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Abstract

I examine the impact of prenatal suspended particulate pollution on educational
outcomes, using ambient total suspended particulates (TSPs) as a measure of partic-
ulate exposure and standardized test scores of exposed individuals as a measure of
educational achievement. I focus on individuals born between 1979 and 1985 to exploit
the shock of the industrial recession of the early 1980s. This variation helps separate
the causal effects of pollution reduction from general time trends. Considering the
7-year time period as a whole yields statistically insignificant results, but focusing on
the 3-year period around the recession (1981-1983) yields negative and statistically sig-
nificant results, suggesting that the relationship is subtle enough to require large-scale
changes to be detectable. My findings suggest a standard deviation decrease in the
mean pollution level in a student’s year of birth is associated with 1.87% of a standard
deviation increase in test scores in high school. I also employ an instrumental variables
strategy, using changes in relative manufacturing employment driven by the recession
as an instrument for TSP levels. Instrumental variables results are approximately 3.7
times the size of the OLS results, suggesting the potential presence of measurement
error in ambient pollution. Results are robust to the inclusion of school fixed effects,
year of birth and year of test fixed effects, and various demographic and economic
covariates. I also investigate the potential bias sources of migration and selection into
motherhood, and show these are unlikely to explain my results.
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the Sacramento State Brownbag Symposium, the Sonoma State Brownbag Symposium, the Atmospheric
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1 Introduction

Early-life pollution exposure may have negative impacts beyond those measured by standard

observable physical indicators of health. The concept of “fetal origins”, recently discussed in

TIME magazine, suggests that the “kind and quality of nutrition [we] received in the womb;

the pollutants, drugs and infections [we] were exposed to during gestation [. . . ] shape our

susceptibility to disease, our appetite and metabolism, our intelligence and temperament.”1

If the effects of pollution exposure effects extend to cognitive development, they could carry

long-term consequences such as decreased performance in school, lower educational attain-

ment, and reduced earnings and lifespan. It is important that we understand the lasting

cognitive impacts of prenatal pollution exposure, as policy decisions made solely on the ba-

sis of avoiding physically observable damages may underestimate costs of ambient pollution.

There is growing evidence on the contemporaneous negative impacts of pollution on infant

health (e.g., Chay and Greenstone (2003a), Chay and Greenstone (2003b), Currie and Nei-

dell (2005), Currie, Neidell, and Schmieder (2009), Currie and Walker (2011), Currie and

Schmieder (2009), Knittel, Miller, and Sanders (2009)), but little is known about whether

impacts extend further in the life cycle. I speak to these potential consequences by con-

sidering how prenatal pollution exposure impacts high school test performance. I do so by

combining several data sets containing economic, demographic, weather, pollution, and test

information from the state of Texas. I exploit a period of industrial recession in Texas from

1981-1983, and its dramatic impact on manufacturing production, as a source of variation

in ambient pollution in the form of total suspended particulate matter (TSPs).

The economy of Texas underwent a sectoral shift as a result of the recession in the early

1980s. The manufacturing sector saw decreases in both employment and capacity utilization,

and employment shifted to sectors such as retail and services (Pia M. Orrenius and Caputo

1“How the First Nine Months Shape the Rest of Your Life”, TIME, 22 September 2010 (available online
at http://www.time.com/time/health/article/0,8599,2020815,00.html, adapted from Paul (2010)).
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2005). This led to a sharp drop in statewide TSPs in a short period of time. Average

TSP levels exhibited the greatest changes between 1981-1983, as shown in Figure 1, when

state average TSP levels fell by almost 10 micrograms per cubic meter (µg/m3), a change

of approximately 14%. This is the largest decrease in Texas in such a short period since

the early 1970s.2 The magnitudes of these TSP changes varied by county, where counties

with greater shares of their pre-recession economy in manufacturing saw greater relative

decreases in pollution. I use this source of plausibly exogenous variation to better identify

the causal impacts of prenatal pollution on high school test performance. I further account

for issues such as measurement error in pollution by using this variation and instrumenting for

ambient pollution levels, using the relative share of county-level manufacturing employment

as an instrument for pollution. In alternate specifications, I use a “shift-share” instrument

where statewide changes in relative manufacturing are allocated to counties based on their

pre-recessionary levels of relative manufacturing employment. This instrument is weaker in

the first stage, but second stage estimates remain statistically similar. To account for the

strong correlation between the recession, TSPs and changes in income, I also instrument for

per capita income using changes in national oil prices.

Ordinary least squares (OLS) results suggest that, during the recessionary period, a

within-county standard-deviation decrease in the mean pollution level in a child’s year of

birth is associated with 1.9% of a within-county standard deviation increase in high school

test performance. Instrumental variables (IV) results are larger, suggesting an identical

change is associated with approximately 7% of a within-county standard deviation increase

in test performance. Based on the ambient pollution reductions seen in Texas over the

period of interest, the IV results suggest that around 10% of the score gain seen over the

2From 1977 to 1978, the annual geometric mean dropped by approximately 8 µg/m3, which is likely
attributable to the sizable temporary spike in pollution levels seen in 1977. This may have been caused by
dust storms that took place in February and March of that year. Unfortunately, test data are not available
back far enough to use the storms as an additional source of exogenous variation in this analysis.
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1979-1985 birth cohorts in my sample could be attributed to the rapid reduction in ambient

TSPs in their respective years of birth, and that prenatal pollution exposure can have an

impact on outcomes beyond those measured by standard health indicators.3 These results

are statistically detectable only in the years of greatest pollution variation, suggesting that

the effect may be too subtle to identify out using only mild changes in ambient pollution

caused by time variation or making across-county cross-sectional comparisons.

My results are robust to the inclusion of covariates for weather and income, population

density, income in the year of the test, school-level measures of school quality and overall

demographic makeup, and individual level student demographics, as well as the inclusion

of school fixed effects and year of birth by year of test effects, which allow each year of

birth/year of test cohort to have their own baseline. This additional flexibility controls

for annual statewide testing variations driven by factors such as test difficulty as well as

statewide year of birth specific shocks. Though my results are found using cohorts born

in the late 1970s and early 1980s, the suggested policy implications remain relevant today.

Particulate matter is a common pollutant still monitored by the Environmental Protection

Agency (EPA), and it remains a frequent atmospheric problem.4

The rest of this paper is organized as follows. Section 2 provides the background motiva-

tion of the analysis. Section 3 describes the data. Section 4 describes the empirical methods

used. Section 5 presents OLS results. Section 6 presents IV results. Section 7 considers

potential confounders to identifying the effects of pollution, including selective migration

and selection into motherhood. Section 8 provides some discussion of my findings. Section

9 concludes.

3Test score increases use only students included in the main analysis.
4Information on the current nationwide state of particulate matter pollution can be found at

http://www.epa.gov/oar/particlepollution.
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2 Pollution, health, and educational outcomes

Recently, economists have given substantial attention to the health effects of three EPA

monitored criteria pollutants: carbon monoxide (CO), ozone (O3), and particulate matter

(PM).5 All three have been tied to negative physical health impacts on children. CO ap-

pears to increase infant mortality rates, negative birth outcomes, and school absences and

asthma rates in children, O3 has been associated with increased asthma rates and respiratory

conditions, and PM has been shown to increase infant mortality rates.6

Recent findings suggest that pollution can have longer-run psychological and cognitive

impacts as well. For example, higher lead levels have been associated with lower IQ scores

and increased deviant behavior (Reyes 2007), and elevated prenatal radiation exposure has

been linked to lower test scores (Almond, Edlund, and Palme 2009). A recent medical

study followed a sample of nonsmoking black and Dominican-American women in New York

who wore personal air monitoring systems during pregnancy and found that higher prenatal

pollution exposure was associated with lower IQ scores at age 5 (Perera et al. 2009). I further

the research on prenatal effects by considering the impacts of particulate matter on long run

outcomes, specifically educational achievement in high school.

I focus on airborne TSPs, the measure of airborne particulate pollution used by the EPA

in the earlier years of the Clean Air Act, as my pollutant of interest.7 The term TSPs refers

to all suspended, airborne liquid or solid particles smaller than 100 micrometers in size.8

5The term criteria pollutants refers to six commonly found air pollutants that are regulated by developing
health-based and/or environmentally-based criteria for allowable levels. The current criteria pollutants are:
particular matter, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides and lead.

6See for example Wang et al. (1997), Ritz and Yu (1999), Friedman et al. (2001), Maisonet et al. (2001),
Chay and Greenstone (2003a), Chay and Greenstone (2003b), Neidell (2004), Currie and Neidell (2005),
Ponce et al. (2005), Lleras-Muney (2010), Neidell (2009), Currie et al. (2009), Currie, Neidell, and Schmieder
(2009), Currie and Walker (2011), Knittel, Miller, and Sanders (2009), Moretti and Neidell (2011), and Currie
and Walker (2011).

7The full text of the original Clean Air Act and all following amendments can be found at
http://www.epa.gov/air/caa. For a discussion of the impacts of the Clean Air Act and ambient TSP levels,
see Chay, Dobkin, and Greenstone (2003).

8As monitoring technology has advanced, regulatory attention has shifted to finer sizes of particulate
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Suspended particulates can be both naturally occurring (e.g., dust, dirt, and pollen) and a

by-product of common economic activities such as fuel combustion (e.g., coal, gasoline and

diesel), fires, and industrial activity. Particulates are the cause of a number of environmental

problems, including decreased visibility, increased acidity of both water and soil, and plant

death. Inhaled particulates have been associated with a number of health problems including

difficulty breathing, decreased lung function, aggravated asthma, and cardiac difficulties.

Smaller particulates can be transferred from the lungs into the bloodstream, causing further

internal damage.9

Exposure to particulate matter may impact fetal development in a number of ways. The

mother’s health may be compromised via any of the above listed problems, which in and

of itself could hinder or alter fetal development. In addition, particulate matter could alter

fetal development independent of mother health conditions. Associations have been found

between polycyclic aromatic hydrocarbons (PAHs), a byproduct of fuel burning and one

type of particulate matter, and a number of pre- and early post-natal developmental prob-

lems including damage to the immune system, hindered neurological development, reduced

birth weight and smaller head circumference, and impairment of neuron behavior associated

with long-term memory formation.10 Due to the number of potential pathways through

which particulate matter might cause harm, I am unable to tease out the specific physiolog-

ical mechanism that impacts the individuals in my sample. Regardless of the mechanism,

however, exposure to particulate matter presents a danger to both mother and fetus alike.

matter, with much of the attention now on two size classifications: particulate matter smaller than 10
micrometers (PM10) and particulate matter smaller than 2.5 micrometers (PM2.5). Both of these size
classifications are contained with the older TSP measure.

9For greater discussion of particulate matter and health, see World Health Organization 1979, available
at http://www.inchem.org/documents/ehc/ehc/ehc008.htm.

10For a brief review of findings on the potential consequences of PAH exposure, see Perera et al. (2009).
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3 Data

I combine several data sets on pollution, weather, school quality, economic conditions, demo-

graphics, test scores, and data on racial population makeup and motherhood characteristics.

In this section I describe each data source. Due to availability of data, weather, economic

covariates, mother characteristics, demographics, and ambient TSPs are all calculated at the

county level, and in my main results I collapse all outcomes and student covariates to the

demographic group by year of birth by school by year of test level and weight by the number

of students in each cell.

The EPA maintains an online database of historical air quality data.11 The system

includes readings from all EPA monitors for a variety of pollutants. I use data on mean

TSP values, which are measured in micrograms per cubic meter. The EPA reports annual

geometric means, the total number of valid measurements made, and the location of the

pollution monitor by latitude and longitude.12 Monitors sometimes turn on and off, and in

order to avoid interpreting such activation or deactivation as a change in pollution levels, I

use a balanced panel of monitors by keeping only those that were active during the entire

period of analysis and two years prior to the beginning of my sample to allow for the inclusion

of lags in Section 5.1. In Section 8, I relax this constraint to include all monitors active during

the period of greatest pollution variation (1981-83).13

I employ a strategy similar to that of Neidell (2004), Currie and Neidell (2005), and

Knittel, Miller, and Sanders (2009) in forming county-level pollution measures. First, I

calculate the distance between each county centric and each pollution monitor. I keep all

pollution monitors within 20 miles of a centroid and weight each monitor’s value by the

11http://www.epa.gov/aqspubl1/.
12The EPA uses the geometric mean in determining county-level Clean Air Act attainment. As such, I

use the geometric mean in this analysis as well. All results are similar when using the arithmetic mean.
13TSP monitors take a varied number of samples per year. I currently keep sensors that take at least

an average of one reading every two weeks (26 readings per year) to avoid means be influenced by singular
extreme events.
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inverse of the distance from the centroid.14 I use the population centroid, as reported by the

Census, rather than the geographic centroid. I do this for two primary reasons: exposure to

the areas of greater population is the factor of interest, and this increases the total number

of counties available for analysis. Twenty-nine counties have population centroids within 20

miles of at least one balanced panel pollution monitor. In Section 7, I repeat my analysis

using distances of 10 and 30 miles — results are largely similar across mileage choice.

My preferred specifications exclude Harris County (county FIPS 48201). According to

recent census estimates, Harris is the most populous county in Texas, and the third most

populous county in the United States. It also appears to have had the largest migration

changes, presenting a potential confounder to identifying the true effects of prenatal pollution

exposure. In addition, its substantial population meant that overall (student weighted)

results would be driven largely by results within one county. I relax this restriction in

Section 7. The remaining 28 counties in my analysis include approximately 49% of the 1979

population of the state.

Weather is a potential confounder in the regression of student test outcomes on prenatal

pollution exposure levels as weather factors have been associated with health outcomes such

as birth weight and mortality.15 Recent work also suggests extreme weather conditions may

have long run mental development consequences (Stoecker 2010). Weather effects are also a

concern in my first stage regression of ambient TSPs on manufacturing employment changes.

