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Defending Against Environmental Insults: 
Drugs, Emergencies, Deaths, and the NOx Emissions Markets 

 
ABSTRACT 

 
In theoretical models of health behavior, individuals undertake a wide range of actions to protect 
themselves from risk or harm.  It is widely believed that these actions constitute a significant 
portion of the costs of harms, but there is little research establishing their empirical importance.  
This paper provides an opportunity to measure these activities in the context of air pollution.  
Specifically, it examines the impact of a large US emissions trading market – the NOx Budget 
Trading Program – on pollution emissions, ambient air quality, medication purchases, hospital 
admissions and mortality.  
 
Using variation across time and space in the implementation of the emissions market and data on 
the real world data, rather than relying on chemistry, engineering, or epidemiological models, we 
find that the reductions in NOx emissions decreased the number of summer days with harmful 
ozone levels by about 25%.  These improvements in air quality produced substantial short run 
health benefits.  Drug expenditures decreased by about 1.6% (2.4% percent for respiratory 
drugs), which are nearly as large as an upper bound estimate of the NOx Budget Trading 
Program’s abatement costs.  Additionally, the summer mortality rate declined by approximately 
0.4%, indicating that there were about 2,100 fewer premature deaths per summer, mainly among 
individuals 75 and older. Models that aim to uncover the loss of life expectancy associated with 
these premature deaths lack statistical power.   Several placebo tests support the research design: 
the market had no effect on non-regulated pollutants or on health conditions that are plausibly 
unrelated to air quality. 
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I. Introduction 

In the canonical models of behavior, individuals trade-off the damages from exposure to harms 

with investments or costly actions to protect themselves from the harms (Grossman 1972; Becker 

1965).  For example, homeowners install burglar alarms, companies hire private security guards, 

infants are vaccinated, builders install thick windows in noisy areas, and people take medications 

to protect themselves from respiratory problems.  All of these actions are costly and displace 

consumption of utility-generating goods.  Indeed, it is widely believed that these actions 

constitute a significant portion of the costs of harms, as the marginal utility of their purchase 

should be equalized with the marginal utility of the harm itself.  However, the empirical 

literatures have largely focused on the incidence of the harm (e.g., crime rates, health outcomes) 

as a measure of the full welfare consequences, leaving unanswered the empirical importance of 

the compensatory behavior and the completeness of the welfare measure.2, 

 This paper aims to develop a measure of willingness to pay for reductions in ozone air 

pollution concentrations that accounts for defensive expenditures, as well as ozone’s direct 

health impacts.  As our measure of behavioral changes, we investigate whether medication usage 

responds to changes in ozone.  This is likely to be an especially important measure of defensive 

expenditures because the annual cost of prescription medications for asthma exceeds the 

monetized value of any other component of asthma’s social cost, including mortality, emergency 

department admissions, or lost productivity (Weiss and Sullivan 2001).  We also provide new 

evidence on how ozone concentrations affect mortality and hospital admissions, which allows us 

to measure the share of health costs of air pollution due to defenses. 

 The empirical exercise is based on a quasi-experiment that exploits the variation in space 

and time of the introduction of an emissions market for nitrogen oxides (NOx).  The NOx Budget 

Trading Program (NBP) operated a cap-and-trade system for over 2,500 electricity generating 

units and industrial boilers in the Eastern U.S. between 2003 and 2008.  Because this market had 

the goal of decreasing ozone pollution, which reaches high levels in summer, the market 

operated only between May and September.  Importantly, NOx is a primary ingredient in the 

complex function that produces ozone air pollution. 

                                                 
2 Additionally, public evaluations of air pollution policy focus largely on premature mortality and hospital 
admissions as markers of health and generally fail to consider the costs of defensive investments (Pew 2000; US 
EPA 2005; US EPA 2008a, p. 6-11; US EPA 2008b). 
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Figure 1 shows the dramatic effect of this market on NOx emissions. In 2002, NOx 

emissions were fairly flat throughout the calendar year, with a rise when electricity demand 

peaks in July.3 In 2005, emissions were also flat between January and April. But in May 2005, 

when the market’s cap began to apply, NOx emissions dropped by 40 percent, practically 

overnight. Emissions remained lower throughout the summer of 2005 and then returned to their 

original level in October, when the cap stopped applying. Emissions dropped in May 2005 

because many power plants began operating abatement technologies which substantially 

decreased their NOx emissions. This market lets us isolate the causal effects of air quality on 

health because it allows a simple research design. We use a triple-difference estimator which 

compares pollution and health outcomes in summer versus winter, before versus after 2003, and 

in the Eastern versus Western U.S. (i.e., the states where the NOx budget program operated 

versus those where it didn’t).4  

The empirical analysis produces several key results. The reductions in NOx emissions 

decreased ozone concentrations by roughly 6% and reduced the number of summer days with 

harmful ozone levels by about 25%, or more than a third of a standard deviation. These 

improvements in air quality produced substantial short run benefits. Drug expenditures decreased 

by about 1.6% (2.4% percent for respiratory drugs), which in aggregate is nearly as large as an 

upper bound estimate of the market’s abatement costs. Further, the summer mortality rate 

declined by approximately 0.4%, corresponding to 2,100 fewer premature deaths per summer, 

mainly among individuals 75 and older.  In contrast, there appears to have been little effect on 

hospital admissions or charges. Models that aim to explore the gain in life expectancy associated 

with the reduced mortality rates lack statistical power. Finally, reductions in ozone 

concentrations appear to be the primary channel for these improvements in health, and 

                                                 
3 This figure partials out day-of-week fixed effects since additional electricity generation on weekdays adds visible 
weekly cycles to the image, although the overall picture is unchanged in the raw data. 
4 “Winter” in this paper refers to the combined months of January-April and October-December. Much of the 
decline in NOx emissions occurred because several large and dirty coal-fired electricity generating units installed 
selective catalytic reduction systems—a technology which sprays ammonia or urea into flue gas and then passes the 
gas through a honeycomb-like catalyst made of vanadium, tungsten, or other materials, to remove over 70% of NOx 
emissions. Because these technologies have nonzero operating costs, units begin operating them around May 1 and 
stop around September 30. Part of the operating cost comes from the “heat rate penalty” of selective catalytic 
reduction—the fact that they require some electricity to operate. This penalty is between one-twentieth of a percent 
and six-tenths of one percent (USEPA 2010, p. 5-11), so is too small to appreciably affect the total heat input or 
gross electricity generation. 



5 
 

instrumental variables estimates let us quantify the willingness to pay to avoid health-related 

costs of ozone pollution. 

Several placebo tests support the research design.  The market had no effect on non-

regulated pollutants.  Furthermore, it did not affect health conditions that are plausibly unrelated 

to air quality. 

In addition to providing new evidence on the empirical importance of defensive 

expenditures, this paper makes several contributions.5  First, we are unaware of other studies that 

demonstrate the impact of an emissions market on ambient pollution and human health with real 

world data. Most evaluations of emissions markets combine engineering models of emissions 

abatement, atmospheric chemistry models of pollution transport, and epidemiological models of 

dose-response functions (e.g., Mendelsohn & Muller 2009).6 

Second, this study provides the first test of whether the ex ante predictions of an air 

quality model fit the ex post effects of the market. Several economics papers (e.g., Bayer, 

Keohane, and Timmins 2008; Shadbegian, Gray, and Morgan 2007) and scores of annual 

regulations – including most of the Clean Air Act and its subsequent amendments – are based on 

atmospheric chemistry models which calculate how emissions of pollution from one source 

affect ambient pollution concentrations elsewhere. We are able to test how the predictions of one 

leading model compare against the actual results of the market. 

Third, the results should be useful for policymakers.  National Ambient Air Quality 

Standards for ozone have changed repeatedly since the Clean Air Act—more than for any other 

                                                 
5 There is an emerging empirical literature that aims to measure defensive investments. Neidell (2009) and Graff-
Zivin and Neidell (2009) show that pollution alerts cause people to avoid outdoor zoos and baseball games, and that 
hot or cold days decrease outdoor leisure time. Graff-Zivin, Neidell, and Schlenker (2011) document an association 
between bottled water purchase and violations of water quality standards. Research has also provided indirect 
evidence of defensive behavior—Moretti and Neidell (2009) show that in Los Angeles, ozone created by the arrival 
and departure of large boats has a larger effect on emergency department admissions than does non-boat ozone 
pollution. Deschênes and Greenstone (forthcoming) show that people use additional electricity, presumably for air 
conditioning, on extremely hot days when mortality risks are elevated. We also build on Dickie and Gerking (1991), 
who use data on medical expenditures for 226 persons to find that residents of Los Angeles have substantial 
willingness-to-pay to decrease ozone pollution. Research has also explored the potential of markets to account for 
different social damages across each individual NOx emitters (Mauzerall et al. 2005; Fowlie and Muller 2010). 
6 This study builds on research exploring how emissions markets affect abatement costs and pollution emissions. 
Several analyses show that the Acid Rain Program – an emissions market for SO2 – decreased abatement costs 
(Carlson et al. 2000, Schmalensee et al. 1998). Several papers have studied abatement costs and investment 
incentives of both the California RECLAIM market for NOx and the NOx market studied here (Fowlie 2010a, 
Fowlie 2010b, Fowlie and Perloff 2010, Fowlie, Knittle, and Wolfram 2010). Fowlie, Holland, and Mansur (2009) 
also show that RECLAIM decreased in NOx emissions relative to emissions from similar facilities outside the 
market area. 
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pollutant except particulates.7 These standards have changed partly because there is substantial 

uncertainty about how ozone affects health (NRC 2008).8  Epidemiological research has found a 

relationship between short-term ozone pollution and mortality (Bell et al. 2004 and 2005; Ito et 

al. 2005; levy et al. 2005). However, Currie and Neidell (2005) find no ozone-mortality, 

relationship, and other economic research finds conflicting evidence on the effect of ozone on 

hospitalizations (Neidell 2004; Moretti and Neidell 2009; Lleras-Muney forthcoming).9  

The rest of this paper is organized as follows. Section II reviews the main aspects of 

ozone formation and provides details on the NOx Trading Budget Program. Section III presents a 

simple economic model of defensive investments in response to exposure to pollutants.  Section 

IV describes the various data sources and the construction of the analysis sample. Section V 

discusses the econometric models used in the study. Section VI reports the results, Section VII 

discusses interpretation of the findings, and Section VIII presents calculations on the aggregate 

costs and health benefits of the NOx Trading Budget Program. Section IX concludes. 

