the recursion

p
�
st jy t ;γ

�
=R

p (st jst�1;γ) p
�
st�1jy t�1;γ

�
dst�1R �R

p (st jst�1;γ) p (st�1jy t�1;γ) dst�1
	
p (yt jst ;γ) dst

p (yt jst ;γ)

This recursion requires the evaluation of three integrals.

This suggests the possibility of addressing the problem by computing
those integrals by a deterministic procedure as a grid method.

Kitagawa (1987)and Kramer and Sorenson (1988).
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Nonlinear Filtering

Grid-Based Filtering I

We divide the state space into N cells, with center point s it ,�
s it : i = 1, ...,N

	
.

We substitute the exact conditional densities by discrete densities that
put all the mass at the points

�
s it
	N
i=1.

We denote δ (x) is a Dirac function with mass at 0.

Jesús Fernández-Villaverde (PENN) Filtering and Likelihood July 10, 2011 67 / 79



Nonlinear Filtering

Grid-Based Filtering II

Then, approximated distributions and weights:

p
�
st jy t�1;γ

�
'

N

∑
i=1

ωi
t jt�1δ

�
st � s it

�
p
�
st jy t ;γ

�
'

N

∑
i=1

ωi
t jt�1δ

�
st � s it

�
ωi
t jt�1 =

N

∑
j=1

ωj
t�1jt�1p

�
s it js jt�1;γ

�
ωi
t jt =

ωi
t jt�1p

�
yt js it ;γ

�
∑N
j=1 ωj

t jt�1p
�
yt js jt ;γ

�

Jesús Fernández-Villaverde (PENN) Filtering and Likelihood July 10, 2011 68 / 79



Nonlinear Filtering

Approximated Recursion

p
�
st jy t ;γ

�
=

N

∑
i=1

h
∑N
j=1 ωj

t�1jt�1p
�
s it js jt�1;γ

�i
p
�
yt js it ;γ

�
∑N
j=1

h
∑N
j=1 ωj

t�1jt�1p
�
s it js jt�1;γ

�i
p
�
yt js jt ;γ

�δ
�
st � s it

�
Compare with

p
�
st jy t ;γ

�
=R

p (st jst�1;γ) p
�
st�1jy t�1;γ

�
dst�1R �R

p (st jst�1;γ) p (st�1jy t�1;γ) dst�1
	
p (yt jst ;γ) dst

p (yt jst ;γ)

given that

p
�
st�1jy t�1;γ

�
'

N

∑
i=1

ωi
t�1jt�1δ

�
s it
�
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Nonlinear Filtering

Problems

Grid �lters require a constant readjustment to small changes in the
model or its parameter values.

Too computationally expensive to be of any practical bene�t beyond
very low dimensions.

Grid points are �xed ex ante and the results are very dependent on
that choice.

Can we overcome those di¢ culties and preserve the idea of integration?
Yes, through Monte Carlo Integration.
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Nonlinear Filtering

Particle Filtering

Remember,

1 Transition equation:

St = f (St�1,Wt ;γ)

2 Measurement equation:

Yt = g (St ,Vt ;γ)

Some Assumptions:

1 We can partition fWtg into two independent sequences fW1,tg and
fW2,tg, s.t. Wt = (W1,t ,W2,t ) and
dim (W2,t ) + dim (Vt ) � dim (Yt ).

2 We can always evaluate the conditional densities
p
�
yt jW t

1 , y
t�1,S0;γ

�
.

3 The model assigns positive probability to the data.
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Nonlinear Filtering

Rewriting the Likelihood Function

Evaluate the likelihood function of the a sequence of realizations of
the observable yT at a particular parameter value γ:

p
�
yT ;γ

�

We factorize it as:

p
�
yT ;γ

�
=

T

∏
t=1
p
�
yt jy t�1;γ

�
=

T

∏
t=1

Z Z
p
�
yt jW t

1 , y
t�1,S0;γ

�
p
�
W t
1 ,S0jy t�1;γ

�
dW t

1 dS0
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Nonlinear Filtering

A Law of Large Numbers

If
�n
st jt�1,i0 ,w t jt�1,i1

oN
i=1

�T
t=1

N i.i.d. draws from�
p
�
W t
1 ,S0jy t�1;γ

�	T
t=1, then:

p
�
yT ;γ

�
'

T

∏
t=1

1
N

N

∑
i=1
p
�
yt jw t jt�1,i1 , y t�1, st jt�1,i0 ;γ

�

The problem of evaluating the likelihood is equivalent to the problem of
drawing from

�
p
�
W t
1 ,S0jy t�1;γ

�	T
t=1
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Nonlinear Filtering

Introducing Particlesn
st�1,i0 ,w t�1,i1

oN
i=1

N i.i.d. draws from p
�
W t�1
1 ,S0jy t�1;γ

�
.