Rainfall has been found to impact ambient pollution levels by clearing the air, and particulate

matter pollution levels are often higher in colder temperatures.16 Therefore, I include mean

annual temperature and the number of days with rainfall.17 Weather data come from the

14When calculating county annual means, prior to collapsing to county-level readings I expand each monitor
mean observation by the total number of readings taken during the year so as to provide greater weight to
monitors that were active more frequently.

15See Deschênes and Greenstone (2007), Bantje and Niemeyer (2008), Barreca (2008), Shukla et al. (2008),
and Deschênes, Greenstone, and Guryan (2009).

16In prior drafts, I have included average yearly humidity, days with snow, days with fog, and average
yearly windspeed,. Results were similar and are available in Table A-1.

17Annual values are calculated by collapsing daily measurements to the yearly monitor level. I keep only
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National Climatic Data Center Global Surface Summary of the Day, a collection of data from

weather stations throughout the world. I create county-level annual weather measures using

a method similar to my calculations for pollution. Due to the limited number of weather

stations active during this period, I expand the distance cutoff to include all counties within

50 miles of at least one weather station.

To control for changes in school quality I include school by year pupil-to-teacher ratios

using data from the Common Core of Data (CCD).18 To help control for peer effects, I also

include the fraction of the school population who are black, the fraction who are Hispanic,

and the fraction that receive free or discounted lunch, also from the CCD.

To account for the potential relationship between income, birth outcomes and test scores,

I include county-level per capita income from the Bureau of Economic Analysis Regional

Economic Information System (REIS) in both the year of birth and the year of the test. 19

All values are inflated to 2009 dollars using the Consumer Price Index from the Bureau of

Labor Statistics. Industry level employment estimates are also from the REIS. To account

for differences in both pollution and test outcomes related to urban development, I use

population estimates from the REIS and land area estimates from the Census to calculate

population density in both the year of birth and the year of the test.

The industrial recession undoubtedly had effects on the population beyond those identi-

fied by changes in pollution and economic conditions. Of particular concern are systematic

changes to population makeup, which would then impact the composition of the student pop-

ulation. In addition, Lleras-Muney and Dehejia (2004) show that economic conditions can

impact the composition of mothers, which could also confound the attempt to identify the

monitors with readings for at least 95% of days for both weather factors. Average daily temperature is the
minimum and maximum daily values divided by two, as in Deschênes, Greenstone, and Guryan (2009).

18I drop schools with pupil-teacher ratios that are likely “coding errors”, where I call any given year a
coding error if that year’s pupil-teacher ratio is at least 3 times the size of the average of all other years at
that school.

19Per capita income values include wages as well as income from all other sources including all forms of
government transfers.
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true effects of pollution on test scores. In Section 7, I consider how the recession potentially

changed both the overall racial makeup of counties and the makeup of mothers. Here, pop-

ulation estimates are from the National Cancer Institute (due to richer racial information),

as derived using intercensus population estimates provided by the Census Bureau. Mother

characteristics are taken from the natality data files provided by the National Bureau of

Economic Research.

Table 1 compares counties included and excluded from the analysis for the years 1980

and 1985 as points of comparison before and after the recession (I do not use the 1979 base

year because population and natality data are missing for many counties). On average,

included counties had higher income per capita and larger shares of their employment in

manufacturing. Mothers are older and more likely to be black in the included counties, the

population is more likely to be black overall, and average density is substantially higher.

Finally, note that the counties do not sum to the total (254) due to omitting counties with

missing demographic data from the summary.

Test score data come from Texas Education Agency (TEA) monitored Texas Assessment

of Academic Skills (TAAS) high school exit exams. TAAS standardized exams began in

Texas in 1990 and were replaced by the Texas Assessment of Knowledge and Skills (TAKS)

in the 2002/2003 school year. From 1994 to 2002, tenth graders were required to exhibit

competency on both a TAAS math exam and reading exam before being allowed to graduate

high school. Competency is a score of 70 or higher on the Texas Learning Index (TLI), an

annually adjusted score intended to equate difficulty of passing across test years.20,21

A number of factors make the TAAS data well-suited for this analysis. First, while the

test is rewritten each year with different questions, the basic structure of the exit exam has

20See Martorell (2004) for a more detailed discussion of the TAAS exit exams, and Haney 2000 for discus-
sion of difficulty of the exam across test years.

21See http://ritter.tea.state.tx.us/student.assessment/resources/techdigest/2008/chapter 18.pdf for fur-
ther discussion of the TLI calculation mechanisms.
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remained consistent throughout its administration, making comparison across years more

valid.22 Second, the TAAS data have a wealth of information on each student, including

race, ethnicity, gender, free lunch status, and special education status, which I use as student

controls. Assuming that the student population somewhat reflects the overall population,

these controls also stand in for the population makeup of the counties and partially control

for differences in outcomes spanning from variation in overall racial and ethnic makeup across

regions.

I observe the absolute number of questions correct and the TLI-adjusted scores for both

the math and reading exams (the two tests are scored independently), school of attendance

at the time of each exam, the year and month in which the exams were taken, and whether

the student has taken either exam multiple times. In this analysis, I focus solely on the

math portion of the exam as an outcome variable, as math scores are often considered more

informative of learning when discussing standardized exams and used more frequently in the

education literature. Most importantly, the TAAS tenth grade exit exam cohorts have years

of birth that span the industrial recession period of 1981-1983, which I use as a source of

exogenous variation in pollution. Specifically, the majority of students taking exit exams

between 1994 and 2002 have years of birth between 1979 and 1985, allowing me to view

birth cohorts in a period before the recession (1979-1981), during the recession (1981-1983),

and very briefly after the recession during a period of recovery (1983-1985).

I begin with 1,755,857 tenth grade students with valid student identification numbers

taking at least one of the exit exams between 1994-2002. I then drop all students with a

year of birth outside of the range of the analysis (522,444), those with missing test scores,

exempt testing status, or nonstandard test administration (430,274), students who have

22The TLI score is calculated using the number of correct responses on each test. The reading test has
50 questions. The math test has 60 questions. It appears test difficulty has remained largely constant — as
noted in Klein et al. (2000), “the format and content of the questions in one year are very similar to those
used the next year.”
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taken the exam more than once or have duplicate observations (14,291), and those with

missing covariates (30,118).23 I also drop students listed as limited English proficient, English

language learners, or migrant students, as these are most likely subject to migration bias,

and students who have a year of birth that indicates they are unusually young or unusually

old when they take the exam, as they are likely coding errors (73,746).24 Finally, I drop

students with TLI scores under 20 as they are unlikely to represent a true student effort

(728). After merging with CCD data, a total of 1,120,115 observations remain.

After matching students to counties for which I have economic, pollution, and weather

covariates, and creating a balanced panel in both pollution and schools, the remaining sample

consists of 572,438 students in 28 counties (omitting Harris county as discussed above).

Figure 2 shows the distribution of the student test scores used in the primary analysis, with

an indicator line for the passing score of 70. It appears the TAAS has a very high passage

rate. In Section 5 I consider not just the overall score but also the passage rate as an outcome.

To conduct my analysis, I match individuals to prenatal pollution exposure. The TAAS

data do not contain information on the student’s region of birth. In order to assign pollution,

I first match schools to counties using information from the CCD. I then assume that the

county in which I observe a student taking the exam is the county in which they were born

(similar to Ludwig and Miller 2007). If individuals migrate between birth and taking the

exam, there will be measurement error in the assignment of pollution. An advantage of

23Though I focus on math scores, I omit students with missing reading scores as well. If schools “selected”
individuals to miss the exam as a strategic way to increase passage rates, this could bias my results. There
are two factors that make this less of a concern: (1) students have to pass this exam in order to graduate,
and as such they are going to be less likely to be willing to skip the exam (and administrators are probably
less likely to encourage them to do so), and (2) selection into missing the exam is unlikely to be correlated
with prior TSP levels.

24Due to student confidentiality concerns, publicly available TAAS data do not have specific date of birth,
only year of birth. In order to remove students whose year of birth (or test) is likely a coding error, I calculate
a student’s “age at test taking” by subtracting their year of birth from the year of the exam. Beginning in
1994, all first-time exams were administered in the spring of the tenth grade year. The majority of students
have “ages” of 16 and 17 — I keep all students with calculated ages between 15 and 18. Texas has an
enrollment birthday cutoff of September 1st, meaning students could begin 1st grade if they were age 6 by
September 1st of the enrollment year.
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using high school test scores as a measured outcome is that assignment of pollution based on

region of school attendance is less subject to such measurement error or bias than measures

taken later in the life cycle (e.g., total educational attainment).25 If the measurement error is

classical in that it is unrelated to the error term, results will be biased toward zero. Section

7.1 addresses the concern of potential non-random error in pollution assignment.

Table 2 shows means and standard deviations for student data across all included years.

Included schools have a higher relative population of black and Hispanic students, and stu-

dents receiving free or reduced price lunch or classified as special education. Average TLI

scores and math test passage rates slightly lower in the included counties. All of these factors

are likely attributable to the included counties being, on average, more urban than excluded

counties (see Table 1).

4 Identification strategy and instrument construction

Similar to Chay and Greenstone (2003b), I exploit variation in TSP levels caused by the

industrial recession of the early 1980s as a source of exogenous identification. Figure 3 shows

the progression of TLI scores over time for the 28 counties by tercile, where counties are

grouped by relative change in TSPs. The “Low” group contains 10 counties with an average

increase of 1% in TSPs over the 1981-1983 period. The “Middle” group contains 9 counties,

with an average ambient TSP decrease of 11%. The “High” group contains the remaining 9

counties, which saw an average TSP decrease of 16% across the recessionary period. Only

the Middle and High groups appear to have experienced a deviation from prior growth in

test scores.

The use of the industrial recession as a quasi-experimental strategy, combined with the

25Longer lifetime outcomes are of interest, but the further into the life cycle, the more likely it becomes
that individuals have migrated, and the greater the probability that migration is not random. For example,
students who go on to college are probably more likely to end up living in regions different than those in
which they were born. Any tie between outcomes and mobility will cause error in pollution assignment that
may be systematic in such a way as to bias the results.
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region- and time-specific fixed effects allowable in panel data, help to alleviate the identi-

fication concerns associated with basic time series or cross-sectional analysis. Even after

controlling for a number of covariates and regional and time effects, basic OLS results could

still suffer from econometric difficulties. County pollution levels are likely measured with

error due to factors such as variation in proximity to sensors, number of sensors in an area,

and geographic surroundings. TSPs are measured infrequently, and individual measure-

ments might be influenced by ambient conditions or unusual, unobservable circumstances

(e.g., measurements taken on a particularly windy day). In addition, the method of pol-

lution assignment means that the variation in between-county annual pollution levels may

not appear as great as it truly is. For example, two different counties, each within 20 miles

of the same pollution monitor, will be assigned the same ambient levels despite potential

differences in true levels. To address such issues, I employ an instrumental variables strategy.

My preferred instrument is built using the relative share of manufacturing employment

present in a county in any given year. Given that ambient pollution variation is correlated

with manufacturing production, using a county-specific manufacturing-based instrument al-

lows for a greater level of between-county variation in ambient TSPs — each county now

has a unique source of variation. As a further consideration, I also employ a shift-share

instrument in manufacturing employment, which, while weaker, yields similar second-stage

results.

4.1 The model

The basic OLS estimation model is:

ys,b,t = βTSPc,b + αs + θb,t + δXs,t + ωBc,b + ψTc,t + γWc,b + εs,b,t, (1)

where s, b, and t refer to school, year of birth, and year of the test, respectively. The

parameter β is the estimated achievement impact of an additional unit of TSP exposure in
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the child’s year of birth, αs is a vector of school fixed effects, θb,t is a vector of year of birth

by year of test fixed effects, Xs,t is a vector of (collapsed individual) school-level student

and school covariates, Bc,b is a vector of economic and demographic covariates in the year

of birth, Tc,t is a vector of economic and demographic covariates in the year of the test,

Wc,b is a vector of county-level weather covariates in the year of birth, and ε is an error

term.26 As noted in Section 3, weather and economic covariates and pollution are measured

at the county level to allow me to use the REIS county-level data for controls and to build

my instrument. When collapsing data, student characteristics, school quality measures, and

student outcomes are all measured at the school level to limit potential omitted variables

bias caused by higher levels of aggregation (see Hanushek, Rivkin, and Taylor 1996).

A good instrument will be correlated with county-level pollution but be appropriately

excludable from the second stage in that it does not impact test outcomes independent of

its effect on pollution. Manufacturing was responsible for a large portion of ambient TSPs

during the period of interest. Almost 50% of all national particulate emissions in 1976

came from industrial production (EPA 1985). Also important for my instrumental variables

identification strategy, the decrease in TSPs seen nationwide during the industrial recession

correlated strongly with a decrease in industrial and manufacturing production, and by 1985

industry’s contribution to total national particulates was down to approximately 37% (EPA

1985, Chay and Greenstone 2003b).

I model TSPs as a function of all workers in a county employed in the manufacturing

industry (SIC code 400) over total county employment levels in a given year. Given a linear

relationship where Π is defined as the marginal impact of changes in relative manufacturing

26As the source of pollution and instrument variation is the county/year level, I cannot include county-
by-year fixed effects.

15



employment, this can be written as:

TSPc,t = Π ∗ manufacturingc,t
allc,t

∗ 100, (2)

where both TSPc,t and the instrument are what remains after partialling out fixed effects

and other relevant covariates of interest, and the result is multiplied by 100 to make Π

interpretable as percentage changes.

One potential concern is that the instrument in (2) may be correlated with the second-

stage errors. For example, changes in the sectoral makeup of a county may be associated

with migratory factors, which drive later test results. I address this issue to some degree in

Section 8 by demonstrating that the instrument is not related in a statistically significant

fashion to the demographic makeup of the student population. I also show that, even after

controlling for manufacturing employment levels and total employment levels, the effects

remain approximately the same, suggesting that individual level changes in either factor are

not driving my results.