 

II. Ozone and the Emissions Market 

A. Ozone 

The Clean Air Act was designed to control ambient levels of ozone and five other pollutants 

which harm health.10 Ozone differs from the other pollutants in three ways that are important for 

our analysis. 

First, polluters do not emit ozone directly. Instead, ozone forms through a complex 

nonlinear function combining two chemical precursors – nitrogen oxides (NOx) and volatile 

organic compounds (VOCs) – with sunlight and heat. The market we study operates only in 

                                                 
7 The original 1971 1-hour ozone standard of 0.08 ppm increased to 0.12 ppm in 1979. An 8-hour standard of 0.08 
ppm was proposed in 1997 then litigated until the Supreme Court supported its legality in 2001. This 8-hour 
standard came into force in 2004. In 2008 the Bush administration proposed a new 8-hour standard of 0.075. In 2010 
the Obama administration withdrew the .075 proposal and instead proposed decreasing the ozone standard to 
between 0.06 and 0.07 ppm. The EPA has announced numerous delays in deciding the exact level between 0.06 and 
0.07. 
8 In contrast, there is more robust evidence indicating that airborne particulate matter increases mortality rates (Pope, 
Ezzati, and Dockery 2009; Chay and Greenstone 2003a and 2003b; 
9 Evidence relying on observational association links long-run exposure to ozone with increased mortality (Jerrett et 
al. 2009). This evidence produces a larger ozone-mortality relationship than that found in daily time-series studies 
like Bell et al. (2004). 
10 Ground-level ozone should not be confused with ozone in the upper atmosphere, which improves health by 
blocking ultraviolet radiation from the sun and preventing skin cancer. There is little relationship between the two 
except that in rare cases, high-altitude cities experience increased levels of surface ozone when an “atmospheric 
inversion” occurs and stratospheric ozone drops to ground levels. 
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summer because winter ozone levels in the Eastern U.S. are low, and ozone spikes to high peaks 

on hot and sunny days. 

Second, the health consequences of ozone are believed to occur from short-term exposure 

to high levels. Ozone regulation has targeted these peak exposures, rather than focusing on mean 

ozone levels. For example, the National Ambient Air Quality Standards for ozone only reflect 

the highest few readings of the year. Hence, this market is most likely to affect health if it 

truncates the right tail of the ozone distribution. Research has found effects of ozone on 

cardiovascular and particularly respiratory health (Lippman 2009).11 

Third, when this market began, national ozone levels had hardly changed since the Clean 

Air Act. By contrast, concentrations of all five other “criteria” pollutants decreased by large 

amounts between 1973 and 2002 (USEPA 2008). During this period, the EPA imposed 

numerous regulations on businesses to decrease VOC and NOx emissions. This muted effect of 

existing ozone regulations set the stage for an emissions market as a new approach to decrease 

ozone.  

B. NOx Budget Trading Program 

The NOx Budget Trading Program (NBP) grew out the Ozone Transport Commission 

(OTC), a group of Northeast States which developed in the 1990s. Studies commissioned under 

the OTC found that ozone levels remained high in the Northeast US partly because NOx 

emissions from the industrial Midwest produced ozone in the Northeast (OTC 1998). The OTC 

led to a version of the NOx Budget Program which operated in 1999-2002 and produced small 

declines in summer NOx emissions.12  The OTC then created a more stringent version of the NOx 

Budget Program which began in 2003 and which operated until 2008. We focus on the 2003-

2008 period.13 The market included 2,500 electricity generating units and industrial boilers, 

although the 700 coal-fired electricity generating units in the market accounted for 95 percent of 

all NOx emissions in the market (USEPA 2009b).  

                                                 
11 In response to forecast high-ozone days, Los Angeles and many other areas issue “smog alert days” which 
encourage sensitive groups to avoid outdoor air (Graff-Zivin and Neidell 2009).  Ozone levels indoors are typically 
lower than ozone levels outdoors.  
12 This market also goes under the name NOx SIP Call. This smaller market also operated in May-September, 
although as Figure 1 illustrates, it did not produce large differences in summer and winter NOx emissions. 
13 In 2009, the Clean Air Interstate Rule (CAIR) replaced this market. CAIR included both a summer “ozone 
season” emissions market, and a separate market for winter NOx emissions. Designers of the winter market intended 
it to decrease ambient concentrations of particulates. The EPA Transport Rule is now replacing CAIR.  
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The market was implemented partway in 2003 and fully in 2004. The 2003-2008 

emissions market originally aimed to cover the 8 Northeast states plus Washington DC (which 

were the focus of the OTC), plus 11 additional Eastern states. Litigation regarding abatement 

costs in the Midwest, however, delayed implementation in the 8 additional states until May 31 of 

2004.14 Accordingly, the EPA allocated about 150,000 tons of NOx allowances in 2003, 650,000 

tons in 2004, and about 550,000 tons in the years 2005-2008. Many firms banked allowances—

in each year of the market, about 250,000 tons of allowances were saved unused for subsequent 

years (USEPA 2009a). Before the NBP began, about half of NOx emissions in the Eastern US 

came from electricity generation and industry—the rest were from mobile and other sources. 

About a fourth of NOx emissions in the East came from these stationary sources following the 

establishment of the NBP (USEPA 2005). 

Each state received a set of permits and chose how to distribute those permits to affected 

sources (Fowlie 2011). Once permits were distributed, affected sources could buy and sell them 

through open markets. A single emissions cap affected the entire market region, though firms 

could bank allowances for any future year.15 At the end of each market season, each source had 

to give the EPA one allowance for each ton of NOx emitted. Seventy percent of units complied 

by using emissions controls (e.g., low NOx burners or selective catalytic reduction), and the 

remainder complied exclusively by holding emissions permits (USEPA 2009b).16 The mean 

permit price was $2080 per ton of NOx, which we use to establish an upper bound on NOx 

emissions.17 

   

III. Model of Willingness-to-Pay 
                                                 
14 In 2003 the emissions cap applied to Connecticut, Delaware, Maryland, Massachusetts, New Jersey, New York, 
Pennsylvania, Rhode Island, and DC. In 2004, it also began applying to Alabama, Illinois, Indiana, Kentucky, 
Michigan, North Carolina, Ohio, South Carolina, Tennessee, Virginia, and West Virginia. Missouri entered the 
market in 2007. Georgia was initially slated to enter the market in 2007 but the EPA eventually chose to exclude 
Georgia. 
15 Unused allowances from NBP could be transferred to the CAIR ozone season program. 
16 This paper compares emissions and outcomes in summer versus, so its research design depends on the idea that 
firms operate NOx abatement technologies in summer but not winter. Although we show empirically that emissions 
decreases happened in summer but not winter, it is worth noting that many abatement technologies have substantial 
operating costs (Fowlie 2010) which lead firms to use these technologies only in summer.  
17 Relatively dirty units in this market have NOx emissions rates around 5 lbs NOx / MWh electricity generated. At 
mean NOx permit prices of $2080/ton NOx, this implies the units pay a cost of about $5/MWh, or about 10 percent 
of their typical electricity prices. In most years, fewer than 5 units of the 2,500 in the market (i.e., less than two-
tenths of a percent) had insufficient allowances to cover their emissions. For each uncovered ton of emitted NOx, 
these units had to provide three times as many allowances in the following year (i.e., if a unit emitted 50 tons 
without allowances in one year, it had to provide 150 additional allowances in the following year). 
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We use a simple theoretical model built on Becker (1965), Grossman (1972), Cropper and 

Freeman (1991), and Freeman (2003) to highlight the role of defensive investments in the 

measurement of willingness-to-pay for clean air. This model shows that accurate measurement of 

willingness-to-pay requires knowledge of both how pollution affects health outcomes like 

mortality and how it affects defensive investments that maintain health, but otherwise generate 

no utility, like medications.  

Assume the sick days s(d) which a person suffers depends on the dose d of pollution she 

is exposed to. The ingested dose d(c,a) depends on the ambient concentration c of the pollutant 

and on the defensive behavior a. Substituting provides the following health production function: 

(1) s=s(c,a) 

People gain utility from consumption of a general good X (whose price is normalized to 

1), leisure f, and health. Budgets are constrained by non-labor income I, the wage rate pw, 

available time T, and the price pa of defensive investments.  

 maxX,f,au(X,f,s) s.t. I+pw(T-f-s)�X+paa 

The implicit function theorem lets us derive the demand function a*(I,pw,pa,c) for defensive 

investments. This problem has three first-order conditions for an interior optimum which play an 

important role in the final result:18 

(2) λ=∂∂ Xu /  

(3) wpfu λ=∂∂ /  

(4) w
a p

su
as

p −∂∂=
∂∂ λ

/
/

 

In these first-order conditions, the Lagrange multiplier � lets us monetize the benefits of time and 

health. Condition (2) shows that � equals the marginal utility of money. Condition (3) shows that 

the monetized marginal utility of leisure equals the wage rate. Condition (4) shows that defenses 

are purchased at the market price pa until their cost equals the additional monetized value of the 

health and work time they provide. 

