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Abstract

Dark pools are equity trading systems that do not display orders publicly. Orders in dark

pools are matched within the exchange bid-ask spread, without a guarantee of execution.

Informed traders tend to cluster on one side of the market and therefore, when submitting

orders to a dark pool, face a lower execution probability than uninformed traders, whose

orders are relatively uncorrelated. Consequently, dark pools are more attractive to liquidity

traders, whereas exchanges are more attractive to informed traders. Adding a dark pool tends

to concentrate payoff-relevant information onto the exchange and, under natural conditions,

improves price discovery.
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1 Introduction

Dark pools are equity trading systems that do not display orders publicly. Some dark

pools passively match buyers and sellers at exchange prices, such as the midpoint of

the exchange bid and offer. Other dark pools operate essentially as non-displayed limit

order books that execute orders by price and time priority.

In this paper, I investigate the impact of dark pools on price discovery. Contrary

to some misgivings expressed by regulators and market participants, I find that dark

pools do not necessarily harm price discovery. Under natural conditions, adding a dark

pool could improve price discovery.

As of September 2009, 32 dark pools in the United States accounted for 7.9% of

total equity trading volume, according to Securities and Exchange Commission (2010).

Industry estimates from Tabb Group, a consultancy, and Rosenblatt Securities, a bro-

ker, attribute about 12% of U.S. equity trading volume to dark pools, as of mid 2011.

The market shares of dark pools in Europe, Canada, and Asia are smaller but growing

quickly (International Organization of Securities Commissions, 2010).

Dark pools have raised regulatory concerns that they may harm price discovery.

The European Commission (2010), for example, remarks that “[a]n increased use of

dark pools . . . raise[s] regulatory concerns as it may ultimately affect the quality of the

price discovery mechanism on the ‘lit’ markets.” The International Organization of

Securities Commissions (2011) similarly worries that “the development of dark pools

and use of dark orders could inhibit price discovery if orders that otherwise might

have been publicly displayed become dark.” According to a recent survey conducted

by the CFA Institute (2009), 71% of respondents believe that the operations of dark

pools are “somewhat” or “very” problematic for price discovery. The Securities and

Exchange Commission (2010), too, considers “the effect of undisplayed liquidity on

public price discovery” an important regulatory question. Speaking of non-displayed

liquidity, SEC Commissioner Elisse Walter commented that “[t]here could be some

truth to the criticism that every share that is crossed in the dark is a share that

doesn’t assist the market in determining an accurate price.”1

My inquiry into dark pools builds on a simple model of strategic venue selection

by informed and liquidity traders. Informed traders hope to profit from proprietary

information regarding the value of the traded asset, whereas liquidity traders wish to

meet their idiosyncratic liquidity needs. Both types of traders optimally choose between

an exchange and a dark pool. The exchange displays a bid and an ask, and executes

all submitted orders at the bid or the ask. The dark pool free-rides on exchange prices

1“Speech by SEC Commissioner: Opening Remarks Regarding Dark Pools,” October 21, 2009.
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by matching orders within the exchange’s bid and ask. Unlike the exchange, the dark

pool has no market makers to absorb excess order flow and thus cannot guarantee

execution. Sending an order to the dark pool, therefore, involves a tradeoff between

potential price improvement and the risk of no execution.

Execution risk in the dark pool drives my results. Because matching in the dark

pool depends on the availability of counterparties, some orders on the “heavier” side

of the market—the side with more orders—will fail to be executed. These unexecuted

orders suffer costly delays. Because informed orders are positively correlated with the

value of the asset and therefore with each other, informed orders are more likely to

be on the heavy side of the dark pool, and suffer lower execution probabilities. By

contrast, liquidity orders are less correlated with each other, less likely to be on the

heavy side of the dark pool, and therefore have higher execution probabilities. This

difference in execution risk pushes relatively more informed traders onto the exchange

and relatively more uninformed traders into the dark pool. Under natural conditions,

this self selection lowers the noisiness of demand and supply on the exchange, improving

price discovery.

The main intuition underlying my results does not hinge on the specific trading

mechanisms used by a dark pool. For example, a dark pool may execute orders at the

midpoint of the exchange bid and ask, or operate as a non-displayed limit order book.

As I show, under both mechanisms, traders face the tradeoff between potential price

improvement and execution risk. Dark pools operating as limit order books, however,

are relatively more attractive to informed traders, because informed traders in these

venues can gain execution priority by submitting aggressive limit prices.

Dark pools do not always improve price discovery. For example, in the unlikely

event that liquidity traders push the net order flow far enough opposite to the in-

formed traders, the presence of a dark pool can exacerbate the misleading inference

regarding the asset value. Moreover, better price discovery needs not coincide with

higher liquidity or welfare. For example, more informative orders often correspond

to better price discovery, but also tend to worsen adverse selection on the exchange,

resulting in wider spreads and higher price impacts. The welfare implications of dark

pools could naturally depend on elements outside the setting of my model, such as how

price information is used for production decisions, asset allocation, and capital for-

mation. Finally, for analytical tractability I have abstracted from some complex and

opaque practices used in dark pools, such as “pinging,” order routing, and “indications

of interest” (IOIs).2 The opaque operational mechanics used by some dark pools may

2“Pinging” orders are marketable orders that seek to interact with displayed or non-displayed liquidity. Pinging
is sometimes used to learn about the presence of large hidden orders. Order routing means sending orders from
venue to venue, typically by algorithms. For example, if a dark pool cannot execute an order because there is
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well contribute to concerns regarding their impact on price discovery. This is distinct

from the implications of opaque dark-pool orders on which I focus in this paper.

This study contributes to the policy debate on the architecture of equity markets

by explaining how selective fragmentation of trading across transparent exchanges and

dark pools can arise and can potentially improve price discovery. This price-discovery

benefit of dark pools differs from their “size discovery” function, by which large insti-

tutional orders are executed without being revealed to the broad market.3 My results

further suggest that informed traders have even stronger incentives to trade on the

exchange under a “trade-at” rule, which requires that trading venues not quoting the

best price must either route incoming orders to venues quoting the best price or pro-

vide incoming orders with a sufficiently large price improvement over the prevailing best

price. The impact of a trade-at rule on price discovery complements previous fairness-

motivated arguments that displayed orders, which contribute to pre-trade transparency,

should have strictly higher priority than non-displayed orders at the same price.4

To my knowledge, this paper is the first to show that adding a dark pool can

improve price discovery. My finding stands in contrast to that of Ye (2009), who

studies the venue choice of a large informed trader in the Kyle (1985) framework, and

concludes that adding a dark pool harms price discovery on the exchange. Ye (2009),

however, assumes exogenous choices of trading venues by liquidity traders, whereas the

endogenous venue choices of liquidity traders are critical to my results. Most other

existing models of dark pools either fix the strategies of informed traders exogenously,

as in Hendershott and Mendelson (2000), or do not consider the role of asymmetric

information regarding the asset value, as in Degryse, Van Achter, and Wuyts (2009) and

Buti, Rindi, and Werner (2010b). In addition, going beyond the midpoint-matching

mechanism, my study reveals that dark pools with more discretion in execution prices

are more attractive to informed traders.

The focus of this paper on the fragmentation of order flow between an exchange

and a dark pool differs from the focus of prior studies on competition among multiple

markets. In exchange markets, for example, informed traders and liquidity traders

no counterparty, the dark pool can route the order to another dark pool, which may route the order further into
the market. An indication of interest, or IOI, is an electronic message that contains selected information (such as
the ticker) of an order, sent by a trading venue (such as a dark pool or a broker) to a selected group of market
participants in order to facilitate a match.

3See, for example, Securities and Exchange Commission (2010) and Ready (2010) for discussions of the size-
discovery function of dark pools.

4For example, the Joint CFTC-SEC Advisory Committee (2011) has noted: “Under current Regulation NMS
routing rules, venues cannot ‘trade through’ a better price displayed on another market. Rather than route the
order to the better price, however, a venue can retain and execute the order by matching the current best price
even if it has not displayed a publicly accessible quote order at that price. While such a routing regime provides
order execution at the current best displayed price, it does so at the expense of the limit order posting a best price
which need not receive execution.”
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tend to cluster by time (Admati and Pfleiderer, 1988) or by location (Pagano, 1989;

Chowdhry and Nanda, 1991). As modeled here, however, informed traders cluster

less with liquidity traders in the dark pool than on the exchange, because informed

traders face higher execution risk in the dark pool. Related to the effect captured by

my model, Easley, Keifer, and O’Hara (1996) suggest that the purchase of retail order

flows (“cream-skimming”) by regional exchanges results in higher order informativeness

on the NYSE. In contrast with the mechanism of their paper, dark pools in my model

rely on self selection, rather than intermediaries, to separate, at least partially, informed

traders from liquidity traders.

My results have several empirical implications. For example, the model predicts

that higher order imbalances tend to cause lower dark-pool activity; that more dark

trading leads to wider spreads and higher price impacts on exchanges; that volume

correlation across stocks is higher on exchanges than in dark pools; and that informed

traders participate more actively in dark pools when asymmetric information is more

severe or when the dark pool allows more discretion in execution prices. Section 6

discusses these implications as well as recent empirical evidence documented by Ready

(2010), Buti, Rindi, and Werner (2010a), Ye (2010), Ray (2010), Nimalendran and Ray

(2011), Degryse, de Jong, and van Kervel (2011), O’Hara and Ye (2011), and Weaver

(2011), among others.

2 An Overview of Dark Pools

This section provides an overview of dark pools. I discuss why dark pools exist, how

they operate, and what distinguishes them from each other. For concreteness, I tailor

this discussion for the market structure and regulatory framework of the United States.

Dark pools in Europe, Canada, and Asia operate similarly.

Before 2005, dark pools had low market share. Early dark pools were primarily used

by institutions to trade large blocks of shares without revealing their intentions to the

broad market, in order to avoid being front-run or “predated.”5 A watershed event for

the U.S. equity market was the adoption in 2005 of Regulation National Market System,

or Reg NMS (Securities and Exchange Commission, 2005), which abolished rules that

had protected the manual quotation systems of incumbent exchanges. In doing so,

Reg NMS encouraged newer and faster electronic trading centers to compete with the

incumbents. Since Reg NMS came into effect, a wide variety of trading centers have

been established. As of September 2009, the United States had about 10 exchanges,

5 electronic communication networks (ECNs), 32 dark pools, and over 200 broker-

5Predatory trading is modeled by Brunnermeier and Pedersen (2005) and Carlin, Lobo, and Viswanathan (2007).
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Figure 1: U.S. equity trading volume and the market share of dark pools. The left axis plots the
daily consolidated equity trading volume in the United States, estimated by Tabb Group. The
right axis plots the market shares of dark pools as a percentage of the total consolidated volume,
estimated by Tabb Group and Rosenblatt Securities.
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dealers (Securities and Exchange Commission, 2010). Exchanges and ECNs are referred

to as transparent, or “lit,” venues; dark pools and broker-dealer internalization are

considered opaque, or “dark,” venues. In Europe, the adoption in 2007 of the Markets

in Financial Instruments Directive (MiFID) similarly led to increased competition and

a fast expansion of equity trading centers.6

Figure 1 shows the consolidated volume of U.S. equity markets from July 2008 to

June 2011, as well as the market share of dark pools during the same periods, estimated

by Tabb Group and Rosenblatt Securities. According to their data, the market share

of dark pools roughly doubled from about 6.5% in 2008 to about 12% in 2011, whereas

consolidated equity volume dropped persistently from about 10 billion shares per day

in 2008 to about 7 billion shares per day in 2011. A notable exception to the decline

in consolidated volume occurred around the “Flash Crash” of May 2010.

Dark pools have gained market share for reasons that go beyond recent regulations

designed to encourage competition. Certain investors, such as institutions, simply need

non-displayed venues to trade large blocks of shares without alarming the broad market.

This need has increased in recent years as the order sizes and depths on exchanges

have declined dramatically (Chordia, Roll, and Subrahmanyam, 2010). Further, dark

6For example, according to CFA Institute (2009), European equity market had 92 regulated markets (exchanges),
129 “multilateral trading facilities” (MTFs), and 13 “systematic internalizers” as of Septempber 2010. For more
discussion of MiFID and European equity market structure, see European Commission (2010).
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pools attract investors by offering potential price improvements relative to the best

prevailing bid and offer on exchanges. Finally, broker-dealers handling customer orders

have strong incentives to set up their own dark pools, where they can better match

customer orders internally, and therefore save trading fees that would otherwise be paid

to exchanges and other trading centers.

At least two factors contribute to the lack of precise official data on dark-pool

transactions in the United States. First, U.S. dark-pool trades are reported to “trade

reporting facilities,” or TRFs, which aggregate trades executed by all off-exchange

venues—including dark pools, ECNs, and broker-dealer internalization—into a single

category. Thus it is generally not possible to assign a TRF trade to a specific off-

exchange venue that executes the trade.7 Second, dark pools often do not have their

own identification numbers (MPID) for trade reporting. For example, a broker-dealer

may report customer-to-customer trades in its dark pool together with the broker’s own

over-the-counter trades with institutions, all under the same MPID. Similarly, trades

in an exchange-owned dark pool can be reported together with trades conducted on the

exchange’s open limit order book, all under the exchange’s MPID. Because different

trading mechanisms share the same MPID, knowing the MPID that executes a trade

is insufficient to determine whether that trade occurred in a dark pool.8

Dark pools differ from each other in many ways. We can categorize them, roughly,

into the three groups shown in the top panel of Table 1.

Dark pools in the first group match customer orders by acting as agents (as opposed

to trading on their own accounts). In this group, transaction prices are typically

derived from lit venues. These derived prices include the midpoint of the national

best bid and offer (NBBO) and the volume-weighted average price (VWAP). Dark

pools in this group include three block-crossing dark pools: ITG Posit, Liquidnet,

and Pipeline.9 Posit crosses orders a few times a day at scheduled clock times (up to

some randomization), although in recent years it has also offered continuous crossing.

Liquidnet is integrated into the order-management systems of institutional investors

and alerts potential counterparties when a potential match is found. Pipeline maintains

a flashboard of stock names in colors that change when serious trading interests are

present. In addition to those three, Instinet is another agency broker that operates

scheduled and continuous dark pools. Because Group-1 dark pools rely on lit venues

to determine execution prices, they typically do not provide direct price discovery.

7The Securities and Exchange Commission (2009) has recently proposed a rule requiring that alternative trading
systems (ATS), including dark pools, provide real-time disclosure of their identities on their trade reports.

8For example, Ye (2010) finds that only eight U.S. dark pools can be uniquely identified by MPIDs from their
Rule 605 reports to the SEC. The majority of dark pools cannot.

9See also Ready (2010) for a discussion of these three dark pools.
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Within the second group, dark pools operate as continuous non-displayed limit

order books, accepting market, limit, or “pegged” orders.10 This group includes many

of the dark pools owned by major broker-dealers, including Credit Suisse Crossfinder,

Goldman Sachs Sigma X, Citi Match, Barclays LX, Morgan Stanley MS Pool, and

UBS PIN. Unlike Group-1 dark pools that execute orders at the market midpoint or

VWAP, Group-2 dark pools derive their own execution prices from the limit prices of

submitted orders. Price discovery can therefore take place. Another difference is that

Group-2 dark pools may contain proprietary order flows from the broker-dealers that

operate them. In this sense, these dark pools are not necessarily “agency only.”

Dark pools in the third group act like fast electronic market makers that immediately

accept or reject incoming orders. Examples include Getco and Knight. Like the second

group, transaction prices on these platforms are not necessarily calculated from the

national best bid and offer using a transparent rule. In contrast with dark pools in

Groups 1 and 2, Group-3 dark pools typically trade on their own accounts as principals

(as opposed to agents or marketplaces).