As an alternative I also explore the use of a shift-share instrument. Shift-share in-

struments first appeared in immigration literature, where a macro-scale influx of immi-

grants is dispersed to regions based on earlier shares of each particular immigrant group

(for example, see Card (2001), Ottaviano and Peri (2006), and Saiz (2007)). I assign the

statewide relative manufacturing employment rate to each individual county weighted by

the county pre-recession relative manufacturing ratios, using the average of 1976-1978 as

the “pre-recession” period. This helps alleviate the concern of county-specific annual mi-

gration factors, as changes are now driven by macro-level variation. Let county-level and

state-level relative manufacturing rates be county ratioc,t = manufacturingc,t/allc,t and

state ratiot = manufacturingt/allt, respectively. The basis for the instrument (again after
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partialling out other relevant covariates) is

TSPc,t = Ω ∗ county ratioc,pre−recession

state ratiopre−recession

∗ state ratiot ∗ 100 (3)

As income is likely to be strongly correlated with both pollution levels and the recession,

I treat it as endogenous and instrument for per capita income as well. To do so I exploit

the drastic changes in national oil prices over the period and the substantial link between

national oil prices and local income, particularly in Texas. In the mid 1970s, oil prices

were relatively stable. But in 1979, revolution in Iran led to drops in oil supply and a

rapid growth in price. Rising oil prices helped Texas partially avoid the earlier stages of

the industrial recession, but by 1981, oil-producing countries both inside and outside of

the Organization of the Petroleum Exporting Countries increased oil supply substantially,

leading to an equally rapid decrease in the real price of oil (see Figure 4). I use this variation,

combined with the assumption that counties with larger oil extraction sectors would have

their per capita incomes change more drastically with oil price, to instrument for per capita

income. Due to the limited availability of specific oil extraction employment, I use the more

general mining employment (SIC code 200), which contains within it petroleum extraction,

drilling, and other similar oil-mining employment sources. My final income instrument is

the annual inflation-adjusted price of oil weighted by the fraction of county employment in

the mining and extraction industry prior to the recession (again using a weighted average of

1976-1978)27:

incomec,t = Γ ∗ miningc,baseline
allc,baseline

∗ oilpricet.

In Section 6 I repeat my regressions treating income as exogenous and using only the single

27For a similar design using coal reserves and variations in annual coal prices as an instrument for county
wages bills see Black, Daniel, and Sanders (2002).
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manufacturing instrument for TSPs — results are largely unchanged.

5 OLS Results: TSPs and educational achievement

As noted in Section 3, my measure of educational performance is the TLI difficulty-adjusted

standardized test score for the math portion of the Texas high school exit exams.28 My

primary analysis is done at the demographic group by year of birth by school by year of test

level.29 I weight all regressions by the number of students in each cell. I also perform this

analysis at the individual level and unweighted at the collapsed level (Tables A-2 and A-3

in the Appendix) to verify that results are not driven by weighting or oversampling of one

particular county — results are similar in both cases. All standard errors are clustered on

county to allow for county-specific correlated errors over time. In the remaining discussion,

the term “standard deviation” refers to a within-county standard deviation.

As noted above, my sample consists of individuals born between 1979 and 1985. Con-

sidering the average effect over time appears to mask the true relationship between test

scores and ambient pollution levels in the year of birth. Column 1 of Table 3 shows the esti-

mated impact of TSPs are not statistically different from zero. This identification difficulty

may be due to the subtle relationship between pollution and ambient TSPs. Specifically,

the relationship may be undetectable when analyzing mild variations in TSPs, or gradual

changes driven by long-run trends. For this reason, I focus on the period of the largest, most

drastic variation, the recession period of 1981-1983. This is similar to Chay and Greenstone

(2003b), who exploit a similar methodology to identify the effects of pollution exposure on

infant mortality, though they use a first-differences approach.30 Columns 2, 3, and 4 show

28Earlier versions of this paper used the absolute number of questions answered correctly as an outcome,
as well as scores normalized by test year. Not surprisingly, these results are very similar to those for TLI
scores and omitted for simplicity.

29For example, one cell would be non-special education white students on free lunch at campus c born in
year b taking the exam in year t.

30Chay and Greenstone (2003b) focus on the 1980-1982 period, which is the timeframe of the greatest
variation on a nationwide level. Texas, however, had the recession hit slightly later due to the oil price
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OLS results for a sample restricted to those born in the periods spanning 1979-1981, 1981-

1983, and 1983-1985, respectively (note this causes some overlap in students across samples).

The results are statistically insignificant for 1979-1981 and 1983-1985. However, for 1981-

1983 the coefficient is statistically significant and has the anticipated negative sign. The

OLS coefficient suggests that a standard deviation decrease in average pollution levels in the

year of birth is associated with 1.87% of a standard deviation increase in test scores.

Table 4 shows that the 1981-1983 result is robust to various specifications. Starting with

simple OLS with only school and year of birth by year of test fixed effects, the following

columns add economic and demographic covariates (column 2), weather effects (column 3),

student covariates (column 4), and school level covariates (column 5). The estimated effects

of a standard deviation drop in pollution range from 1.45% to 2.06% of a standard deviation

increase in test scores.

The mean effects of pollution exposure and total test scores provide some insight into

the potential link between ambient conditions and long run outcomes. Of particular policy

interest, however, is the impact on the fraction of students passing the standardized exit

exams and being granted the ability to graduate.31 I consider the impact of prenatal pollution

exposure on the probability of obtaining a passing math score (a TLI score greater than 70)

on the first try. The outcome variable is now a 0-1 binary variable on the student level, and

becomes the fraction of the student cohort passing once data are collapsed.

Table 5 shows the results from regressing cohort passage rates on ambient pollution in

the year of birth for the entire period and the three birth periods discussed above. Again,

results are significant for only the 1981-1983 birth cohorts, and now suggest that a standard

deviation decrease in ambient pollution in the year of birth is associated with an approximate

changes discussed in Section 4.1.
31While some students that fail the test on the first attempt undoubtedly take the exam over and pass at

a later date, failing the exit exams on the first attempt may drive changes in future student behavior, though
prior research suggest such effects are not present for the Texas exams taken in tenth grade (Martorell 2004).
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1 percentage point increase in the cohort passage rate on the first attempt (approximately

1.8% of a standard deviation).

5.1 Causal effects vs. general trends?

When considering time related variation, the researcher must watch for the presence of

secular background trends. For example, over time pollution is decreasing (though not

steadily, as was shown in Figure 1) as test scores are increasing, and the two need not be

causally related. While the shock of the recession and its varied effect on pollution levels

across counties somewhat addresses this concern, other issues such as migration remain.

Perhaps the recession led to a particular type of parent moving their child out of certain

counties and into others, or longer-run effects caused a certain type of parent to move in to

Texas. Here I address the issue of general background time correlations. Potential migration

effects are discussed in Section 7.

The varied effect across periods helps to assuage trend concerns. If results were driven

by long-run background trends, we would expect to see similarly signed (and similarly sig-

nificant) effects across all time periods. Table 3 shows statistically significant effects are only

present during the 1981-1983 period. As a further check into the presence of background

trends, I run regressions similar to those in Table 3, but including one and two year lags and

leads of TSPs. Table 6 shows the results for the three individual time periods. For simplicity

I report only the coefficients on TSPs in all periods. Column 1 covers the 1979-1981 period,

column 2 the 1981-1983 period, and column 3 the 1983-1985 period. Note that data con-

straints prevent the use of TSP values beyond 1985, and as such including the lead values is

not possible in the 1983-1985 period.

In the 1979-1981 period, the addition of lags and leads has a substantial impact on

both the size and significance of the impacts of current pollution. All lags and leads are

economically and statistically significant as well. The coefficients exhibit a clear pattern,
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with lags being negative and leads being positive. This suggests the presence of background

effects that may be correlated with both pollution and future test scores, which makes

identification of the impacts of pollution problematic.

During the period of the most drastic pollution change, however, the results appear to

be robust to the inclusion of both lags and leads. Though the one-year lagged value is

statistically significant, this is not in itself problematic. The TAAS data only allow me to

identify year of birth, and for some individuals the pollution exposure in the prior year is

actually the most relevant. For example, a student born on January 1st of year t was more

exposed to the pollution in year t− 1. All other lags and leads are insignificant, suggesting

that the sharp break in pollution caused by the recession was sufficiently drastic so as to

deviate from background factors that may confound the estimates of pollution on test scores

in the full sample. Chay and Greenstone (2003b) note a similar time variation across pre,

during, and post-recession periods. Though they focus on 1980-1982 (when the recession had

its largest impacts nationwide), they note that the recession period is most useful as “there

appears to be greater potential for confounding in cross-sectional analyses and analysis of

changes in the surrounding nonrecession years.” It appears the quasi-experimental nature of

the recession provides an identification strategy for this relationship beyond general trends.

6 Instrumental variables results

The shock of the recession, however, is unable to overcome the potential complication of

measurement error. Such error, if classical, will bias OLS estimates toward zero. This

problem can be addressed to some extent by using an instrumental variables strategy. There

are three main types of measurement error that may be present in this analysis. First,

pollution is measured with error at the monitor location — monitors are in different ambient

surroundings, and unusual readings can bias the mean in the presence of few annual readings.

Second, pollution information from air monitors is assigned by using the weighted distance
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formula as described in Section 3. If two counties are similarly located from the same

monitors, those two counties will receive similar, if not identical, assignment of pollution

levels, thus reducing the variation in county pollution levels beyond its true value. Finally,

I assign pollution levels to students by assuming the county in which they take the exam

is the county in which they were born, which may not be the case for some students. My

instrument can help with the first and second error sources, but unfortunately cannot impact

the third.

As a demonstration of the first stage, I first present the relationship between the relative

manufacturing instrument shown in equation (2) and ambient TSP levels. I then show IV

results for test scores on the mathematics TAAS exam. Instrumental variables results are in

the same direction as OLS, and are approximately 4 times larger, suggesting the presence of

measurement error or potential omitted variables bias.

Counties with higher levels of relative manufacturing employment experienced different

changes in TSPs both due to their economies being driven by dirtier industries and by facing

a greater manufacturing employment shock induced by the recession. This effect is shown

in Figure 5, which splits counties into terciles based on the (absolute) change in relative

manufacturing employment counties experienced during the recessionary period. The groups

with the greatest decrease in relative manufacturing (the “High” group in Figure 5) ended

up with greater proportional drops in their ambient TSP levels by the end of the recession.

As further support of the relationship between the changes in the manufacturing sector and

ambient pollution, Figure 6 plots the mean TSP level and the mean instrument value for all

counties in the analysis across birth cohort years. Visually, the instrument is correlated with

pollution, particularly so during and after the recessionary period.

To further illustrate this relationship, I regress mean annual county TSP levels on my

primary instrument discussed in Section 4. Coefficients and robust standard errors, clustered

on county, are shown in Table 7. Column 1 includes only the primary instrument. I then
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add county fixed effects, year fixed effects, weather controls, and demographic covariates in

Columns 2, 3, 4, and 5, respectively. After adding fixed effects, the instrument shows a

positive and statistically significant relationship at the 1% level in all specifications. Column

5 is similar to my preferred first stage specification, minus year-of-test effects, second stage

covariates and per capita income, for which I will instrument in the IV specifications. Using

values from column 5, a predicted 1 percentage point change in county-level manufacturing

share of employment is associated with a mean annual ambient TSP level increase of 0.85

µg/m3, or approximately 12% of a within-county standard deviation.

Table 8 compares OLS and IV results for the full sample and for 1981-1983.32 I use

limited information maximum likelihood in all estimations due to its greater robustness to

weak instruments. In order to assess the strength of the first stage, I report a variety of

test statistics. Standard errors are clustered on county, and basic Cragg-Donald Wald tests

assume that errors are i.i.d. Baum, Schaffer, and Stillman (2007) suggest the Kleibergen-

Paap F-statistic (Kleibergen and Paap 2006) as a cluster-robust test, which I include in

my primary tables. Angrist and Pischke (2009) suggest that, in a model with multiple

endogenous regressors and multiple instruments, the overall equation test statistic is not

as useful.33 I report the “Angrist-Pischke” multivariate F-test as described in Angrist and

Pischke (2009) and as reported by the user-written xtivreg2 (Shaffer 2010). Finally, I report

the p-value for the Stock-Wright S-statistic as described in Stock and Wright (2000), which

tests for joint significance of endogenous regressors in the case of weak-instrument robust

inference.

32In the 1979-1981 and 1983-1985 periods, the first stage is substantially weaker, and thus results are
not shown here. This suggests that, similar to the subtlety of the effects of pollution on test scores, the
relationship between manufacturing production and pollution is harder to discern in the presence of mild
levels of variation.

33Consider the case where one instrument very strongly predicts both endogenous regressors, while the
other instrument is weak and provides little explanatory power. Using the overall F-statistic can cause the
econometrician to assume the first stage is well identified when, in fact, one instrument is carrying the weight
of both endogenous regressors.
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Columns 1-4 use the TLI score as the outcome of interest. In the full sample, the IV

(column 2), like the OLS (column 1), is statistically insignificant, but is now negative and of

economically significant magnitude. For the 1981-1983 sample, the IV result (column 4) is

statistically significant and approximately 3.7 times the size of the OLS result (column 3),

suggesting a standard deviation decrease in pollution is associated with 7% of a standard

deviation increase in test scores. Columns 5-8 use TLI passage rates as the outcome variable,

as in Table 5. Similar to TLI scores, the full sample remains statistically insignificant for

both OLS and IV, but both are significant in the 1981-1983 period. IV results suggest that

a standard deviation decrease in pollution is associated with a 2.5 percentage point increase

in countywide passage rates, or 6.6% of a standard deviation.