                                                 
18 If all patients were at corner solutions – if some patients purchased no medications and others would purchase the 
maximum available dosage even with moderate changes in air quality – then this emissions market might not induce 
changes in medication purchases. But for asthma medications at least, stronger dosages generally have higher costs, 
and more powerful medications also typically have higher costs. The most costly drug (omalizumab, also known as 
xoliar), for example, which is used to treat rare cases of unusually severe asthma, costs over $10,000 for a year’s 
treatment, and appears rarely in the data. Hence changes in air quality could induce changes in medication purchases 
for many people. 
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Rearranging the total derivative of the health production function (1) gives the following 

expression for the partial effect of ambient pollution on sick days: 

(5) �
�

�
�
�

�

∂
∂

∂
∂−=

∂
∂

c
a

a
s

dc
ds

c
s *

 

Equation (5) combines the effect of pollution on health in the absence of defenses, and the 

preventative effect of defenses. A parameter like �s/�c is reported in Currie and Neidell (2005) 

for schoolchildren. This is purely a health parameter—without additional information, it does not 

represent utility in monetary terms. 

 To express the marginal willingness to pay for clean air wc in dollars, we manipulate the 

previous expressions to obtain the following decomposition: 

(6) �
�

�
�
�

� ∂∂−��
�

�
��
�

�

∂
∂+�

�

�
�
�

�=
dc
dssu

c
a

p
dc
ds

pw awc λ
/*

 

Expression (6) shows that the marginal willingness to pay for clean air includes three terms. The 

first is the effect of pollution on productive work time, valued at the wage rage. The third is the 

disutility of sickness, valued in dollars. This third component includes mortality. The second is 

the cost of defensive investments, valued at their market price. This second component is the 

aspect of willingness-to-pay which existing research has not measured. It is important to note 

that medications are not a complete measure of defensive investments against air pollution. 

However, given that medications cost more than mortality, emergency visits, or any other 

components of asthma’s social costs (Weiss & Sullivan 2001), they represent an important 

component of defensive investments. 

  

IV. Data 

This analysis has compiled an unprecedented set of files to assess the impacts of the NOx 

Budget Program. To the best of our knowledge, this study represents the first time any analysis 

has linked health data directly to emissions and air quality measures in order to evaluate an 

emissions market. We compile high frequency data on medications, emergencies, mortality, 

pollution emissions, ambient pollution, and weather in the period 2001-2007. The analysis 
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excludes Alaska, Hawaii, and states adjacent to the NBP participating states, which have 

ambiguous treatment status given the potential of pollution to cross state borders.19 

The US has no national census of local medication purchases, and so we use the best 

available alternative—confidential data on medication and hospital admissions from the 

Thompson Reuters MarketScan Research Database. MarketScan contracts with large employers 

to obtain all insurance-related records for their employees. The data include insured spouses and 

dependents of the worker. The data report the county of the purchaser’s home, the purchase date, 

the National Drug Code (NDC) of the medication, and the money paid from the consumer and 

insurer to the provider of each medication. An NDC is a unique identifier for a chemical 

compound, manufacturer, and package type, which helps us identify the medical condition 

associated with each medication. Each observation in these data represents a prescription or 

refill. Data on the transacted payment for medications, rather than the market price, provides 

useful information because few patients or insurers pay listed prices for medications. 

We use data from all persons in the 16 firms which appear in all seven years 2001-2007 

of MarketScan. This extract includes over 22 million person-season year observations, and over 

100 million separate medication purchases.20 The MarketScan extract has persons in almost all 

U.S. counties. Because the distribution of persons across counties is skewed, we report all values 

as rates per 1,000 people, and use generalized least squares (GLS) weights equal to the square 

root of the relevant MarketScan population.21  

Medications, unlike hospital visits or death counts, are not linked to a single International 

Classification of Disease code (e.g., ICD9). We define an NDC as respiratory if it satisfies any of 

three criteria: if it is listed in the Third Treatment Guidelines for Asthma (NHLBI 2007), in a 

recent New England Journal of Medicine guide to asthma treatment (Fanta 2009), or in the 

standard industry publication for medication characteristics (PDR 2003 and 2006) as indicated 

                                                 
19 The main analysis excludes Alaska, Georgia, Hawaii, Iowa, Maine, Mississippi, Missouri, New Hampshire, 
Vermont, and Wisconsin, though the Appendix reports similar estimates with other sample selection rules. 
20 The appendix reports estimates from a balanced panel of about 600,000 persons in these firms who appear in all 
years. For confidentiality reasons MarketScan does not identify the 16 firms. The firms do cover much of the 
economy—the complete MarketScan dataset identifies each firm with one of seven sectors, and the 16 firms include 
at least one from each of the seven sectors. 
21 MarketScan is not a random sample. On one hand, it represents people employed in large firms, who might have 
better health than the average American and so respond less to changes in air pollution. On the other hand, persons 
in MarketScan can buy costly respiratory medications at low copayment rates, so the response of their medication 
purchase rates to air pollution might exceed that of the average American. Additionally, emergency department 
visits may be more likely among uninsured and elderly Americans, and MarketScan has no data on either group. The 
exclusion of the elderly may be particularly important since we find the largest mortality impacts for the elderly. 
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for asthma, emphysema, bronchitis, or chronic obstructive pulmonary disorder. We identify 

cardiovascular, neoplasm, and gastrointestinal medications by their corresponding therapeutic 

groups in Red Book.22 This broad approach to identifying respiratory drugs is the most 

appropriate we can discern. Nonetheless, because doctors regularly prescribe medications to treat 

conditions for which the medications are not indicated, it remains likely that some of these 

medications were prescribed for non-respiratory conditions, and that medications prescribed for 

respiratory conditions are not in this list. 

We count hospital admissions as including all inpatient episodes plus all emergency 

outpatient episodes. We follow procedures in the MarketScan guide (Thompson Healthcare 

2007, p. 59) to extract emergency department admissions from outpatient claims files. We define 

a hospital visit as respiratory if the either of the two ICD9 diagnosis codes is in the range 460-

519. When a hospital visit has several associated procedures each with its own ICD9 code, we 

take the mode procedure. Our measure of hospital costs includes all charges from the hospital to 

the insurer and patient. 

To measure mortality, we use restricted-access data on the universe of deaths in the 2001-

2007 period. These Multiple Cause of Death files (MCOD) come from the National Center for 

Health Statistics (NCHS) and were accessed through an agreement between NCHS and the 

Census Research Data Centers. These files contain information on the county, cause of death, 

demographics, and date of each fatality.23  

To measure pollution emissions, we extract daily totals of unit-level NOx, SO2, and CO2 

emissions for all states from the EPA’s Clean Air Markets Division.24 These emissions are the 

quantities for which firms must hold emissions permits in this cap-and-trade market, so they are 

the most accurate measure available. In 2008, ninety-seven percent of emissions came from units 

with continuous emissions monitoring systems. The EPA audits all of these data to verify their 

accuracy and internal consistency, and we believe the emissions data have little measurement 

                                                 
22 Red Book has no category for respiratory medications. The therapeutic groups we extract are Antineoplastic 
Agents; Cardiovascular Agents; and Gastrointestinal Drugs. Medication purchase rates are skewed and relatively 
few county-season values equal zero, so the main tables report medication regressions in logs, with values of zero 
excluded from the regressions. Appendix Tables 1-3 show alternative specifications for medications and other 
response variables.  
23 Since 1968, the MCOD files provide information on all deaths occurring in the United States. However, 
information on exact date of death is only available in the public-use data for 1972-1988. 
24 Electricity generating units did not report high-frequency measurement of mercury, particulate matter, toxics, or 
other emissions in this time period. Other data sources for emissions of these other pollutants have inadequate data 
to use in this research design.  
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error. Units which are part of the Acid Rain Program must report NOx emissions throughout the 

year, while units in NBP only must report NOx emissions in the May 1 – September 30 period. 

Because we compare summer versus winter, estimates in the paper use only data from Acid Rain 

Units. However, in the 2001-2007 period, units in NBP and not in the Acid Rain program 

represent a tiny share of NOx emissions.  

 We use a few criteria to select ambient pollution monitoring data from the EPA’s detailed 

Air Quality System. Many pollution monitors operate for only part of a year and for part of the 

2001-2007 period. Many ozone monitors operate only in the May-September months. Moreover, 

monitors operate more when ozone levels increase (Henderson 1996). Many monitors for fine 

particulates (PM2.5) record pollution only 1-2 times per week. To address the incompleteness of 

these measures, for each pollutant, the main analysis uses monitors which have valid readings for 

at least 47 weeks in all years 2001-2007. This fairly strenuous selection rule restricts our data to 

include only the most reliable monitors—it excludes monitors which operate only during 

summer, or which operate depending on weekly ozone and weather levels, or which have 

frequent technical problems. Appendix Table 1 shows that we obtain similar results with other 

monitor selection rules. For ozone, we focus on a concentration measure which the EPA 

regulates—for each day, we calculate an “8-hour value” as the maximum rolling 8-hour mean 

within the day.25  

We also compiled weather data from records of the National Climate Data Center 

Summary of the Day files (File TD-3200).  The key control variables for our analysis are the 

daily maximum and minimum temperature, total daily precipitation, and dew point temperature.    

