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Abstract 

The reasons for variation in treatment rates across hospitals serving similar patient populations are not well 
understood. Differences in the use of a treatment across hospitals may be due to greater benefits of 
treatment in some hospitals (expertise), withholding of beneficial treatment in some hospitals (underuse), or 
providing harmful treatment in other hospitals (overuse). We develop an empirical model that can 
distinguish between these explanations, based on a behavioral model in which hospitals choose to treat 
patients if the benefit from treatment exceeds a hospital-specific threshold. Expertise, underuse, and overuse 
are identified based on differences across hospitals in both their treatment rates and the treatment effect on 
patient survival. Using data on heart attack treatments, we find that expertise varies considerably across 
hospitals, but a substantial amount of variation in treatment is due to overuse. 
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I. Introduction 

An enormous body of literature in economics and medicine has documented variations in the use 

of medical and surgical treatments across hospitals and regions with observationally similar patient 

populations. Generally, higher treatment rates are not found to be associated with improved satisfaction, 

survival, or other patient outcomes. These facts have often been interpreted as evidence of overuse: high 

use hospitals or regions are choosing to treat marginal patients who receive no benefit from the treatment. 

However, a fundamental problem with this explanation is that it implies that higher treatment rates should 

be associated with lower benefits to treatment for the average patient getting treatment, while a number of 

studies have found the opposite (Beck et al., 2003; Pilote, McClellan, et al., 2003; Chandra and Staiger, 

2007).  

In this paper, we develop a simple empirical model that can distinguish between alternative 

explanations for variations in treatment rates, based on a behavioral model in which hospitals choose to 

treat patients if the benefit from treatment exceeds a hospital-specific threshold. In our model, differences 

in the use of a treatment across hospitals may be due to greater benefits of treatment in some hospitals 

(expertise), withholding of beneficial treatment in some hospitals (underuse), or providing harmful 

treatment in other hospitals (overuse). Expertise, underuse, and overuse are identified based on 

differences across hospitals in both their treatment rates and the treatment effect on patient survival. 

Using data on heart attack treatments, we find that expertise varies considerably across hospitals, but a 

substantial amount of variation in treatment is due to overuse. 

In Section II we develop the theoretical model underlying our analysis. Section III discusses the 

etiology of heart attacks and their treatments, and introduces data from the Cooperative Cardiovascular 

Project (CCP). In Section IV we detail our estimation strategy, paying particular attention to how the 

theoretical model developed in Section II will be evaluated using the CCP data. Section V presents results 

and Section VI concludes.  

 

II. Theory 

 A simple model of patient treatment choice guides our empirical work. We assume that treatment 

is provided to each patient whenever the expected benefit from the treatment exceeds a minimal 

threshold. Thus, in the terminology of Heckman, Urzua and Vytlacil (2006), our model allows for 

essential heterogeneity where the decision to provide treatment to each patient is made with knowledge of 

their idiosyncratic response to treatment.   Within this framework, there are two ways in which a patient’s 

hospital could affect treatment choice. First, the expected benefit of treatment for a given patient may 

vary across hospitals, reflecting each hospital’s idiosyncratic level of expertise in providing the treatment. 

Second, the minimum threshold for receiving care may vary across hospitals, as determined by local 
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incentives and norms at each hospital. From the patient’s point of view, treatment should be provided 

whenever the expected benefit from treatment exceeds zero. Therefore, there is underuse of the treatment 

in hospitals that set a minimum benefit threshold above zero, and overuse in hospitals that set a minimum 

threshold below zero.   

 

Setup of the Model 

Let Bih represent the expected benefit from treatment for patient i at hospital h.  Benefit is the 

gain or improvement in survival relative to not receiving a treatment, not the level of survival.  We focus 

on the health benefits of the treatment, which would include any reduction in mortality or morbidity that 

was expected from the treatment, e.g. the impact of the treatment on Quality Adjusted Live Years 

(QALYs). In principal, the benefit could also incorporate the expected impact of the treatment on the 

patient’s medical cost, and capture the health benefits net of costs. However, in our application we focus 

on survival for simplicity. 

Suppose that the expected benefit from treatment depends on the hospital’s expertise ( h ), 

observable patient characteristics (Xih) such as age, medical history, and lab results, and other factors that 

are known to the medical care provider when making the treatment decision but unobserved by the 

econometrician (εih): 

(1) ihihhih XB    

Each patient receives treatment if the expected benefit from treatment exceeds a minimal 

threshold (τh), where the threshold varies across hospitals due to local incentives or norms. This 

corresponds to a simple Roy model of treatment allocation, where a patient receives treatment if the gain 

from the treatment exceeds a threshold. Assuming that Bih captures the total net benefit to the patient of 

providing treatment, then the optimal decision from the patient’s perspective would let 0h , and 

provide treatment whenever the benefits to the patient exceed zero. There is underuse if 0h , since 

patients with positive benefits are under the threshold and do not receive treatment. There is overuse 

if 0h , since patients with negative benefits (who would do better without treatment) are above the 

threshold and receive treatment.  