In both time periods, the Angrist-Pischke F-values for both endogenous regressors are

close to the classic, single endogenous variables F = 10 region for TSPs, and are substan-

tially larger for income. In the 1981-1983 period, the Stock-Wright S statistic rejects at the

1% level. Finally, a comparison of the Kleibergen-Paap F statistic to the Stock-Yogo weak

identification critical values as reported in Stock and Yogo (2002) indicates that the instru-

ments clear the 10% maximal size threshold when using LIML estimation in the 1981-1983

period.34 All tests suggest that income and TSPs are well defined and significant in the

second stage results for the period of greatest variation.

I next explore the robustness of the IV results. First, I rerun my regressions treating only

pollution as endogenous to test if treating multiple variables as endogenous is driving my

results. I then repeat the original IV specifications, but include the additional controls of

manufacturing employment levels and total county employment levels. This helps to address

the concern that effects of manufacturing of total employment beyond those related to TSPs

drive my IV results. Finally, I use the alternate shift-share instrument based on equation 3.

34The maximal critical values provided in Stock and Yogo (2002) are used to bound asymptotic bias and
true rejection rates in the presence of potentially weak instruments. See Baum, Schaffer, and Stillman (2007)
for a discussion of LIML weak identification values and the use of the Kleibergen-Paap F statistic.
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Table 9 compares the original OLS and IV results for the 1981-1983 period with the

results from the alternative specifications discussed above. I focus on TLI scores as the

outcome of interest (results for passage rates are quantitatively similar). Column 1 reports

the standard instrument as used in Table 8 for comparison. Column 2 treats income as

exogenous and instruments for only TSPs, using only the manufacturing instrument. This

lowers the strength of the first stage, as income is highly correlated with pollution. However,

the coefficient on TSPs remains significant at the 10% level, and similar in magnitude.

Column 3 is similar to column 1, but adds county-level manufacturing as a control. Column

4 adds total county employment as well, where all first-stage exogenous variation now comes

from the relationship between manufacturing and total employment after controlling for

individual levels — results are unchanged. Finally, column 5 shows results similar to column

1 but using the shift-share instrument specified in equation 3. As with column 2, the first

stage is not as well identified, but the coefficient is again of similar magnitude and remains

statistically significant at the 10% level. In summary, the impacts of TSPs appear robust

across specifications, being of similar magnitude and significant for at least the 10% level in

all models discussed.

7 Further considerations

Both the OLS and IV results find negative, statistically significant impacts of prenatal pol-

lution exposure on high school test performance. In this section, I expand on these results

by considering how migration and selection into motherhood may impact my findings. I also

expand the number of counties used and vary the cutoff distance for calculating pollution

levels by county. My results do not appear to be driven by migration or selection, and are

robust to all variations considered.
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7.1 Migration and motherhood

Variation in pollution used in my analysis is driven by recessionary changes in the makeup of

the Texas economy, and other factors correlated with both recessions and student outcomes

are of concern. As noted by Lleras-Muney and Dehejia (2004), babies born in periods of high

unemployment are more likely to have better birth outcomes. This could be attributable

to behavior modification during recessions or a selection into motherhood effect. I do not

have the necessary means to address the issue of behavior modification. However, using

the natality birth records from Texas during the period of my analysis, I can consider how

the composition of mothers may have changed. This selection into motherhood effect might

change the makeup of students I see in my sample in a way that is related to the recession or

my instrument, but not through TSPs, thus causing me to erroneously assign motherhood

effects to pollution. Note, however, that there are two factors that help indicate that selection

into motherhood is not driving my results. First, the majority of the jobs lost as a result

of the recession were in the manufacturing sector, an employment source that was largely

male dominated, and as such it is unlikely that many women saw a decrease in the cost of

childbearing as a result. This is particularly true given that the findings of Lleras-Muney and

Dehejia (2004) suggest that positive effects are present largely for black women of higher

education. Second, any choice to engage in childbearing behavior must come with a lag.

Even if a mother were to become pregnant the instant the recession began (around 1981-

1982), there would still be a lag between that period and birth, and the compositional change

in students should appear in the post-recession period.

Maternal education level would be a good indicator of selection factors. Unfortunately,

during the period around the recession Texas did not record the education level of either the

mother or father in the natality data. Instead I consider other factors that are commonly

related to socioeconomic status and child outcomes — maternal age and race, and when
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prenatal care began.35 I also consider the total number of births. Figure 7 shows the

movement of these factors over time by county groups, with separation into High, Middle,

and Low relative 1981-1983 TSP changes as in Figure 3. Only the month in which prenatal

care began and the total number of births appear to have substantial differences across

groups, with the variation coming largely in how the middle group deviates from trend in

1982.

As a more analytical check, I regress mother characteristics on TSPs, year fixed effects,

county fixed effects, and per capita income to see if changes in pollution are systematically

correlated with any of the mother characteristics described above. All regressions are done

at the county by year level and weighted by the total number of births. I also repeat this

process using my instrument in lieu of TSPs to see if changes in employment makeup are

strongly correlated with changes in the population of birthing mothers. Results are displayed

in columns 1-3 of Table 10. Panels A through D show results for the full period using TSPs,

the full period using my preferred instrument, the 1981-1983 period using TSPs, and the

1981-1983 period using my preferred instrument, respectively. Neither ambient TSP levels

nor the instrument appear to be statistically significant predictors of mother characteristics in

either period. In column 4, I also consider total births (note this regression is not weighted).

Neither TSPs nor the instrument are statistically significant predictors of the number of

births.

The recession may also be correlated with migration. Changes in job composition may

have altered the makeup of families at the time of birth (families of poorer performing

children move out, or families of higher performing children move in). Similarly, counties hit

by the recession in different ways may have seen different migration patterns later, perhaps

bringing in students from other locations in ways that are systematically related to prior

35In prior drafts I considered the proportion of mothers who are married and the number of prenatal visits
as well. Data from 1979 for both variables had a large number of missing values and/or errors, making
analysis difficult, and thus both are omitted here. No differences in trends were visible.
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TSP levels, and these population changes may be correlated with changes in the student

composition in ways that bias my results. If those who have worse performing children either

(a) moved out of counties that saw greater pollution changes as a result of the recession, or

(b) were less likely to move in to greater pollution counties after the recession in systematic

ways, my results would be biased upward. Similarly, my results would be biased downward

if the opposite were true. The finding of zero effect in either the 1979-1981 or the 1983-

1985 periods partially suggests this effect is not present. If systematic migration were a

confounding issue, we would expect to see effects in all periods both during and after the

recession, as some of those that migrated would have not yet had children but then done so

in the following years. Similarly, if there were something systematically different about the

type of child that was brought in through migration after the recession, that effect should

be present in the other, non-recession periods.

Using inter-census estimates of population from the National Cancer Institute (discussed

in Section 3), I consider changes in the racial makeup of counties during the recession and

during the years of testing. Figure 8 shows the changes in the population described as white,

black, and “other”, respectively. Counties are again grouped into High, Middle, and Low by

TSP change, and the graphs show the population levels relative to 1970. The unusual jumps

in the late 1980s and 1990s are likely due to errors in the intercensus estimation. Prior to

the 1990 census, data on Hispanic populations was not recorded in the Census, and such

individuals are likely contained within the “white” category. There is substantial variation

across the groups, but there do not appear to be noteworthy breaks during the recessionary

period.

I further examine this issue in columns 5 and 6 of Table 10, where I regress the percentage

of the population in the year of birth that are black and white, respectively, on TSPs (Panels

A and C) and my preferred instrument (Panels B and D). Like total births, these regressions

are unweighted. There is a marginally significant relationship with TSPs in both the full
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sample and the 1981-1983 period, where a standard deviation decrease in TSPs is associated

with approximately 3% of a standard deviation decrease in the share of the population who

are black and a 4% of a standard deviation increase in the share that are white. However,

there is no statistically significant relationship with the instrument in either period.

As a final check for how the recession might have changed the composition of students, I

consider changes in the student covariates. Similar to Table 10, in Table 11 I run regressions

with each of my demographic covariates as an outcome variable, controlling now for school

and year of birth fixed effects, per capita income, and TSPs (Panels A and C) or my instru-

ment (Panels B and D). In the full sample, both the instrument and TSPs appear correlated

with the fraction of students who are male. There also appears to be a statistically strong

correlation between TSPs in year of birth and a later Hispanic student presence, and the

instrument appears correlated with the fraction of students at a given campus who are classi-

fied as special education. However, when considering the period of interest, only the fraction

of the school population that is black remains correlated with TSPs, and no covariates are

statistically correlated with the instrument. Once again, the shock of the recession appears

to have sufficiently separated pollution effects from general trends.

7.2 Balanced panels from 1981-1983 and the addition of Harris County

I now restrict my analysis to the 1981-1983 period, the time of greatest variation in pollution

levels. In doing so, I can expand the total number of counties in the analysis to cover a larger

portion of the student population by using all pollution sensors that were present and active

from 1981-1983 rather than 1977-1985. This increases the total number of usable counties to

41, though it introduces few additional students, as the original sample contained the more

populous counties in Texas. Table 12 repeats the preferred OLS and IV specifications for

TLI scores (columns 1 and 2) and math passage rates (columns 3 and 4) using this expanded

sample of counties (note that this sample still lacks Harris county). Though the results
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are similar, there are changes in the new sample. Both findings are now significant at the

1% level, and have increased in size. The IV results in particular are substantially larger,

approximately 1.5 times the results in Table 8.

Why do IV results increase by approximately 50% over the original 28 counties? It may

be that counties close to sensors that were active only for a shorter time frame around the

recession may have had more sensitive populations. However, there is little change in the

OLS results. This may again be attributable to the error in the assignment of pollution.

Adding 13 additional counties creates 13 independent sources of variation in the IV, but

not so in the OLS due to commonly shared pollution readings among counties. Regardless,

these results should not be interpreted as “more accurate” than the results found in the

longer, balanced sample. Rather, they illustrate that the original effects found are likely not

a byproduct of the particular counties within the more balanced panel.

Table 13 repeats column 1 of Table 3 and column 3 of Table 8 but now includes Harris

County. OLS results, while of similar magnitude, are now only marginally significant. The

IV result, however, remains significant at the 5% level and is larger than prior results, though

the first stage, particularly for TSPs, is substantially weaker. The Kleibergen-Paap statistic

is now 3.04, below the cutoff for the 25% maximal bias size calculated by Stock and Yogo

(2002). It appears that the relationship between manufacturing production and pollution is

substantially weaker in Harris County, which is not surprising given that it is the third most

populous county in the United States and no doubt has a larger amount of other ambient

factors impacting pollution (e.g., automobile traffic).

7.3 Varying the pollution calculation distance

Throughout this analysis, I have defined county pollution using all pollution censors within

a 20-mile distance of a county population centroid. In order to verify that my results are not

driven by distance choice, I repeat the analysis using cutoffs of 10 miles (13 counties) and
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30 miles (47 counties). I include the TLI results from Tables 3 and 8 for comparison. At

a distance of 10 miles, the OLS results are larger and much closer to the IV findings. At a

distance of 30 miles, the OLS results have decreased and are no longer statistically significant,

though they remain negatively signed. If the probability of incorrectly assigning pollution to

counties increases with distance from the pollution sensors, these findings support the earlier

hypothesis that OLS results are subject to attenuation toward zero caused by measurement

error.

In all three cases, the IV results remain statistically significant and negative. The results

for the 20-mile cutoff are within one standard error of both the 10 and 30-mile results, sug-

gesting stability in the coefficient, though in the 30-mile case the coefficient is approximately

a third again as large. Similar to the 1981-1983 sample findings above, this may be due

to a difference between counties located close to and further away from regularly running

pollution monitors.

8 Discussion

There remain additional considerations when determining how to interpret my results. Since

the exit exams were first administered, math exam passage rates increased from 57% in 1994

to 83% in 2002.36 This increase may be due to improved schooling, decreases in ambient

pollution levels, or other, less socially productive changes such as “teaching to the test,”

where class time is spent specifically preparing students for the standardized tests rather

than working on general education.37 In order for such effects to bias my results, such

practices must vary across counties over time in a manner that is correlated with TSPs as

well as my instrument, and present only during the 1981-1983 birth cohorts. The test is

written and graded on a state level, which removes the concern of different regions facing

36Average passage rates are calculated using all first time test-takers.
37For example, see Giroux and Schmidt (2004) and Haney (2000) for a summary of the controversy over

the TAAS scores and Klein et al. (2000) for a comparison of the gains in TAAS scoring vs. the National
Assessment of Educational Progress.
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more difficult grading, and by including year of test fixed effects I control for any such factors

that are constant across regions by year. Jacob (2007) notes that, particularly for eighth

graders, differences in performance gains across the National Assessment of Educational

Progress (NAEP) and the TAAS cannot be explained by skill or format differences, further

raising concerns about factors such as student effort, cheating, or test exclusion. While I

cannot categorically exclude any of these possible effects, the plausibly exogenous nature of

the earlier recession shock provides some safeguard against such confounders, and a RAND

report on gains seen on the NAEP tests found that Texas saw NAEP test score improvements

during this period as well, which further suggests general improved performance and that at

least some of the TAAS score gains were from productive factors (Grissmer et al. 2000).

There were two important testing policy changes during the period of analysis. First,

school accountability rankings were instituted starting in the first year of the TAAS tenth

grade exit exams. This could explain my findings only if a school’s ranking causes it to

respond by increasing effort to raise test scores is such a way that is correlated with changes

in pollution that occurred in years prior, and that only appeared in the 1981-1983 period.

Second, Texas changed how special education students were treated in the 2000 test year.

Prior to 2000, special education students did not have their test scores used in the calculation

of school-wide passage rates, which were then used to grade schools and determine sanctions.

After the 1999-2000 school year, special education scores were included. This could have

caused schools/districts to change which population of students were classified as special

education, and the relevant policy change occurs during the testing timeframe associated

with birth cohorts during the recessionary period.38 Richardson (2010) notes that the policy

change may have more generally influenced how teachers allocated their time, and caused

them to focus on lower achieving students they may have ignored before due to exempt status.