To ensure the accuracy of the weather readings, we developed a rule to select the weather 

stations that requires monitors to operate for a minimum number of days.  The acceptable 

station-level data is then aggregated at the county level by taking an inverse-distance weighted 

average of all the valid measurements from stations that are located within a 200 km radius of 

each county’s centroid, where the weights are the inverse of their squared distance to the centroid 

so that more distant stations are given less weight.  This results in a complete weather by county-

day files that we can link with the other files in our analysis  

                                                 
25 Mean ozone is calculated between midnight and 8 am, 1 am and 9 am, etc. The maximum of these values in a 
given day is defined as the “8-hour value” for that day. For each pollutants, we calculate ambient levels in each 
monitor-day, then the unweighted average across monitors in each county-day, and finally aggregate up to county-
season. All regressions are GLS based on the total number of underlying pollution readings. 
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Table 1 shows that emissions, weather, and mortality data are available for all 2,539 

counties in our sample. Medication and hospitalization data are available for 95 percent of these 

counties. Ambient ozone data are only available for 158 counties, PM2.5 data in 256 counties, and 

data on other pollutants in similar numbers of counties. The smaller sample for pollution than for 

health leads us to use two-sample instrumental variables to measure how ozone affects health, as 

the next section explains. 

Summary statistics in Table 1 also provide a benchmark to measure the economic 

importance of medications and the emissions market. In summer, ozone averages 48 ppb. The 

proposed EPA air quality standard stipulates that a county can have no more than 3 days over a 

total of three years which exceed 60-70 ppb. Table 1 shows that during the sample period, 23 

days every summer exceed 65 ppb. The average person spends $339 per summer on medications, 

and about $500 on hospital admissions. Six to nine percent of medications, emergency 

department admissions, and deaths occur due to respiratory causes. Cardiovascular causes 

represent about 20 percent of total hospitalization and medication costs, and about 36 percent of 

deaths. 

The summary statistics also show why the observational associations between ozone and 

health may reflect unobserved variables. Columns (4) through (10) of Table 1 divide all counties 

with ozone data into two sets—one set of counties with mean summer ozone above the national 

median (“high ozone”), and a second with mean summer ozone below the national median (“low 

ozone”). Row 1 shows that counties with high regulated NOx emissions are slightly 

underrepresented  in the high-ozone counties, which highlights that NOx primarily creates ozone 

in counties other than where it is emitted. All pollutants except carbon monoxide have 

significantly higher levels in the high-ozone counties. Temperature, precipitation, and dew point 

temperature have lower levels in high-ozone counties.26 The finding that so many of these 

observed county characteristics covary with ozone suggests that that an observational association 

of ozone with health is likely to reflect the contributions of other unobserved variables. This 

implication of Table 1 underscores the need to distinguish the effect of ozone on health from the 

effects of the other possible confounders. 

 

                                                 
26 The cross-sectional comparison of temperatures between high- and low-ozone counties partly reflects the high 
ozone levels in the relatively cold Northeast. 
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V. Econometric Model 

We use a differences-in-differences-in-differences (DDD) estimator to isolate the causal effects 

of the emissions market on pollution and health, and to measure the “structural” effect of ozone 

on health. This estimator exploits three sources of temporal and geographical variation in the 

emission and health data. First, we compare pre versus post NBP enactment. Eight states plus 

DC began this market in 2003 while the remaining 11 states began in 2004. This market did not 

operate before 2003. Second, we compare East versus West. We include all 19 states plus DC as 

“East.” Third, we compare summer versus winter.27  

Hence we estimate the following model: 

(7) cstcsstctcsttsccst WPostSTY ενηµβγ +++++= '
1  

In this model, the outcomes Y vary by county c, season s, and year t. We define s as a binary 

indicator for May 1-September 30. Because the NBP market stated partway in 2003, we define 

Post=0.5 in 2003 and Post=1.0 in 2004 through 2007. 

Because ozone formation depends on weather conditions, the matrix of weather controls 

Wcst includes measures of precipitation, temperature, and dew point temperature (a measure of 

humidity). For temperature and humidity, we calculate 20 quantiles of the overall daily 

distribution.28 For each county-season-year observation in the data, we then calculate the share of 

days which fall into each of the 20 quantiles. 

The set of fixed effects �ct for each pair of county and year form an important control 

variable. These fixed effects adjust for annual unemployment, manufacturing activity, health 

insurance, government policy, and all other factors which vary within a county and year. The use 

of these fixed effects implies that all regressions in this paper are comparing across summer and 

winter, within a county and year.  

The season-by-year fixed effects �st make this within-county-year comparison between 

the East and West. Finally, the county-by-season fixed effects �st allow the summer versus winter 

differential to vary across counties. By including all three sets of two-way fixed effects �ct, �st, 

                                                 
27 The abrupt beginning and end of the market on May 1 and October 1 makes a daily regression discontinuity 
estimator seem appealing. However, because ozone in the Eastern US mainly reaches high levels in July and 
August, the market is likely to have small effects on April 30 or October 1, and we detect no change in mean daily 
pollution in small windows around these dates. Auffhammer and Kellogg (forthcoming) analyze daily ozone effects 
of gasoline regulation in California. 
28 The lower quantiles of the precipitation distribution all equal zero, so for simplicity we specify the precipitation 
control as the mean level of precipitation in each county-year-summer. 
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and �st, we adjust for all variation in the response variable except variation occurring at the 

county-by-season-by-year level, which is the level at which the emissions market operated. 

For each outcome we report the parameter �1, which represents the market’s reduced-

form impact on Y. For example, in regressions where ozone is the response variable, �1 represents 

the effect of the market on ozone. 

We also report variants on this approach. Equation (7) is not the only implementation of a 

triple-difference estimator—other versions can change the level of county, year, and season 

controls, and the detail of weather controls. The main tables report equation (7) along with three 

variants, and Appendix Tables (1)-(4) report additional variations. 

 Given the potential for temporal and spatial autocorrelation, we use a few approaches for 

inference. Pollution and health data are available for each county. States decided whether to enter 

the market, but the market only affected pollution in summer. So in main tables we report 

regressions clustered by state-season. Appendices report estimates allowing for arbitrary 

autocorrelation within counties, states, state-years, and county-seasons. 

 Although our tables focus on the triple-difference parameter �1 from equation (6), 

separate measures of the market’s effect in each year provide additional useful information. 

Hence, for most outcomes, we graph the parameters �2002… �2007 from the following model: 

(8) cststctcstsc
t

tsctcst WSTYSTY εηµβαα +++++= �
=

'
2

2007

2002

 

These “event study” graphs permit a visual test for pre-trends and for the effect of the market. In 

these graphs, the value �2001 represents a reference category set to zero.29 

 Because the set of available MarketScan firms increases substantially in the year 2001, 

we begin the analysis in most figures and tables in 2001. However, mortality data are available 

beginning in 2000, so mortality results also show estimates using a sample which begins in 2000. 

 The triple-difference estimators test the main hypotheses of the paper—they measure 

whether defenses are an economically important response to changes in air quality; they apply a 

new way to evaluate emissions markets; they let us quantify the benefits of this specific 

emissions market; and they let us evaluate the accuracy of an air quality model. However, the 

                                                 
29 Medication data for this panel of firms only becomes available beginning in the year 2001, whereas mortality and 
pollution data are available beginning in 1997. For mortality and pollution, we report results both using the 1997-
2007 and the 2001-2007 periods, whereas for medications we reports results for the 2001-2007 period. 
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one goal the triple-difference estimators do not achieve is to measure the costs of ozone 

specifically, as distinct from other pollutants.  

Because the market targeted ozone pollution, it can provide a plausible instrumental 

variable to measure how ambient ozone affects health. Hence, we also report two-stage least 

squares estimates of the impact of ozone on mortality and on medication purchases. In these 

regressions, we instrument for ozone pollution with the triple-difference term, TcSsPostt. 

 

VI. Results 

A. Emissions 

The NOx Budget Trading Program legally required affected units to reduce NOx emissions, so it 

is unsurprising that the market decreased NOx emissions. At the same time, many analyses of 

pollution regulations compare emissions levels in a recent year against levels that would be 

present without the 1990 Clean Air Act Amendments (e.g., USEPA 2009). Such comparisons 

make it difficult to identify the contribution of a specific recent policy to total emissions.  

Figure 2 illustrates the tremendous impact of the NBP on NOx emissions. The figure 

shows the unadjusted summer-equivalent NOx emissions, by year (before and after NBP 

operation) by season (winter and summer) and by region (Eastern and Western state).30 The first 

key point is that emissions in the Western states are unaffected by the NBP, as shown by the 

smooth and moderate downward trend in both winter and summer emissions.  In comparison, the 

NBP lead to a sharp and discontinuous reduction in summer emissions, starting in 2003 when the 

emissions market began in 8 Northeastern states and DC.  As a result, summer NOx emissions 

declined by about 20 percent in the summer of 2003, and another 20% starting in May 2004, 

when the market added 11 more Eastern states.31 Additionally, winter emissions continued to 

decline on their gradual downward pre-2003 trend. In short, NOx emissions declined in exactly 

the areas, months, and years that the emissions market design would predict.  

Regression analogues of these graphs in Table 2 show similar patterns. Like most 

subsequent tables, Table 2 presents four specifications of each regression, so we explain them 

here. Column (1) includes no weather controls and three sets of two-way fixed effects. Because 

                                                 
30 We express the data as summer-equivalent since the summer period has 5 months while the winter period has 7 
months.  
31 In 2004, the new states entered the market on May 31, 2004 while the original states began the market on May 1. 
In subsequent years, the market began in all states on May 1, 2004. 
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of our concern with harvesting, it uses summer-by-year fixed effects rather than county-by-year 

fixed effects. Column (1) implies that the market decreased NOx emissions in the average county 

by 364 tons per summer.  Column (2) adds the full set of binned weather controls. The weather 

controls increase the point estimates slightly, although the estimates remain precise. Column (3) 

replaces state-by-year fixed effects with county-by-year fixed effects, which is the most precise 

control the data allow. The point estimates remain unchanged. Finally, column (4) drops the 

years 1997-2000 and forces the sample to begin in 2001, since the medication and hospitalization 

data only include the period 2001-2007. These results for emissions are unchanged in numerous 

alternative specifications (Appendix Table 1).  