This three-way classification is similar to that of Tabb Group (2011), which clas-

sifies dark pools into block-cross platforms, continuous-cross platforms, and liquidity-

provider platforms. The main features of these three groups are summarized in the

middle panel of Table 1. Their respective market shares are plotted in Figure 2. As

we can see, the market share of block-cross dark pools has declined from nearly 20%

in 2008 to just above 10% in 2011. Continuous-cross dark pools have gained market

share during the same period, from around 50% to around 70%. The market share of

liquidity-providing dark pools increased to about 40% around 2009, but then declined

to about 20% in mid 2011. Tabb Group’s data, however, do not cover the entire uni-

verse of dark pools, and the components of each category can vary over time. For this

reason, these statistics are noisy and should be interpreted with caution.

Dark pools are also commonly classified by their crossing frequencies and by how

they find matching counterparties, as illustrated in the bottom panel of Table 1. Aside

from mechanisms such as midpoint-matching and limit order books, advertisement is

sometimes used to send selected information about orders resting in the dark pool to

potential counterparties, in order to facilitate a match. In addition to the classifications

summarized in Table 1, dark pools can be distinguished by their ownership structure.

Today, most dark pools are owned by broker-dealers (with or without proprietary or-

der flows). A small fraction is owned by consortiums of broker-dealers or exchanges.

10Pegged orders are limit orders with the limit price set relative to an observable market price, such as the bid,
the offer, or the midpoint. As the market moves, the limit price of a pegged order moves accordingly. For example,
a midpoint-pegged order has a limit price equal to the midpoint of the prevailing NBBO. A buy order pegged at
the offer minus one cent has a limit price equal to the prevailing best offer minus one cent.
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Figure 2: Market shares of three types of U.S. dark pools as fractions of total U.S. dark pool
volume, estimated by Tabb Group. The three types are summarized in the middle panel of Table 1.
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Dark pools also differ by their average trade size. According to Rosenblatt Securities

(2011), two block-size dark pools (Liquidnet and Pipeline) have an order size of around

50,000 shares, which is larger than that of Posit (around 6,000 shares per order) and

much larger than those of other broker dark pools (about 300 shares per order). This

sharp contrast in order sizes can be attributed to the use of algorithms that split “par-

ent” orders into smaller “children” orders, as observed by the Securities and Exchange

Commission (2010).

Finally, there are two sources of non-displayed liquidity that are usually not referred

to as dark pools. One is broker-dealer internalization, by which a broker-dealer handles

customer orders as a principal or an agent (Securities and Exchange Commission, 2010).

A crude way of distinguishing dark pools from broker-dealer internalization is that the

former are often marketplaces that allow direct customer-to-customer trades, whereas

the latter typically involves broker-dealers as intermediaries.11 The other source of non-

displayed liquidity is the use of hidden orders on exchanges. Examples include reserve

(“iceberg”) orders and pegged orders, which are limit orders that are partially or fully

hidden from the public view.12 For example, Nasdaq reports that more than 15% of its

11There are exceptions. For example, dark pools acting like electronic market makers (like Getco and Knight)
also provide liquidity by trading on their own accounts. Nonetheless, they are highly automated systems and rely
less on human intervention than, say, dealers arranging trades over the telephone.

12A reserve order consists of a displayed part, say 200 shares, and a hidden part, say 1,800 shares. Once the
displayed part is executed, the same amount, taken from the hidden part, becomes displayed, until the entire order
is executed or canceled. Pegged orders are often fully hidden. Typically, pegged orders and hidden portions of
reserve orders have lower execution priority than displayed orders with the same limit price.
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order flow is non-displayed.13 In particular, midpoint-pegged orders on exchanges are

similar to dark-pool orders waiting to be matched at the midpoint. Further discussion

of dark pools and non-displayed liquidity is provided by Johnson (2010), Butler (2007),

Carrie (2008), Securities and Exchange Commission (2010), European Commission

(2010), CSA/IIROC (2009), and International Organization of Securities Commissions

(2011).

3 Modeling the Exchange and Dark Pool

This section presents a two-period model of trading-venue selection. Each trader

chooses whether to trade on a transparent exchange or in a dark pool. The dark pool

modeled in this section passively matches orders at the midpoint of the exchange’s bid

and ask. Section 4 models a dark pool that operates as a non-displayed limit order

book. The order-book setting provides additional insights regarding the effect of the

dark-pool crossing mechanism for price discovery. A dynamic equilibrium with sequen-

tial arrival of traders is characterized in Section 5. A glossary of key model variables

can be found in Appendix C.

3.1 Markets and traders

There are two trading periods, denoted by t = 1, 2. At the end of period 2, an asset

pays an uncertain dividend v that is equally likely to be +σ or −σ. Thus σ > 0 is the

volatility of the asset value. The asset value v is publicly revealed at the beginning of

period 2.

Two trading venues operate in parallel: a lit exchange and a dark pool. The ex-

change is open in periods 1 and 2. On the exchange, a risk-neutral market maker sets

competitive bid and ask prices. Market orders sent to the exchange arrive simultane-

ously. Exchange buy orders are executed at the ask; exchange sell orders are executed

at the bid. The exchange here is thus similar to that modeled by Glosten and Milgrom

(1985).14 After period-1 orders are executed, the exchange announces its net order flow,

the quantity of buy orders executed on the exchange less the quantity of sell orders

executed on the exchange.

The dark pool executes (or “crosses”) orders in period 1 and is closed in period 2.

Closing the the dark pool in period 2 is without loss of generality, because once the

dividend v is announced in period 2, exchange trading is costless. An order submitted to

13See http://www.nasdaqtrader.com/Trader.aspx?id=DarkLiquidity
14As I describe shortly, the model of this section is not exactly the same as that of Glosten and Milgrom (1985),

because orders here arrive in batches, instead of sequentially. Sequential arrival of orders is considered in Section 5.
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the dark pool is not observable to anyone but the order submitter. The execution price

of dark-pool trades is the midpoint of the exchange bid and ask, also known simply as

the “midpoint” or “mid-market” price. In the dark pool, orders on the “heavier side”—

the buyers’ side if buy orders exceed sell orders, and the sellers’ side if sell orders exceed

buy orders—are randomly selected for matching with those on the “lighter” side. For

example, if the dark pool receives QB buy orders and QS < QB sell orders, all of the

same size, then QS of the QB buy orders are randomly selected, equally likely, to be

executed against the QS sell orders at the mid-market price. Unmatched orders are

returned to the order submitter at the end of period 1. As described in Section 2, this

midpoint execution method is common in dark pools operated by agency brokers and

exchanges. An alternative dark-pool mechanism, a non-displayed limit order book, is

modeled in Section 4.

For-profit traders and liquidity traders, all risk-neutral, arrive at the beginning of

period 1. There is a continuum of each type. Each trader is “infinitesimal” and can

trade either one unit or zero unit of the asset. The mass of for-profit traders is a

constant µ̄ > 0. For-profit traders can acquire, at a cost, perfect information about v,

and thus become informed traders. These information-acquisition costs are pairwise-

independent,15 with the cumulative distribution function F : [0,∞) → [0, 1]. After

observing v, informed traders submit buy orders (in either venue) if v = +σ and

submit sell orders if v = −σ. For-profit traders who do not acquire the information

do not trade. I let µI be the mass of informed traders; their signed trading interest is

therefore Y = sign(v) · µI .
Liquidity buyers and liquidity sellers arrive at the market separately (not as netted).

Each liquidity buyer already holds an undesired short position of one unit; each liquidity

seller already holds an undesired long position of one unit. These undesired positions

could, for example, be old hedges that have become useless. The mass Z+ of liquidity

buyers and the mass Z− of liquidity sellers are modeled as

(Z+, Z−) =

(Z0 + Z,Z0), if Z ≥ 0,

(Z0, Z0 + |Z|), if Z < 0,
(1)

where Z0 is the “balanced” part of the liquidity trading interests and Z is the “im-

balanced” part. We assume that Z0 and |Z| have finite means, that Z+ and Z− have

differentiable cumulative distribution functions, and that Z is distributed symmetri-

cally with respect to zero. The symmetric distribution of Z guarantees that Z+ and

15Pairwise-independence here is in the “essential” sense of Sun (2006), who gives technical conditions for the
exact law of large numbers on which I rely throughout.
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Z− are identically distributed. The total expected mass of liquidity traders is

µz ≡ 2E(Z0) + E(|Z|). (2)

Liquidity traders must hold collateral to support their undesired risky positions.

For each liquidity trader, the minimum collateral requirement is the expected loss,

conditional on a loss, of her undesired position. For example, a liquidity buyer who is

already short one unit of the asset has a loss of σ if v = σ, and a gain of σ if v = −σ.

The collateral requirement in this case is σ. For trader i, each unit of collateral has a

funding cost of γi per period. A delay in trade is therefore costly. These funding costs

{γi} are pairwise-independently distributed across traders, with a twice-differentiable

cumulative distribution function G : [0,Γ) → [0, 1], for some Γ ∈ (1,∞]. Failing to

trade in period 1, liquidity buyer i thus incurs a delay cost of

ci = γiE[max(v, 0) | v > 0] = γiσ. (3)

A like delay cost applies to liquidity sellers. We could alternatively interpret this delay

cost as stemming from risk aversion or illiquidity. The key is that liquidity traders differ

in their desires for immediacy, captured by the delay cost ci = γiσ. The delay costs

of informed traders, by contrast, stem from the loss of profitable trading opportunities

after v is revealed in period 2.

Finally, random variables v, Z0, Z, and the costs of information-acquisition and

delay are all independent, and their probability distributions are common knowledge.

Realizations of Y , Z+ and Z− are unobservable, with the exception that informed

traders observe v, and hence know Y . Informed and liquidity traders cannot post limit

orders on the exchange; they can trade only with the exchange market maker or by

sending orders to the dark pool.

Figure 3 illustrates the sequence of actions in the two-period model.

3.2 Equilibrium

An equilibrium consists of the quoting strategy of the exchange market maker, the mar-

ket participation strategies of for-profit traders, and the trading strategies of informed

and liquidity traders. In equilibrium, the competitive market maker breaks even in

expectation and all traders maximize their expected net profits.

Specifically, I let αe and αd be candidates for the equilibrium fractions of liquidity

traders who, in period 1, send orders to the exchange and to the dark pool, respectively.

The remainder, α0 = 1 − αe − αd, choose not to submit orders in period 1 and delay

13



Figure 3: Time line of the two-period model

Period 1 Period 2| |

Traders arrive

Traders choose exchange
or dark pool

Orders executed Dividend announcedv

Remaining orders executed
on exchange

Dividend paidv

trade to period 2. We let β be the period-1 fraction of informed traders who send

orders to the dark pool. The remaining fraction 1 − β of informed traders trade on

the exchange. (Obviously, informed traders never delay their trades as they will have

lost their informational advantage by period 2.) Once the asset value v is revealed in

period 2, all traders who have not traded in period 1—including those who deferred

trading and those who failed to execute their orders in the dark pool—trade with the

market maker at the unique period-2 equilibrium price of v.

I first derive the equilibrium exchange bid and ask, assuming equilibrium partici-

pation fractions (β, αd, αe). Because of symmetry and the fact that the unconditional

mean of v is zero, the midpoint of the market maker’s bid and ask is zero. There-

fore, the exchange ask is some S > 0, and the exchange bid is −S, where S is the

exchange’s effective spread, the absolute difference between the exchange transaction

price and the midpoint. For simplicity, I refer to S as the “exchange spread.” As in

Glosten and Milgrom (1985), the exchange bid and ask are set before exchange orders

arrive. Given the participation fractions (β, αd, αe), the mass of informed traders on

the exchange is (1− β)µI , and the expected mass of liquidity traders on the exchange

is αeE(Z+ + Z−) = αeµz. Because the market maker breaks even in expectation, we

have that

0 = −(1− β)µI(σ − S) + αeµzS, (4)

which implies that

S =
(1− β)µI

(1− β)µI + αeµz
σ. (5)

The dark pool crosses orders at the mid-market price of zero.

Next, I derive the equilibrium mass µI of informed traders. Given the value σ of
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information and the exchange spread S, the net profit of an informed trader is σ − S.

The information-acquisition cost of the marginal for-profit trader, who is indifferent

between paying for information or not, is also σ−S. Because all for-profit traders with

lower information-acquisition costs become informed, the mass of informed traders in

equilibrium is µ̄F (σ−S), by the exact law of large numbers (Sun, 2006). We thus have

µI = µ̄F (σ − S) = µ̄F

(
αeµz

(1− β)µI + αeµz
σ

)
. (6)

For any fixed β ≥ 0 and αe > 0, (6) has a unique solution µI ∈ (0, µ̄).

Finally, I turn to the equilibrium trading strategies. Without loss of generality, I

focus on the strategies of buyers. In the main solution step, I calculate the expected

payoffs of an informed buyer and a liquidity buyer, on the exchange and in the dark pool.

The equilibrium is then naturally determined by conditions characterizing marginal

traders who are indifferent between trading on the exchange and in the dark pool.

Suppose that αd > 0. Because informed buyers trade in the same direction, they

have the dark-pool crossing probability of

r− = E
[
min

(
1,

αdZ
−

αdZ+ + βµI

)]
, (7)

where the denominator and the numerator in the fraction above are the masses of

buyers and sellers in the dark pool, respectively. Liquidity buyers, on the other hand,

do not observe v. If informed traders are buyers, then liquidity buyers have the crossing

probability r− in the dark pool. If, however, informed traders are sellers, then liquidity

buyers have the crossing probability

r+ = E
[
min

(
1,
αdZ

− + βµI
αdZ+

)]
. (8)

Obviously, for all β > 0, we have

1 > r+ > r− > 0. (9)

Because liquidity buyers assign equal probabilities to the two events {v = +σ} and

{v = −σ}, their dark-pool crossing probability (r+ + r−)/2 is greater than informed

traders’ crossing probability r−. In other words, correlated informed orders have a lower

execution probability in the dark pool than relatively uncorrelated liquidity orders.

If the dark pool contains only liquidity orders (that is, β = 0), then any dark-pool
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buy order has the execution probability

r̄ = E
[
min

(
1,
Z−

Z+

)]
. (10)

For our purposes, r̄ measures the degree to which liquidity orders are balanced. Per-

fectly balanced liquidity orders correspond to r̄ = 1. For αd = 0, I define r+ = r− = 0.

The expected profits of an informed buyer on the exchange and in the dark pool

are, respectively,

We = σ − S, (11)

Wd = r−σ. (12)

I denote by c the delay cost of a generic liquidity buyer. This buyer’s net payoffs of

deferring trade, trading on the exchange, and trading in the dark pool are, respectively,

X0(c) = −c, (13)

Xe = −S, (14)

Xd(c) = −r
+ − r−

2
σ − c

(
1− r+ + r−

2

)
. (15)

The terms on the right-hand side of (15) are the liquidity trader’s adverse selection

cost and delay cost in the dark pool, respectively. For β > 0, crossing in the dark pool

implies a positive adverse selection cost, because execution is more likely if a liquidity

trader is on the side of the market opposite to that of informed traders. For β = 0,

this adverse-selection cost is zero.

From (11) and (14), We −Xe = σ. For all delay cost c ≤ σ,

Wd −Xd(c) =
r+ + r−

2
σ + c

(
1− r+ + r−

2

)
≤ σ = We −Xe. (16)

That is, provided c ≤ σ, the dark pool is more attractive to liquidity traders than to

informed traders, relative to the exchange. In particular, (16) implies that a liquidity

trader with a delay cost of σ (or a funding cost of γ = 1) behaves in the same way as

an informed trader. In addition,

Xd(c)−X0(c) = −r
+ − r−

2
σ +

r+ + r−

2
c. (17)

So a liquidity trader with a funding cost of γ = (r+ − r−)/(r+ + r−) is indifferent

between deferring trade and trading in the dark pool.
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To simplify the description of the equilibria, I further define µ̂I : [0,∞)→ [0, µ̄] by

µ̂I(s) = µ̄F

(
(1−G(1))µz

µ̂I(s) + (1−G(1))µz
s

)
. (18)

Given the value σ of information, µ̂I(σ) is the unique “knife-edge” mass of informed

traders with the property that all informed traders and a fraction 1−G(1) of liquidity

traders send orders to the exchange.

Proposition 1. The following results hold.