 This decision process implies a very simple tobit structure that determines both the probability of 

treatment as well as the expected benefit conditional on being treated (the treatment-on-the-treated 

parameter).  The probability of receiving treatment is just the probability that expected benefits exceed the 

minimum threshold: 

(2)      ,PrPr1Pr ihihhihih IBTreatment    
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  hhihih XIwhere    

Equation (2) highlights that differences in treatment rates across hospitals, holding all else equal, can be 

due to either differences in hospital expertise ( h ) or differences in the treatment threshold ( h ) 

reflecting over or underuse. A hospital may be more likely to provide treatment because of greater 

expected benefits of treatment  0h  or because of a lower benefit threshold for providing 

care  0g . Conversely, even if treatment rates were the same across hospitals, there could still be 

overuse or underuse if, say, hospital’s with greater expected benefits of treatment set a correspondingly 

higher threshold for providing care  0 hh  . Thus, because variation in treatment rates across 

hospitals masks variation in hospital expertise and hospital treatment thresholds, such variation cannot by 

itself say anything about overuse or underuse. In other words, while the conventional wisdom is to 

interpret variation in hospital treatment rates or spending as saying something about differences in their 

treatment threshold (as in flat of the curve models of provider behavior), this inference ignores the role of 

expertise in also explaining that variation.  

 However, overuse and underuse can be identified separately from hospital expertise if 

information on the treatment effect among the treated population is available.  The treatment-on-the-

treated parameter is defined as: 

(3)      ihihihhihihihihihih IEXIBETreatmentBE   ||1|  

Noting that hihhih IX   , we can rewrite Equation (3) as: 

(4)    ,1| ihhihih IgTreatmentBE    

    ihihihihih IEIIgwhere   |  

Equation (4) states that in the absence of any difference across hospitals in the minimum threshold to 

receive care, two patients receiving treatment who have the same propensity to get the treatment (same I) 

will have the same expected benefit from the treatment. This relies on the assumption that g(I) depends 

only on the index, i.e. we must assume a single-index selectivity model, so that the truncated mean of the 

error in equation (4) depends only on the truncation point (I). This would not be the case if the 

distribution of the unobservable factors determining treatment (ε) differed across hospitals, which in turn 

would happen if some hospitals were better at measuring these unobservable factors. Examining equation 

(4) makes it clear that hospitals with larger unobservables will have larger treatment on the treated effects 

(which will look like having a higher treatment threshold) because of the higher values of conditional 

error term. Since there is no evidence to suggest that this is not the case, we will maintain the single index 

assumption for our analyses. 
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Identification Conditional on the Estimated Propensity 

If the propensity to get the treatment (or equivalently the index I) can be estimated directly from 

Equation (2), we can identify differences in the minimum threshold from an estimate of the treatment-on-

the-treated parameter: For patients with the same propensity, those treated at a hospital with a higher 

minimum threshold (a higher h ) will have a larger treatment effect. Moreover, because g(Iih) goes to zero 

as the propensity to receive treatment goes to zero (or equivalently as Iih gets increasingly negative), we 

can also identify overuse  0h  or underuse  0h : There is overuse when the treatment effect for 

the lowest propensity patients is negative, and underuse when the treatment effect for the lowest 

propensity patients remains positive.  

 It is important to note that our model does not imply that the treatment-on-the-treated parameter 

is the same for all patients treated in hospitals with the same minimum threshold.  In fact, Equation (4) 

implies that the treatment-on-the-treated effect will tend to be larger among patients that have a higher 

propensity to be treated (since g(Iih) is increasing in Iih).   The treatment effect is the same only for 

patients with the same propensity to be treated and treated in hospitals with the same minimum threshold. 

Since hospital expertise ( h ) raises the propensity to be treated, it will also raise the treatment effect. The 

key difference, however, is that differences in hospital expertise have an impact on treatment effects by 

shifting the propensity to be treated (and, therefore, g(Iih)), while differences in the minimum threshold 

have an impact on treatment effects that is independent of the propensity.  

 The graphical intuition for our model can be seen in Figure 1. The expected benefit from 

treatment (B) is given on the vertical axis, while the propensity of being treated (which depends on I) is 

given on the horizontal axis. The top curve in Figure 1 represents the treatment-on-the-treated effect for a 

patient with a given propensity that is treated in a hospital with a high minimum threshold for 

treatment  0high , i.e. it represents    ihhhihih IgBBE  | . The lower curve represents the same 

thing for a hospital with a low minimum threshold  0low . Treatment-on-the-treated approaches the 

minimum threshold (τhigh or τlow) for a patient with a low propensity of being treated (a very negative I), 

since no patient is ever treated with a benefit below this threshold.  For a patient with a high propensity of 

being treated (a very positive I), truncation becomes irrelevant and the treatment-on-the-treated effect 

asymptotes to the unconditional benefit of treatment. However, conditional on a patient’s propensity, the 

treatment effect is always higher in the hospital with the higher threshold. In this figure, differences in 

hospital expertise would show up as a movement along the curves – changing the propensity of patients to 

be treated (and therefore the treatment-on-the-treated effect), but not affecting treatment effects 

conditional on propensity.   
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Identification Using Joint Distribution of Hospital Random Effects 

The above approach identifies differences in the minimum treatment threshold by comparing the 

benefit from treatment once the propensity to receive treatment has been controlled for. But it is possible 

that our ability to control for this propensity is imperfect-- especially on the dimension of hospital effects 

in the propensity to receive treatment-- because of small numbers of patients at some hospitals. In some 

hospitals we have fewer than 20 patients, and the resulting imperfection would cause us to overstate the 

role of treatment threshold differences across hospitals when in fact there are actually large differences in 

hospital expertise.  