We also measure whether the market affected emissions of pollutants other than NOx. 

Two economic reasons explain why the market might have affected emissions of such 

copollutants. If permits for NOx emissions cost enough that the market caused relatively clean 

natural gas units to displace electricity generation from relatively dirty coal-fired units, then the 

market could have decreased emissions of pollutants other than NOx. Second, complementarity 

or substitutability of NOx with other pollutants in electricity generation could lead units to 

change emissions of other pollutants. Any effect of the market on emissions of copollutants, 

however, would imply that the market could have affected health through channels other than 

ozone. Such a finding would violate the exclusion restriction required for the market to serve as a 

valid instrumental variable for ozone.  

The data provide little evidence that the market affected emissions of copollutants. 

Columns (1) through (3) of Table 2 show that NBP had no impact on emissions of SO2 or CO2.32 

The estimated size effects (point estimate over the mean of the dependent variable) for the 

copollutants are all close to zero. We precisely estimate a 35 to 38 percent decrease in NOx 

emissions.  In contrast, the estimates imply only a statistically insignificant decrease in SO2 or 

CO2 emissions of about 2%. The estimates become more precise when the sample is limited to 

begin in 2001, and suggest that the market led to small decreases in SO2 or CO2. To assess the 

importance of these changes, subsequent tables measure how the market affected ambient 

pollution.  

 

                                                 
32 CO2 emissions have no local effect on health, and they are only monitored to measure their contribution to climate 
change. But an impact of the market on CO2 emissions could indicate that units changed emissions of mercury, toxic 
chemicals, or other pollutants. We also detect no effect of the market on total electricity generation. 
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B: Ambient Pollution 

 Figure 3 shows how this emissions market affected ambient pollution levels. Panel A 

shows an event study for ambient ozone, and Panel E extends it to the full 1997-2007 period.33 It 

adjusts for weather and plots the difference between ozone levels in the Eastern and Western US, 

with the first year normalized to zero. Before 2003, the East and West had roughly similar 

trends, suggesting that this research design provides a credible counterfactual to measure the 

impact of the market on ozone. The vertical line in 2003 marks when the market began. In 2003, 

when the market limited emissions from 8 Northeastern states plus DC, mean ozone levels 

dropped by 3 ppb. In 2004-2007, when the market restricted emissions in 11 additional Eastern 

states, ozone levels dropped an additional 1 ppb.  

 Because epidemiological evidence finds that ozone has a non-linear dose-response 

function, we also analyze the market’s impact on the density function for daily ozone 

concentrations.34 Panel B of Figure 3 divides the support of the daily 8-hour ozone distribution 

into 11 bins. The first bin, for example, counts the share of summer days with ozone between 0 

and 10 ppb. The second bin counts the share of summer days with ozone between 10 and 20 ppb.  

The remaining bins are defined similarly. The thick line shows the estimated effect of the market 

on the share of summer days in each bin, while the dashed lines show the 95% confidence 

interval. The three vertical lines at 65, 75, and 85 ppb represent the three different levels where 

the EPA has set National Ambient Air Quality Standards for ozone in recent years.35 

 Panel B of Figure 3 shows that the emissions market affected ozone in exactly the part of 

the ozone distribution which epidemiology suggests harms health. The market reduced the share 

of days with ozone between 65 and 100 ppb and increased the share of days with ozone between 

10 and 60 ppb. Panels C and D present the same data recalculated to show the effect of the 

market on the number of days in a typical summer with ozone in each of the 11 bins. In a typical 

                                                 
33 Appendix Table 5 shows the regression values for event study graphs. 
34 The market’s impact on the right tail of ozone is difficult to predict ex ante. On one hand, because the market 
price of NOx emission permits is roughly constant throughout the summer and the wholesale price of electricity 
spikes on high-pollution days, one could have expected the market to have the least effect on the right tail of ozone. 
At the same time, the nonlinearity of ozone formation in its precursors, the differing abatement strategies used by 
various electricity generating units, and the ability of NOx to be deposited several days after it is emitted make it 
possible that the market could have mainly affected the upper tail of the ozone distribution. This ex ante ambiguity 
provides an additional motivation to examine the market’s impact on the ozone distribution. 
35 These bins are response variables, and each bin estimate results from a separate regression. Although the sum of 
bin-specific effects must add up to zero, we do not need to normalize any bin to zero. This differs from the use of 
bins as explanatory variables (e.g., Deschênes and Greenstone 2010). 
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summer, this market caused an average county in the Eastern US to have 8 fewer days with 

ozone between 70 and 90 ppb. It produced smaller decreases in the number of days with ozone 

above 90 ppb. 

Table 3, which measures how the market affected ambient pollution, reveals large and 

precisely estimated effects of the emissions market on ozone. As reported in the richest 

specifications of columns (3) and (4), the market significantly decreased mean summer ozone in 

the Eastern US by about 6 percent. The market also decreased the number of days with ozone 

above 65 ppb – the level believed to harm health – by about 25 percent.  

 We measure the effect of the market on pollutants other than ozone for two reasons. First, 

these estimates measure reduced-form effects of the emissions market, which is important in any 

ex post evaluation of the market. In particular, the ex ante estimates of the market’s impact on 

mortality were largely predicted to occur due to reductions in particulates, so it is important to 

know whether these effects occurred.  Second, the validity of the NBP as an instrumental 

variable for ozone depends on an exclusion restriction. If the market affected health through any 

channel other than ozone, then an instrumental variables estimator will not consistently estimate 

the ozone-health relationship. Because pollutants other than ozone are a plausible channel 

through which the market can affect health, we test whether the market affected ambient 

concentrations of such pollutants. 

Table 3 shows that with the exception of NO2, which is a byproduct of NOx and which 

has limited health effects, the market had no effect on any pollutant besides ozone. Because 

electricity generation contributes substantially to all the pollutants in Table 3 except Carbon 

Monoxide (CO), and because this market was among the most important air quality regulations 

for electricity generation in this period, this finding is striking.  

Emitted NOx produces ozone but can also undergo atmospheric reactions to produce 

nitrogen dioxide (NO2), a pollutant subject to its own regulations. Table 3 shows that the market 

decreased ambient NO2 levels by about 7 percent.  

Carbon monoxide (CO) emissions come primarily from transportation and this market 

should not affect them. Unsurprisingly, Table 3 reveals no impact of the market on CO levels. 

 Table 3 also shows small and statistically insignificant effects of the market on 

particulates, which is particularly surprising. Taken literally, these numbers imply that the NBP 

decreased levels of particulates smaller than 2.5 microns (PM2.5) by 2.5 percent relative to the 
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baseline mean, and it decreased levels of particulates smaller than 10 microns (PM10) by 3.1 

percent.36 Among all the pollutants in this study, current research suggests that PM2.5 is the most 

harmful to health, and more monitors record PM2.5 than record any other pollutant, including 

ozone. The estimate for PM2.5 is only somewhat precise—we cannot reject moderate declines in 

PM2.5. But the small and insignificant estimate for PM2.5 is surprising because in ex ante 

simulations of the market, the predicted decrease in particulates was the primary pathway 

through which the market was predicted to affect health (USEPA 1998).37 Air quality models 

show that atmospheric NOx can undergo reactions which transform it into a component of fine 

particulates. An Appendix available from the authors describes air quality model simulations in 

more details and provides one explanation for why the market had little or no effect on 

particulates. 

Table 3 also reveals no impact of NBP on ambient sulfur dioxide levels. Because the 

Acid Rain Program operated a separate cap-and-trade market for SO2 during this period, any 

decrease in summer SO2 levels due to the NOx market would have been offset by a 

corresponding increase in wintertime SO2 levels. Because such an offset would produce bias in 

our triple-difference estimator, it supports the research design to detect no significant change in 

ambient SO2 concentrations. 

Importantly, we show in Appendix Table 1 that the results in Table 3 are robust to a wide 

range of specifications, including changes in the method used to compute the standard errors, the 

sample weights used in the regression, the summer-winter-comparison, the set of excluded states, 

and the pollution monitor selection rule. 

Finally, we explore whether these reductions in NOx produced any counterproductive 

outcomes. When an area has low concentrations of volatile organic compounds relative to NOx, 

then decreasing NOx can increase ozone levels. Such NOx “disbenefits” may exist in Southern 

California, where weekend ozone levels exceed weekday ozone levels. There is less consensus 

on whether they could occur in the Eastern US. We use two approaches to identify counties 

where the emissions market might have increased ozone levels. First, we identify a list of such 

                                                 
36 EPA regulations focus on PM2.5 and PM10 monitors only satisfy the monitor selection criteria in 17 counties in this 
period (Table 1), so PM2.5 estimates are more representative of potential effects of the market on particulates and 
health than are PM10 estimates. 
37 The market was not predicted to have an especially large effect on particulate matter, but epidemiological 
evidence suggests that particulates have more effect on mortality than ozone does. 
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“VOC-constrained” MSAs from Blanchard (2001). Second, we define a county as VOC-

constrained if its mean ratio of weekend/weekday ozone exceeds 1.05. 

These tests suggest that the emissions market may have produced smaller ozone 

decreases in these VOC-constrained areas, though the market still decreased ozone (Appendix 

Table 1).  