1. If

r̄ ≤ 1− µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
, (19)

then there exists an equilibrium (β = 0, αd = α∗d, αe = 1−α∗d), where α∗d ∈ (0, G(1)]

and µ∗I solve

G−1(αd)(1− r̄) =
µI

µI + (1− αd)µz
, (20)

µI = µ̄F

(
(1− αd)µz

µI + (1− αd)µz
σ

)
. (21)

2. If and only if

r̄ > 1− µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
, (22)

there exists an equilibrium (β = β∗, αd = α∗d, αe = 1 − G(1)), where β∗, α∗d ∈
(0, G(1)], and µ∗I solve

r− = 1− (1− β)µI
(1− β)µI + (1−G(1))µz

, (23)

αd = G(1)−G
(
r+ − r−

r+ + r−

)
, (24)

µI = µ̄F

(
(1−G(1))µz

(1− β)µI + (1−G(1))µz
σ

)
. (25)

The proof of Proposition 1 is provided in Appendix B, but we outline its main

intuition here. On one hand, for informed traders to avoid the dark pool (β = 0), the

dark-pool execution probability r̄ must be lower than the profit of informed traders on

the exchange, as implied by (19). In this case, the marginal liquidity trader is indifferent

between trading on the exchange and trading in the dark pool. The marginal for-profit

trader is indifferent about whether to acquire the information.

On the other hand, for informed traders to participate in the dark pool, the max-
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imum dark-pool execution probability r̄ must be sufficiently high, as shown in (22).

In this case, the equilibrium is determined by three indifference conditions. First, in-

formed traders must be indifferent between trading in either venue, captured by (23).

(If they all trade in the dark pool, then the exchange spread becomes 0.) By (16), a

liquidity trader with a delay cost of σ is also indifferent between the two venues. Thus

α0 +αd = G(1) and αe = 1−G(1). The second indifference condition (24) then follows

from (17). Here, the fraction α0 of liquidity traders who delay trade must be strictly

positive, because informed traders introduce adverse selection into the dark pool. The

third condition (25) says that the marginal for-profit trader is indifferent about whether

to acquire the information.

Similarly, we can characterize an equilibrium for a market structure in which only

the exchange is operating and the dark pool is absent. This exchange-only equilibrium,

solved below, may also be interpreted as one in which a dark pool is open but no trader

uses it.

Corollary 1. With only an exchange and no dark pool, there exists an equilibrium in

which β∗ = α∗d = 0, and µ∗I and α∗e ∈ (1−G(1), 1) solve

µI
µI + αeµz

= G−1(1− αe) (26)

µI = µ̄F

(
αeµz

µI + αeµz
σ

)
. (27)

Equilibrium selection

The equilibria characterized in Proposition 1 need not be unique among all equilibria

solving (20)-(21) and (23)-(25). For example, under the condition (19), both sides of

(20) strictly increase in αd. Similarly, both sides of (24) strictly increase in αd, and

both sides of (26) strictly decrease in αe. Thus, given the absence of a single-crossing

property, multiple equilibria may arise.16

I use stability as an equilibrium selection criterion, which allows me to compute the

comparative statics of the selected equilibria. Among the equilibria characterized by

Case 1 of Proposition 1, I select that with the smallest liquidity participation α∗d in

the dark pool among those with the property that, as αd varies in the neighborhood

of α∗d, the left-hand side of (20) crosses the right-hand side from below.17 Under the

conditions of Proposition 1, this equilibrium exists and is robust to small perturbations.

16One special condition that guarantees the uniqueness of the equilibrium in Case 1 of Proposition 1 is that the
distribution function G of delay costs is linear. With a linear G, the condition (19) is also necessary for the existence
of solutions to (20)-(21).

17Selecting the stable equilibrium corresponding to the smallest α∗
d is arbitrary but without loss of generality. As

long as the selected equilibrium is stable, comparative statics calculated later follow through.
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If, for example, α∗d is perturbed to α∗d + ε for sufficiently small ε > 0, then the marginal

liquidity trader has a higher cost in the dark pool than on the exchange, and therefore

migrates out of the dark pool. Thus αd is “pushed back” to α∗d and the equilibrium is

restored. There is a symmetric argument for a small downward perturbation to α∗d− ε.
By contrast, if there is an equilibrium in which, as αd varies, the left-hand side of (20)

crosses the right-hand side from above, this equilibrium would not be stable to local

perturbations. Moreover, once αd is determined in equilibrium, µI and β are uniquely

determined, too, as shown in the proof of Proposition 1.

Similarly, among equilibria characterized by Case 2 of Proposition 1, I select the

one with the smallest liquidity participation α∗d in the dark pool among those with the

property that, as αd varies in the neighborhood of α∗d, the left-hand side of (24) crosses

the right-hand side from below. In a market without a dark pool (Corollary 1), I select

the equilibrium with the largest liquidity participation α∗e on the exchange among those

with the property that, as αe varies in the neighborhood of α∗e, the left-hand side of

(26) crosses the right-hand side from below. By the argument given for Case 1 of

Proposition 1, these selected equilibria exist and are stable.

3.3 Market characteristics and comparative statics

I now investigate properties of the equilibria characterized by Proposition 1. I aim to

answer two questions:

1. In a market with a dark pool and an exchange, how do market characteristics vary

with the value σ of private information?

2. Given a fixed value σ of private information, how does adding a dark pool affect

market behavior?

Key to these questions are the equilibrium participation rates (β, αd, αe) of informed

and liquidity traders. The market characteristics that I analyze are exchange spread,

non-execution probability, price discovery, trading volume, and the payoffs of each

groups of traders. As we will see, these are closely related to each other. For example,

better price discovery is naturally associated with a wider bid-ask spread, which in turn

is associated with lower profits for informed traders and a lower total trading volume.

The results presented below may also help interpret recent empirical evidence on dark

pools and market fragmentation, as we discuss in Section 6.

By (18), increasing the value σ of information raises the knife-edge mass µ̂(σ) of in-

formed traders, which in turn tightens the condition (19) under which informed traders

avoid the dark pool. Thus, there exists some unique volatility threshold σ̄ at which (19)

holds with an equality. For σ ≤ σ̄, I analyze the equilibrium in Case 1 of Proposition 1.
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For σ > σ̄, I analyze the equilibrium in Case 2.

Proposition 2. In the equilibrium of Proposition 1:

1. For σ ≤ σ̄, the dark-pool participation rate αd of liquidity traders, the total mass

µI of informed traders, and the scaled exchange spread S/σ are strictly increasing

in σ. The exchange participation rate αe = 1 − αd of liquidity traders is strictly

decreasing in σ. Moreover, αd, µI , and S are continuous and differentiable in σ.

2. For σ > σ̄, all of µI , βµI , r
+, and S/σ are strictly increasing in σ, whereas αd and

r− are strictly decreasing in σ. Moreover, β, αd, µI , S, r+, and r− are continuous

and differentiable in σ.

In the equilibrium of Corollary 1, µI and S/σ are strictly increasing in σ, whereas αe

is strictly decreasing in σ. Moreover, αe, µI , and S are continuous and differentiable

in σ.

Proof. See Appendix B.

We can also compare the two equilibria of Proposition 1 and Corollary 1.

Proposition 3. In the equilibria of Proposition 1 and Corollary 1:

1. For σ ≤ σ̄, adding a dark pool strictly reduces the exchange participation rate αe

of liquidity traders and the total mass µI of informed traders. Adding a dark pool

strictly increases the exchange spread S and the total participation rate αe +αd of

liquidity traders in either venue.

2. For σ > σ̄, adding a dark pool strictly reduces αe. Moreover, adding a dark

pool strictly increases the exchange spread S if and only if, in the equilibrium of

Proposition 1,

r− < 1− µI
µI + (1−G(1− r−))µz

. (28)

It is sufficient (but not necessary) for (28) that either

G′′(γ) ≤ 0 for all 1− r̄ ≤ γ ≤ 1 and F (c)→ 1 for all c > 0, (29)

or

r̄ < 1− µ̄

µ̄+ (1−G(1))µz
. (30)

Proof. See Appendix B.

We now discuss the intuition and implications of Proposition 2 and Proposition 3

through numerical examples.
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3.3.1 Participation, spread, and non-execution risk

Figure 4 shows the equilibrium participation rates in the two venues. The top-left plot

illustrates the participation rates in the dark pool. For a small value of information,

specifically if σ ≤ σ̄, informed traders trade exclusively on the exchange because the

exchange spread is smaller than the cost of non-execution risk in the dark pool. An

increase in σ widens the exchange spread, encouraging more liquidity traders to mi-

grate into the dark pool. For σ > σ̄, informed traders use both venues. We observe

that informed dark-pool participation rate β first increases in volatility σ and then

decreases. The intuition for this non-monotonicity is as follows. Consider an increase

in the value of information from σ to σ + ε, for some ε > 0. This higher value of infor-

mation attracts additional informed traders. For a low β, the dark-pool execution risk

stays relatively low, and these additional informed traders prefer to trade in the dark

pool, raising β. For sufficiently high β, however, informed orders cluster on one side

of the dark pool and significantly reduce their execution probability. Thus these addi-

tional informed traders send orders to the exchange, reducing β. Nonetheless, the total

quantity βµI of informed traders in the dark pool is strictly increasing in σ. Finally,

because informed participation in the dark pool introduces adverse selection, liquidity

traders with low delay costs migrate out of the dark pool, leading to a decline in their

dark-pool participation rate αd.

The remaining three plots of Figure 4 show the comparative statics of µI , αe, and

αe + αd with respect to σ. For σ ≤ σ̄, adding a dark pool reduces the exchange

participation rate αe of liquidity traders, shown in the bottom-left plot, but increases

their total participation rate αe +αd to the highest level, 1, shown in the bottom-right

plot. Intuitively, the dark pool offers a lower-cost trading service for those liquidity

traders who consider the exchange spread “too expensive.” These “latent” liquidity

traders—traders who would never pay the exchange spread anyway—send their orders

to the dark pool. With this “seed liquidity,” the dark pool diverts additional liquidity

traders off the exchange, widening the exchange spread. Consequently, a smaller mass

µI of for-profit traders become informed, as shown in the top-right plot. For σ ≥ σ̄, αe

stays at a constant, 1−G(1), which is smaller than the exchange participation rate of

liquidity traders in a market without a dark pool. In this example, adding a dark pool

widens the scaled exchange spread S/σ and reduces the informed trading interest µI .

Figure 5 plots the scaled exchange spread S/σ (shown on the left) and the dark-pool

execution probabilities (shown on the right). Because a higher value σ of information

encourages more for-profit traders to become informed, the scaled exchange spread

S/σ increases in σ, whether a dark pool is present or not. For σ ≤ σ̄, adding a dark

pool raises S/σ by diverting some liquidity traders, but none of the informed traders,
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Figure 4: Participation on the exchange and in the dark pool. The top left plot shows the equi-
librium participation rates (β, αd, αe) with a dark pool. The top right plot shows the equilibrium
mass µI of informed traders, with or without a dark pool. The bottom left plot shows the equilib-
rium participation of liquidity traders on the exchange, with or without a dark pool. The bottom
right plot shows the equilibrium participation of liquidity traders in either venue, with or without
a dark pool. In all plots, the vertical dotted line indicates the threshold volatility σ̄ at which the
equilibrium of Proposition 1 changes from Case 1 to Case 2. Model parameters: Z0 = 2, Z is
a normal random variable with mean 0 and standard deviation σz = 5, µ̄ = 8, G(x) = x/2 for
x ∈ [0, 2], and F (x) = 1− e−x/2 for x ∈ [0,∞).
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off the exchange. Non-execution risk is unaffected. For σ > σ̄, adding a dark pool

in this example also increases the scaled spread S/σ because the dark pool diverts

more liquidity traders than informed traders. The dark-pool execution probability

(r+ + r−)/2 for liquidity traders is not monotone in σ. This non-monotonicity is

natural because the crossing probabilities r+ and r− are non-linear in β, µI , and αd.
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Figure 5: Spread on the exchange and non-execution probability in the dark pool. The left plot
shows the scaled exchange spread S/σ. The right plot shows the execution probabilities in the
dark pool. As in Figure 4, the vertical dotted line indicates the threshold volatility σ̄. Model
parameters are those of Figure 4.
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3.3.2 Price discovery

Having analyzed participation rates, spread, and non-execution risk, I turn to price

discovery, the extent to which the fundamental asset value can be inferred from publicly

observable information, such as quoted prices and volume. In this model, the only

public information is the period-1 net exchange order flow, (1− β)Y + αeZ. Inference

of the asset value v is captured by the likelihood ratio

R1 = log
P(v = +σ | (1− β)Y + αeZ)

P(v = −σ | (1− β)Y + αeZ)
= log

fZ

[
1
αe

((1− β)Y + αeZ − (1− β)µI)
]

fZ

[
1
αe

((1− β)Y + αeZ + (1− β)µI)
] ,
(31)

where fZ is the probability density function of the liquidity order imbalance Z. Without

loss of generality, I condition on v = +σ. I consider price discovery to be unambiguously

“better” if the probability distribution of R1 is “higher” in the sense of first-order

stochastic dominance. Complete revelation of v = +σ corresponds to R1 = ∞ almost

surely.

Because the probability distribution of R1 depends on the functional form of fZ , for

illustration I let the liquidity order imbalance Z be normally distributed, with mean

zero and standard deviation σz. Normality of Z implies that

R1 =
2(1− β)µI

α2
eσ

2
z

[(1− β)Y + αeZ]. (32)
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Figure 6: Distribution functions of R1, with or without a dark pool. The true dividend is the
threshold value +σ̄ and other parameters are those of Figure 4.
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Conditional on Y = µI , R1 is also normally distributed. Specially,

R1 ∼ N

(
2

(
(1− β)µI
αeσz

)2

, 4

(
(1− β)µI
αeσz

)2
)
∼ N

(
2I(β, αe)

2, 4I(β, αe)
2
)
, (33)

where

I(β, αe) ≡
(1− β)µI
αeσz

(34)

is the “signal-to-noise” ratio, which is the mass of informed orders on the exchange

(“signal”) divided by the standard deviation of the imbalance of liquidity orders on the

exchange (“noise”). Naturally, I(β, αe) is increasing in the scaled exchange spread S/σ.

A higher exchange spread corresponds not only to a higher mean of the log likelihood

ratio R1 but also to a higher variance.

Figure 6 plots the distribution function of R1 with or without a dark pool. The

value σ of information is set to be the threshold value σ̄, so that β = 0 in the equilibria

with a dark pool as well as the equilibria without a dark pool. By Proposition 3, adding

a dark pool strictly increases the scaled spread S/σ and hence the signal-to-noise ratio

I(β, αe). With a dark pool, the conditional distribution of R1 has a higher mean, but

also a higher variance. For most realizations of R1, and on average, adding a dark

pool decreases the cumulative distribution of R1 and leads to more precise inference

of v. Nonetheless, for very low realizations of R1, adding a dark pool increases the

cumulative distribution of R1, making extreme “false signals” more likely.

24



3.3.3 Volume and dark pool market share

I now calculate the trading volume handled by the exchange and the dark pool. The

trading volume and the market share of the dark pool are direct empirical measures

of dark-pool activity. I assume that once the dividend v is announced in period 2,

informed traders who have not yet traded leave the market, because they will not be

able to trade profitably. When calculating the exchange volume, I also include the

transactions of liquidity traders in period 2. Thus the expected trading volumes in the

dark pool, on the exchange, and in both venues are, respectively,

Vd = βµIr
− + αdµz

r+ + r−

2
, (35)

Ve = (1− β)µI + αeµz + αdµz

(
1− r+ + r−

2

)
+ α0µz, (36)

V = Ve + Vd = µz + µI(1− β + βr−). (37)

By Proposition 2, these volumes are differentiable in the volatility σ in each of the two

intervals [0, σ̄] and (σ̄,∞).