38This policy change means that considering the probability of a student being special education as an
additional outcome is infeasible.
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In my specifications I include indicators for special education students to help control for

any changes this may have had in the school’s performance, but this forces the effect to

be constant across time. In prior drafts I allowed the special education effect to vary by

year of test, and results were unchanged. There remains the issue of peer effects noted by

Richardson (2010), though again the quasi-experimental nature of the research design helps

to negate such problems.

TAAS data lack specific birth date. My approximation of prenatal pollution exposure

is to assign students the average TSP level for their current county of residence in the year

of their birth. There is potential misuse of the term “prenatal” to describe the pollution

exposure seen by these students, which I have used throughout for simplicity. As noted

above, a student born in January of year t is not exposed to year t pollution prenatally, but

rather year t− 1. Perhaps a more general term would be “perinatal” exposure, which covers

later stages of pregnancy and the early weeks of life. Mental development may continue early

after birth, so such exposure is still of concern. A better interpretation of my results may be

that early life pollution exposure, spanning both the pre- and early postnatal periods, has

lasting cognitive effects.

Finally, a likely administrative data error means the number of students on free or reduced

price lunch increases substantially in 1999 and then returns to trend after one year. This can

be problematic in that the effect of the free lunch covariate might vary over time. Similar to

the special education situation, in prior drafts I allowed the effect of free lunch to vary by

year of test and results were unchanged.

8.1 Pinning down the mechanism

Prior work has found that increased TSP levels are associated with a higher probability of

being of low birth weight (Wang et al. 1997; Chay and Greenstone 2003b; Currie and Walker

2011). Other work suggests a link between low birth weight and long run outcomes such
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as education (Behrman, Rosenzweig, and Taubman 1994; Behrman and Rosenzweig 2004;

Almond, Chay, and Lee 2005; Currie and Moretti 2007). This means prenatal pollution might

impact educational outcomes through at least two channels: (1) pollution may cause lower

birth weight, which in itself somehow causes students to perform worse, and (2) pollution

might have a direct and separate impact beyond birth weight. I am unable to separate

these effects from one another, as birth weight is not an available variable in my data set.

Regardless of the mechanism, the lifelong negative impacts remain a concern.

Prenatal TSP levels also have an impact on fetal and infant death, which is shifting the

distribution of surviving infants that take the exam. That is, lower TSP levels result in a

higher number of marginal infants surviving who then go on to take the exam. For instance,

Chay and Greenstone (2003b) found that 2,500 fewer infants died nationwide as a result of

the TSP reductions in the early 1980s. The number of additional survivors is unlikely to be

sufficient to drive my results. In addition, it seems unlikely that newfound survivors would

be more heavily from the upper tail of the testing distribution, which would be the only

manner in which this would bias my estimates in the direction of negative impacts. More

believable is that the marginal students that survive fall more heavily in the lower portion

of the distribution which, if anything, biases my results toward zero and suggests that my

estimates are a lower bound of the true mean impact.

9 Conclusion

I find a statistically significant relationship between prenatal pollution exposure and edu-

cational outcomes, specifically performance on standardized high school exit exams. These

effects are present even after controlling for student characteristics, county economic and

demographic variables, weather variables, and school, and year of birth by year of test fixed

effects. Results are statistically significant only in the periods of the most drastic pollution

variation, suggesting a subtle relationship that may be difficult to separate from background
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trends using minor differences in pollution across counties or gradual changes driven by time.

Ordinary least squares results suggest a negative link between educational performance and

prenatal pollution exposure, where a within-county standard deviation decrease in the av-

erage annual ambient TSP level during the year of birth is associated with an increase of

1.87% of a within-county standard deviation in test scores, and just under 1 percentage

point increase in countywide test passage rates. Instrumental variables results suggest the

same drop in TSPs is associated with 6.95% of a within-county standard deviation increase

in test performance and an increase in county passage rates of over 2 percentage points. As

an additional frame of reference, consider the recent finding in Rockoff (2004) — moving

one standard deviation up in the distribution of teacher quality raises same-year test scores

by approximately 10% of a standard deviation. Though the one-time impact of this finding

makes it less directly comparable to the long-run effects found with pollution reduction, the

magnitudes are nevertheless an interesting comparison. These results do not appear to be

driven by selection into motherhood, selective migration, or factors unique to the 28 counties

used in the main analysis.

My findings introduce an additional consideration for designing environmental policy

beyond those found in the previous literature. Infants that survive in higher pollution envi-

ronments may not escape the consequences of exposure simply because they avoid becoming

mortality statistics. Instead, they continue to suffer the effects years later in the form of

reduced educational performance. Given that such performance may impact their total

educational attainment, lifetime earnings, health, and longevity, there are substantial pol-

icy implications. For example, if we believe that socially marginalized groups are more

likely to grow up in polluted environments, pollution exposure may help to partially explain

differences in test scores seen across races and socioeconomic groups, and environmental

improvement may help to close such gaps. As noted by Reyes (2007), environmental policy

and social policy may sometimes be one and the same.
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Table 1
Means of Excluded vs. Included Counties in 1979 and 1985

Excluded Counties Included Counties

1980

Per Capita Income 21,145 25,311
(3,723) (5,397)

% Mothers Black 9.89 10.35
(10.53) (9.56)

% Mothers White 89.55 88.64
(10.60) (9.97)

Avg. Mother Age 2403.33 2463.53
(65.11) (72.22)

Month Prenatal Began 3.11 2.92
(0.32) (0.30)

% Population Black 8.58 8.64
(8.83) (7.23)

% Population White 90.82 90.37
(8.81) (7.47)

Population Density 37.44 284.67
(108.56) (373.81)

Manufacturing Ratio 10.29 15.08
(8.39) (7.23)

Share of Texas Population 0.51 0.48

Total Counties 202 28

1985

Per Capita Income 23,291 27,564
(3,904) (5,988)

% Mothers Black 8.67 9.72
(9.79) (8.93)

% Mothers White 90.72 88.99
(9.91) (9.53)

Avg. Mother Age 2447.77 2523.07
(70.01) (74.53)

% Population Black 7.76 8.63
(8.33) (7.45)

% Population White 91.53 89.94
(8.36) (7.96)

Population Density 39.83 328.03
(119.01) (424.58)

Manufacturing Ratio 8.75 12.10
(7.74) (5.48)

Share of Texas Population 0.50 0.49

Total Counties 208 28

Note: Standard deviations shown in parenthesis. Included counties are those
with a population centroid within 20 miles of a pollution sensor with at least
26 valid readings per year and non-missing covariates, excepting Harris county
as noted in Section 3. All results shown are for a balanced panel of counties
from 1979-1985. Population shares do not sum to 1 due to counties without
data.
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Table 2
Means of Excluded vs. Included Student Population (All Years)

Excluded Counties Included Counties

Male 48.24 48.31
(49.97) (49.97)

Black 11.57 13.64
(31.99) (34.33)

Hispanic 26.22 28.00
(43.98) (44.90)

Special Ed 3.02 3.81
(17.10) (19.14)

Free/Reduced Lunch 23.43 23.02
(42.36) (42.09)

Pupil/Teacher Ratio 15.04 16.03
(2.39) (2.10)

% School Black 12.72 13.82
(15.56) (18.57)

% School Hispanic 29.87 30.69
(27.40) (28.33)

% School Free Lunch 25.17 22.16
(17.42) (19.00)

TLI Math 79.17 78.59
(11.32) (11.85)

Math Passage Rate 82.66 81.04
(37.86) (39.20)

Students 550,611 572,438

Note: Standard deviations shown in parenthesis. Included counties are those
with a population centroid within 20 miles of a pollution sensor with at least
26 valid readings per year and non-missing covariates, excepting Harris county
as noted in Section 3. All results shown are for a balanced panel of counties
from 1979-1985.
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Table 3
Estimated Impact of Prenatal Pollution Exposure on Standardized Test Performance: TLI Scores

(1) (2) (3) (4)
1979-1985 1979-1981 1981-1983 1983-1985

TSP 0.0058 0.0181 −0.0297∗∗ 0.0032
(0.0081) (0.0122) (0.0119) (0.0126)

Income (YOB) 0.2650 2.2627 0.3255 −1.1600
(0.6668) (2.1129) (0.7640) (0.8756)

Income (YOT) −2.3760∗∗∗ −6.0868∗∗∗ −1.7849∗∗∗ −1.1694∗∗∗

(0.4080) (1.3612) (0.4950) (0.3087)
Male 1.8079∗∗∗ 2.3791∗∗∗ 1.8231∗∗∗ 1.1885∗∗∗

(0.0730) (0.0859) (0.0803) (0.0594)
Black −8.2951∗∗∗ −10.1865∗∗∗ −8.0857∗∗∗ −6.3416∗∗∗

(0.1941) (0.2518) (0.2205) (0.2304)
Hispanic −4.2938∗∗∗ −5.5098∗∗∗ −4.0730∗∗∗ −3.1068∗∗∗

(0.1728) (0.2262) (0.1818) (0.1389)
Asian 2.0853∗∗∗ 2.9931∗∗∗ 1.9241∗∗∗ 1.4905∗∗∗

(0.1697) (0.2388) (0.1769) (0.2206)
Special Ed −13.7079∗∗∗ −16.6712∗∗∗ −13.6415∗∗∗ −10.7161∗∗∗

(0.3868) (0.3700) (0.4408) (0.4641)
Free/Reduced Lunch −1.8519∗∗∗ −2.4270∗∗∗ −1.8638∗∗∗ −1.3302∗∗∗

(0.2074) (0.2645) (0.1892) (0.1814)
Pupil/Teacher Ratio −0.0432 0.0042 −0.0455 −0.0426

(0.0638) (0.0513) (0.0669) (0.0439)
% School Black −4.8721 −3.3184 −0.7736 −2.1388

(2.8715) (6.2430) (4.0771) (3.5846)
% School Hispanic −2.1213 −2.7380 2.9755 −3.7574

(4.4319) (7.2358) (4.4696) (2.5781)
% School Free Lunch 0.0297 1.4948 −1.1013 0.5673

(1.1118) (2.2078) (1.0878) (1.1079)
Days with Rain −0.0072 −0.0012 −0.0080∗ −0.0042

(0.0045) (0.0047) (0.0044) (0.0066)
Avg. Yearly Temp. 0.0452 −0.1407 −0.1656 0.0856

(0.0906) (0.1097) (0.1545) (0.0755)
Pop. Density (YOB) 1.7190∗∗∗ 1.5492∗∗ 0.6173 0.2576

(0.2972) (0.6101) (0.3770) (0.1985)
Pop. Density (YOT) −1.9584∗∗∗ −1.6560∗ −0.8288∗∗ 0.1036

(0.3077) (0.9265) (0.3495) (0.3154)

Result of 1 SD Change 0.36 1.14 -1.87 0.20

Observations 56,816 24,455 26,692 23,116
Total Students 572,438 245,408 252,366 240,751

Notes: Data are collapsed on school, year of birth, year of test, and student
demographic cells and weighted accordingly (see Section 5). All regressions
control for school and year of birth by year of test fixed effects. Covariates
are described in Section 3. Estimated standard errors, clustered on county,
are displayed in parentheses. Results are for a balanced panel of schools corre-
sponding to birth cohorts 1979-1985 and test years 1994-2002. Included coun-
ties are those with a population centroid within 20 miles of a pollution sensor
with at least 26 valid readings per year and non-missing covariates, excepting
Harris county as noted in Section 3. Total number of counties is 28. YOB
and YOT indicate “year of birth” and “year of test”, respectively. Per capita
income is in tens of thousands of dollars, and density is in hundreds of people
per square mile. The line “Result of 1 SD change” refers to the percentage of
a within-county standard deviation change in TLI scores associated with a one
within-county standard deviation increase in TSPs.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 4
Robustness of 1981-1983 TLI effects across model specifications

(1) (2) (3) (4) (5)

TSP −0.0230 −0.0260 −0.0328∗∗ −0.0303∗∗ −0.0297∗∗

(0.0162) (0.0161) (0.0152) (0.0122) (0.0119)
Income (YOB) −0.0173 0.3012 0.0964 0.3427 0.3255

(0.9407) (0.9673) (0.8674) (0.7620) (0.7640)
Income (YOT) −2.6409∗∗∗ −2.2592∗∗∗ −2.4881∗∗∗ −1.8147∗∗∗ −1.7849∗∗∗

(0.6156) (0.5977) (0.5410) (0.5337) (0.4950)
Pop. Density (YOB) 0.0946 0.0584 0.6277 0.6173

(0.5630) (0.4700) (0.3767) (0.3770)
Pop. Density (YOT) −0.5700 −0.3721 −0.8216∗∗ −0.8288∗∗

(0.5052) (0.4274) (0.3646) (0.3495)
Days with Rain −0.0099∗ −0.0085∗ −0.0080∗

(0.0057) (0.0044) (0.0044)
Avg. Yearly Temp. −0.1880 −0.1552 −0.1656

(0.1733) (0.1578) (0.1545)
Male 1.8232∗∗∗ 1.8231∗∗∗

(0.0802) (0.0803)
Black −8.0858∗∗∗ −8.0857∗∗∗

(0.2187) (0.2205)
Hispanic −4.0703∗∗∗ −4.0730∗∗∗

(0.1814) (0.1818)
Asian 1.9245∗∗∗ 1.9241∗∗∗

(0.1774) (0.1769)
Special Ed −13.6419∗∗∗−13.6415∗∗∗

(0.4407) (0.4408)
Free/Reduced Lunch −1.8686∗∗∗ −1.8638∗∗∗

(0.1869) (0.1892)
Pupil/Teacher Ratio −0.0473 −0.0455

(0.0659) (0.0669)
% School Black −0.7736

(4.0771)
% School Hispanic 2.9755

(4.4696)
% School Free Lunch −1.1013

(1.0878)