In sum, ambient pollution data show that the NBP caused a large decrease in ambient 

ozone but no detectable change in other pollutants which are believed to affect health 

substantially. The point estimates for other pollutants are small. Overall, these findings suggest 

that the market is a plausible instrument for ozone, and that any bias from changes in other 

pollutants is likely to be limited. 

  

C. Defensive Investments 

The previous section established that this emissions market provides a good opportunity to 

measure how high levels of ozone pollution affect health outcomes and health behaviors. We 

now ask whether the declines in ozone pollution caused by this market have allowed people to 

devote fewer resources to defending themselves against air pollution. Figure 4 provides a 

graphical answer. It compares medication purchases in the Eastern versus Western US, and in 

summer versus winter. It then plots this comparison in each year, with 2001 normalized to zero. 

These graphs show little difference in 2002, before the market began. After the market began, in 

2003, expenditures on medications and number of medications purchased both decreased by over 

1 percent. These comparisons stayed relatively constant through 2007.  

Table 4 reports regression analogues of these graphs—it shows the reduced-form effect 

of the market on log medication costs. We estimate that the market significantly decreased total 

medication costs by 1.6 percent. The Grossman model discussed earlier implies that this is a 

lower-bound on total willingness-to-pay for air quality, but it is a component of willingness-to-

pay which previous research has not measured. 

We also measure medication purchases separately by cause. The allocation of 

medications to causes is inexact—doctors can prescribe a medication for many purposes, and the 

MarketScan data do not identify the cause for which a specific medication was prescribed. The 

goal of this exercise is to test whether the decline in medication purchases was large for 
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respiratory medications. We also test whether the market’s effect was small for medications 

which treat gastrointestinal conditions, which we believe should be unrelated to ozone. 

Our estimates indicate that NBP decreased expenditures on respiratory medications by 

2.4 percent. Similarly, the market decreased cardiovascular medication expenditures by 2.0 

percent. 

We also estimate one placebo test—we test whether the emissions market created any 

apparent effect on purchases of gastrointestinal medications. We find no detectable effect, and a 

point estimate of -0.009.  This is consistent with the observed changed in overall and respiratory 

medications operating through the reduction in ambient ozone concentrations. 

Appendix Table 2 reports other specifications which obtain similar results, and which we 

mention here. Four specifications change the level of clustering—precision is similar with most 

alternatives though lower with state clusters. Using data on the number of medications, rather 

than on medication costs, produces similar patterns. The MarketScan balanced panel of people 

implies slightly smaller effects on medication purchases. Using medication levels rather than 

logs produces large and unstable estimates, which reflect the fact that medication purchases are 

skewed. The main tables use the average paid-cost by National Drug Code, to aggregate over 

measurement error from individual reports. Using purchase-specific costs obtains similar results. 

Restricting the estimates to only the 158 counties with ozone data produces smaller estimates. 

Finally, we find that copayment (private) costs are similar to total costs, though less precisely 

estimated.  

We also check whether air conditioning serves as a complementary defense. Because 

people with air conditioning may spend time indoors on hot days when ozone is high, air 

conditioning may also decrease exposure to ambient ozone. However, Appendix Tables 1-2 

show both that the market has somewhat less effect on ozone in areas where air conditioning 

prevalence is high, and that the market has no impact on medication purchases in these areas.38 

Because the market’s effects on ozone are muted in areas with high air conditioning, this 

research design lacks power to measure the importance of air conditioning as a defense. 

 

D. Hospital Visits and Mortality 

                                                 
38 These estimates use county-level data on the share of the population with home air conditioning from the 1980 US 
Population Census, as summarized in ICPSR Study Number 2896 (Haines 2010) 
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 Hospital Visits.  Because the form of the relationship between ozone and health remains 

controversial, and because we seek to compare defensive costs against direct health costs, we 

also measure how the market affected hospital visits and mortality. Figure 5 plots the East-West 

Summer-Winter difference in hospital admissions in each year, with 2001 normalized to zero. A 

visual comparison of the points to the left and right of the vertical line shows no pronounced 

difference, although the estimates are imprecise. These estimates suggest that if the market 

produced any effects on hospital admissions, we cannot detect them.  

 Corresponding statistical estimates of how the market affected hospital admissions also 

give small and imprecise results. Column (3) of Table 5 literally implies that the market 

decreased hospitalization costs by about $3.26 per person-year, but the estimates are not 

statistically significant. We obtain similar results when looking only at respiratory admissions, 

cardiovascular admissions, or admissions for injuries. Varying the specification does not change 

the substantive conclusion (Appendix Table 3). 

 Mortality.  Finally, we assess the the NBP’s impact on mortality. This assessment is 

important because in most analyses of air pollution, mortality accounts for a large share of the 

benefits. Figure 6 suggests that the market produced a moderate decrease in the overall mortality 

rates. This figure presents patterns both for overall mortality and for respiratory elderly 

mortality, which is the group where one might expect the clearest effect of ozone pollution. Both 

graphs suggest that the market decreased mortality rates by modest amounts. 

 The regression models corresponding to this graph show that this decline is statistically 

significant (Table 6). The emissions market decreased the overall mortality rate by about 1.5 to 

2.6 deaths per 100,000 population. The decline was concentrated among cardiovascular and 

respiratory deaths. We find that the market had no effect on external deaths. There is some 

evidence that deaths from other causes declined also, though in the full sample beginning in 

1997, cardiovascular and respiratory deaths account for most of the decline in deaths.  

 An important finding regarding mortality is that most of the market’s effect on mortality 

occurred among the elderly. Table 7 breaks the entire population into four age groups and 

separately estimates the effect of ozone on the health of each group. We detect no effect on the 

mortality of persons aged 74 and below, although taken literally, the point estimates imply that 

the market prevented 375 deaths within this group. The clearest impact on mortality, and an 

impact which we estimate precisely, occurs among people aged 75 and older. The market 
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prevented 1,800 deaths each year in this age group. As with the entire population, the effects on 

elderly mortality were primarily for respiratory and cardiovascular deaths  

The age-group decomposition implies that the market prevented 2,100 deaths. About 80 

percent of these were among people aged over 75. By contrast, the overall share of all summer 

deaths which occur among people aged over 75 is 55%. This comparison suggests that the 

market had larger effects on the mortality rates of the elderly than of the non-elderly. Moreover, 

because baseline mortality rates are relatively high for the elderly, the absolute number of deaths 

prevented by this market is especially concentrated among the elderly. 

E. Instrumental Variables 

The preceding sections measure the reduced form effects of the market on pollution, 

defenses, and health. We now turn to instrumental variables to measure the “structural” effect of 

ozone on health. This parameter – the social cost of marginal reductions in ozone – is widely 

used in economic and policy analysis (e.g., Fowlie, Knittel, and Wolfram 2010).  

Table 8 first reports a simple association of ozone with medication purchases, and with 

mortality rates for the elderly. The OLS medication regressions have varying signs and most 

associations are not statistically significant. These unstable estimates may reflect the feature 

highlighted in Table 1 that counties with high ozone have different characteristics than counties 

with low ozone. OLS estimates detect some effects of ozone on overall mortality. However, they 

also detect effects of ozone on external causes of death, which suggests that these regressions are 

detect the effects of omitted variables bias. 

Two-stage least squares estimates use the same sample as OLS and detect no significant 

effect of ozone on medication purchases. We emphasize that the 2SLS estimates have a sample 

which is about 90% smaller than the reduced-form estimates, since 2SLS is constrained to the 

counties with ozone monitors.39 

However mortality estimates imply larger direct effects of ozone on health. In both the 

1997-2007 sample and the 2001-2007 sample, the point estimates suggest that a 1 ppb increase in 

ozone pollution produces about 4 additional summertime deaths. The point estimates with the 

two samples are about a tenth of a standard deviation apart. These estimates are precise with the 
                                                 
39 We explored estimates with two-sample instrumental variables (TSIV), which use the 158 counties with ozone 
monitors for the first-stage and the 2,500 counties with health data for the reduced-form, then combine them in a 
Wald estimator. This approach has disadvantages since it assumes that the first-stage is the same in counties with 
and without ozone monitors—an assumption at odds with most atmospheric chemistry models of ozone formation. 
TSIV results were roughly similar to those reported in Table 8. 
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smaller sample, though not with the added 1997-2000 data. They imply an elasticity of mortality 

with respect to ozone of 0.48.40 Hence, although ozone reductions will not alone cause dramatic 

changes in life expectancy, they may contribute a reasonable amount to decreases in elderly 

mortality. 

 

VII. Discussion 

A. Air Quality Model Interactions 

 Results up to this point also treat the emissions market as having the same impact across 

all of the Eastern US. This approach substantially simplifies the analysis and interpretation. 

However, most NOx emissions reductions occurred among coal-fired power plants in the Ohio 

River Valley, and emissions from those plants do not fall evenly across the Eastern US.  

 We now explore one approach to address this heterogeneity—we use an air quality model 

to predict where the market should have affected pollution, and we then test whether the market 

affected pollution and health disproportionately in these areas. We use Mendelsohn and Muller’s 

(2008) adaptation of the Climatological Regional Dispersion Model (CRDM, Latimer 1996). 

This air quality model uses the 2002 National Emissions Inventory as an input to predict ambient 

pollution concentrations in each county.  

 This approach is also useful because most atmospheric chemistry models of air quality 

are calibrated to match moments of the distribution of ambient pollutants. Because quasi-

experiments in pollution emissions are rarely linked to changes in ambient pollution, air quality 

models are generally not tested on predicting changes in pollution induced by changes in 

emissions. Because these chemistry models are the basis of most regulations imposed under the 

Clean Air Act and because they underpin research on environmental economics (e.g., Bayer, 

Keohane, and Timmins 2008; Shadbegian, Gray, and Morgan 2007), it is informative to test the 

accuracy of their predictions. 