For σ ≤ σ̄, the dark-pool volume, Vd = αdµz r̄, is increasing in the volatility σ, by

Proposition 2. In particular, as σ → 0, the dark-pool participation rate αd of liquidity

traders and the dark-pool market share Vd/V converge to zero. For a sufficiently small

σ < σ̄, therefore,

d(Vd/V )

dσ
=

d

dσ

(
αdµz r̄

µz + µI

)
=

µz r̄

µz + µI
· dαd
dσ
− αdµz r̄

(µz + µI)2
· dµI
dσ

> 0,

where the inequality follows from the fact that limσ→0 dαd/dσ > 0 (shown in the proof

of Proposition 2). That is, if volatility σ is low, the dark-pool market share Vd/V is

also low, and is increasing in σ. For σ ≤ σ̄, because the total volume V = µz + µI is

increasing in σ, the dark-pool market share is increasing in the total volume. These

results are illustrated in Figure 7.

Figure 7 further suggests that, as the volatility σ increases beyond σ̄, the exchange

volume Ve can increase substantially, but the dark-pool volume Vd may only increase

mildly or even decline. Thus the dark-pool market share can decrease in volatility

σ for sufficiently large σ, creating a hump-shaped relation between volatility and the

dark-pool market share. The model also generates a similar relation between the total

trading volume V and the dark-pool market share Vd/V , as shown on the right-hand

plot of Figure 7. Although these hump-shaped patterns are not proved analytically

here, they are consistent with the empirical findings of Ready (2010) and Ray (2010),

and may help explain the mixed evidence regarding the relations between dark-pool
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Figure 7: Expected trading volume on the exchange and in the dark pool. The left plot shows
the volume in the two venues and the market share of the dark pool. The right plot shows the
dark-pool market share as a function of the total volume. The vertical dotted line corresponds to
the threshold volatility σ̄. Parameters are those of Figure 4.
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market shares and market characteristics such as volatility, volume, and spread. I

further discuss these questions in Section 6.

3.3.4 Informed traders’ profits and liquidity traders’ costs

Finally, I calculate the expected net profits UI of informed traders and the net expected

costs −UL of liquidity traders. These calculations help us understand whether adding a

dark pool benefits or harms these two groups of traders, at least in this model setting.

In equilibrium, the expected cost Ci of information acquisition and expected cost

Cw of delay are, respectively,

Ci = µ̄

∫ µI/µ̄

x=0

F−1(x) dx, (38)

Cw = µzσ

[∫ α0

x=0

G−1(x) dx+

(
1− r+ + r−

2

)∫ α0+αd

x=α0

G−1(x) dx

]
. (39)

The net profit UI and net cost −UL are, respectively,

UI = µI(σ − S)− Ci, (40)

−UL = µzαeS + µzαd
r+ − r−

2
σ + Cw. (41)

The profit UI and the cost −UL are differentiable in the volatility σ in each of the two

intervals [0, σ̄] and (σ̄,∞).
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Figure 8: The expected profit UI of informed traders (shown on the left) and the expected cost
−UL of liquidity traders (shown on the right), both scaled by volatility σ. The vertical dotted line
corresponds to the threshold volatility σ̄. Parameters are those of Figure 4.
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Figure 8 plots the comparative statics of UI/σ and −UL/σ with respect to the value

σ of information, with and without a dark pool. Naturally, a higher value of information

implies higher profits for informed traders. For σ ≤ σ̄, for example,

d(UI/σ)

dσ
=

[(
1− S

σ

)
− 1

σ
F−1

(
µI
µ̄

)
− µI

∂(1− S/σ)

∂µI

]
dµI
dσ

+
1

σ2
Ci

= −µI
∂(1− S/σ)

∂µI

dµI
dσ

+
1

σ2
Ci > 0.

In the above calculation, the second equality follows from (21), and the inequality

follows from the facts that dµI/dσ > 0 and that ∂(1− S/σ)/∂µI < 0. The calculation

of d(UI/σ)/dσ for σ > σ̄ is similar. In this example, adding a dark pool widens the

exchange spread and reduces the profits of informed traders.

Figure 8 suggests that adding a dark pool has a mixed impact on the expected costs

of liquidity traders. For a sufficiently large value σ of information, adverse selection is so

severe that the dark pool can reduce the expected transaction costs of liquidity traders

by potentially saving them the exchange spread. However, for σ ≤ σ̄, Proposition 3

implies that dαd/dr̄ > 0 and that dµI/dr̄ < 0. So,

1

µz

d(−UL/σ)

dr̄
=

(
G−1(αd)−

S

σ

)
dαd
dr̄

+ (1− αd)
d(S/σ)

dr̄
> 0.

That is, adding a dark pool, which is equivalent to an increase in r̄, increases the total

expected cost for liquidity traders. This seemingly counterintuitive result has a simple

explanation. Although the dark pool reduces the trading costs for relatively patient
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liquidity traders, it raises the trading costs for relatively impatient ones. The net effect

is that the latter dominates the former.

The impact of the dark pool on the trading costs for liquidity traders contrasts

with the results of Foster, Gervais, and Ramaswamy (2007), who argue that adding

a dark pool can provide a Pareto improvement over a market with only an exchange

because the dark pool attracts latent liquidity traders. Their dark pool is “volume-

conditional”—it executes orders only given a sufficiently large trading interest. Al-

though the dark pool in both models attracts latent liquidity traders, the key difference

is that liquidity traders (“hedgers”) in their model have binomially distributed delay

costs—high or low. Under certain parameter conditions, adding a dark pool in their

model has no impact on the exchange spread, because hedgers with low delay costs

never trade on the exchange even without a dark pool. In my model, by contrast, liq-

uidity traders have a continuum of delay costs; migration of low-cost liquidity traders

to the dark pool diverts additional liquidity traders with slightly higher delay costs,

raising the exchange spread. The welfare implication of dark pools for liquidity traders,

therefore, can be complicated and depend on the characteristics of traders.

4 Dark Pools as Non-displayed Limit Order Books

So far we have studied a dark pool that crosses orders at the midpoint of the exchange

bid and ask. In this section, I model a dark pool that operates as a non-displayed limit

order book, where traders can specify their own limit prices. As described in Section 2,

this order-book mechanism is typically used in dark pools operated by major broker-

dealers, and transaction prices in these dark pools are generally determined by the

submitted limit orders. Aside from confirming the basic intuition of Section 3 in this

alternative setting, this section offers additional insights regarding the impact of dark-

pool mechanisms on the participation incentives of informed traders.

Compared with midpoint-matching dark pools, dark pools operating as non-displayed

limit order books allow more discretion in execution prices. Such price discretion, how-

ever, is limited by “best-execution” regulations. In the United States, for example,

the Order Protection Rule, also known as the “trade through” rule, stipulates that

transaction prices in any market center—including dark pools, ECN, and broker-dealer

internalization—cannot be strictly worse than the prevailing national best bid and of-

fer (NBBO).18 For example, if the current NBBO is 10.00/10.50, then the transaction

price in any market center must be in the interval [10, 10.5]. The trade-through rule

18In Europe, MiFID uses a decentralized best-execution rule, by which investment firms decide whether an
execution works for the best interest of investors.
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thus imposes a boundary on the execution prices in dark pools.

Going beyond the trade-through rule, regulators have also proposed a stricter “trade-

at” rule. Under a trade-at rule, market centers not already quoting the best price

cannot execute incoming orders at the best price. Instead, they must either provide in-

coming orders with sufficiently large price improvements, or route them to venues that

quote the best price. For example, the Joint CFTC-SEC Advisory Committee (2011)

recommends that the SEC consider “its rule proposal requiring that internalized or

preferenced orders only be executed at a price materially superior (e.g. 50 mils [0.5

cent] for most securities) to the quoted best bid or offer.” With a trade-at rule, dis-

played orders that establish the market-wide best price have strictly higher execution

priority than non-displayed orders at the same price. Execution prices in dark pools

must then be sufficiently better than the best bid or offer on exchanges.

I now describe and solve a simple model of a dark pool that operates as a non-

displayed limit order book.19 The dark pool executes orders by price priority and

is modeled as a double auction. I model the effect of a trade-at rule, by assuming

that transaction prices in the dark pool must be within the interval [−xS, xS], where

S > 0 is the exchange spread and x ∈ [0, 1] captures the strictness of the trade-at rule.

The trade-through rule currently applied in the United States corresponds to x = 1,

indicating a mandatory price improvement of zero. A midpoint-matching mechanism

corresponds to x = 0, indicating a price improvement of the entire effective spread S.

With the exception of this trade-at rule, the model of this section is identical to that

of Section 3. Because of intractability, I can only characterize equilibria in which all

informed traders avoid the dark pool. Nonetheless, this equilibrium offers useful insight

into how the trade-at rule affects the dark-pool participation of informed traders.

I start by fixing candidate equilibrium participation rates (β = 0, αd, αe = 1− αd).
I then calculate the execution price and execution probabilities in the dark pool, as

well as the optimal limit prices chosen by liquidity traders. Finally, I derive incentive-

compatibility conditions under which informed traders choose not to participate in the

dark pool.

I let y+ : [−xS, xS] → [0,∞) be the aggregate downward-sloping demand schedule

of liquidity buyers in the dark pool, and let y− : [−xS, xS]→ [0,∞) be the aggregate

upward-sloping supply schedule of liquidity sellers. For each p, y+(p) is the mass of

liquidity buyers with a limit price of p or higher, and y−(p) is the mass of liquidity

sellers with a limit price of p or lower. Because the dark pool crosses orders by price

19This model of non-displayed limit order book differs from models of displayed limit order books. For models of
the latter, see the survey of Parlour and Seppi (2008).
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priority, its execution price p∗ is

p∗ =


xS, if y+(p) > y−(p) for all p ∈ [−xS, xS].

−xS, if y+(p) < y−(p) for all p ∈ [−xS, xS].

{p : y+(p) = y−(p)}, otherwise.

(42)

I proceed under the conjecture that the set {p : y+(p) = y−(p)} contains at most one

element, in which case p∗ of (42) is uniquely well-defined. I later verify this conjecture.

Once p∗ is determined, buy orders with limit prices above or equal to p∗ are matched,

at the price of p∗, with sell orders whose prices are at most p∗. If there is a positive

mass of buy or sell orders at the price p∗, then traders setting the limit price p∗ are

rationed pro-rata, as before.

I now derive the optimal limit prices of liquidity traders in the dark pool, under

the conjecture that the probability distribution of p∗ has no atom in (−xS, xS). This

no-atom conjecture, verified later, implies that a liquidity trader quoting a price of

p ∈ (−xS, xS) has her order filled with certainty (is not rationed) if p∗ = p. Thus a

liquidity buyer who has a delay cost of c ∈ [0, xS) and quotes a price of p in the dark

pool has the expected payoff (negative cost)

Xd(p; c) = −E
[
I{p≥p∗}p∗ + I{p<p∗}c

]
= −c−

∫ p

−xS
(p∗ − c) dH(p∗), (43)

where I( · ) is the indicator function and H(p∗) is the cumulative distribution function

of p∗. Because there is no adverse selection in the dark pool, the execution cost for this

liquidity buyer is either the payment p∗ or the delay cost c. Conjecturing that H(p∗)

is differentiable with H ′(p∗) > 0 for p∗ ∈ (−xS, xS), properties that are also verified

later, we obtain
dXd(p; c)

dp
= −(p− c)H ′(p). (44)

Because (44) shows that the sensitivity of expected payoff to the limit price p is positive

for p < c and negative for p > c, the optimal limit price for the liquidity buyer is her

delay cost c. Symmetrically, the optimal limit price for a liquidity seller with a delay

cost of c ∈ [0, xS) is −c. This “truth-telling” strategy is also ex-post optimal, in that

no one wishes to deviate even after observing the execution price.20

20This strategy is reminiscent of the truth-telling strategy of MacAfee (1992), who considers a double auction
with finitely many buyers and sellers. The double auction here has the institutional restriction that transaction
prices are bounded by the trade-at rule.
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The first-order condition (44) also implies that xS is the highest limit price in the

dark pool, and that −xS is the lowest limit price.21 A liquidity buyer with a delay cost

of c > xS may wish to quote a limit price of c, but the trade-at rule forces her to quote

xS. This “corner solution” suggests a strictly positive mass of liquidity buyers quoting

the highest limit price xS, and a strictly positive mass of liquidity sellers quoting the

lowest limit price −xS.

Let y(p) be the downward-sloping demand schedule in the dark pool if Z+ = 1.

Because a limit price p ∈ [0, xS) is submitted by the liquidity buyer with the delay

cost p,

y(p) = αd −G
(

max(0, p)

σ

)
, −xS < p < xS. (45)

By symmetry, the liquidity buyers’ demand schedule and the liquidity sellers’ supply

schedule in the dark pool are, respectively,

y+(p) = Z+y(p), (46)

y−(p) = Z−y(−p). (47)

Because the equation y+(p) = y−(p) has at most one root, we have verified our earlier

conjecture that the dark-pool execution price p∗ is uniquely well-defined.

Given y(p), the execution price p∗ in the dark pool is

p∗ =



+xS, if [αd −G
(
xS
σ

)
]Z+ ≥ αdZ

−,

+σG−1
[
αd

(
1− Z−

Z+

)]
, if

[
αd −G

(
xS
σ

)]
Z+ < αdZ

− ≤ αdZ
+,

−σG−1
[
αd

(
1− Z+

Z−

)]
, if

[
αd −G

(
xS
σ

)]
Z− < αdZ

+ ≤ αdZ
−,

−xS, if [αd −G
(
xS
σ

)
]Z− ≥ αdZ

+.

(48)

Because the mass Z+ of liquidity buyers and the mass Z− of liquidity sellers are iden-

tically distributed, the dark-pool execution price p∗ has a mean of zero. By the dif-

ferentiability of G and of the distribution function of Z−/Z+, H(p∗) is continuous,

differentiable, and strictly increasing on (−xS, xS), as conjectured earlier.

What remains to be shown are the incentive-compatibility conditions of liquidity

traders who set the limit price xS or −xS in the dark pool, as well as the incentive-

compatibility condition of informed traders who avoid the dark pool. A liquidity buyer

21If the maximum limit price were smaller, say p0 < xS, then a liquidity buyer with a delay cost of p0 +ε for some
small ε > 0 would deviate to the dark pool and quote p0 + ε. This deviating buyer has an execution probability of
1 and pays at most p0 + ε < xS ≤ S, which is better than execution on the exchange. The argument for the lowest
limit price is symmetric.
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quoting the limit price xS in the dark pool has an execution probability of

r̄x = E
[
min

(
1,

αdZ
−

(αd −G(xS/σ))Z+

)]
, (49)

and an expected payoff, given the delay cost c, of

Xd(xS; c) = −(1− r̄x)(c− xS). (50)

This expected payoff calculation follows from the fact that E(p∗) = 0 and the fact that

failing to cross in the dark pool incurs a delay cost of c but saves the payment xS.

Because informed traders avoid the dark pool with probability 1 in the conjectured

equilibrium, an informed buyer who deviates to the dark pool also has the crossing

probability r̄x. Moreover, in order to get the highest priority, this deviating informed

trader sets the highest limit price xS. Her expected profit in the dark pool is thus

Wd = σ − (1− r̄x)(σ − xS). (51)

As before, for any delay cost c ≤ σ,

Wd −Xd(xS; c) = σr̄x + c(1− r̄x) ≤ σ = We −Xe. (52)

That is, an informed buyer behaves in the same way as a liquidity buyer who has a

delay cost of σ. For informed buyers to avoid the dark pool, the marginal liquidity

buyer with a delay cost of σ must also weakly prefer the exchange. The argument for

sellers is symmetric. Because the marginal liquidity trader indifferent between the two

venues has a delay cost of G−1(αd)σ, we look for an equilibrium in which αd ≤ G(1).

In that equilibrium, β = 0.