Notes: See Table 3. Total number of observations is 26,692, representing
252,366 students.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 5
Estimated Impact of Prenatal Pollution Exposure on Standardized Test Performance: Passage

Rates

(1) (2) (3) (4)
1979-1985 1979-1981 1981-1983 1983-1985

TSP 0.0002 0.0006 −0.0010∗∗ 0.0003
(0.0003) (0.0004) (0.0004) (0.0004)

Income (YOB) −0.0001 0.0449 0.0094 −0.0283
(0.0198) (0.0534) (0.0267) (0.0272)

Income (YOT) −0.0631∗∗∗ −0.1788∗∗∗ −0.0596∗∗∗ −0.0198∗∗

(0.0136) (0.0357) (0.0190) (0.0092)
Male 0.0458∗∗∗ 0.0698∗∗∗ 0.0477∗∗∗ 0.0202∗∗∗

(0.0027) (0.0030) (0.0030) (0.0021)
Black −0.2182∗∗∗ −0.2912∗∗∗ −0.2182∗∗∗ −0.1410∗∗∗

(0.0057) (0.0073) (0.0065) (0.0067)
Hispanic −0.1056∗∗∗ −0.1577∗∗∗ −0.1008∗∗∗ −0.0554∗∗∗

(0.0045) (0.0060) (0.0054) (0.0033)
Asian 0.0271∗∗∗ 0.0552∗∗∗ 0.0232∗∗∗ 0.0112∗∗

(0.0037) (0.0056) (0.0052) (0.0048)
Special Ed −0.3620∗∗∗ −0.4388∗∗∗ −0.3650∗∗∗ −0.2813∗∗∗

(0.0114) (0.0081) (0.0131) (0.0175)
Free/Reduced Lunch −0.0453∗∗∗ −0.0656∗∗∗ −0.0463∗∗∗ −0.0276∗∗∗

(0.0056) (0.0080) (0.0048) (0.0048)
Pupil/Teacher Ratio −0.0012 −0.0001 −0.0012 −0.0006

(0.0022) (0.0016) (0.0023) (0.0016)
% School Black −0.1513 −0.1042 −0.0203 0.0054

(0.0956) (0.1654) (0.1307) (0.1110)
% School Hispanic 0.1199 0.0673 0.2232∗ 0.0119

(0.1594) (0.2147) (0.1273) (0.0936)
% School Free Lunch 0.0094 0.0777 −0.0445∗ 0.0395

(0.0354) (0.0712) (0.0233) (0.0389)
Days with Rain −0.0001 0.0002 −0.0002 −0.0003

(0.0002) (0.0002) (0.0002) (0.0002)
Avg. Yearly Temp. −0.0014 −0.0068∗ −0.0042 0.0008

(0.0036) (0.0035) (0.0053) (0.0028)
Pop. Density (YOB) 0.0653∗∗∗ 0.0381∗ 0.0172 0.0218∗∗

(0.0115) (0.0194) (0.0123) (0.0082)
Pop. Density (YOT) −0.0725∗∗∗ −0.0432∗ −0.0266∗∗ −0.0147

(0.0107) (0.0251) (0.0103) (0.0108)

Result of 1 SD Change 0.34 1.14 –1.82 0.55

Observations 56,814 24,455 26,692 23,116
Total Students 572,438 245,408 252,366 240,796

Notes: See Table 3. Passage rate is for first time taking the exam only.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 6
Estimated Impact of Prenatal Pollution Exposure on Standardized Test Performance: TLI Score

with Lags and Leads in Pollution

(1) (2) (3)
1979-1981 1981-1983 1983-1985

Two-Year Lagged TSP −0.0179∗ −0.0057 0.0125
(0.0093) (0.0127) (0.0094)

One-Year Lagged TSP −0.0331∗∗ −0.0305∗∗ 0.0012
(0.0127) (0.0117) (0.0099)

Current TSP 0.0314∗∗∗ −0.0488∗∗ 0.0069
(0.0104) (0.0184) (0.0125)

One-Year Lead TSP 0.0207∗ −0.0060
(0.0109) (0.0173)

Two-Year Lead TSP 0.0652∗∗∗ −0.0121
(0.0179) (0.0157)

See Table 3. Regressions include all variables in Table 3 as
well as lags and leads in pollution. Leads are not available
for birth years where the lead value extends beyond 1985
due to pollution data limitations.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 7
The Relationship Between Ambient TSPs and Relative Manufacturing Employment

(1) (2) (3) (4) (5)

Manufacturing Ratio 0.1161 1.5618∗∗∗ 0.8952∗∗∗ 0.8266∗∗∗ 0.8236∗∗∗

(0.1381) (0.2909) (0.2259) (0.2192) (0.2252)
Days with Rain −0.1308∗∗ −0.1297∗∗

(0.0575) (0.0578)
Avg. Yearly Temp. 0.3633 0.3385

(0.3904) (0.4144)
Population Density 3.9232∗∗

(1.4856)

County Effects X X X X

Year Effects X X X

F-stat 0.71 28.83 15.70 14.22 13.38
Observations 196 196 196 196 196

Notes: Estimated standard errors, clustered on county, are displayed in parentheses.
Results are for a balanced panel of counties from 1979-1985. Included counties are
those with a population centroid within 20 miles of a pollution sensor with at least
26 valid readings per year and non-missing covariates, excepting Harris county as
noted in Section 3. Population density is in hundreds of people per square mile.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 8
Estimated Impact of Prenatal Pollution Exposure on Standardized Test Performance: IV Results

(1) (2) (3) (4) (5) (6) (7) (8)
OLS 79-85 IV 79-85 OLS 81-83 IV 81-83 OLS 79-85 IV 79-85 OLS 81-83 IV 81-83

TSP 0.0058 −0.0477 −0.0297∗∗ −0.1104∗∗ 0.0002 −0.0008 −0.0010∗∗ −0.0035∗∗

(0.0081) (0.0718) (0.0119) (0.0418) (0.0003) (0.0019) (0.0004) (0.0015)
Income (YOB) 0.2650 0.2602 0.3255 1.2820 −0.0001 0.0043 0.0094 0.0403

(0.6668) (1.1461) (0.7640) (0.8724) (0.0198) (0.0297) (0.0267) (0.0314)
Income (YOT) −2.3760∗∗∗ −2.3237∗∗∗ −1.7849∗∗∗ −1.7217∗∗∗ −0.0631∗∗∗ −0.0619∗∗∗ −0.0596∗∗∗ −0.0577∗∗∗

(0.4080) (0.3755) (0.4950) (0.4459) (0.0136) (0.0131) (0.0190) (0.0178)
Male 1.8079∗∗∗ 1.8074∗∗∗ 1.8231∗∗∗ 1.8233∗∗∗ 0.0458∗∗∗ 0.0458∗∗∗ 0.0477∗∗∗ 0.0477∗∗∗

(0.0730) (0.0728) (0.0803) (0.0803) (0.0027) (0.0027) (0.0030) (0.0030)
Black −8.2951∗∗∗ −8.2949∗∗∗ −8.0857∗∗∗ −8.0838∗∗∗ −0.2182∗∗∗ −0.2182∗∗∗ −0.2182∗∗∗ −0.2182∗∗∗

(0.1941) (0.1942) (0.2205) (0.2208) (0.0057) (0.0057) (0.0065) (0.0065)
Hispanic −4.2938∗∗∗ −4.2932∗∗∗ −4.0730∗∗∗ −4.0716∗∗∗ −0.1056∗∗∗ −0.1056∗∗∗ −0.1008∗∗∗ −0.1007∗∗∗

(0.1728) (0.1722) (0.1818) (0.1822) (0.0045) (0.0045) (0.0054) (0.0054)
Asian 2.0853∗∗∗ 2.0849∗∗∗ 1.9241∗∗∗ 1.9250∗∗∗ 0.0271∗∗∗ 0.0271∗∗∗ 0.0232∗∗∗ 0.0232∗∗∗

(0.1697) (0.1703) (0.1769) (0.1778) (0.0037) (0.0037) (0.0052) (0.0052)
Special Ed −13.7079∗∗∗−13.7100∗∗∗−13.6415∗∗∗−13.6416∗∗∗ −0.3620∗∗∗ −0.3620∗∗∗ −0.3650∗∗∗ −0.3650∗∗∗

(0.3868) (0.3876) (0.4408) (0.4406) (0.0114) (0.0114) (0.0131) (0.0130)
Free/Reduced Lunch −1.8519∗∗∗ −1.8495∗∗∗ −1.8638∗∗∗ −1.8644∗∗∗ −0.0453∗∗∗ −0.0452∗∗∗ −0.0463∗∗∗ −0.0463∗∗∗

(0.2074) (0.2066) (0.1892) (0.1895) (0.0056) (0.0055) (0.0048) (0.0048)
Pupil/Teacher Ratio −0.0432 −0.0452 −0.0455 −0.0616 −0.0012 −0.0012 −0.0012 −0.0017

(0.0638) (0.0668) (0.0669) (0.0695) (0.0022) (0.0022) (0.0023) (0.0024)
% School Black −4.8721 −4.6598 −0.7736 −0.0676 −0.1513 −0.1484 −0.0203 0.0016

(2.8715) (2.7715) (4.0771) (3.8928) (0.0956) (0.0936) (0.1307) (0.1251)
% School Hispanic −2.1213 −1.7502 2.9755 2.7598 0.1199 0.1246 0.2232∗ 0.2162

(4.4319) (4.4569) (4.4696) (4.6256) (0.1594) (0.1611) (0.1273) (0.1368)
% School Free Lunch 0.0297 0.0211 −1.1013 −0.9446 0.0094 0.0096 −0.0445∗ −0.0395

(1.1118) (1.0807) (1.0878) (1.0620) (0.0354) (0.0348) (0.0233) (0.0235)
Days with Rain −0.0072 −0.0143∗ −0.0080∗ −0.0120∗∗ −0.0001 −0.0003 −0.0002 −0.0003∗

(0.0045) (0.0074) (0.0044) (0.0051) (0.0002) (0.0002) (0.0002) (0.0002)
Avg. Yearly Temp. 0.0452 0.0699 −0.1656 −0.1862 −0.0014 −0.0010 −0.0042 −0.0047

(0.0906) (0.1074) (0.1545) (0.1595) (0.0036) (0.0040) (0.0053) (0.0053)
Pop. Density (YOB) 1.7190∗∗∗ 1.6676∗∗∗ 0.6173 0.2598 0.0653∗∗∗ 0.0649∗∗∗ 0.0172 0.0059

(0.2972) (0.2707) (0.3770) (0.4621) (0.0115) (0.0109) (0.0123) (0.0183)
Pop. Density (YOT) −1.9584∗∗∗ −1.7485∗∗∗ −0.8288∗∗ −0.7948∗∗ −0.0725∗∗∗ −0.0701∗∗∗ −0.0266∗∗ −0.0256∗∗

(0.3077) (0.3401) (0.3495) (0.3498) (0.0107) (0.0107) (0.0103) (0.0101)

Result of 1 SD Change 0.36 -3.01 -1.87 -6.95 0.34 -1.42 -1.82 -6.61

Angrist-Pischke F for TSPs 8.36 18.60 8.36 18.60
Angrist-Pischke F for Income 52.29 186.00 52.29 186.00
Kleibergen-Paap F 3.81 9.63 3.81 9.63
Stock-Wright p-value 0.8092 0.0024 0.9237 0.0068

Notes: See Table 3. Angrist-Pischke, Kleibergen-Paap, and Stock-Wright statistics discussed in Section 6.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 9
Robustness of IV results with respect to model choice: 1981-1983

(1) (2) (3) (4) (5)
Base IV Only TSP IV Add Man. IV Add Emp. IV Shift Share

TSP −0.1104∗∗ −0.1058∗ −0.0857∗∗ −0.1068∗∗ −0.0851∗

(0.0418) (0.0601) (0.0382) (0.0512) (0.0477)
Income (YOB) 1.2820 1.1886 1.5606 1.4037 1.5783

(0.8724) (0.9789) (0.9598) (0.9741) (0.9636)
Income (YOT) −1.7217∗∗∗ −1.7184∗∗∗ −1.3963∗∗∗ −1.4889∗∗∗ −1.8444∗∗∗

(0.4459) (0.4507) (0.4873) (0.5044) (0.4906)
Male 1.8233∗∗∗ 1.8232∗∗∗ 1.8236∗∗∗ 1.8234∗∗∗ 1.8234∗∗∗

(0.0803) (0.0804) (0.0803) (0.0804) (0.0804)
Black −8.0838∗∗∗ −8.0839∗∗∗ −8.0843∗∗∗ −8.0845∗∗∗ −8.0849∗∗∗

(0.2208) (0.2208) (0.2211) (0.2211) (0.2204)
Hispanic −4.0716∗∗∗ −4.0716∗∗∗ −4.0711∗∗∗ −4.0711∗∗∗ −4.0723∗∗∗

(0.1822) (0.1824) (0.1825) (0.1825) (0.1822)
Asian 1.9250∗∗∗ 1.9249∗∗∗ 1.9266∗∗∗ 1.9279∗∗∗ 1.9250∗∗∗

(0.1778) (0.1778) (0.1776) (0.1781) (0.1772)
Special Ed −13.6416∗∗∗ −13.6416∗∗∗ −13.6410∗∗∗ −13.6404∗∗∗ −13.6411∗∗∗

(0.4406) (0.4406) (0.4405) (0.4404) (0.4406)
Free/Reduced Lunch −1.8644∗∗∗ −1.8643∗∗∗ −1.8650∗∗∗ −1.8648∗∗∗ −1.8648∗∗∗

(0.1895) (0.1894) (0.1893) (0.1896) (0.1893)
Pupil/Teacher Ratio −0.0616 −0.0606 −0.0601 −0.0585 −0.0578

(0.0695) (0.0695) (0.0689) (0.0680) (0.0697)
% School Black −0.0676 −0.0898 −0.1807 −0.4142 −0.5496