Alternatively, hospital expertise ( h ) can be separately identified from the minimum treatment 

threshold ( h ) using estimates of the joint distribution of the hospital effects in equations 2 and 4. This 

second approach requires us to constrain g(.) into a simpler form. To see this, we take a linear first-order 

taylor approximation of the function g(.), and combine the hospital-level parameters into random effects 

to rewrite the equations as: 

(2’)      hhhhihihih whereXTreatment   ,Pr1Pr  

(4’)     hhhhihihhihih whereXITreatmentBE  11010 ,1|   

Equation 2’ defines the propensity to receive treatment as the sum of a linear combination of patient 

observables ( ihX ) and a hospital random effect ( h ) which captures both the hospital treatment 

threshold and hospital expertise. Equation 4’ defines the treatment effect parameter as proportional to the 

same linear combination of observables that determines treatment (   ihX1 ) plus a different hospital 

random effect ( h ).  We can write the original parameters of our model that captured hospital expertise 

and the minimum treatment threshold as functions of the parameters in this transformed model, with 

  hhh  11  and hhh  1 . Thus, estimates of the parameters in this transformed model 

identify estimates of hospital expertise and the minimum treatment threshold. In particular, the joint 

distribution of expertise and the minimum threshold can be derived based on estimates of the joint 

distribution of the random effects ( h , h ) combined with an estimate of 1 . We provide more details of 

this strategy in Section IV. 

 

 

III. Heart-Attacks: Biology, Treatments, and Data 

Heart-Attack Biology and Treatments 
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 Heart attacks (more precisely, acute myocardial infarction (AMI)) occur when the heart-muscle 

(the myocardium) does not receive sufficient oxygen, because of a blockage in one of the coronary 

arteries which supply blood to the heart. The blockage is typically caused by a blood clot that occurs 

because of coagulation induced by the rupture of atherosclerotic plaque inside the coronary arteries. 

Timely thrombolytics, which are also known as fibrinolytics, are administered intravenously and break 

down blood clots by pharmacological means (these drugs include tissue plasminogen activators, 

streptokinanse and urokinase). Angioplasty (where a balloon on a catheter is inflated inside the blocked 

coronary artery to restore blood flow) and thrombolytics are two treatments that are used for immediate 

reperfusion (opening up the coronary artery). Following the clinical literature, we define a patient to have 

received reperfusion if any of these therapies was provided within 12 hours of the heart attack. In our data 

from the mid-1990s, over 90 percent of patients receiving reperfusion received thrombolytics. 

We focus our empirical work on the treatment of AMI for a number of reasons. First, 

cardiovascular disease, of which heart attacks are the primary manifestation, is the leading cause of death 

in the US. A perusal of the leading medical journals would indicate that heart attack treatments are 

constantly being refined, and a large body of trial evidence points to significant therapeutic gains from 

many of these treatments. In this context, variation in treatments across hospitals may directly translate 

into lost lives, and there is a rich tradition of studying variation across hospitals in treatments and 

outcomes after heart attacks.  

Second, as a consequence of what is known about heart attack treatments from randomized 

controlled trials, and more specifically for our setting, the benefits from reperfusion, we are able to assess 

whether our regression estimates of the benefits from reperfusion are comparable to those found in the 

medical literature, or whether they are confounded by selection-bias. We focus on reperfusion, where our 

use of chart data allows us to replicate the RCT evidence that is summarized by the Fibrinolytic Therapy 

Trialists' Collaborative Group (1994). Chart data provides comprehensive documentation on the patient’s 

condition at the time that the treatment decision is made, and therefore minimizes the possibility that 

unobserved clinical factors related to a patient’s survival are correlated with treatment. 
 Third, because mortality post-AMI is high (mortality rates at 30 days are nearly 20 percent), a 

well-defined endpoint is available to test the efficacy of heart attack treatments. This would not be true if 

we focused on treatment variation for more chronic conditions such as diabetes, chronic obstructive 

pulmonary disease, or arthritis.  

Our fourth reason for focusing on heart attacks is that it is an acute condition for which virtually 

all patients are hospitalized at a nearby hospital and receive some medical care. Moreover, during the 

acute phase of the heart attack the therapeutic emphasis is on maximizing survival, which is achieved by 

timely reperfusion, and hospital staff (not patients and their families) make treatment decisions. The fact 
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that patients are generally taken to the nearest hospital for immediate treatment, makes it likely that a 

patient’s hospital choice of hospital is exogenous and not driven by differences across hospitals in 

expertise or the treatment threshold. This feature of heart attack treatments would not be true, for 

example, of cancer therapies where two clinically identical patients may chose different providers based 

on their evaluation of the provider’s expertise and standards for providing treatment.  

 

Data 

Because acute myocardial infarction is both common and serious, it has been the topic of intense 

scientific and clinical interest. One effort to incorporate evidence-based practice guidelines into the care 

of heart attack patients, begun in 1992, is the Health Care Financing Administration's Health Care Quality 

Improvement Initiative Cooperative Cardiovascular Project (CCP). Information about more than 200,000 

patients admitted to hospitals for treatment of heart attacks in 1994/1995 was obtained from clinical 

records. The CCP is considerably superior to administrative/claims data (of the type used by McClellan et 

al. (1994)) as it collects chart data on the patients—detailed information is provided on laboratory tests, 

enzyme levels, the location of the myocardial infarction, and the condition of the patient at the time of 

admission. Detailed clinical data were abstracted from each patient’s chart using a standard protocol. 

Further details about the CCP data are available in Marciniak et al. (1998), O’Connor et al. (1999), and in 

the appendix to this paper. The choice of sample and variables is identical to what we used and described 

in Barnato et al. (2005) and Chandra and Staiger (2007, 2010). 