Proposition 4. In a market with an exchange and a dark pool that implements a

double auction, there exists a unique threshold volatility σ̄(x) > 0 with the property

that, for any σ ≤ σ̄(x), there exists an equilibrium (β = 0, αd = α∗d, αe = 1−α∗d), where

α∗d ∈ (0, G(1)] and µ∗I solve[
G−1(αd)−

xS

σ

]
· (1− r̄x) =

µI
µI + (1− αd)µz

, (53)

µI = µ̄F

(
(1− αd)µz

µI + (1− αd)µz
σ

)
. (54)

In this equilibrium with a fixed x:

1. The dark-pool execution price is given by (48).
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2. If c ∈ [0, xS), a liquidity buyer (resp. seller) with a delay cost of c quotes a limit

price of c (resp. −c) in the dark pool. If c ∈ [xS,G−1(α∗d)σ], then a liquidity buyer

(resp. seller) with a delay cost of c quotes a limit price of xS (resp. −xS) in the

dark pool. Liquidity traders with delay costs higher than G−1(α∗d)σ trade on the

exchange.

3. The dark-pool participation rate αd of liquidity traders, the mass µI of informed

traders, and the scaled exchange spread S/σ are all strictly increasing in the value

σ of information.

Moreover, for x ∈ (0, 1), the volatility threshold σ̄(x) is strictly decreasing in x.

Proof. See Appendix B.

The equilibrium of Proposition 4 with a double-auction dark pool is qualitatively

similar to the equilibrium characterized in Case 1 of Proposition 1. It is determined

by the marginal liquidity trader who is indifferent between the two venues, shown in

(53), and the marginal for-profit trader who is indifferent about whether to acquire the

information, shown in (54). If multiple equilibria exist, I select the equilibrium with

the lowest α∗d among those with the property that, as αd varies in a neighborhood of

α∗d, the left-hand side of (53) crosses the right-hand side from below. The expression

of σ̄(x) in equilibrium is provided in Appendix B.

The left-hand plot of Figure 9 shows the dark-pool orders in the equilibrium of

Proposition 4, for x = 0.8. That is, the dark pool must provide a price improvement

equal to 20% of the exchange spread S. In this example, about 85% of liquidity traders

in the dark pool set the most aggressive limit price, ±xS. The dark-pool transaction

price in this case is about 0.03. The right-hand plot of Figure 9 shows that the volatility

threshold σ̄(x) is strictly decreasing in x. With midpoint crossing (x = 0), informed

traders avoid the dark pool if the value σ of information is lower than about 0.6. Under

the current trade-through rule (x = 1), this volatility threshold is reduced to about

0.3.

In addition to confirming the basic intuition of Proposition 1, Proposition 4 offers

new insights on the effect of a trade-at rule for dark-pool participation of informed

traders. Because σ̄(x) is decreasing in x, the stricter is the trade-at rule, the less likely

are informed traders to use the dark pool. The intuition is as follows. If an informed

buyer deviates to the dark pool, she selects the most aggressive permissible limit price,

xS, in order to maximize her execution probability. Although she will be rationed at

the price xS, she competes only with those liquidity traders who have a delay cost of xS

or higher. The lower is x, the less scope there is for the informed trader to “step ahead
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Figure 9: A dark pool as a non-displayed limit order book. The left-hand plot shows the limit
orders in the dark pool, where y+(p) and y−(p) denotes the demand schedule and supply schedule,
respectively. The right-hand plot shows the range of σ for which the equilibrium of Proposition 4
exists, that is, informed traders avoid the dark pool. Parameters: Z0 = 2, Z is a normal random
variable with mean 0 and standard deviation of 5, µ̄ = 8, and G(γ) = γ/2 for γ ∈ [0, 2]. The
left-hand plot also uses x = 0.8, σ = σ̄(0.8) = 0.35, and realizations Z+ = 2.2 and Z− = 2.
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of the queue” and gain execution priority. In particular, a midpoint dark pool with

x = 0 has the greatest effectiveness in discouraging informed traders to participate.

The effect of the trade-at rule on informed participation in dark pools complements

prior fairness-motivated arguments, which suggest that displayed orders should have

strictly higher priority than non-displayed orders at the same price (Joint CFTC-SEC

Advisory Committee, 2011). Proposition 4 predicts that implementing a trade-at rule

is likely to reduce informed participation in dark pools. Proposition 4 also predicts that

dark pools operating as limit order books are more likely to attract informed traders

and impatient liquidity traders, compared to dark pools crossing at the midpoint. I

further discuss these implications in Section 6.

5 Dynamic Trading

This short section generalizes the basic intuition of Section 3 to a dynamic market.

Under natural conditions, all equilibria have the property that, after controlling for

delay costs, an informed trader prefers the exchange to the dark pool, relative to a

liquidity trader.

Time is discrete, t ∈ {1, 2, 3, . . . }. As before, an asset pays an uncertain dividend v

that is +σ or −σ with equal probabilities. The dividend is announced at the beginning

of period T ≥ 2, where T is deterministic, and paid at the end of period T . The trading
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game ends immediately after the dividend payment.

In each period before the dividend payment, a new set of informed traders and

liquidity traders arrive. To simplify the analysis, I drop endogenous information ac-

quisition in this section. (Equivalently, it costs zero to acquire information.) The mass

of informed traders arriving in period t, µI(t) > 0, is deterministic. Informed traders

observe the dividend v and trade in the corresponding direction. The mass of liquid-

ity buyers and the mass of liquidity sellers arriving in period t are Z+(t) > 0 and

Z−(t) > 0, respectively, with commonly known probability distributions. The public

does not observe v or the realizations of Z+(t) or Z−(t).

As before, a lit exchange and a dark pool operate in parallel. In contrast to the

model of Section 3, both venues are open in all periods. At the beginning of period

t, the exchange market maker posts a bid price Bt and an ask price At. Any order

sent to the exchange is immediately executed at the bid or the ask. After execution of

exchange orders in each period, the market maker announces the exchange net order

flow. The public information Ft at the beginning of period t consists of all exchange

net order flows prior to period t. Thus the conditional distribution of asset value v at

the beginning of period t is represented by the likelihood ratio

Rt =
Pt(v = +σ)

Pt(v = −σ)
, (55)

where Pt denotes the conditional probability based on Ft. By construction, R0 = 1.

The public’s conditional expectation of the asset value at the beginning of period t is

therefore

V (Rt) = σ(Pt(v = +σ)− Pt(v = −σ)) =
Rt − 1

Rt + 1
σ. (56)

The dark pool executes orders in each period, simultaneously with the execution

of exchange orders. I assume that the dark pool implements a double auction with

a trade-at rule, as in Section 4. Midpoint crossing, which offers a price improvement

of the exchange spread, is a special case of this double auction. Liquidity traders are

distinguished by their delay costs, as in Section 3. If a liquidity trader of cost type γ

does not trade in period t, then she incurs a delay cost of c(γ;Rt), which is strictly

increasing in γ. A trader only incurs delay costs after she arrives.

I make the additional assumption that informed traders also incur positive delay

costs, before they execute their orders. A type-γ informed trader incurs the delay cost

c(γ;Rt) in period t if she fails to execute her order in that period. Thus a type-γ

informed buyer (resp. seller) and a type-γ liquidity buyer (resp. seller) differ only in

their information about v.
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I now fix a cost type γ ≥ 0 and focus on the payoffs of buyers. For any (Rt, t), I let

We(Rt, t) = σ − At (57)

Xe(Rt, t) = V (Rt)− At (58)

be the payoffs of a type-γ informed buyer and a type-γ liquidity buyer, respectively, for

trading immediately on the exchange. These payoffs do not depend on the cost type

γ because exchange execution involves no delays. I let Wd(Rt, t; γ) and Xd(Rt, t; γ) be

the corresponding continuation values of entering an order in the dark pool. Finally,

I let W (Rt, t; γ) and X(Rt, t; γ) be the continuation values of the informed buyer and

liquidity buyer, respectively, at the beginning of period t, before they make trading

decisions. For t = T , W (RT , T ; γ) = X(RT , T ; γ) = 0. For t < T , the Bellman

Principal implies that

W (Rt, t; γ) = max [We(Rt, t),Wd(Rt, t),Et(W (Rt+1, t+ 1; γ))] , (59)

X(Rt, t; γ) = max [Xe(Rt, t), Xd(Rt, t),Et(X(Rt+1, t+ 1; γ))] , (60)

where the three terms in the max( · ) operator represents a trader’s three choices: send-

ing her order to the exchange, sending her order to the dark pool, and delaying trade.

The following proposition shows equilibrium conditions under which, controlling for

delay costs, the liquidity-versus-informed payoff difference Xd(Rt, t; γ) − Wd(Rt, t; γ)

in the dark pool is at least as high as the corresponding payoff difference Xe(Rt, t) −
We(Rt, t) on the exchange. It is in this “difference-in-difference” sense that the dark

pool is more attractive to liquidity traders, and that the exchange is more attractive

to informed traders.

Proposition 5. In any equilibrium, if Wd(Rt, t; γ) ≥ Et[W (Rt+1, t+ 1; γ)], then

Xd(Rt, t; γ)−Wd(Rt, t; γ) ≥ Xe(Rt, t)−We(Rt, t). (61)

Proof. See Appendix B.

Proposition 5 identifies a restriction (61) that must be satisfied by all equilibria,

provided that a informed buyer does not strictly prefer delaying trade to using the dark

pool. The intuition for this result is as follows. Because the exchange guarantees to

execute all buy orders at the same price At, the exchange payoff difference, Xe(Rt, t)−
We(Rt, t), reflects only the value of private information. The dark-pool payoff difference

Xd(Rt, t; γ) −Wd(Rt, t; γ), by contrast, reflects both the value of information and the

execution risk. Compared with a liquidity buyer, an informed buyer in the dark pool is
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less likely to fill her order and, conditional on a trade, more likely to pay a higher price.

This execution risk is costly for the informed buyer in equilibrium as long as she prefers

dark-pool trading to waiting, as captured by Wd(Rt, t; γ) ≥ Et[Wd(Rt+1, t + 1; γ)].

I isolate this dark-pool execution risk from the value of information by taking the

“difference-in-difference” of payoffs in (61).

Appendix A solves a dynamic equilibrium explicitly under a slightly different setting.

6 Implications

This section discusses some implications of these results, both in light of recent empir-

ical evidence and in relation to the current policy debate on the impacts of dark pools

on price discovery and liquidity.

The discussion follows two organizing questions. First, what are the relations be-

tween dark-pool market share and observable market characteristics? Second, what are

the impacts of dark-pool trading on price discovery and liquidity? For each question,

I first state some empirical implications of the results of this paper and then discuss

these implications in the context of related evidence. Some recent related empirical

papers are summarized in Table 2.

6.1 Determinants of dark-pool market share

Prediction 1. All else equal, dark-pool market share is lower if the execution probability

of dark-pool orders is lower.

Prediction 2. All else equal, if volatility (spread, total volume) is low, then dark-pool

market share is low, and increasing in volatility (spread, total volume).

Prediction 3. All else equal, informed participation in dark pools is higher for higher-

volatility stocks and days, and for dark pools that allow more discretion in execution

prices.

Prediction 4. All else equal, dark-pool market share is lower for trading strategies

relying on shorter-term information. The use of dark pools is also lower for trading

strategies that trade multiple stocks simultaneously, compared with strategies that trade

individual stocks one at a time.

Prediction 1 follows from the results of Section 3 and Section 4. A lower execution

probability, captured by a lower r̄ or r̄x, discourages both types of traders from partic-

ipating in the dark pool.22 Ye (2010) constructs a proxy for execution probability in

22This relation can be analytically proved for σ < σ̄ in Proposition 1 and for σ < σ̄(x) in Proposition 4.
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eight dark pools from their SEC Rule 605 reports.23 He focuses on the relationship be-

tween non-execution probabilities and market characteristics such as price impacts and

effective spreads. He does not, however, study how non-execution probability is related

to the market share of dark pools. Using daily data collected by SIFMA from eleven

anonymous dark pools in 2009, Buti, Rindi, and Werner (2010a) find that order imbal-

ance as a percentage of total volume is negatively related to dark-pool market share.

The absolute depth imbalance on lit venues, too, is negatively related to dark-pool

market share. Prediction 1 is consistent with their findings.

Prediction 2 suggests that dark-pool market share is low if volatility, spread, or total

volume is low, as discussed in Section 3.3. Existing empirical evidence in this respect

is mixed. Using transaction data from 2005 to 2007 covering three block-crossing dark

pools, Liquidnet, Posit, and Pipeline, Ready (2010) documents that dark-pool usage

is lower for stocks with the lowest spreads per share. Ready attributes this finding

to soft-dollar arrangements: because institutions need to execute some orders through

brokers (instead of dark pools), they send stocks with the lowest spreads to brokers

and incur the lowest transaction costs. The model of this paper gives an alternative

interpretation, namely that low-spread stocks are less costly to trade on exchanges

than in dark pools, because dark-pool execution is subject to delays.24 In contrast

to Ready (2010), both Buti, Rindi, and Werner (2010a) and Ye (2010) find that the

market share of dark pools is higher for lower-spread stocks and higher-volume stocks.

In the time series, Buti, Rindi, and Werner (2010a) find that, fixing a stock, dark-pool

market share is higher on days with wider quoted spreads.

A relatively consistent result across these studies is that dark-pool market share is

lower when volatility is higher, but not all of these studies agree on this point. Using

the SIFMA sample of eleven dark pools, Buti, Rindi, and Werner (2010a) document

a negative relationship between dark-pool market share and volatility, as measured

by the intraday range, the standard deviation of midpoint returns, and the average

absolute returns. Similarly, Ye (2010) finds that the market shares of his sample of

eight dark pools are lower when the standard deviations of stock returns are higher.

Using the absolute monthly returns as a proxy of volatility, Ray (2010) reaches the

same conclusion. In contrast to these studies, Ready (2010) estimates a structural

23Under Rule 605 of Reg NMS, market centers are required to make monthly electronic reports. These reports,
according to FINRA, “include information about each market center’s quality of execution on a stock-by-stock
basis, including how market orders of various sizes are executed relative to the public quotes. These reports must
also disclose information about effective spreads (the spreads actually paid by investors whose orders are routed to
a particular market center). In addition, market centers must disclose the extent to which they provide executions
at prices better than the public quotes to investors using limit orders.”

24Admittedly, small orders of this model are different from the large institutional orders in the data of Ready
(2010), and I do not model brokers. However, to the extent that transaction costs on large orders and with brokers
are proportional to the exchange spreads, the model of this paper can still be applicable.
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model and finds that stocks with higher return volatilities are more likely to be routed

to his sample of the three block-crossing dark pools.

One potential explanation for these contrasting results is that dark-pool market

share may not be monotone in volatility, spread, or volume, as discussed in Section 3.3.

Indeed, Ready (2010) finds that dark-pool market share first increases in the total vol-

ume and then decreases. Using a sub-sample of Ready’s data, Ray (2010) finds a similar

hump-shaped relation between dark-pool market share and the relative bid-ask spread.

Another potential explanation is sample selection. For example, the Ready (2010)

sample uses early data (2005-2007), Nasdaq stocks, and three dark pools, whereas the

Buti, Rindi, and Werner (2010a) sample and the Ye (2010) sample cover more recent

data (2009 and 2010, respectively), NYSE and Nasdaq stocks, and more dark pools

(eleven and eight, respectively).

Prediction 3 suggests (at least in the model setting) that dark pools with discre-

tionary execution prices are more attractive to informed traders and to impatient liquid-

ity traders than dark pools crossing at the midpoint. To my knowledge, this prediction

is not yet tested in the data, perhaps due to the lack of transaction data that can be

assigned to individual dark pools. For a given dark pool, Prediction 3 also suggests

that dark-pool orders are more informative on average when information asymmetry

is severe. Nimalendran and Ray (2011) provide some evidence for this, using data

from an anonymous dark pool. They put each transaction in their data into one of

three baskets, buy, sell, and unsigned, depending on whether the transaction price is

above, below, or equal to the prevailing exchange midpoint. Then they construct a

portfolio that buys the “buy basket” and sells the “sell basket.” In a two-hour horizon,

this strategy makes a profit if implemented on the most illiquid securities (those with

the widest relative spread), but results in a loss if implemented on the most liquid

securities. Their finding is consistent with the prediction of the model proposed here:

illiquid stocks are more likely suffer from information asymmetry and therefore are

more likely to attract informed trading in dark pools. Because informed traders tend

to post aggressive limit prices and execute their orders at prices relatively far away

from the exchange midpoint, the signed dark-pool transactions of illiquid stocks can

contain price-relevant information. By contrast, aggressive buying and selling of the

most liquid securities are more likely to come from impatient liquidity traders, whose

signed order flow is unlikely to predict future returns.