(3.8928) (3.9565) (3.9684) (4.0824) (4.2054)
% School Hispanic 2.7598 2.7806 2.6309 1.6618 2.6978

(4.6256) (4.5137) (4.5965) (4.5641) (4.6490)
% School Free Lunch −0.9446 −0.9553 −0.9329 −0.9247 −0.9648

(1.0620) (1.0662) (1.0274) (1.0534) (1.0464)
Days with Rain −0.0120∗∗ −0.0117∗∗ −0.0167∗∗∗ −0.0162∗∗ −0.0117∗∗∗

(0.0051) (0.0056) (0.0053) (0.0068) (0.0040)
Avg. Yearly Temp. −0.1862 −0.1892 −0.1219 −0.1489 −0.1186

(0.1595) (0.1590) (0.1477) (0.1509) (0.1721)
Pop. Density (YOB) 0.2598 0.2812 −0.7283 −2.2021∗ 0.3519

(0.4621) (0.5044) (0.6971) (1.2547) (0.4361)
Pop. Density (YOT) −0.7948∗∗ −0.7923∗∗ −0.7872∗∗ −0.6834∗∗ −0.8719∗∗

(0.3498) (0.3449) (0.3410) (0.3221) (0.3891)
Manufacturing Emp. −0.0001∗ −0.0001∗

(0.0000) (0.0000)
Total County Emp. 0.0000

(0.0000)

Observations 26,692 26,692 26,692 26,692 26,692

Angrist-Pischke F for TSPs 18.60 4.95 18.08 12.65 5.34
Angrist-Pischke F for Income 186.00 . 153.39 113.87 16.90
Kleibergen-Paap F 9.63 4.95 9.43 6.33 2.18
Stock-Wright p-value 0.0024 0.0270 0.0029 0.0039 0.0217

Notes: See Table 3. Angrist-Pischke, Kleibergen-Paap, and Stock-Wright statistics discussed in
Section 6. Instruments are described in Section 6.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 12
Results for Balanced Panel of Pollution Sensors in 1981-1983 Period Only

(1) (2) (3) (4)
TLI OLS TLI IV Passrate OLS Passrate IV

TSP −0.0314∗∗∗ −0.1670∗∗∗ −0.0011∗∗∗ −0.0057∗∗∗

(0.0103) (0.0433) (0.0003) (0.0017)
Income (YOB) 2.9689 6.4838∗∗∗ 0.0995 0.2197∗∗

(2.3174) (2.2051) (0.0801) (0.0856)
Income (YOT) −9.2032∗∗∗−12.4488∗∗∗ −0.3013∗∗∗ −0.4117∗∗∗

(1.9133) (2.5963) (0.0649) (0.0917)
Male 1.7686∗∗∗ 1.7703∗∗∗ 0.0454∗∗∗ 0.0455∗∗∗

(0.0763) (0.0764) (0.0028) (0.0028)
Black −8.0595∗∗∗ −8.0549∗∗∗ −0.2172∗∗∗ −0.2170∗∗∗

(0.2151) (0.2156) (0.0065) (0.0065)
Hispanic −4.1125∗∗∗ −4.1058∗∗∗ −0.1015∗∗∗ −0.1013∗∗∗

(0.1784) (0.1786) (0.0053) (0.0053)
Asian 1.8744∗∗∗ 1.8739∗∗∗ 0.0216∗∗∗ 0.0216∗∗∗

(0.1703) (0.1714) (0.0050) (0.0051)
Special Ed −13.9656∗∗∗−13.9573∗∗∗ −0.3740∗∗∗ −0.3737∗∗∗

(0.4169) (0.4166) (0.0121) (0.0120)
Free/Reduced Lunch −1.9755∗∗∗ −1.9771∗∗∗ −0.0500∗∗∗ −0.0500∗∗∗

(0.1868) (0.1869) (0.0048) (0.0049)
Pupil/Teacher Ratio −0.0386 −0.0576 −0.0009 −0.0015

(0.0591) (0.0593) (0.0020) (0.0020)
% School Black −1.5013 −0.3884 −0.0252 0.0126

(4.3274) (4.2002) (0.1341) (0.1308)
% School Hispanic −1.3232 −1.4023 0.0863 0.0836

(4.3994) (4.6086) (0.1270) (0.1381)
% School Free Lunch −0.3861 0.0915 −0.0256 −0.0093

(0.8918) (0.8405) (0.0247) (0.0298)
Days with Rain −0.0088∗ −0.0194∗∗ −0.0002 −0.0006∗∗

(0.0051) (0.0074) (0.0002) (0.0003)
Avg. Yearly Temp. −0.1395 −0.3866∗∗∗ −0.0036 −0.0120∗∗

(0.1253) (0.1406) (0.0046) (0.0053)
Pop. Density (YOB) 1.6821∗∗∗ 1.4447∗∗∗ 0.0505∗∗∗ 0.0424∗∗

(0.3173) (0.4080) (0.0112) (0.0181)
Pop. Density (YOT) −2.0608∗∗∗ −1.8013∗∗∗ −0.0633∗∗∗ −0.0545∗∗∗

(0.2666) (0.2383) (0.0085) (0.0076)

Observations 30,583 30,583 30,583 30,583
Total Students 283,803 283,803 283,803 283,803

Angrist-Pischke F for TSPs 14.56 14.56
Angrist-Pischke F for Income 90.45 90.45
Kleibergen-Paap F 6.97 6.97
Stock-Wright p-value 0.0015 0.0009

Data are collapsed on school, year of birth, year of test, and student demo-
graphic cells and weighted accordingly (see Section 5). All regressions control
for school and year of birth by year of test fixed effects. Covariates are described
in Section 3. Estimated standard errors, clustered on county, are displayed in
parentheses. Results are for a balanced panel of schools corresponding to birth
cohorts 1981-1983 and test years 1996-2001. Included counties are those with
a population centroid within 20 miles of a pollution sensor with at least 26
valid readings per year and non-missing covariates, excepting Harris county as
noted in Section 3. Total number of counties is 28. YOB and YOT indicate
“year of birth” and “year of test”, respectively. Per capita income is in tens of
thousands of dollars, and density is in hundreds of people per square mile.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 13
Results Including Harris County

(1) (2) (3) (4)
TLI OLS TLI IV Passrate OLS Passrate IV

TSP −0.0194∗ −0.1507∗ −0.0006∗ −0.0048∗

(0.0100) (0.0740) (0.0003) (0.0024)
Income (YOB) −0.0000 0.0001 −0.0000 0.0000

(0.0001) (0.0001) (0.0000) (0.0000)
Income (YOT) −0.0002∗∗∗ −0.0002∗∗ −0.0000∗∗∗ −0.0000∗∗

(0.0000) (0.0001) (0.0000) (0.0000)
Male 1.8224∗∗∗ 1.8225∗∗∗ 0.0474∗∗∗ 0.0474∗∗∗

(0.0614) (0.0616) (0.0023) (0.0023)
Black −7.9248∗∗∗ −7.9222∗∗∗ −0.2102∗∗∗ −0.2101∗∗∗

(0.2118) (0.2117) (0.0079) (0.0079)
Hispanic −3.9916∗∗∗ −3.9913∗∗∗ −0.0989∗∗∗ −0.0989∗∗∗

(0.1516) (0.1514) (0.0043) (0.0043)
Asian 2.0159∗∗∗ 2.0190∗∗∗ 0.0237∗∗∗ 0.0238∗∗∗

(0.1419) (0.1445) (0.0034) (0.0035)
Special Ed −13.5538∗∗∗−13.5507∗∗∗ −0.3618∗∗∗ −0.3617∗∗∗

(0.3499) (0.3503) (0.0105) (0.0105)
Free/Reduced Lunch −1.5562∗∗∗ −1.5542∗∗∗ −0.0379∗∗∗ −0.0378∗∗∗

(0.2648) (0.2661) (0.0072) (0.0073)
Pupil/Teacher Ratio −0.0298 −0.0390 −0.0005 −0.0008

(0.0530) (0.0541) (0.0018) (0.0019)
% School Black −2.4734 −0.9828 −0.0664 −0.0195

(3.7524) (3.7197) (0.1143) (0.1167)
% School Hispanic 8.3926∗ 8.5699∗ 0.3748∗∗∗ 0.3803∗∗

(4.6902) (4.8333) (0.1295) (0.1380)
% School Free Lunch −0.5510 −0.4868 −0.0226 −0.0205

(1.0806) (1.0575) (0.0297) (0.0290)
Days with Rain −0.0069 −0.0111 −0.0001 −0.0003

(0.0056) (0.0073) (0.0002) (0.0002)
Avg. Yearly Temp. −0.1742 −0.3291 −0.0047 −0.0096

(0.1545) (0.2521) (0.0052) (0.0081)
Pop. Density (YOB) 0.0011 −0.0109 0.0000 −0.0004

(0.0024) (0.0104) (0.0001) (0.0003)
Pop. Density (YOT) −0.0049 0.0006 −0.0002∗ 0.0000

(0.0029) (0.0071) (0.0001) (0.0002)

Angrist-Pischke F for TSPs 7.62 7.62
Angrist-Pischke F for Income 29.58 29.58
Kleibergen-Paap F 3.51 3.51
Stock-Wright p-value 0.0064 0.0098

Notes: Data are collapsed on school, year of birth, year of test, and student
demographic cells and weighted accordingly (see Section 5). All regressions
control for school and year of birth by year of test fixed effects. Covariates
are described in Section 3. Estimated standard errors, clustered on county,
are displayed in parentheses. Results are for a balanced panel of schools cor-
responding to birth cohorts 1979-1985 and test years 1994-2002. Included
counties are those with a population centroid within 20 miles of a pollution
sensor with at least 26 valid readings per year and non-missing covariates. To-
tal number of counties is 29. YOB and YOT indicate “year of birth” and “year
of test”, respectively. Per capita income is in tens of thousands of dollars, and
density is in hundreds of people per square mile.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 14
Robustness of 1981-1983 findings to distance cutoff choice

(1) (2) (3) (4) (5) (6)
OLS 10 miles IV 10 miles OLS 20 miles IV 20 miles OLS 30 miles IV 30 miles

TSP −0.0455∗∗∗ −0.0913∗∗ −0.0297∗∗ −0.1104∗∗ −0.0138 −0.1442∗∗

(0.0093) (0.0361) (0.0119) (0.0418) (0.0105) (0.0647)
Income (YOB) 2.9523∗∗∗ 5.6969∗∗∗ 0.3255 1.2820 0.6502 1.9789∗

(0.7866) (1.4968) (0.7640) (0.8724) (0.7356) (1.1192)
Income (YOT) −2.4266∗∗ −2.9878∗∗ −1.7849∗∗∗ −1.7217∗∗∗ −1.6525∗∗∗ −1.9991∗∗∗

(0.9183) (1.0064) (0.4950) (0.4459) (0.5144) (0.6551)
Male 1.8797∗∗∗ 1.8808∗∗∗ 1.8231∗∗∗ 1.8233∗∗∗ 1.7940∗∗∗ 1.7940∗∗∗

(0.1017) (0.1017) (0.0803) (0.0803) (0.0712) (0.0714)
Black −8.1580∗∗∗ −8.1555∗∗∗ −8.0857∗∗∗ −8.0838∗∗∗ −7.9977∗∗∗ −7.9971∗∗∗

(0.2659) (0.2659) (0.2205) (0.2208) (0.2209) (0.2211)
Hispanic −4.0442∗∗∗ −4.0420∗∗∗ −4.0730∗∗∗ −4.0716∗∗∗ −4.0566∗∗∗ −4.0578∗∗∗

(0.2204) (0.2205) (0.1818) (0.1822) (0.1738) (0.1737)
Asian 1.8770∗∗∗ 1.8793∗∗∗ 1.9241∗∗∗ 1.9250∗∗∗ 1.8849∗∗∗ 1.8853∗∗∗

(0.2035) (0.2053) (0.1769) (0.1778) (0.1647) (0.1656)
Special Ed −13.9950∗∗∗ −13.9934∗∗∗ −13.6415∗∗∗ −13.6416∗∗∗ −13.7106∗∗∗ −13.7118∗∗∗

(0.6054) (0.6046) (0.4408) (0.4406) (0.3801) (0.3805)
Free/Reduced Lunch −1.8608∗∗∗ −1.8636∗∗∗ −1.8638∗∗∗ −1.8644∗∗∗ −1.8276∗∗∗ −1.8280∗∗∗

(0.2195) (0.2202) (0.1892) (0.1895) (0.1607) (0.1609)
Pupil/Teacher Ratio −0.0724 −0.0937 −0.0455 −0.0616 −0.0564 −0.0594

(0.0799) (0.0783) (0.0669) (0.0695) (0.0594) (0.0612)
% School Black 2.0622 2.8797 −0.7736 −0.0676 −1.9277 −0.9195

(3.7821) (3.6728) (4.0771) (3.8928) (4.1352) (3.8147)
% School Hispanic 8.3588∗ 8.1291∗ 2.9755 2.7598 3.6323 3.0550

(3.9827) (4.1054) (4.4696) (4.6256) (4.1646) (4.3411)
% School Free Lunch −0.8179 −0.7171 −1.1013 −0.9446 −1.3127 −1.4893

(1.0788) (1.0796) (1.0878) (1.0620) (1.0170) (1.1235)
Days with Rain −0.0085∗ −0.0108∗∗ −0.0080∗ −0.0120∗∗ −0.0075 −0.0156∗

(0.0040) (0.0038) (0.0044) (0.0051) (0.0051) (0.0081)
Avg. Yearly Temp. −0.0029 0.1172 −0.1656 −0.1862 −0.0271 0.0606

(0.1521) (0.1829) (0.1545) (0.1595) (0.1440) (0.2282)
Pop. Density (YOB) −0.4234 −0.8779∗∗ 0.6173 0.2598 0.9287∗∗ 0.5741