 

 

IV. Estimation 

The Propensity to Receive Treatment 

We use data on heart attack treatments to estimate the key components of our model, using 

receipt of reperfusion within 12 hours of the initial heart attack as our treatment. The propensity to receive 

treatment (I in the theoretical model) is estimated from a random effect logit model that regresses whether 

a patient received reperfusion within 12 hours of the heart attack on all the CCP risk-adjusters listed in the 

appendix (Xih) and a random hospital effect (θh) that is assumed to be normally distributed: 

(5)      2,0~,1Pr  NwhereXFnreperfusio hhihih   

Where the function F(.) represents the logistic function. Equation 5 is the empirical analog of Equation 2 

in our model, where the hospital random effect is the difference between expertise and the threshold 

(  hhh   ) as in Equation 2’. Estimating equation 5 (using xtmelogit in Stata 11) yields maximum 

likelihood estimates of the coefficients  ̂  and the standard deviation of the hospital random effect  ̂ , 
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and posterior estimates of the hospital random effects  h̂ . We combine these to form an estimate of the 

propensity index for each patient  hihih XI  ˆˆˆ  . 

 

Estimation of Treatment Effects Conditional on the Estimated Propensity 

We focus on patient survival as the outcome of interest which captures the key benefits of 

treatment. Survival is measured as a binary variable that measures survival to a certain date (e.g. survival 

to 30 days). Our model, and Equation 4 in particular, suggests that the effect of reperfusion on survival 

should be heterogeneous across patients and hospitals.  This suggests estimating models of the following 

form (where F(.) represents the logistic function): 

(6)      ihhihhihihihih IgwhereXnreperfusioFSurvival   ,1Pr  

In equation 6, survival for all patients depends on patient risk adjusters (Xih) and a hospital effect that 

captures general skill of the hospital staff (φh).  The coefficient on reperfusion ( ih ) is the empirical 

analog of Equation 4 in our model, and captures the survival benefit of reperfusion. Our model says the 

effect of reperfusion on survival depends only on a patient’s propensity index (Iih) and on the minimum 

treatment threshold at the hospital (τh). 

 Equation 6 suggests a simple test for whether the minimum threshold for treating a patient ( h ) 

varies across hospitals. Conditional on a patient’s propensity index (Iih), variation across hospitals in the 

benefit of reperfusion is due to differences in the minimum threshold. This minimum threshold should be 

negatively correlated with the hospital random effect h from the propensity equation 

(since  hhh   ). Intuitively, according to our model, hospitals with higher minimum thresholds for 

treatment should both treat fewer patients (conditional on X) and have higher benefits to treatment 

(conditional on I).  

To implement this test, we use estimates of Iih and h from the propensity equation (5), and 

approximate the treatment effect with a linear function hihih I  ˆˆ
210  , yielding an estimating 

equation: 

(7)        hihhihihihihih XnreperfusioInreperfusionreperfusioFSurvival   210
ˆˆ1Pr  

If hospitals vary in their expertise ( h ) but not in their minimum threshold for treating a patient ( h ), 

then our model implies 02  ; controlling for patient propensity, the treatment effect is unrelated to the 

hospital effect in the propensity equation ( h̂ ). Alternatively, if hospitals vary in their minimum threshold 

but not in expertise, then we expect 02  ; controlling for patient propensity, the treatment effect is 
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smaller in hospitals with a high propensity to treat. If both expertise and the minimum threshold vary 

across hospitals, then we expect 02  unless there is a strong positive association between expertise and 

the minimum threshold (since the sign of 2 depends on cov(τ,θ) = cov(τ, α-τ) = cov(τ,α)-var(τ)).  

 Equation 7 provides two other tests of hospital behavior. First, if hospitals choose patients for 

treatment based on the benefit of the treatment, then the treatment effect should be increasing in the 

patient’s propensity index ( 01  ). Second, the treatment effect among patients with a low propensity 

index is an (upper bound) estimate of each hospital’s minimum threshold, since  ihhih Ig  and g(.) 

approaches zero as the propensity index falls. Therefore, if the treatment effect among low-propensity 

patients is negative in some hospitals, this is evidence of overuse ( 0h ).  

 We explore a number of alternative specifications to Equation 7 in order to check the robustness 

of our results. First, in some specification we include hospital fixed effects (using fixed-effect logit 

models) in order to capture general differences in hospital skill affecting survival of all patients ( h ). 

Second, in some specifications we estimate g(I) non-parametrically with 100 indicator variables for the 

percentiles of I interacted with reperfusion (and included directly in X), thus allowing the return to 

reperfusion to vary flexibly with a patient’s propensity to receive reperfusion. Finally, we also use semi-

parametric methods (described in more detail in a future appendix) to flexibly estimate how the effect of 

reperfusion on survival varies with ihÎ  and with h̂ . 

 

Joint Estimation of Treatment Effect and Propensity Equations  

 One problem with Equation 7 is that the estimates and tests are conditional on estimates of the 

patient’s propensity (  hihih XI  ˆˆˆ  ) and the hospital’s effect in the propensity equation ( h̂ ). In our 

large sample, the coefficients on patient risk-adjusters ( ̂ ) are consistently estimated and can be thought 

of as known (asymptotically). However, the hospital effect ( h̂ ) is a posterior estimate and based on small 

samples of patients for many hospitals – half of the hospital’s in our sample have fewer than 20 AMI 

patients in the sample. Therefore, ihÎ will only imperfectly control for a patient’s propensity, and after 

conditioning on ihÎ there may be remaining variation in treatment effects across hospitals due to expertise 

(which was not fully reflected in the estimated propensity).  