Prediction 4 provides strategy-level implications on dark-pool activity. Strategies

relying on shorter-term information have higher execution risks in dark pools, because

relevant information can become stale faster. Related to this prediction, Ready (2010)

finds that the usage of three block-crossing dark pools is lower for institutions with
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higher turnover, which is consistent with the notion that short-term strategies are best

implemented in venues that guarantee execution. Because dark pools cannot guarantee

the simultaneous execution of trades in multiple stocks, we also expect dark pools to be

less attractive for strategies tracking stock indices or “arbitraging” perceived mispricing

among similar securities. For these strategies, partial execution in dark pools can be

particularly costly.

6.2 Effects of dark pools on price discovery and liquidity

Prediction 5. All else equal, a higher dark-pool market share is associated with higher

order informativeness on the exchange in the form of wider spreads and higher price

impacts of trades.

Prediction 6. All else equal, a higher dark-pool market share increases the correlation

of volumes across different stocks in lit exchanges. This cross-stock volume correlation

is lower in dark pools than in lit exchanges.

Prediction 7. All else equal, dark-pool execution implies a positive adverse-selection

cost, in that shares bought in dark pools tend to have low short-term returns and that

shares sold in dark pools tend to have high short-term returns. This cost, however, is

lower than the exchange spread at the time of execution.

Prediction 5 holds under the conditions stated in Proposition 3. For example,

adding a dark pool increases the informativeness of exchange orders when the value of

information is relatively low, when the mass of informed traders is relatively insensitive

to the value of information, or when the dark-pool execution probability is relatively

low. We observe that higher price discovery and higher liquidity need not imply each

other, as they tend to have opposite effects for spreads and price impacts.

This price-discovery effect of dark pools is consistent with the findings of Degryse,

de Jong, and van Kervel (2011), who examine the impact of dark trading on charac-

teristics of lit venues in Dutch equity markets. In their paper, dark venues include

dark pools and over the counter markets, whereas lit venues include exchanges and

“multilateral trading facilities.”25 Higher market share of dark trading, they conclude,

is associated with higher price impacts, higher quoted spreads, higher realized spreads,

and smaller depths on lit markets. Using transaction data from an anonymous dark

pool, Nimalendran and Ray (2011) find that following dark-pool transactions, bid-ask

spreads tend to widen and price impacts tend to increase, especially if the relative

bid-ask spreads are already high. By contrast, Buti, Rindi, and Werner (2010a) find

25Multilateral trading facility (MTF) is a type of transparent venues in Europe. An MTF is similar to an
exchange.

41



in the SIFMA data that higher dark-pool trading is associated with lower spreads,

higher depths, and lower volatility. The conflict between these conclusions could be

the result of different data or empirical methods. In early studies, for which dark pools

had much lower market shares, Gresse (2006) and Fong, Madhavan, and Swan (2004)

conclude that dark-pool trading does not harm the market quality of the London Stock

Exchange and the Australian Stock Exchange, respectively. Due to endogeneity—dark-

pool trading and market characteristics affect each other—we should interpret these

results with caution.

For the case of dark pools in the form of non-displayed limit order books, Hender-

shott and Jones (2005) find that price discovery for exchange-traded funds (ETFs) on

Island ECN, a limit-order market, worsened after Island stopped displaying its limit

orders. Because Island ECN was the dominant market for affected ETFs, it differed

from today’s equity dark pools, which rely on exchanges prices as reference. Extending

the Kyle (1985) framework, Boulatov and George (2010) model a non-displayed market

by allowing informed market makers to hide their liquidity-supply schedules from the

public view. They find that this opacity enhances competition among market makers,

leading to more informative quotes. Since the non-displayed market of Boulatov and

George (2010) has no competitors, their model is different from the two-venue model

of this paper.

Because dark pools account for a substantial portion of total off-exchange trading,

a related question is how off-exchange trading affects price discovery and liquidity. To

answer this question, O’Hara and Ye (2011) use the market share of trade reporting

facilities (TRFs) as a proxy of market fragmentation. Using a TRF sample of early

2008, they find that higher fragmentation is associated with faster execution, lower

transaction costs, and more efficient prices (prices are closer to random walks). Using

a more recent TRF sample of 2010, Weaver (2011) finds that stocks with higher levels

of off-exchange trading tend to have wider spreads, higher price impacts, and higher

volatilities. Weaver (2011) attributes the difference between his results and those of

O’Hara and Ye (2011) to the status changes of two lit venues, BATS and DirectEdge,

which reported to TRF for the period covering the data used by O’Hara and Ye (2011),

but later became registered exchanges. Transactions on BATS and DirectEdge were

therefore not included in the Weaver (2011) sample. In their analysis of Dutch equity

markets, Degryse, de Jong, and van Kervel (2011) find that the degree of fragmentation

of trading among lit venues has a non-monotone relation with liquidity. Moderate lit

fragmentation increases depths, lowers spreads, and lowers price impacts, but too much

lit fragmentation has the opposite effects. Together, these findings suggest that dark

and lit fragmentation could have opposite impacts on price discovery and liquidity.
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Prediction 6 can be viewed as the mirror image of Prediction 4. Since dark pools are

less attractive to strategies executing multiple stocks simultaneously, those strategies

should be more concentrated on lit venues than in dark pools. The volume correlation

across stocks, consequently, should be higher on lit venues than in dark pools.

Finally, Prediction 7 follows from the results of Section 3. If a liquidity trader is will-

ing to participate in the dark pool despite the potential delay cost, the adverse-selection

cost in the dark pool must be lower than the exchange spread. Using proprietary trans-

action data from institutional investors, Conrad, Johnson, and Wahal (2003) and Næs

and Odegaard (2006) document lower trading costs in dark pools compared to tradi-

tional execution methods, such as brokers. Similar results have been documented more

recently by Brandes and Domowitz (2010) in a selection of non-displayed venues in Eu-

rope. Domowitz, Finkelshteyn, and Yegerman (2009) find that a scheduled dark pool

has lower transaction costs than a peer group of continuous dark pools. Nonetheless,

these studies do not measure the ex-post costs of adverse selection, that is, whether

shares bought (sold) in dark pools have lower (higher) returns shortly after order ex-

ecution. Næs and Odegaard (2006) provide anecdotal evidence that filled orders in a

dark pool are subject to such adverse selection. A full test of Prediction 7 is likely to

require detailed data on all orders submitted to a dark pool, not only executed orders.

Short-term adverse selection in dark pools can reduce the transaction quality of in-

stitutional investors, as discussed by Mittal (2008) and Saraiya and Mittal (2009). The

Securities and Exchange Commission (2010), too, has noted that “[i]n theory, short-

term price swings that hurt investors on one side of the market can benefit investors

on the other side of the market. In practice, professional traders, who have the time

and resources to monitor market dynamics closely, are far more likely than investors

to be on the profitable side of short-term price swings.” The SEC has further added

that “[w]here the interests of long-term investors and short-term professional traders

diverge, the Commission repeatedly has emphasized that its duty is to uphold the

interests of long-term investors.”

7 Concluding Remarks

In recent years, dark pools have become an important part of equity market structure.

Although it has often been suspected that dark pools harm price discovery, existing

empirical studies have not found conclusive evidence supporting this suspicion. This

paper provides a potential explanation of this puzzle: Liquidity traders prefer dark

pools more than informed traders do. Under natural conditions, adding a dark pool

reduces the noise in exchange order flow induced by liquidity traders, and thus improves
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price discovery.

Some relevant aspects of dark pools are not modeled in this paper. One of these is

size discovery. Institutions trade large blocks of shares in dark pools without reveal-

ing their trading intentions to the broad markets. This size-discovery benefit of dark

trading has been widely acknowledged by market participants and regulators. Today,

only a handful of dark pools specialize in such block-crossing services (Securities and

Exchange Commission, 2010). A proper model of size discovery in dark pools could also

be a model of competing execution methods, such as algorithms that probe different

dark pools, algorithms that split orders in the lit markets,26 and conventional OTC

market makers.

Second, this paper does not consider communications in dark pools. For example,

a dark pool may send an “indication of interest” (IOI), which contains selected order

information such as the ticker, to potential counterparties in order to facilitate a match.

In this sense, these dark pools are not completely dark.27 The Securities and Exchange

Commission (2009) proposed to treat actionable IOIs—IOIs containing the symbol,

size, side, and price of an order—as quotes, which must be disseminated to the broad

market immediately.

Third, this paper assumes that all investors have access to the dark pool. In practice,

fair (non-discriminatory) access to dark pools is not warranted. For example, the U.S.

regulation does not require dark pools to provide fair access unless the dark pool

concerned reaches a 5% volume threshold. (Currently, no dark pool has reached this

hurdle.) Whether investors suffer from the lack of fair access can depend on perspective.

On the one hand, it seems plausible that the lack of fair access can reduce trading

opportunities and the welfare of excluded traders. On the other hand, “some dark

pools attempt to protect institutional trading interest by raising access barrier to the

sell-side or certain hedge funds,” observes SEC Deputy Director James Brigagliano.28

Credit Suisse, a broker-dealer, has also opened a “Light Pool” ECN that aims to exclude

“opportunistic” traders, including, for example, some high-frequency trading firms.29

Finally, this paper assumes that investors fully understand the operational mechan-

ics of dark pools and their users. That is, although dark-pool orders are invisible, the

trading rules of the dark pool are transparent. Innocuous in most contexts, this as-

sumption may be worth further investigation for dark pools. For example, a Greenwich

Associates survey of 64 active institutional users of dark pools reveals that, on many

26Models of splitting orders include those of Seppi (1990), Bernhardt and Hughson (1997), Bertsimas and Lo
(1998), and Back and Baruch (2007).

27In Buti, Rindi, and Werner (2010b), for example, selected traders are informed of the state of the dark pool.
28“Keynote Speech to the National Organization of Investment Professionals,” by James A. Brigagliano, April

19, 2010.
29See Nina Mehta, “Credit Suisse Plans Market for Long-Term Investors,” Bloomberg, January 11, 2011.
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occasions, dark pools do not disclose sufficient information regarding the types of or-

ders that are accepted, how orders interact with each other, how customers’ orders are

routed, what anti-gaming controls are in place, whether customer orders are exposed

to proprietary trading flows, and at what price orders are matched (Bennett, Colon,

Feng, and Litwin, 2010). The International Organization of Securities Commissions

(2010) also observes that “[l]ack of information about the operations of dark pools and

dark orders may result in market participants making uninformed decisions regarding

whether or how to trade within a dark pool or using a dark order.” The opacity of

dark-pool orders can help improve price discovery, but the opacity of dark-pool oper-

ating mechanics can make it more difficult for investors and regulators to assess the

impact of dark pools on price discovery and liquidity.
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Appendix

A Dynamic Trading with Stochastic Crossing

This appendix explicitly characterizes a family of equilibria in which informed traders

do not participate in the dark pool. The setting of this section is different from Section 5

in that I assume continuous time and assume that event times follow Poisson processes.

This Poisson assumption gives rise to tractable stationary equilibria.

Time is continuous, t ≥ 0, and the market opens at time 0. As before, an asset

pays an uncertain dividend v that is +σ or −σ with equal probabilities. The time of

the dividend payment is exponentially distributed with mean 1/λF , for λF > 0. Two

types of risk-neutral traders—liquidity traders and informed traders—have independent

Poisson arrivals with respective mean arrival rates of λL and λI . (Traders are thus

“discrete.”) Each trader can buy or sell one unit of the asset. As in Section 5, I do not

consider endogenous information acquisition here. Upon arrival, an informed trader

observes v perfectly. Liquidity traders, who are not informed regarding the dividend,

arrive with an unwanted position in the asset whose size is either +1 or −1, equally

likely and independent of all else.

As before, a lit exchange and a dark pool operate in parallel. A competitive and

risk-neutral market maker on the exchange continually posts bid and ask prices for one

unit of the asset, as in Glosten and Milgrom (1985). Any order sent to the exchange

is immediately executed at the bid or the ask, and trade information is immediately

disseminated to everyone. By competitive pricing, the bid price at any time t is the

conditional expected asset value given the arrival of a new sell order at time t and

given all public information up to, but before, time t. The ask price is set likewise.

The market maker also maintains a public “mid-market” price that is the conditional

expected asset value given all public information up to but before time t. Once an

exchange order is executed, the market maker immediately updates her bid, ask, and

mid-market prices.

The dark pool accepts orders continually, and an order sent to the dark pool is

observable only by the order submitter. The dark pool executes orders at the mid-

market price and at the event times of a Poisson process with intensity λC that is

independent of all else. Allocation in the dark pool is pro-rata on the heavier side, as

in Section 3. For analytical tractability, I assume that unmatched orders in the dark

pool are immediately sent to the exchange market maker, who then executes these

orders at the conditional expected asset value given all past public information and

given the quantity and direction of unmatched orders from the dark pool.
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As in Section 5, the conditional likelihood ratio of v at time t is

Rt =
Pt(v = +σ)

Pt(v = −σ)
, (62)

where Pt denotes the market maker’s conditional probability. By construction, R0 = 1.

The conditional expected asset value is, as in Section 5,

V (Rt) = σ(Pt(v = +σ)− P(v = −σ)) =
Rt − 1

Rt + 1
σ. (63)

To calculate the bid and ask prices, I let λt be the time-t arrival intensity (conditional

mean arrival rate) of traders of any type to the exchange, and let µt be the time-t

conditional probability that an arriving exchange trader is informed. Then

qt = µt + (1− µt)0.5 = 0.5 + 0.5µt (64)

is the probability that an exchange trader arriving at t is “correct,” that is, buying if

v = +σ and selling if v = −σ. The likelihood ratio

zt =
qt

1− qt
(65)

then represents the informativeness of a time-t exchange order.30 For example, if a buy

order hits the market maker’s bid at time t, then Bayes’ Rule implies that

Rt =
Pt(v = +σ |Q = 1)

Pt(v = −σ |Q = 1)
=

Pt(Q = 1 | v = +σ)

Pt(Q = 1 | v = −σ)
· Pt−(v = +σ)

Pt−(v = −σ)
= Rt−zt, (66)

where Pt− denotes the market maker’s probability conditional on all exchange transac-

tions up to but before time t, and where Rt− ≡ lims↑tRs. Similarly, if an exchange sell

order arrives at time t, then

Rt =
Pt(v = +σ |Q = −1)

Pt(v = −σ |Q = −1)
=
Rt−

zt
. (67)

To break even, the market maker quotes a time-t bid price of V (Rtz
−1
t ) and a time-t

ask price of V (Rtzt). Because V ( · ) is nonlinear, V (Rt) is generally not identical to the

bid-ask midpoint, (V (Rtzt) +V (Rtz
−1
t ))/2. Nonetheless, for simplicity I refer to V (Rt)

as the “mid-market” price.

Liquidity traders must hold collateral equal to the expected loss on their unwanted

30In the equilibria characterized in this section, the information content of a buy order is equal to that of a sell
order, so there is no need to specify them separately.
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risky positions. With probability κj and independently of all else, an arriving liquidity

trader incurs a cost of γj per unit of time for every unit of collateral support in her

risky position, where (κj)
J
j=1 and (γj)

J
j=1 are commonly-known constants and satisfy

0 ≤ γ1 < γ2 < · · · < γJ−1 < γJ , (68)

J∑
j=1

κj = 1. (69)

Before executing her order, a liquidity buyer of type j incurs a flow cost of

cjt = γjEt[max(0, v − V (Rt))] = γj
Rt

Rt + 1
·
(

1− Rt − 1

Rt + 1

)
σ = γj

2Rt

(Rt + 1)2
σ. (70)

A liquidity seller of type j has the same flow cost cjt because

γjEt[max(0, V (Rt)− v)] = γj
1

Rt + 1
·
(
Rt − 1

Rt + 1
− (−1)

)
σ = γj

2Rt

(Rt + 1)2
σ. (71)

By independent splitting of Poisson processes, the arrival intensities of type-j liquidity

buyers and type-j liquidity sellers are both 0.5κjλL.