 We apply the model as follows. For each electricity-generating unit and industrial boiler 

in the data, we use a double-difference estimator to measure how the emissions market affected 

NOx emissions. For each county, we calculate ambient pollution concentrations using emissions 

reported in the 2002 National Emissions Inventory as an input to the air quality model. We then 

                                                 
40 Chay and Greenstone (2003) report an elasticity of infant mortality with respect to total suspended particulates of 
0.35. Although for a different pollutant and population, it is notable that we estimate a slightly larger elasticity for 
ozone 
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decrease unit-level emissions based on the regression-estimated impact of the emissions market, 

and recalculate county-level ambient pollution. The difference between county-level predicted 

pollution with and without the emissions market is CRDM’s estimate of the emissions market’s 

impact.  

 Table 9 tests whether pollution and health changed more in the areas where CRDM 

predicted larger decreases in ambient air pollution. This table reports both the main triple-

difference term, and the interaction of this term with a dummy variable based on CRDM’s 

predictions. The dummy indicates whether a county had more-than-median ozone decrease as 

predicted by CRDM.41  

None of the CRDM interaction terms for pollution are statistically significant, though 

most have the expected negative sign. In Panel A the CRDM interaction is consistently positive, 

which is not consistent with the idea that the air quality model accurately predicts declines in 

pollution. However, the interaction is small and never statistically significant. Overall, CRDM 

under-predicts the decline in ozone: CRDM predicted a mean ozone decline of less than 1 ppb, 

while the ozone monitors reveal a decline of about 4 ppb.42  

Panel B tests whether medication purchases declined more in the parts of the Eastern US 

where CRDM predicted that ozone levels would fall more. The interaction term again has the 

wrong sign, suggesting that the air quality model was not effectively predicting the geographic 

distribution of benefits. Hospitalizations and mortality estimates in Panels C and D display a 

similar pattern.  

Overall, we take this evidence to suggest that the CRDM air quality model is not an ideal 

way to measure the effect of this emissions market on air quality. The predicted improvement in 

ambient air quality was substantially smaller than the actual change, and the county-by-county 

predictions differ substantially from the actual pattern of air quality improvements. 

 

                                                 
41 We also explored other approaches to predicting where the emissions market would have the largest impact on air 
quality and health. We investigated interactions with proximity to large NOx emitters and location in the East and 
Northeast. These produced similar results where the signs were consistent with the idea that health and pollution 
changed more in these areas, but are generally imprecise. One explanation consistent with these findings is that 
although prevailing wind patterns tend to push NOx emissions to the East-Northeast, the variability of other ozone 
precursors and of wind patterns meant that the emissions market produced roughly similar changes in ambient ozone 
across much of the East. 
42 Because we detect no impact of the emissions market on ambient NO2, PM2.5, or PM10 levels, we do not report 
comparisons of ambient levels of these pollutants against CRDM’s predictions. The CRDM interaction term in such 
regressions is almost never statistically significant and varies sign across specifications. 
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B. “Harvesting” and Double-Difference Estimates 

Results up to this point use a triple-difference specification which compares summer against 

winter. That estimator assumes that all effects of the emissions market occur during summer, 

which is when the market decreased pollution. However, the market could alter the timing of 

medication purchases, hospital admissions, and deaths by a relatively short amount of time.  

 This possibility of displacement is relevant for at least two reasons.  First, if the market 

merely moved elderly deaths – from July of one year to November of the same year, for example 

– then its effects on life expectancy would be small. A typical benefit-cost analysis would apply 

the life expectancy of the mean 75 year-old to a prevented death here. But it is possible that the 

people whose deaths were prevented had much lower life expectancy than the mean person of 

the same age had. In this case the typical approach could substantially overstate the effects of 

this market on life expectancy. 

Second, displacement could also cause the short run effects estimated by the DDD model 

to be overstated.  To see this, consider that a death moved from July to November will reduce the 

summer mortality rate and increase the winter mortality rate.   This is problematic because the 

DDD model compares the winter and summer mortality rates, and thus this model could 

overstate the true short run effect by as much as a factor of two.   

To explore these issues, we report differences-in-differences models. Because any 

displacement would move deaths to the months after air quality improved, these regressions 

restructure the data. Rather than analyzing the data according to calendar years, these regressions 

instead define a “year” as the period running from May of one calendar year to April of the 

following calendar year. Intuitively, any deaths which were prevented between May and 

September of one year (while the market operated) could be displaced to the following seven 

months. 

Our main conclusion is that these models lack statistical power to detect long-run 

changes in health due to this market (Table 10). The medication regression suggests that the 

market did not affect long-run medication purchases, but the confidence region cannot reject the 

point estimates of the triple difference estimates. By contrast, the mortality regression provides 

no evidence in support of the short-term displacement theory, but the estimate is too imprecise to 

reach substantive conclusions. The hospital results are large, which suggests that the restructured 
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year may suffer from differential trends, which was one motivation for the triple-difference 

regressions. 

 

 

VIII. Aggregate Benefits of the Emissions Market and of Ozone Reduction 

 

The results of this paper let us report a benefit-cost analysis for the entire NOx Budget 

Trading Program, with the caveat that we only calculate health benefits. Table 2 implies that this 

market decreased NOx emissions by 412,380 tons per summer.43 The average cost of a NOx 

permit during the market was $2080/ton. Because firms should only use abatement technologies 

which cost less than the permit price, the permit price represents an upper bound on the 

abatement cost. Specifically, the market required firms to spend some amount less than $858 

million per year to abate NOx. Defining 2003 to have half a year of typical abatement costs, we 

obtain an upper bound on 2003-2007 total abatement costs of $3.9 billion (=858*4.5). 

We can now compare this upper bound of costs against the market’s total health benefits. 

Our mortality estimates imply that the market prevented about 2,100 deaths annually. The 

monetary value assigned to these deaths depends on the value of a statistical life (VSL). Analysts 

can apply any VSL to the deaths to obtain an estimate of this market’s benefits. In Table 11, we 

use a combination of two methods to choose a VSL. First, we use the age-adjustment for each 

age group from Murphy and Topel (2006). Second, we use the upper-bound VSL of $1.93 

million (2006 dollars) from Ashenfelter and Greenstone (2004). This combination results implies 

that the value of the mortality avoided by this market is $0.9 billion per year, or $7.3 billion in 

the period 2003-2007.44 

Because medication purchases have market prices, we can measure their monetary cost 

without having to choose a VSL.45 Table 11 shows that this emissions market let Americans 

                                                 
43 The market included 1,185 counties. 
44 We thank Murphy and Topel for sharing the data underlying Figure 3 of their paper. The VSL used here is lower 
than the $7.4 million VSL ($2006) used by the EPA, which is not age-adjusted. Our goal is not to endorse a specific 
VSL value, but to demonstrate the results that come from one choice of VSL and age-adjustment. Because their 
paper calculates a VSL for each 1-digit age, to obtain a VSL for the four aggregated age categories in Table 7, we 
calculate the weighted average of the 1-digit age VSLs  within each of the four age categories, with weight equal to 
the share of deaths from each 1-digit age group. 
45 Branded medications generally have low marginal cost and high markups to reflect intellectual property rights. 
Because drugs prices exceed marginal cost, it might seem that part of the price of medications is a transfer from 
consumers to drug firms, and not a social cost. One interpretation of our approach is that firms invest costly 
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decrease medication expenditures by about $700 million per year, or $3.3 billion when summed 

over the 4.5 years of the market. 

We take this finding as evidence that defensive investments are economically important. 

The NBP’s aggregate abatement costs were less than $3.9 billion, but it lead to a decrease in 

aggregate expenditures on defensive investments by $3.3 billion. So even ignoring other 

benefits, defenses alone are nearly able to justify the market’s existence in a benefit-cost test. 

Nonetheless, these defenses were not complete: ozone had increased mortality rates before this 

market began. Over half of the health benefits of this market arose because the market decreased 

mortality rates. 

 

IX. Conclusions 

Optimal air pollution policy decisions are based on an informed comparison of all the 

costs and benefits associated with reducing exposure to ambient pollutants.  This study is the first 

to provide a complete assessment, derived from real-world data, of the costs and benefits of large 

market-based environmental intervention, the NOx Budget Trading Program. 

Our research design and rich data sets allows us to construct credible measures of the 

willingness to pay for reductions in ozone air pollution concentrations that accounts for 

defensive expenditures, as well as ozone’s direct health impacts.  To the best of our knowledge 

this is the first study to link health outcomes directly to an emissions market to measure ex post 

how the market affected health. 

The estimates are identified by three distinct sources of temporal and geographical 

variation in the emissions, medication purchase, and health data. We find that the emissions 

market led to sharp reductions in summer ozone concentrations, especially in the number of 

summer days with harmful ozone levels.  These improvements in air quality produced substantial 

short-run benefits.  The monetized value of the reduced medication expenditures corresponds to 

$700 million per year, which are nearly as large as an upper bound estimate of abatement costs 

attributed to the NBP.  Further, our results show that the NBP lead to about 2,100 fewer deaths 

per year, mainly among individuals 75 and older.  
                                                                                                                                                             
resources to develop medications which treat conditions exacerbated by air pollution. With lower levels of air 
pollution, fewer resources would be spent to develop these medications—a similar induced innovation process as 
Finkelstein (2004). Because it is beyond the scope of this paper to measure the magnitude of those research costs 
relative to the market price of medications, we use the market price of medications as the best-available measure of 
their social cost, and note that this topic is open for future research. 
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 This paper focuses exclusively on health benefits and compensatory responses. Although 

health costs are generally the largest component of benefit-cost analyses of air quality 

regulations, one limitation of this study is that it overlooks non-health costs which may have 

their own compensatory responses. For example, field experiments show that ambient ozone 

depresses agricultural yields. This emissions market may have increased yields for crops in the 

Eastern US, and may have allowed farmers to choose crops which are more sensitive to ozone.  