 An alternative approach that avoids this problem is to estimate the treatment propensity equation 

and the survival equation jointly, treating the hospital intercept in the propensity equation and the 

hospital-specific effect of reperfusion in the survival equation as correlated random coefficients (along 
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with the hospital intercept in the survival equation). We implement this approach by taking a linear 

approximation to Equation 4 (    ihih IIg 10   ) and estimating the following equations jointly: 

(8) 
   
    hihhihihihihih

hihih

XnreperfusioXnreperfusionreperfusioFSurvival

XFnreperfusio







101Pr

1Pr
 

The three hospital-level parameters ( hhh  ,, ) are treated as random coefficients that are distributed as a 

joint normal with variance and covariance to be estimated. As discussed in the theory section, hospital-

level expertise ( h ) and the minimum threshold ( h ) are linear combinations of the hospital intercept in 

the propensity equation ( h ) and the hospital-level coefficient on reperfusion ( h ), where 

  hhh  11  and hhh  1 . Thus, estimates of the joint distribution of expertise and the 

minimum threshold can be derived from estimates of the joint distribution of the random effects ( h , h ) 

combined with an estimate of 1 .  

Equation 8 is a hierarchical logistic model (patients nested within hospitals) with random 

coefficients at the hospital level. To simplify estimation, we estimated the coefficients on the patient-level 

risk adjusters (β,γ) in a first stage, using simple logit models of each equation estimated separately 

(omitting the hospital effects). We then interacted the first-stage estimate of ̂ihX  with reperfusion, and 

included the estimated indexes (  ˆ,ˆ
ihih XX ) directly in Equation 8 with a single coefficient (expected to 

equal 1) rather than including all of the X variables individually. The remaining parameters determining 

the effect of reperfusion ( 10 , ) and the variance and covariance of the hospital-level random 

coefficients were estimated by maximum likelihood using xtmelogit in Stata 11.1. All of the reported 

standard errors are conditional on the first-stage estimates (  ˆ,ˆ
ihih XX ), but any adjustment for using 

these generated regressors is likely to be second-order because of the large samples used to estimate the 

patient-level coefficients in the first-stage logit models.  

 

V. Results 

In Table 1 we report some basic characteristics of our sample overall, and by whether the patient 

received reperfusion within 12 hours of admission to the hospital. In our sample, 19% of patients received 

reperfusion within 12 hours of admission for a heart attack. Overall, 81% of patients were still alive 30 

days after admission, but survival was higher for patients receiving reperfusion (86%) than for patients 

who did not receive reperfusion (80%). However, much of the difference in survival between these two 

groups was due to differences in underlying health and pre-existing conditions, rather than the result of 
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reperfusion. Patients receiving reperfusion were younger, and much less likely to have pre-existing 

conditions such as congestive heart failure, hypertension, diabetes, and dementia.  

In the appendix table, we report estimates from a random effect logit model predicting 

reperfusion as a function of the full list of patient risk-adjusters (also listed in the appendix) and a random 

hospital-level intercept (Equation 5). These results were used to form posterior estimates of the hospital 

random effects  h̂  and an estimate of the propensity index for each patient  hihih XI  ˆˆˆ  . The 

coefficients on the patient-level variables are consistent with the medical literature, with reperfusion being 

less likely among patients with pre-existing conditions and who are older (based on full age-sex-race 

interactions not reported in the table), and also depending on the location and severity of the heart attack. 

The estimated standard deviation of the hospital effect is 0.44 (Std. Err. = 0.01), which implies that a one 

standard deviation in the hospital effect increases the logodds of receiving reperfusion by 0.44, which 

would increase an average patients probability of receiving reperfusion from 19% to 26%. Thus, there is 

sizable variation across hospitals in the rate at which they provide reperfusion to observationally similar 

patients. The model is able to predict much of the hospital-level variation, with the posterior prediction of 

each hospital’s effect on reperfusion having a standard deviation of 0.30 in our data. 

In the appendix table we also report estimates from a simple logit model estimating the impact of 

reperfusion on 30-day survival, controlling for the patient risk-adjusters. Our estimation strategy relies on 

using the richness of the CCP data to invoke a `selection on observables’ assumption to estimate 

treatment on the treated for reperfusion therapy. We compared the estimates from this logit model to 

those obtained from clinical trials to evaluate the plausibility this assumption. A summary of nine trials 

was published in the journal Lancet by the Fibrinolytic Therapy Trialists' Collaborative Group (FTTCG, 

1994). This was the same time-period as the CCP data and each trial evaluated fibrinolytic therapy in 

heart-attack patients. Across these nine trials, reperfusion within 12 hours reduced 35-day mortality from 

11.5% to 9.6%, which implies that reperfusion reduced the logodds of mortality by 0.20. The logit model 

controlling for the CCP risk-adjusters estimates a nearly identical effect, with reperfusion increasing the 

logodds of survival (equivalently reducing the logodds of mortality) by 0.206 (S.E. = 0.023).   We take 

this evidence as supporting the case that these logit models provide unbiased estimates of the treatment 

effect.  

 

Estimates of Treatment Effects Conditional on the Estimated Propensity 

In Table 2 we present results from estimating the treatment effect of reperfusion conditional on 

the estimated propensity using Equation 7: 

 (7)        hihhihihihihih XnreperfusioInreperfusionreperfusioFSurvival   210
ˆˆ1Pr  



12 

Recall from the earlier discussion that the key parameters of interest are those associated with reperfusion 

( 210 ,,  ). Table 2 reports estimates of these parameters, which together determine the treatment effect: 

hihih I  ˆˆ
210  . Coefficients on the patient risk-adjusters are not reported, but similar to those 

reported in the appendix table. The top panel reports coefficients from various specifications using simple 

logit models (clustering standard errors at the hospital level), while the bottom panel reports coefficients 

from the same specifications adding hospital fixed effects (conditional logit models).  