Without loss of generality, we focus on the strategies of informed buyers and liquidity

buyers, whose payoffs are denoted W (Rt) and X(Rt), respectively. For simplicity, I use

Eit[ · ] as a shorthand for Et[ · | v = σ], where the superscript “i” stands for “informed.”

Because I look for stationary equilibria, the payoffs W (Rt) and X(Rt) depend on the

public information Rt but not on time t.

Proposition 6. For fixed integer M ∈ {0, 1, 2, . . . , J}, define

ze =
λI + 0.5

∑J
i=M κiλL

0.5
∑J

i=M κiλL
. (72)

Under the conditions

λC <

∑J
i=M κjλL

2λI
λF , (73)

γj < (λC + λF )
ze − 1

ze
, 1 ≤ j < M, (74)

γj > (λC + λF )(ze − 1) +

(
λI +

J∑
i=M

κiλL

)
(ze − 1)3

ze(
√
ze + 1)2

, M ≤ j ≤ J, (75)

there exists an equilibrium in which:
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1. Informed traders trade on the exchange immediately upon arrival.

2. Type-j liquidity traders, M ≤ j ≤ J , trade immediately on the exchange upon

arrival.

3. Type-j liquidity traders, 1 ≤ j < M , enter orders in the dark pool. If the dark pool

has not crossed by the time that the dividend is paid, they cancel their dark-pool

orders and trade immediately on the exchange.

4. At time t, the market maker quotes a bid of V (Rtz
−1
e ) and an ask of V (Rtze).

Moreover, immediately after a dark-pool crossing, the market maker executes all

outstanding orders at a price of V (Rt). Immediately after the dividend v is paid,

the market maker executes all outstanding orders at the cum-dividend price of v.

Proof. See Appendix B.

A key step in the equilibrium solution of Proposition 6 is that informed traders

expect the exchange price to move against them over time, but liquidity traders expect

the exchange spread to narrow over time. Thus informed traders are relatively impa-

tient, whereas liquidity traders are relatively patient. These different expectations of

future prices, as formally stated in the following lemma, underlie the partial separation

between informed traders and liquidity traders in the equilibria of Proposition 6.

Lemma 1. Let Q be the direction of the next exchange order that arrives before the

dividend payment, that is, Q = 1 denotes a buy order and Q = −1 denotes a sell order.

Under the strategies stated in Proposition 6:

• The asset value is a martingale for liquidity traders and the public, in that

V (Rt) = Et[V (Rtz
Q
e )]. (76)

• The exchange ask price is a submartingale for informed buyers, in that

V (Rtze) < Eit[V (Rtz
Q
e ze)]. (77)

• The exchange ask price is a supermartingale for liquidity buyers, in that

Et[V (Rtz
Q
e ze)] = V (Rtze)−

2R2
t (ze − 1)3

(Rt + 1)2(Rtze + 1)(Rtz2
e + 1)

σ. (78)

Proof. See Appendix B.

In Proposition 6, ze reflects the degree of information asymmetry on the exchange,

because it is the ratio of the mean arrival rate of traders in the “correct” direction versus
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the mean arrival rate of traders in the “wrong” direction. Proposition 6 says that an

informed trader trades immediately on the exchange if the crossing frequency λC of the

dark pool is sufficiently low relative to the risk that her private information becomes

stale. A liquidity trader sends her order to the dark pool if and only if her delay cost

γ is sufficiently low compared to the potential price improvement obtained by trading

at the market midpoint. Moreover, because the exchange order informativeness ze is

increasing in M , the more liquidity traders trade in the dark pool, the more informative

are exchange orders. This property is a dynamic analogue of the two-period equilibrium

of Section 3.

We now briefly discuss the comparative statics of the equilibria, based on the tight-

ness of the incentive constraints (73)-(75). First, a higher crossing frequency λC tightens

(73), suggesting that informed traders are more likely to participate in the dark pool

if the crossing frequency is higher. On the other hand, a higher λC relaxes (74) but

tightens (75), making the dark pool more attractive to liquidity traders. As long as

λC is sufficiently low, informed traders avoid in the dark pool. Second, a higher arrival

rate λF of information relaxes (73), suggesting that informed traders are less likely to

trade in the dark pool if they face a higher risk of losing their information advantage.

By contrast, a higher λF makes the dark pool more attractive to liquidity traders by

shortening their expected waiting time, as in (74)-(75). Third, a higher delay cost γ

makes the dark pool less attractive to liquidity traders, without affecting the incentives

of informed traders.

B Proofs

B.1 Proof of Proposition 1

It is clear that β < 1, as otherwise the exchange spread would be zero and informed

traders would deviate to trade on the exchange. Thus in equilibrium either β = 0 or

0 < β < 1.

We first look for an equilibrium in which β = 0. By (17), α0 = 0 and αe =

1−αd. The indifference condition of the marginal liquidity trader is given by (20). For

notational simplicity, we write the left-hand side of (20) as −X̃d(αd) and the right-hand

side as −X̃e(αd). For each αd, µI is uniquely determined by (21). We have

− X̃d(0) = 0 < −X̃e(0),

− X̃d(G(1)) = 1− r̄ ≥ µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
= −X̃e(G(1)),
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where the second inequality follows from (19), (21), and (18). So there exists a solution

α∗d ∈ (0, G(1)] that satisfies (20).

Now we look for an equilibrium in which β > 0, that is, informed traders are

indifferent between the exchange and the dark pool. What remains to be shown is

that the incentive-compatibility conditions (23)-(25) have a solution. For simplicity,

we write the left-hand side of (23) as W̃d(β) and the right-hand side of (23) as W̃e(β).

For each β ≥ 0, µI is unique determined by (25) and is increasing in β. Under condition

(22) and for each αd > 0,

W̃d(0) = r̄ > 1− µ̂I(σ)

µ̂I(σ) + (1−G(1))µz
= W̃e(0),

W̃d(1) = r− < 1 = W̃e(1),

where the first inequality follows from (19), (21), and (18). So there exists a solution

β∗ ∈ (0, 1) to (23), as a function of αd. Because µI increases in β, we see that W̃ ′
d(β) < 0

and W̃ ′
e(β) > 0, holding αd fixed. Thus the solution β∗ to (23) is unique for each αd.

Moreover, (23) implies that in equilibrium r− is bounded away from 0. So there

exists some r0 > 0 such that r− > r0. So for sufficiently small αd > 0,

G(1)−G
(
r+ − r−

r+ + r−

)
> G(1)−G

(
1− r0

1 + r0

)
> αd.

So there exists a solution α∗d ∈ (0, G(1)] to (24). The equilibria characterized by (23)-

(25) thus exist. To show that (22) is necessary for the existence of equilibria in which

β > 0, suppose for contradiction that (22) does not hold. Then for all αd and β > 0,

W̃e(β) > W̃e(0) ≥ W̃d(0) > W̃d(β), which implies that all informed traders wish to

deviate to the exchange, contradicting β > 0.

B.2 Proof of Proposition 2

Because β, αd, αe, µ, S, r+ and r− are implicitly defined by differentiable functions in

each case of Proposition 1, they are continuous and differentiable in σ in each of the

two intervals [0, σ̄] and (σ̄,∞). At the volatility threshold σ = σ̄, differentiability refers

to right-differentiability in Case 1 of Proposition 1, and left-differentiability in Case 2.
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Have a dark pool and σ ≤ σ̄

For σ ≤ σ̄, β = 0. Total differentiation of (20)-(21) with respect to σ yields[
dG−1(αd)

dαd
(1− r̄)− ∂(S/σ)

∂αd

]
︸ ︷︷ ︸

>0

dαd
dσ
− ∂(S/σ)

∂µI︸ ︷︷ ︸
>0

dµI
dσ

= 0, (79)

[
1− µ̄F ′(σ − S)

∂ (σ − S)

∂µI

]
︸ ︷︷ ︸

>0

dµI
dσ

= µ̄F ′(σ − S)
∂(σ − S)

∂αd︸ ︷︷ ︸
<0

dαd
dσ

+ µ̄F ′(σ − S)

(
1− S

σ

)
︸ ︷︷ ︸

>0

,

(80)

where the first term of (79) is positive because of equilibrium selection. If dαd/dσ ≤ 0

at, say, some σ0, then (80) implies that dµI/dσ > 0 at σ0. But then (79) cannot hold.

Thus dαd/dσ > 0, dµI/dσ > 0, and d(S/σ)/dσ > 0, by (20).

Have a dark pool and σ > σ̄

Now suppose that σ > σ̄. I denote by r+′ and r−
′

the derivatives of r+ and r− with

respect to βµI/αd. We have r+′ > 0 and r−
′
< 0. Total differentiation of (23)-(25)

with respect to σ yields(
r−
′ 1

αd
− ∂(1− S/σ)

∂(βµI)

)
︸ ︷︷ ︸

<0

d(βµI)

dσ
=
∂(1− S/σ)

∂µI︸ ︷︷ ︸
<0

dµI
dσ

+ r−
′ βµI
α2
d︸ ︷︷ ︸

<0

dαd
dσ

, (81)

[
1−G′

(
r+ − r−

r+ + r−

)
2(r+′r− − r−′r+)

(r+ + r−)2

βµI
α2
d

]
︸ ︷︷ ︸

>0

dαd
dσ

= −G′
(
r+ − r−

r+ + r−

)
2(r+′r− − r−′r+)

(r+ + r−)2

1

αd︸ ︷︷ ︸
>0

d(βµI)

dσ
,

(82)[
1− µ̄F ′(σ − S)σ

∂(1− S/σ)

∂µI

]
︸ ︷︷ ︸

>0

dµI
dσ

= µ̄F ′(σ − S)σ
∂(1− S/σ)

∂(βµI)︸ ︷︷ ︸
>0

d(βµI)

dσ
+ µ̄F ′(σ − S)

(
1− S

σ

)
︸ ︷︷ ︸

>0

,

(83)

where the first term of (82) is positive because of equilibrium selection.

We can show that dαd/dσ cannot switch signs in [σ̄,∞). To see why, suppose

otherwise, and dαd/dσ switches signs at some σ0. By continuity, at σ0, dαd/dσ = 0.

But (82) and (81) imply that d(βµI)/dσ = 0 = dµI/dσ at σ0 as well, which contradicts

(83). Thus dαd/dσ cannot switch signs in [σ̄,∞); nor can it be zero.
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At σ = σ̄, β = 0 and dβ/dσ ≥ 0. Then by (82),

d(βµI)

dσ

∣∣∣
σ=σ̄

= µI
dβ

dσ

∣∣∣
σ=σ̄
≥ 0 =⇒ dαd

dσ

∣∣∣
σ=σ̄
≤ 0.

Because dαd/dσ cannot be zero, it must be strictly negative for all σ ∈ [σ̄,∞). By

(82)-(83), for all σ ∈ [σ̄,∞), βµI and µI are both strictly increasing in σ. Then (23)

implies that
d(S/σ)

dσ
= −dr

−

dσ
= −r−′ d

dσ

(
βµI
αd

)
> 0.

The spread itself, S = σ · (S/σ), obviously increases in σ as well. Finally,

dr+

dσ
= r+′ d

dσ

(
βµI
αd

)
> 0,

dr−

dσ
= r−

′ d

dσ

(
βµI
αd

)
< 0.

No dark pool

The comparative statics for Corollary 1 are similar to that for the first case of Propo-

sition 1 and are omitted.

B.3 Proof of Proposition 3

Have a dark pool and σ ≤ σ̄

For σ ≤ σ̄, adding a dark pool is equivalent to increasing r̄. Total differentiation of

(20)-(21) with respect to r̄ yields[
(1− r̄)∂G

−1(αd)

∂αd
− ∂(S/σ)

∂αd

]
︸ ︷︷ ︸

>0

dαd
dr̄

= G−1(αd) +
∂(S/σ)

∂µI︸ ︷︷ ︸
>0

dµI
dr̄

, (84)

[
1− µ̄F ′(σ − S)

∂

∂µI
(σ − S)

]
︸ ︷︷ ︸

>0

dµI
dr̄

= µ̄F ′(σ − S)
∂(σ − S)

∂αd︸ ︷︷ ︸
<0

dαd
dr̄

, (85)

where the first term on the left-hand side of (84) is positive because of the equilibrium

selection. If dαd/dr̄ ≤ 0 at any σ0, then (85) implies that dµI/dr̄ ≥ 0 at σ0. But

that contradicts (84). Thus dαd/dr̄ > 0 and dµI/dr̄ < 0. Adding a dark pool, which is

equivalent to an increase in r̄, raises αd and reduces αe = 1−αd. The total participation

rate of liquidity traders in either the dark pool or the exchange is αd + αe = 1, higher

than a market without a dark pool. Moreover, by (21), a lower µI implies a wider

spread S on the exchange.
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Have a dark pool and σ > σ̄

Now suppose that σ > σ̄. In a market with a dark pool, αe = 1 − G(1), a constant.

Substituting it into (26) and we have

µI
µI + (1−G(1))µz

< 1.

So the equilibrium αe without a dark pool resides in the interval (1 − G(1), 1). That

is, adding a dark pool reduces αe.

Moreover, adding a dark pool increases the exchange spread if and only if αe in the

equilibrium of Corollary 1 is larger than (1−G(1))/(1−β), where β > 0 is determined

in Proposition 1. By the equilibrium selection rule and by (23),

αe >
1−G(1)

1− β
⇐⇒ G−1

(
1− 1−G(1)

1− β

)
>

µI
µI + µz(1−G(1))/(1− β)

= 1− r−,

(86)

where the µI is given by

µI = µ̄F

(
(1−G(1))µz

(1− β)µI + (1−G(1))µz

)
.

We rearrange (86) and obtain

β <
G(1)−G(1− r−)

1−G(1− r−)
.

On the other hand, because the left-hand side of (23) is decreasing in β and the right-

hand side is increasing in β, the above condition is equivalent to (28).

As F (c) → 1 for all c > 0, (25) implies that µI → µ̄, a constant. Holding µI = µ̄

fixed, we now show that if G′′(1 − r−) ≤ 0, then (28) holds for all r− ∈ [0, r̄]. At

r− = r̄, we have σ = σ̄ and (28) holds by the definition of σ̄. At r− = 0, (28) also

holds trivially. Take the first and second derivatives of the right-hand side of (28) with

respect to r− and we obtain

d[rhs(28)]

dr−
=

µ̄µzG
′(1− r−)

[µ̄+ (1−G(1− r−))µz]2
> 0,

d2[rhs(28)]

d(r−)2
= µ̄µz

G′′(1− r−)[µ̄+ (1−G(1− r−))µz]− 2µz[G
′(1− r−)]2

[µ̄+ (1−G(1− r−))µz]3
< 0.

Thus the right-hand side of (28) is concave and (28) holds for all r− ∈ [0, r̄].
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If the condition (30) holds, we have

r− ≤ r̄ < 1− µ̄

µ̄+ (1−G(1))µz
≤ 1− µI

µI + (1−G(1− r−))µz
.

B.4 Proof of Proposition 4

If informed traders do not participate in the dark pool, an equilibrium is determined

by a marginal liquidity trader who is indifferent between the dark pool and the ex-

change. Given αd, this liquidity trader has a delay cost of G−1(αd)σ. So we must have

Xd(xS;G−1(αd)) = −S, or (53). We want to find an equilibrium in which α∗d ≤ G(1).

We first calculate the comparative statics, assuming the existence of an equilibrium,

and then show conditions under which the stated equilibrium exists. Total differentia-

tion of (53) and (54) with respect to σ yields(
∂[lhs(53)]

∂αd
− ∂[rhs(53)]

∂αd

)
︸ ︷︷ ︸

>0

dαd
dσ

+

(
∂[lhs(53)]

∂µI
− ∂[rhs(53)]

∂µI

)
︸ ︷︷ ︸

<0

dµI
dσ

= 0, (87)

(
1− ∂[rhs(54)]

∂µI

)
︸ ︷︷ ︸

>0

dµI
dσ

=
∂[rhs(54)]

∂αd︸ ︷︷ ︸
<0

dαd
dσ

+ µ̄F ′(σ − S)

(
1− S

σ

)
︸ ︷︷ ︸

>0

. (88)

As before, if dαd/dσ ≤ 0 at some σ0, then (87) implies that dµI/dσ ≤ 0 at σ0 as well.