(0.3922) (0.3555) (0.3770) (0.4621) (0.4091) (0.4603)
Pop. Density (YOT) −0.4544 −0.5248 −0.8288∗∗ −0.7948∗∗ −1.0666∗∗∗ −0.8371∗∗

(0.3852) (0.3762) (0.3495) (0.3498) (0.3282) (0.3966)

Angrist-Pischke F for TSPs 5.79 18.60 11.17
Angrist-Pischke F for Income 9.07 186.00 79.35
Kleibergen-Paap F 2.82 9.63 5.85
Stock-Wright p-value 0.0986 0.0024 0.0053

Counties 13 13 28 28 47 47
Observations 20,165 20,165 26,692 26,692 32,637 32,637
Total Students 187,271 187,271 252,366 252,366 303,715 303,715

Notes: Data are collapsed on school, year of birth, year of test, and student demographic cells and weighted accordingly
(see Section 5). All regressions control for school and year of birth by year of test fixed effects. Covariates are described
in Section 3. Estimated standard errors, clustered on county, are displayed in parentheses. Results are for a balanced
panel of schools corresponding to birth cohorts 1979-1985 and test years 1994-2002. Included counties are those with
a population centroid within 10, 20, or 30 miles of a pollution sensor with at least 26 valid readings per year and
non-missing covariates, excepting Harris county as noted in Section 3. YOB and YOT indicate “year of birth” and
“year of test”, respectively. Per capita income is in tens of thousands of dollars, and density is in hundreds of people
per square mile. Angrist-Pischke, Kleibergen-Paap, and Stock-Wright statistics discussed in Section 6.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Figure 1
Average Texas Total Suspended Particulates Levels Over Time
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Notes: Graph is the annual geometric mean TSP level for an unbalanced panel
of all sensors in the state of Texas, with quadratic fitted lines done separately for
all years prior to 1983 and for 1983 and forward.
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Figure 2
Kernel Density for Texas Learning Index Math Scores
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Notes: Kernel density calculated using a bandwidth of 2. Dashed line indicates
the passing cutoff of 70.
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Figure 3
Texas Learning Index Math Scores By Pollution Change Tercile
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Notes: Counties are grouped into terciles by percentage change in total suspended
particulates from 1981-1983 (see Section 4.1).
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Figure 4
National Real price of Oil Over Time
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Notes: National oil price data are from United States Energy Information Ad-
ministration. Oil prices adjusted to 2009 dollars using the Consumer Price Index.
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Figure 5
Total Suspended Particulate Levels Relative to 1979 by Absolute Change in Manufacturing
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Notes: Data are the mean TSP and calculated instrument for a balanced panel
of the 28 counties included in the analysis as described in Sections 3 and 4.1.
Counties are grouped into terciles by absolute change in relative manufacturing
employment from 1981-1983.
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Figure 6
Mean Total Suspended Particulates vs. Mean Manufacturing Percentages
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Notes: Data are the mean TSP and calculated instrument for a balanced panel
of the 28 counties included in the analysis as described in Sections 3 and 4.1.
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Figure 7
Mother Characteristics Relative to 1979
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Notes: Mother characteristic data from the National Bureau of Economic Re-
search natality data files as described in Section 3. Counties are grouped into
terciles by percentage changes in TSPs from 1981-1983.
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Figure 8
Population Characteristics Relative to 1979
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Notes: Population characteristic data from the National Cancer Institute, and
are derived from intercensus population estimates provided by the Census Bureau
(see Section 3). Counties are grouped into terciles by percentage changes in TSPs
from 1981-1983.
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Table A-1
Ambient TSPs and Relative Manufacturing Employment: Additional Weather Variables

(1) (2) (3) (4) (5)

Manufacturing Ratio 0.8236∗∗∗ 0.8461∗∗∗ 0.8395∗∗∗ 0.7734∗∗∗ 0.7220∗∗∗

(0.2252) (0.2315) (0.2250) (0.2451) (0.2320)
Population Density 3.9232∗∗ 4.0325∗∗∗ 3.8979∗∗ 3.5422∗∗ 2.8236∗∗

(1.4856) (1.4323) (1.4961) (1.3165) (1.3719)
Days with Rain −0.1297∗∗ −0.1238∗ −0.1170∗ −0.1056∗ −0.1063∗

(0.0578) (0.0611) (0.0580) (0.0538) (0.0536)
Avg. Yearly Temp. 0.3385 0.3762 0.2803 −0.5869 −0.9263

(0.4144) (0.3968) (0.4154) (0.6601) (0.6999)
Avg. Yearly Humidity −2.1047 −1.9771 0.2847 0.2751

(1.5931) (1.6125) (2.2899) (2.3158)
Days with Snow −0.1082 −0.1126 −0.1334

(0.1301) (0.1327) (0.1408)
Days with Fog −0.0782∗ −0.0874∗

(0.0425) (0.0444)
Avg. Yearly Windspeed 1.7915∗

(0.9827)

Observations 196 196 196 196 196

Notes: Estimated standard errors, clustered on county, are displayed in parentheses.
Results are for a balanced panel of counties from 1979-1985. Included counties are
those with a population centroid within 20 miles of a pollution sensor with at least
26 valid readings per year and non-missing covariates, excepting Harris county as
noted in Section 3. Total number of counties is 28. Weather data are assigned to
counties based on the methodology discussed in Section 3.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table A-2
OLS and IV of TLI Math Score Using Student-level, Uncollapsed Data

(1) (2) (3) (4)
TLI OLS TLI IV Passrate OLS Passrate IV

TSP −0.0297∗∗ −0.1104∗∗ −0.0010∗∗ −0.0035∗∗

(0.0119) (0.0418) (0.0004) (0.0015)
Income (YOB) 0.3255 1.2820 0.0094 0.0403

(0.7637) (0.8720) (0.0267) (0.0314)
Income (YOT) −1.7849∗∗∗ −1.7217∗∗∗ −0.0596∗∗∗ −0.0577∗∗∗

(0.4948) (0.4457) (0.0190) (0.0178)
Male 1.8231∗∗∗ 1.8233∗∗∗ 0.0477∗∗∗ 0.0477∗∗∗

(0.0802) (0.0803) (0.0030) (0.0030)
Black −8.0857∗∗∗ −8.0838∗∗∗ −0.2182∗∗∗ −0.2182∗∗∗

(0.2204) (0.2207) (0.0065) (0.0065)
Hispanic −4.0730∗∗∗ −4.0716∗∗∗ −0.1008∗∗∗ −0.1007∗∗∗

(0.1817) (0.1822) (0.0054) (0.0054)
Asian 1.9241∗∗∗ 1.9250∗∗∗ 0.0232∗∗∗ 0.0232∗∗∗

(0.1768) (0.1777) (0.0052) (0.0052)
Special Ed −13.6415∗∗∗−13.6416∗∗∗ −0.3650∗∗∗ −0.3650∗∗∗

(0.4406) (0.4404) (0.0131) (0.0130)
Free/Reduced Lunch −1.8638∗∗∗ −1.8644∗∗∗ −0.0463∗∗∗ −0.0463∗∗∗

(0.1891) (0.1894) (0.0047) (0.0048)
Pupil/Teacher Ratio −0.0455 −0.0616 −0.0012 −0.0017

(0.0668) (0.0695) (0.0023) (0.0024)
% School Black −0.7736 −0.0676 −0.0203 0.0016

(4.0753) (3.8910) (0.1306) (0.1251)
% School Hispanic 2.9755 2.7598 0.2232∗ 0.2162

(4.4676) (4.6236) (0.1272) (0.1368)
% School Free Lunch −1.1013 −0.9446 −0.0445∗ −0.0395

(1.0873) (1.0615) (0.0233) (0.0235)
Days with Rain −0.0080∗ −0.0120∗∗ −0.0002 −0.0003∗

(0.0044) (0.0051) (0.0002) (0.0002)
Avg. Yearly Temp. −0.1656 −0.1862 −0.0042 −0.0047

(0.1545) (0.1594) (0.0053) (0.0053)
Pop. Density (YOB) 0.6173 0.2598 0.0172 0.0059

(0.3769) (0.4619) (0.0123) (0.0183)
Pop. Density (YOT) −0.8288∗∗ −0.7948∗∗ −0.0266∗∗ −0.0256∗∗

(0.3493) (0.3497) (0.0103) (0.0101)

Observations 572,438 245,408 252,366 240,751

Angrist-Pischke F for TSPs 18.61 18.61
Angrist-Pischke F for Income 186.16 186.16
Kleibergen-Paap F 9.63 9.63
Stock-Wright p-value 0.0024 0.0068

Notes: Data are collapsed on school, year of birth, year of test, and student
demographic cells and weighted accordingly (see Section 5). All regressions
control for school and year of birth by year of test fixed effects. Covariates are
described in Section 3. Estimated standard errors, clustered on county, are dis-
played in parentheses. Results are for a balanced panel of schools correspond-
ing to birth cohorts 1979-1985 and test years 1994-2002. Included counties are
those with a population centroid within 20 miles of a pollution sensor with at
least 26 valid readings per year and non-missing covariates, excepting Harris
county as noted in Section 3. Total number of counties is 28. YOB and YOT
indicate “year of birth” and “year of test”, respectively. Per capita income is
in tens of thousands of dollars, and density is in hundreds of people per square
mile.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table A-3
OLS and IV of TLI Math Score Using Collapsed Data Without Weights

(1) (2) (3) (4) (5)
OLS 1979-1985 OLS 1979-1981 OLS 1981-1983 IV 1981-1983 OLS 1983-1985

TSP 0.0056 0.0066 −0.0556∗∗∗ −0.1812∗∗∗ 0.0151
(0.0126) (0.0117) (0.0167) (0.0511) (0.0263)

Income (YOB) 0.1481 1.1116 0.2372 2.2085∗∗∗ −0.7779
(0.7023) (3.1508) (0.7987) (0.7679) (1.8306)

Income (YOT) −3.0521∗∗∗ −9.3105∗∗∗ −1.0864 −1.1868 −0.5134
(0.4771) (2.1349) (1.1554) (1.1114) (0.4104)

Male 2.3468∗∗∗ 3.0533∗∗∗ 2.4348∗∗∗ 2.4346∗∗∗ 1.5781∗∗∗

(0.0893) (0.1027) (0.1021) (0.1026) (0.1028)
Black −7.8485∗∗∗ −9.6615∗∗∗ −7.6298∗∗∗ −7.6263∗∗∗ −5.9194∗∗∗

(0.2222) (0.2315) (0.2543) (0.2558) (0.2533)
Hispanic −3.7465∗∗∗ −4.9064∗∗∗ −3.4633∗∗∗ −3.4640∗∗∗ −2.6384∗∗∗

(0.2043) (0.2741) (0.2120) (0.2115) (0.1825)
Asian 2.4561∗∗∗ 3.2276∗∗∗ 2.3626∗∗∗ 2.3601∗∗∗ 1.9702∗∗∗

(0.1550) (0.2762) (0.1592) (0.1585) (0.2400)
Special Ed −13.1852∗∗∗ −15.8753∗∗∗ −12.9707∗∗∗ −12.9712∗∗∗ −10.5202∗∗∗

(0.3981) (0.3689) (0.4684) (0.4688) (0.4699)
Free/Reduced Lunch −1.7206∗∗∗ −2.0981∗∗∗ −1.7203∗∗∗ −1.7198∗∗∗ −1.3802∗∗∗

(0.1611) (0.1994) (0.1765) (0.1764) (0.2094)
Pupil/Teacher Ratio −0.0551 0.0306 −0.0985 −0.1164 −0.0565

(0.0709) (0.1116) (0.1000) (0.1016) (0.0685)
% School Black −2.9793 −3.2261 −2.8720 −2.3403 −8.5417

(2.7836) (9.9386) (5.9358) (5.9795) (6.7719)
% School Hispanic −6.5354∗∗ −4.4887 4.6727 4.2318 1.0747

(2.6129) (7.1703) (5.3513) (5.3697) (7.3993)
% School Free Lunch 0.0479 0.3157 −0.0818 0.0379 −2.0068

(1.0975) (1.8310) (1.9572) (1.9474) (1.6632)
Days with Rain −0.0108 −0.0317∗∗∗ −0.0141∗∗ −0.0227∗∗ 0.0187

(0.0068) (0.0092) (0.0063) (0.0099) (0.0121)
Avg. Yearly Temp. 0.0463 −0.2225 −0.1042 −0.1114 0.1433

(0.1068) (0.2176) (0.1736) (0.2097) (0.1466)
Pop. Density (YOB) 1.7953∗∗∗ 2.4160∗∗ −0.2347 −0.7416 0.1529

(0.4819) (1.1676) (0.4796) (0.8360) (0.5814)
Pop. Density (YOT) −2.1182∗∗∗ −2.2374 −0.8490 −0.8294 −0.2699

(0.4656) (1.4009) (0.5466) (0.5084) (0.4461)

Observations 56,816 24,455 26,692 26,692 23,116

Angrist-Pischke F for TSPs 14.20
Angrist-Pischke F for Income 136.35
Kleibergen-Paap F 7.23
Stock-Wright p-value 0.0589

Notes: Data are collapsed on school, year of birth, year of test, and student demographic cells (see Section
5) but regressions are done without weights. All regressions control for school and year of birth by year of
test fixed effects. Covariates are described in Section 3. Estimated standard errors, clustered on county,
are displayed in parentheses. Results are for a balanced panel of schools corresponding to birth cohorts
1979-1985 and test years 1994-2002. Included counties are those with a population centroid within 20 miles
of a pollution sensor with at least 26 valid readings per year and non-missing covariates, excepting Harris
county as noted in Section 3. Total number of counties is 28. YOB and YOT indicate “year of birth” and
“year of test”, respectively. Per capita income is in tens of thousands of dollars, and density is in hundreds
of people per square mile.

* significant at 10%; ** significant at 5%; *** significant at 1%
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