 As a baseline, the first column of Table 2 reports estimates that do not condition on the patient’s 

propensity, but allow the effect of reperfusion to interact with the estimated hospital effect from the 

propensity equation ( h̂ ). Since this effect is mean zero, the coefficient on reperfusion gives the treatment 

effect for an average hospital, and is 0.229 and highly significant in the model without hospital fixed 

effects. The coefficient on the interaction with the hospital effect from the propensity equation is 

negative, but not statistically significant. The results with hospital fixed effects are very similar. Since 

these specifications do not condition on the propensity, the coefficient on the interaction with the hospital 

effect (which is part of the propensity) is biased in the positive direction, and not a strong test of whether 

hospitals differ in their minimum treatment threshold.  

 The second column of Table 2 allows the effect of reperfusion to interact with the patient’s 

propensity to receive reperfusion (the index, ihÎ ). To help with interpretation, we have normed the index 

so that a value of 0 refers to the average patient receiving reperfusion. Thus, the coefficient on reperfusion 

is an estimate of the effect of reperfusion on an average patient receiving reperfusion treated at an average 

hospital. The coefficient on the interaction of reperfusion with the propensity index is positive and highly 

significant in specifications with or without hospital fixed effects, implying that the treatment effect of 

reperfusion on survival is increasing in the patient’s propensity index ( 01  ) as predicted by our model. 

The coefficient on this interaction implies that an increase in the propensity index of one (about one 

standard deviation of the propensity index in the treated population) is associated with roughly a doubling 

of the treatment effect. Thus, it appears that hospitals are choosing patients for treatment based on the 

benefit of the treatment, and the heterogeneity in the treatment effect is large relative to the average 

treatment effect. 

 As expected, the coefficient on the interaction of reperfusion with the hospital effect from the 

propensity equation becomes more negative and statistically significant in the specifications that 

condition on the propensity index. The coefficient is similar in column 3, where we non-parametrically 

control for the interaction of reperfusion with a set of 100 dummies for each propensity percentile.  In 

other words, conditional on a patient’s propensity, the treatment effect is smaller in aggressive hospitals 
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with a high propensity to treat ( 02  ). As discussed earlier, this finding suggests that hospitals vary in 

their minimum threshold, and more aggressive hospitals with lower minimum thresholds for treatment 

treat more patients (conditional on X) and have lower benefits to treatment (conditional on I). The 

estimated coefficients suggest that a one standard deviation increase in the hospital effect from the 

propensity equation (about 0.3) lowers the return to reperfusion by about .06-.09. 

  As discussed above, the treatment effect for patients with a low propensity index is an (upper 

bound) estimate of each hospital’s minimum threshold, and can be used to identify overuse ( 0h ). 

Based on the estimates from Table 2, we can use hihih I  ˆˆ
210   to calculate the expected 

treatment effect for patients with a low propensity index admitted to a given hospital. For example, 

consider a “low propensity” patient who is one standard deviation below average in their propensity index 

(about -1). Using estimates from the parametric model without hospital fixed effects, a low propensity 

patient at an average hospital would have a treatment effect near zero (0.345-1*0.299=.006). But a low 

propensity patient at a hospital that was one standard deviation above average (about 0.3) in its hospital 

effect from the propensity equation would have a negative treatment effect (0.345-0.299*1-0.258*0.3=-

0.077). In other words, for many patients in our sample, our estimates imply overuse (a negative treatment 

effect). 

The parametric model estimated in Table 2 imposes linearity, and may not provide accurate 

predictions of treatment effects for patients with low propensity. Therefore, we explore our results non-

parametrically in Figures 2-4 (see the appendix for details of how this was done). In the left-hand panel of 

figure 2 we plot the estimated survival benefit from reperfusion (and 95% confidence interval) against the 

hospital effect from the propensity equation using a locally-weighted logit model to estimate the 

reperfusion effect (controlling non-parametrically for the propensity index as was done in column 3 of 

Table 2). The right-hand panel of Figure 2 is the analogous plot but estimated only for low-propensity 

patients whose propensity index implied that they had below a 20% probability of receiving reperfusion. 

Both plots show a clear downward slope, with lower benefit from treatment for patients treated by 

hospitals with higher random effects in the propensity equation. Among all patients (the left-hand plot), 

the estimated survival benefit from reperfusion is positive for all hospitals, although it is small and not 

significant in hospitals with the highest treatment rates (those 2 standard deviations above average, with 

h̂ =0.6). In contrast, among the lowest propensity patients (the right-hand plot), only hospital’s with the 

lowest treatment rates are estimated to have survival benefits from reperfusion that are near to zero. The 

estimated survival benefit from reperfusion is negative and significant in hospitals with the highest 

treatment rates, suggesting that there is overuse in these hospitals and, as a result, we were able to identify 

substantial subsets of patients who were harmed by reperfusion treatment. 
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Figure 3 plots the estimated survival benefit from reperfusion against a patient’s treatment 

propensity index for hospital’s in the lowest (left-hand side) and highest (right-hand side) terciles of the 

estimated hospital effect from the propensity equation ( h̂ ). Both plots show a strong upward slope, with 

higher benefit from treatment for patients with a higher propensity to receive reperfusion. But at every 

propensity, the benefits of reperfusion are lower in the top-tercile hospitals. At the lowest propensity 

levels, the survival benefits from reperfusion are significantly negative for the top-tercile hospitals, 

suggesting that there is overuse among these hospitals. In the bottom-tercile hospitals, the estimate 

survival benefits from reperfusion for the lowest propensity patients are less negative and not significantly 

different from zero, which is consistent with appropriate use of reperfusion in these hospitals. 