But this contradicts (88). Thus the comparative statics with respect to σ follow. And

given the equilibrium, the dark-pool execution price p∗ and the optimal limit prices

follow from calculations done in the text.

Now I characterize the condition for the existence of an equilibrium and the thresh-

old volatility σ̄(x). For x ∈ [0, 1], I define K̄(x) implicitly by

(1− xK̄(x))

{
1− E

[
min

(
1,

G(1)Z−

[G(1)−G(xK̄(x))]Z+

)]}
= K̄(x). (89)

This K̄(x) is uniquely well-defined because the left-hand side of (89) is decreasing in

K̄(x) and the right-hand side is strictly increasing in K̄(x). Moreover, total differenti-

ation of (89) with respect to x yields(
∂[lhs(89)]

∂K̄(x)
− 1

)
︸ ︷︷ ︸

<0

K̄ ′(x) +
∂[lhs(89)]

∂x︸ ︷︷ ︸
<0

= 0.

So we have K̄ ′(x) < 0.
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On the other hand, given K̄(x), I define µ∗I(x) by

µ∗I(x)

µ∗I(x) + (1−G(1))µz
= K̄(x),

and define σ̄(x) by

µ∗I(x) = µ̄F

(
(1−G(1))µz

µ∗I(x) + (1−G(1))µz
σ̄(x)

)
.

Because µ∗I(x) is strictly increasing in K̄(x) and because σ̄(x) is strictly increasing in

µ∗I(x), σ̄(x) is strictly increasing in K̄(x). Because K̄ ′(x) < 0, σ̄′(x) < 0.

What remains to be shown is that, for σ ≤ σ̄(x), an equilibrium characterized by

Proposition 4 exists. Clearly, once αd is determined, µI is uniquely determined by (54).

For sufficiently small αd, the left-hand side of (53) is negative, whereas the right-hand

side is strictly positive. For αd = G(1), (54) implies that

µI = µ̄F

(
(1−G(1))µz

µI + (1−G(1))µz
σ

)
,

which is no larger than µ∗I(x). Thus

K ≡ µI
µI + (1−G(1))µz

=
S

σ

∣∣∣
αd=G(1)

≤ K̄(x),

and, by the definition of K̄(x),

(1− xK)

{
1− E

[
min

(
1,

G(1)Z−

[G(1)−G(xK)]Z+

)]}
> K.

That is, at αd = G(1), the left-hand side of (53) is weakly higher than the right-hand

side. Therefore, there exists a solution α∗d ∈ (0, G(1)) to (53) and an equilibrium exists.

B.5 Proof of Proposition 5

Suppose that Wd(Rt, t; γ) ≥ Et[W (Rt+1, t + 1; γ)] in an equilibrium. I denote by

X̂(Rt, t; γ) the “auxiliary payoff” of a type-γ liquidity buyer who “imitates” the strat-

egy of a type-γ informed buyer. That is, the imitating buyer behaves as if v = +σ.

Clearly, such imitation is suboptimal for the liquidity buyer, so X(Rt, t; γ) ≥ X̂(Rt, t; γ)

for all Rt, t, and γ. For notional simplicity, in the calculations below I suppress the

cost type γ and likelihood ratio Rt as function arguments.

Suppose that the informed buyer enters an order in the dark pool at time t. The
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imitating liquidity buyer does the same, by construction. Let X̂+
d be the dark-pool

payoff of the imitating buyer conditional on v = +σ, and let X̂−d be the dark-pool

payoff of the imitating buyer conditional on v = −σ. I define X̂+
e and X̂−e similarly.

Then we have

X̂d(t)−Wd(t) =
Rt

Rt + 1
X̂+
d (t) +

1

Rt + 1
X̂−d (t)−Wd(t)

=
1

Rt + 1

(
X̂−d (t)− X̂+

d (t)
)
,

where the last equality follows from the fact that, conditional on the true dividend, the

expected payoff Wd of the informed buyer is the same as the payoff X̂+
d of the imitating

liquidity buyer. If we can show that X̂+
d (t)− X̂−d (t) ≤ 2σ, then

Xd(t)−Wd(t) ≥ X̂d(t)−Wd(t) ≥ −
2σ

Rt + 1
= Xe(Rt, t)−We(Rt, t).

Now I prove that X̂+
d (t)− X̂−d (t) ≤ 2σ. I denote by C the event that the imitating

buyer’s order is crossed in the dark pool, and let

k+
t ≡ Pt[C | v = +σ],

k−t ≡ Pt[C | v = −σ],

be the crossing probabilities of the imitating buyer in the dark pool in period t, condi-

tional on v = +σ and v = −σ, respectively. Then we have

X̂+
d (t) = k+

t [+σ − Et(p∗ | C, v = +σ)] + (1− k+
t )Et(X̂+(t+ 1)),

X̂−d (t) = k−t [−σ − Et(p∗ | C, v = −σ)] + (1− k−t )Et(X̂−(t+ 1)),

where p∗ is the execution price in the dark pool in period t, and X̂+ and X̂− are the

imitating buyer’s payoffs conditional on v = +σ and v = −σ, respectively. Because

informed buyers have either a zero or positive mass in the dark pool in period t, we

have

k+
t ≤ k−t ,

Et(p∗ | C, v = +σ) ≥ Et(p∗ | C, v = −σ).

57



Because Wd(t) ≥ Et[W (t+ 1)], we have X̂+
d (t) ≥ Et(X̂+(t+ 1)). Thus

X̂+
d (t)− Et(X̂+(t+ 1)) = k+

t [σ − Et(p∗ | C, v = +σ)− Et(X̂+(t+ 1))]

≤ k−t [σ − Et(p∗ | C, v = −σ)− Et(X̂+(t+ 1))],

which implies that

X̂+
d (t)− X̂−d (t) ≤ 2σk−t + (1− k−t )Et[X̂+(t+ 1)− X̂−(t+ 1)]. (90)

I now prove that X̂+
d (t)− X̂−d (t) ≤ 2σ and that X̂+(t)− X̂−(t) ≤ 2σ, by backward

induction. We use the fact that, for all t < T , X+
e (t) − X−e (t) = 2σ. Because v is

revealed in period T , X̂+(T ) = X̂−(T ) = 0. By (90), X̂+
d (T − 1) − X̂−d (T − 1) ≤

2σ. Because the venue choice of the imitating liquidity buyer does not depend on

realizations of v,

X+(T − 1)−X−(T − 1)

= max
[
X+
e (T − 1)−X−e (T − 1), X+

d (T − 1)−X−d (T − 1),ET−1(X+(T )−X−(T ))
]
≤ 2σ.

For the induction step, suppose that X̂+(t + 1)− X̂−(t + 1) ≤ 2σ. Then (90) implies

that X+
d (t)−X−d (t) ≤ 2σ. Thus

X+(t)−X−(t) = max
[
X+
e (t)−X−e (t), X+

d (t)−X−d (t),Et(X+(t+ 1)−X−(t+ 1))
]
≤ 2σ,

which completes the proof.

B.6 Proof of Lemma 1

Given the public information Rt, the probability that v = +σ is Rt/(Rt + 1). Let q

be implicitly defined by ze = q/(1 − q). That is, q is the probability that an arriving

exchange order is in the same direction as informed orders. Under a liquidity trader’s

belief, the probability that the next exchange order is a buy order is

Rt

Rt + 1
q +

1

Rt + 1
(1− q) = (1− q)Rtze + 1

Rt + 1
.

Similarly, the probability that the next exchange order is a sell order is

Rt

Rt + 1
(1− q) +

1

Rt + 1
q = q

Rtz
−1
e + 1

Rt + 1
.
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We can verify that identity

(1− q)Rtze + 1

Rt + 1
V (Rtze) + q

Rtz
−1
e + 1

Rt + 1
V (Rtz

−1
e )

=(1− q)Rtze + 1

Rt + 1

(
1− 2

Rtze + 1

)
σ + q

Rtz
−1
e + 1

Rt + 1

(
1− 2

Rtz−1
e + 1

)
σ

=

(
1− 2

Rt + 1

)
σ, (91)

which implies Et[V (Rtz
Q
e )] = V (Rt), that is, the expected mid-market price is a mar-

tingale for liquidity traders.

Note that the identity (91) holds for all Rt, including the informed trader’s likelihood

ratio ∞. Using (91) again, we have that

V (Rtze) =

(
1− 2

Rtze + 1

)
σ

= (1− q)Rtzeze + 1

Rtze + 1

(
1− 2

Rtzeze + 1

)
σ + q

Rtzez
−1
e + 1

Rtze + 1

(
1− 2

Rtzez−1
e + 1

)
σ

< (1− q)ze
(

1− 2

Rtzeze + 1

)
σ + qz−1

e

(
1− 2

Rtzez−1
e + 1

)
σ

= Eit[V (Rtz
Q
e ze)].

That is, the exchange ask price is a submartingale for informed buyers.

Finally, direct calculation gives

Et[V (Rtz
Q
e ze)] = V (Rtze)−

2R2
t (ze − 1)3

(Rt + 1)2(Rtze + 1)(Rtz2
e + 1)

σ,

Et[V (Rtz
Q
e z
−1
e )] = V (Rtz

−1
e ) +

2R2
t (1− z−1

e )3

(Rt + 1)2(Rtz−1
e + 1)(Rtz−2

e + 1)
σ.

That is, for liquidity traders, the exchange ask price is a supermartingale and the

exchange bid price is a submartingale.

B.7 Proof of Proposition 6

I prove Proposition 6 by direct verification. The quoting strategy of the market maker

simply follows from risk neutrality and zero profit.

Under the proposed equilibrium strategy, the total arrival intensity of exchange

orders is λt = λI +
∑J

i=M κiλL. The Hamilton-Jacobi-Bellman (HJB) equation of an
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informed buyer is

W (Rt) = max

[
σ − V (Rtze),

λtEit[W (Rtz
Q
e )] + λC(σ − V (Rt))

λt + λC + λF

]
,

where the profit of immediate trading on exchange is σ − V (Rtze) and the expected

profit of trading in the dark pool is the weighted sum of:

• Eit[W (Rtz
Q
e )], the expected profit if the next event is the arrival of an exchange

order.

• σ − V (Rt), the profit if the next event is a dark-pool cross.

• 0, the profit if the next event is the dividend payment.

To verify that W (Rt) = σ − V (Rtze), it is sufficient to verify that, for all t and all

realizations of random variable Rt,

σ − V (Rtze) >
λtEit[σ − V (Rtz

Q
e ze)] + λC(σ − V (Rt))

λt + λC + λF
. (92)

By Lemma 1, the expected profit for informed buyers to trade on the exchange is a

supermartingale, that is, σ−V (Rtze) > Eit[σ−V (Rtz
Q
e ze)]. Thus a sufficient condition

for (92) is

λC + λF > sup
R∈(0,∞)

{
λC

σ − V (R)

σ − V (Rze)

}
= zeλC ,

which simplifies to (73).

Now we turn to a type-j liquidity buyer, whose HJB equation is

X(Rt) = max

[
−(V (Rtze)− V (Rt)),

λtEt[X(Rtz
Q
e )]− cjt

λt + λC + λF

]
.

Her cost of liquidation C(Rt) satisfies the HJB equation

C(Rt) = −X(Rt) = min

[
V (Rtze)− V (Rt),

λtEt[C(Rtz
Q
e )] + cjt

λt + λC + λF

]
.

There are two cases, depending on j.

If 1 ≤ j < M , to verify that C(Rt) < V (Rtze)− V (Rt), it suffices to verify

V (Rtze)− V (Rt) >
λtEt[V (Rtz

Q
e ze)− V (Rtz

Q
e )] + cjt

λt + λC + λF
, (93)

where C(Rtz
Q
e ) is replaced by the higher cost of V (Rtz

Q
e ze)− V (Rtz

Q
e ), as implied by
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the conjectured equilibrium. Because the ask spread is a supermartingale for liquidity

buyers (Lemma 1), a sufficient condition for (93) is

λC + λF > sup
R∈(0,∞)

{
cjt

V (Rze)− V (R)

}
= sup

R∈(0,∞)

{
γj · 2R/(R + 1)2 · σ
V (Rze)− V (R)

}
= γj

ze
ze − 1

,

which simplifies to (74).

If M ≤ j ≤ J , to verify that C(Rt) = V (Rtze)− V (Rt), it suffices to verify

V (Rtze)− V (Rt) <
λtEt[V (Rtz

Q
e ze)− V (Rtz

Q
e )] + cjt

λt + λC + λF
,

that is, by Lemma 1,

(λC + λF )[V (Rtze)− V (Rt)] < −λt
2R2

t (ze − 1)3

(Rt + 1)2(Rtze + 1)(Rtz2
e + 1)

σ + γj
2Rt

(Rt + 1)2
σ,

(94)

A sufficient condition for (94) is

γj > sup
R∈(0,∞)

{
(λC + λF )

(R + 1)(ze − 1)

Rze + 1

}
+ sup

R∈(0,∞)

{
λt

R(ze − 1)3

(Rze + 1)(Rz2
e + 1)

}
= (λC + λF )(ze − 1) + λt

(ze − 1)3

ze(
√
ze + 1)2

.

The argument for sellers is symmetric and yields the same parameter conditions.
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C List of Model Variables

This appendix summarizes key variables used in Section 3 and Section 4.

Variable Description

Variables introduced in Section 3
v, σ Asset value v is either +σ or −σ, for σ > 0
µ̄, µI Total masses of for-profit traders and informed traders
F Cumulative distribution function (c.d.f.) of information-acquisition cost
Y Signed informed trading interests: Y = sign(v) · µI
Z+, Z− Masses of liquidity buyers and liquidity sellers, respectively
Z0, Z Balanced and imbalanced parts of liquidity trading interests, respectively
µz Total expected mass of liquidity trading interests: µz = 2E(Z0) + E|Z|
c, γ, G Delay cost of liquidity traders c = σγ, and γ has c.d.f. G
αe, αd, α0 Fractions of liquidity traders who trade on the exchange, trade in the dark

pool, and defer trading, respectively
β Fraction of informed traders who trade in the dark pool
S Exchange (effective) spread; bid is −S and ask is S
r̄ Dark-pool crossing probability if no informed traders go to the dark pool
r−, r+ Dark-pool crossing probabilities conditional on informed traders being on the

same and opposite side, respectively
σ̄ Maximum volatility for which informed traders avoid the dark pool
µ̂I(σ) Knife-edge mass of informed traders, defined by (18)
We, Wd Expected profits of an informed buyer on the exchange and in the dark pool
X0(c), Xe, Xd(c) Payoff of a liquidity buyer with a delay cost of c who defers trading, trades on

the exchange, and trades in the dark pool, respectively
R1 Period-1 log likelihood ratio of {v = +σ} versus {v = −σ}
I(β, α) Signal-to-noise ratio of period-1 exchange order flow
Vd, Ve, V Expected volumes in the dark pool, on the exchange, and both, respectively
UI , −UL Informed traders’ total profits and liquidity traders’ total costs, respectively
Ci, Cw Total costs of information acquisition and delay, respectively

Variables introduced in Section 4
x Strictness of trade-at rule; maximum (minimum) dark-pool price is xS (−xS)
y Aggregate demand schedule in the dark pool if Z+ = 1
y+, y− Aggregate dark-pool demand and supply schedules, respectively
p∗, H Dark-pool transaction price p∗ has a c.d.f. of H
Xd(p; c) Dark-pool payoff of a liquidity buyer with the limit price p and delay cost c
r̄x Dark-pool crossing probability of a liquidity buyer with the limit price xS
σ̄(x) Maximum volatility for which informed traders avoid the dark pool
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