Each st�1,i0 ,w t�1,i1 is a particle and
n
st�1,i0 ,w t�1,i1

oN
i=1

a swarm of

particles.n
st jt�1,i0 ,w t jt�1,i1

oN
i=1

N i.i.d. draws from p
�
W t
1 ,S0jy t�1;γ

�
.

Each st jt�1,i0 ,w t jt�1,i1 is a proposed particle andn
st jt�1,i0 ,w t jt�1,i1

oN
i=1

a swarm of proposed particles.

Weights:

qit =
p
�
yt jw t jt�1,i1 , y t�1, st jt�1,i0 ;γ

�
∑N
i=1 p

�
yt jw t jt�1,i1 , y t�1, st jt�1,i0 ;γ

�
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Nonlinear Filtering

A Proposition

Let
�es i0, ew i1	Ni=1 be a draw with replacement from nst jt�1,i0 ,w t jt�1,i1

oN
i=1

and probabilities qit . Then
�es i0, ew i1	Ni=1 is a draw from p (W t

1 ,S0jy t ;γ).

Importance of the Proposition:

1 It shows how a draw
n
st jt�1,i0 ,w t jt�1,i1

oN
i=1

from p
�
W t
1 ,S0jy t�1;γ

�
can be used to draw

n
st ,i0 ,w

t ,i
1

oN
i=1

from p (W t
1 ,S0jy t ;γ).

2 With a draw
n
st ,i0 ,w

t ,i
1

oN
i=1

from p (W t
1 ,S0jy t ;γ) we can use

p (W1,t+1;γ) to get a draw
n
st+1jt ,i0 ,w t+1jt ,i1

oN
i=1

and iterate the

procedure.
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Nonlinear Filtering

Sequential Monte Carlo

Step 0, Initialization: Set t  1 and set
p
�
W t�1
1 ,S0jy t�1;γ

�
= p (S0;γ).

Step 1, Prediction: Sample N values
n
st jt�1,i0 ,w t jt�1,i1

oN
i=1

from

the density p
�
W t
1 ,S0jy t�1;γ

�
= p (W1,t ;γ) p

�
W t�1
1 ,S0jy t�1;γ

�
.

Step 2, Weighting: Assign to each draw st jt�1,i0 ,w t jt�1,i1 the
weight qit.

Step 3, Sampling: Draw
n
st ,i0 ,w

t ,i
1

oN
i=1

with rep. fromn
st jt�1,i0 ,w t jt�1,i1

oN
i=1

with probabilities
�
qit
	N
i=1. If t < T set

t  t + 1 and go to step 1. Otherwise go to step 4.

Step 4, Likelihood: Use
�n
st jt�1,i0 ,w t jt�1,i1

oN
i=1

�T
t=1

to compute:

p
�
yT ;γ

�
'

T

∏
t=1

1
N

N

∑
i=1
p
�
yt jw t jt�1,i1 , y t�1, st jt�1,i0 ;γ

�
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Nonlinear Filtering

A �Trivial�Application

How do we evaluate the likelihood function p
�
yT jα, β, σ

�
of the nonlinear,

non-Gaussian process:

st = α+ β
st�1

1+ st�1
+ wt

yt = st + vt

where wt � N (0, σ) and vt � t (2) given some observables
yT = fytgTt=1 and s0.
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Nonlinear Filtering

1 Let s0,i0 = s0 for all i .

2 Generate N i.i.d. draws
n
s1j0,i0 ,w1j0,i

oN
i=1

from N (0, σ).

3 Evaluate

p
�
y1jw1j0,i1 , y0, s1j0,i0

�
= pt(2)

�
y1 �

�
α+ β

s1j0,i0

1+s1j0,i0

+ w1j0,i
��

.

4 Evaluate the relative weights qi1 =
pt(2)

 
y1�

 
α+β

s
1j0,i
0

1+s
1j0,i
0

+w 1j0,i
!!

∑N
i=1 pt(2)

 
y1�

 
α+β

s
1j0,i
0

1+s
1j0,i
0

+w 1j0,i
!! .

5 Resample with replacement N values of
n
s1j0,i0 ,w1j0,i

oN
i=1

with

relative weights qi1. Call those sampled values
n
s1,i0 ,w

1,i
oN
i=1
.

6 Go to step 1, and iterate 1-4 until the end of the sample.
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Nonlinear Filtering

A Law of Large Numbers

A law of the large numbers delivers:

p
�
y1j y0, α, β, σ

�
' 1
N

N

∑
i=1
p
�
y1jw1j0,i1 , y0, s1j0,i0

�

and consequently:

p
�
yT
��� α, β, σ

�
'

T

∏
t=1

1
N

N

∑
i=1
p
�
yt jw t jt�1,i1 , y t�1, st jt�1,i0

�
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