 

Joint Estimates of Treatment Effect and Propensity Equations 

 In Table 3 we present results from estimating the treatment propensity equation and the survival 

equation jointly using Equation 8:  

(8) 
   
    hihhihihihihih

hihih

XnreperfusioXnreperfusionreperfusioFSurvival

XFnreperfusio







101Pr

1Pr
 

Recall from the earlier discussion that the key parameters of interest are the standard deviations and 

correlation of the random hospital intercept in the propensity equation and the hospital-specific effect of 

reperfusion, and the coefficient ( 1 ) on the interaction between reperfusion and ̂ihX .  Table 3 reports 

estimates of these parameters (along with the reperfusion parameters in the survival equation), which (as 

described earlier) were then used to construct estimates reported at the bottom of the table of the variance 

across hospitals in both expertise and the minimum treatment threshold, along with their correlation. We 

focus our discussion on these transformed estimates at the bottom of the table, since they are directly 

interpretable in the context of our model (Equations 1-4 in Section II).  

 The estimates in Table 3 suggest that there is considerable variation across hospitals in both 

expertise (Std. Dev. = 0.451) and the minimum threshold for treatment (Std. Dev. = 0.327). The standard 

deviation in expertise captures the difference in the benefit from reperfusion across hospitals for a 

randomly chosen patient. Because hospitals with low benefits from reperfusion will select fewer patients 

for reperfusion (and only the most appropriate), the treatment-on-treated effect will vary less across 

hospitals. In our model, one can multiply expertise by 1 to get the variation across hospitals in the 

treatment-on-treated effect. Thus, variation in expertise across hospitals accounts for a standard deviation 

across hospitals in the observed treatment effect of 0.125 (0.451*0.276).  This calculation suggests that a 

large portion of the variation across hospitals in the observed treatment effect (with Std. Dev. = 0.307) is 

the result of variation in the treatment threshold rather than expertise. Interestingly, the standard deviation 
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in the hospital intercept in the reperfusion equation (0.442) is less than one might expect because a 

hospital’s minimum treatment threshold is positively correlated with hospital expertise – hospitals with 

low expertise also tend to overuse reperfusion, making their overall reperfusion rate less low than it 

would be otherwise.  

 

 

VI. Conclusions 

The reasons for variation in treatment rates across hospitals serving similar patient may be due to 

greater benefits of treatment in some hospitals (expertise), withholding of beneficial treatment in some 

hospitals (underuse), or providing harmful treatment in other hospitals (overuse). Our empirical results 

distinguish between these explanations, using a simple behavioral model in which hospitals choose to 

treat patients if the benefit from treatment exceeds a hospital-specific threshold. We distinguished 

between expertise, underuse, and overuse based on differences across hospitals in both their reperfusion 

rates and the effect of reperfusion on patient survival in a sample of heart attack patients. Our results 

suggest that expertise varies considerably across hospitals, but a substantial amount of variation in 

treatment and treatment effectiveness in our data was due to overuse. 
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Appendix 

Construction of CCP Estimation Sample:  

The CCP used bills submitted by acute care hospitals (UB-92 claims form data) and contained in 
the Medicare National Claims History File to identify all Medicare discharges with an International 
Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) principal diagnosis of 410 
(myocardial infarction), excluding those with a fifth digit of 2, which designates a subsequent episode of 
care.  The study randomly sampled all Medicare beneficiaries with acute myocardial infarction in 50 
states between February 1994 and July 1995, and in the remaining 5 states between August and 
November, 1995 (Alabama, Connecticut, Iowa, and Wisconsin) or April and November 1995 
(Minnesota); for details see O’Connor et al. (1999). Among patients with multiple myocardial infarction 
(MIs) during the study period, only the first AMI was examined. The Claims History File does not 
reliably include bills for all of the approximately 12% of Medicare beneficiaries insured through managed 
care risk contracts, but the sample was representative of the Medicare fee-for-service (FFS) patient 
population in the United States in the mid-1990s.  After sampling, the CCP collected hospital charts for 
each patient and sent these to a study center where trained chart abstracters abstracted clinical data.  
Abstracted information included elements of the medical history, physical examination, and data from 
laboratory and diagnostic testing, in addition to documentation of administered treatments.  The CCP 
monitored the reliability of the data by monthly random reabstractions.  Details of data collection and 
quality control have been reported previously in Marciniak et al. (1998). For our analyses, we delete 
patients who were transferred from another hospital, nursing home or emergency room since these 
patients may already have received care that would be unmeasured in the CCP. We transformed 
continuous physiologic variables into categorical variables (e.g., systolic BP < 100 mm Hg or > 100 mm 
Hg, creatinine <1.5, 1.5-2.0 or >2.0 mg/dL) and included dummy variables for missing data.   

Our choice of variables was based on those selected by Fisher et al. (2003a,b) and Barnato et al. 
(2005). With the exception of two variables that are both measured by blood-tests, albumin and bilirubin 
(where the rates of missing data were 24 percent), we do not have a lot of missing data (rates were less 
than 3 percent). Included in our model are the following risk-adjusters (APPENDIX TABLES TO BE 
INCLUDED IN LATER DRAFT): 



 

Age, Race, Sex (full interactions) 
previous revascularization (1=y) 
hx old mi (1=y) 
hx chf (1=y) 
history of dementia  
hx diabetes (1=y) 
hx hypertension (1=y) 
hx leukemia (1=y) 
hx ef <= 40 (1=y) 
hx metastatic ca (1=y) 
hx non-metastatic ca (1=y) 
hx pvd (1=y) 
hx copd (1=y) 
hx angina (ref=no) 
 

hx angina missing (ref=no) 
hx terminal illness (1=y) 
current smoker 
atrial fibrillation on admission 
cpr on presentation 
indicator mi = anterior 
indicator mi = inferior 
indicator mi = other 
heart block on admission 
chf on presentation 
hypotensive on admission 
hypotensive missing 
shock on presentation 
peak ck missing 
peak ck gt 1000 

no-ambulatory 
(ref=independent) 
ambulatory with assistance 
ambulatory status missing 
albumin low(ref>=3.0) 
albumin missing(ref>=3.0) 
bilirubin high(ref<1.2) 
bilirubin missing(ref<1.2) 
creat 1.5-<2.0(ref=<1.5) 
creat >=2.0(ref=<1.5) 
creat missing(ref=<1.5) 
hematocrit low(ref=>30) 
hematocrit 
missing(ref=>30) 
ideal for CATH 
(ACC/AHA criteria)



 

Figure 1: How the Expected Benefit from Treatment Varies with the Propensity to Get Treatment and 
the Treatment Threshold.  
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The figure illustrates the relationship between the expected benefit from treatment, E(B|B> τ), on the 
vertical axis, and the propensity index I (which determines the propensity of being treated) on the 
horizontal axis. The thick curves represent the treatment-on-the-treated effect for a patient with index 
I, and approach the minimum threshold (τ) for a patient with a low propensity of being treated. The top 
curve represents a hospital with a high treatment threshold (underuse) and the bottom curve represents 
a hospital with a low treatment threshold (overuse). 
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 Figure 2: Survival Benefit from Reperfusion According to Hospital Effect on Treatment Propensity, 
All patients (Panel A) and Low-propensity patients (Panel B). 
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The left-hand panel plots the estimated survival benefit from reperfusion (and 95% confidence 
interval) against the hospital effect from the propensity equation using a locally-weighted logit model 
to estimate the reperfusion effect (controlling non-parametrically for the propensity index as was done 
in column 3 of Table 2). The right-hand panel is the analogous plot estimated only for low-propensity 
patients whose propensity index implied that they had below a 20% probability of receiving 
reperfusion. 
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Figure 3: Survival Benefit from Reperfusion According to Patient’s Treatment Propensity, 
Low-Treatment-Rate (Panel A) and High-Treatment-Rate (Panel B) Hospitals. 
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The figures plot the estimated survival benefit (and 95% confidence intervals) from reperfusion 
against a patient’s treatment propensity index for hospital’s in the lowest (left-hand side) and highest 
(right-hand side) terciles of the estimated hospital effect from the propensity equation 
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Table 1: Means of Selected Variables, Overall and By Reperfusion 
 
Variable Full Received No

Sample Reperfusion Reperfusion
w/in 12 hours w/in 12 hours

Survival 30 days post-AMI 81% 86% 80%

Reperfusion w/in 12 hours 19% 100% 0%

Age 77 73 77

Previous diagnoses:

Congestive Heart Failure 22% 7% 25%

Hypertension 62% 56% 63%

Diabetes 30% 23% 32%

Dementia 6% 2% 7%

Number of observations 138,957 25,876 113,081  
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Table 2. Logit Estimates of the Effect of Reperfusion on 30-day Survival, Conditional on the 
Estimated Propensity and the Hospital Effect from the Propensity Equation. 
 

Not Conditional Conditional Conditional
on Propensity on Propensity on Propensity

(Parametric) (Non-Parametric)
Without Hospital Fixed Effects

Reperfusion <12 hours 0.229 0.345  non-parametric
(0.027) (0.027)

Reperfusion <12 hours 0.299 non-parametric
  * propensity index (0.018)

Reperfusion <12 hours -0.094 -0.258 -0.310
  * Hospital effect from (0.078) (0.080) (0.080)
     propensity equation

With Hospital Fixed Effects

Reperfusion <12 hours 0.214 0.328  non-parametric
(0.026) (0.027)

Reperfusion <12 hours 0.291 non-parametric
  * propensity index (0.018)

Reperfusion <12 hours -0.052 -0.211 -0.254
  * Hospital effect on (0.074) (0.076) (0.077)
     treatment propensity  

 
Note: Dependent variable is the whether survived to 30 days. The top panel reports coefficients from 
various specifications using simple logit models (clustering standard errors at the hospital level), while 
the bottom panel reports coefficients from the same specifications with hospital fixed effects 
(conditional logit models). Standard errors in parentheses.  Models include all CCP risk-adjusters. 
Column 3 includes 100 percentiles of I interacted with the receipt of Reperfusion. 
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Table 3. Joint Estimates of The Reperfusion Equation Determining Treatment Propensity and the 
Survival Equation. 
 
 
 

 

Estimate (Standard Error)
Reperfusion Equation:

Std. Dev. Of Hospital-Level intercept 0.442 (0.013)

30-day Survival Equation:

Reperfusion <12 hours 0.265 (0.026)

Reperfusion <12 hours  *  (Xβ) 0.276 (0.018)

Hospital-level intercept
Standard Deviation 0.199 (0.017)

Correlation with reperfusion intercept -0.100 (0.073)

Hospital-level coefficient on reperfusion
Standard deviation 0.307 (0.056)

Correlation with reperfusion intercept 0.035 (0.112)

Correlation with survival intercept -0.381 (0.151)

Transformed Estimates:

Hospital minimum treatment threshold
Standard deviation 0.327 (0.055)

Correlation with survival intercept -0.321 (0.150)

Hospital expertise
Standard deviation 0.451 (0.045)

Correlation with minimum threshold 0.390 (0.144)

Correlation with survival intercept -0.330 (0.115)  
 
Note: See text for discussion of estimation method and equations. 