Similarly, ambient ozone could decrease worker productivity, and workers who suffer 

from respiratory ailments might avoid outdoor work like agriculture and construction which are 

particularly exposed. This market may have increased worker productivity, but may also have 

led some workers to make the compensatory response of changing to outdoor work. We leave 

these lines of investigation to future work. 
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Figure 1. Total Daily NOx Emissions in Eastern U.S.     
Note: Graph depicts fitted NOx residuals for Wednesday after partialling out day-of-week indicators. Y-axis 
measured in thousands of tons. 
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Figure 2. Seasonal NOx Emissions, 2001-2006  
Notes: y-axis is in millions of tons. Summer-equivalent 
multiplies the winter total by 5/7.  
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Figure 3. Market Impact on Ambient Ozone Pollution     

Notes: Ozone is measured as the maximum 8-hour mean of hourly values within in each day, which is the statistic 
used in EPA nonattainment designations. Vertical lines in Panel B and asterisks (*) in Panel C represent EPA 
nonattainment standards in ppb: 85 (1997 standard), 75 (2008 standard), and 60-70 (2010 proposed standard). 
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Figure 4. Impact of Emissions Market on Log Medication Costs    
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Figure 5. Impact of Emissions Market on Hospital Admissions 
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Figure 6. Impact of Emissions Market on Mortality Rates
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Table 1--Mean Summer Values of Pollution, Weather, and Health, by Ozone Level 

  All Counties   Low Ozone   High Ozone   

Counties 
With Data Mean s.d. 

Counties 
With 
Data Mean s.d. 

Counties 
With Data Mean s.d. 

p-value of 
H0: (8)-
(5)=0 

  (1) (2) (3)   (4) (5) (6)   (7) (8) (9) (10) 
Pollution Emissions (000's of 
tons/summer) 

  NOx Emissions 2,539 0.52 (1.99) 79 1.62 (3.31) 79 1.45 (4.27) [0.467] 

  SO2 Emissions 2,539 1.50 (6.52) 79 2.74 (6.11) 79 1.76 (4.52) [0.002] 

  CO2 Emissions 2,539 384 (1,299) 79 1,269 (1,933) 79 999 (2,092) [0.026] 
Ambient Pollution  
  Ozone 8-Hour Value 
(ppb) 158 48.01 (9.39) 79 41.10 (6.01) 79 54.91 (6.71) [0.000] 
  Ozone Days �65 (ppb) 158 23.34 (22.94) 79 10.77 (9.43) 79 35.92 (25.45) [0.000] 
  NO2 (ppb) 103 10.51 (5.14) 33 7.67 (3.75) 34 11.67 (4.43) [0.000] 
  CO (ppm) 124 0.45 (0.26) 34 0.46 (0.23) 33 0.45 (0.21) [0.497] 

  PM2.5 (�g/m3) 256 13.45 (4.29) 41 10.49 (3.00) 43 11.75 (4.71) [0.000] 

  PM10 (�g/m3) 17 29.04 (7.68) 3 25.31 (3.94) 4 31.80 (5.93) [0.000] 
  SO2 (ppb) 144 3.28 (2.23) 31 1.88 (1.47) 31 2.87 (1.94) [0.000] 
Weather 
  Temperature (ºF) 2,539 70.59 (5.79) 79 73.97 (7.53) 79 71.55 (5.64) [0.000] 
  Precipitation (1/100") 2,539 11.46 (5.37) 79 13.45 (8.84) 79 7.41 (6.13) [0.000] 
  Dew Point Temp. (ºF) 2,539 58.31 (7.58) 79 62.39 (8.50) 79 54.30 (9.42) [0.000] 
Medication Costs ($ Per Person) 
  All 2,435 338.53 (302.10) 79 267.08 (84.95) 79 277.24 (102.97) [0.074] 
  Respiratory 2,435 20.28 (56.12) 79 14.93 (6.80) 79 17.41 (7.64) [0.000] 
  Cardiovascular 2,435 67.56 (72.72) 79 52.18 (21.45) 79 51.83 (25.25) [0.807] 
Hospitalizations ($ Per Person) 
  All 2,435 502.62 (2120.44) 79 493.00 (603.13) 79 459.67 (574.41) [0.347] 
  Respiratory 2,435 23.72 (243.00) 79 17.68 (44.22) 79 16.37 (31.01) [0.567] 
  Cardiovascular 2,435 100.76 (777.85) 79 89.19 (252.93) 79 72.35 (144.29) [0.174] 
Mortality (Deaths Per 100,000 People) 
  All 2,539 402.42 (121.32) 79 331.26 (89.47) 79 316.25 (76.94) [0.003] 
  Respiratory 2,539 37.02 (22.97) 79 28.03 (10.92) 79 28.16 (8.84) [0.819] 
  Cardiovascular 2,539 143.78 (59.60) 79 116.28 (36.67) 79 108.92 (33.33) [0.000] 
All costs in real 2006 dollars. Emissions, medications, and deaths are totals per summer. Ambient pollution and weather are mean summer values. Low and High 
ozone are based on comparisons to the county with median summer ozone. Means are across counties (i.e., not weighted). All data 2001-2007. 
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Table 2--Effect of Emissions Market on Emitted Pollution 

  (1) (2) (3) (4) 
NOx -0.364*** -0.380*** -0.366*** -0.332*** 

(0.053) (0.053) (0.072) (0.067) 
Effect / Mean -0.346 -0.361 -0.348 -0.385 
   
SO2 -0.086** -0.129* -0.071 -0.071** 

(0.039) (0.069) (0.047) (0.034) 
Effect / Mean -0.030 -0.044 -0.024 -0.028 

CO2 -3.246 -21.029 -8.046 -17.164** 
(4.390) (15.933) (6.066) (7.756) 

Effect / Mean -0.007 -0.048 -0.018 -0.039 

County-by-Season FE x x x x 
Summer-by-Year FE x x x x 
State-by-Year FE x x 
County-by-Year FE x x 
Detailed Weather Controls x x x 
Data Begin in 2001       x 

Note: each observation represents a county-year-season. Winter emissions are 
multiplied by 5/7 so all values are summer-equivalent. Response variable 
measured in thousands of tons. Mean represents 2001-2002 summer in NBP 
areas. Covariance matrix allows arbitrary autocorrelation within each state-
season. Unless otherwise noted, data begin in 1997. Asterisks denote p-value < 
0.10 (*), <0.05 (**), <0.01 (***). 
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Table 3--Effect of Emissions Market on Ambient Pollution 

  (1) (2) (3) (4) 
Ozone 8-Hour Value -3.071*** -3.566*** -3.286*** -3.064*** 

(0.575) (0.670) (0.575) (0.760) 
Effect / Mean -0.059 -0.069 -0.063 -0.059 

Ozone Days � 65 -8.410*** -8.955*** -8.368*** -7.744** 
(1.736) (1.954) (2.493) (2.908) 

Effect / Mean -0.252 -0.268 -0.250 -0.232 

NO2: Nitrogen Dioxide -0.600** -1.127* -1.052*** -1.173*** 
(0.255) (0.564) (0.343) (0.397) 

Effect / Mean -0.037 -0.069 -0.065 -0.072 

CO: Carbon Monoxide -0.016 -0.010 -0.014 -0.039 
(0.016) (0.026) (0.026) (0.034) 

Effect / Mean -0.018 -0.029 -0.025 0.037 

PM2.5: Fine Particulates -0.310 -0.487 -0.425 - 
(0.226) (0.327) (0.272) - 

Effect / Mean -0.018 -0.029 -0.025 - 

PM10: Coarse Particulates 1.107 -1.137 -0.923 - 
(0.756) (0.847) (0.986) - 

Effect / Mean 0.037 -0.038 -0.031 - 

SO2: Sulfur Dioxide 0.102 0.178 0.042 0.088 
(0.184) (0.153) (0.150) (0.145) 

Effect / Mean 0.022 0.033 0.038 0.009 

County-by-Season FE x x x x 
Summer-by-Year FE x x x x 
State-by-Year FE x x 
County-by-Year FE x x 
Detailed Weather Controls x x x 
Data Begin in 2001       x 

Note: each observation represents a county-year-season. Pollution readings are mean 
values. Regressions are GLS weighted by square root of number of underlying 
pollution readings. Insufficient PM data available before 2001. Mean is for 2001-2002 
summers in Eastern US. Covariance matrix allows arbitrary autocorrelation within 
each state-season. Unless otherwise noted, data begin in 1997. Asterisks denote p-
value < 0.10 (*), <0.05 (**), <0.01 (***). 
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Table 4--Effect of Emissions Market on Log Medication Costs 

  (1) (2) (3) 
All Medications -0.009 -0.023 -0.016** 

(0.011) (0.021) (0.007) 

Respiratory -0.016 -0.018 -0.024** 
(0.016) (0.024) (0.011) 

Cardiovascular -0.006 -0.024 -0.020*** 
(0.014) (0.026) (0.007) 

Gastrointestinal 0.011 0.004 -0.009 
(0.014) (0.029) (0.006) 

County-by-Season FE x x x 
Summer-by-Year FE x x x 
State-by-Year FE x x 
County-by-Year FE x 
Detailed Weather Controls x x 

Note: each observation represents a county-year-season. Values are 
log of costs per person-season. Regressions are GLS with weight 
equal to square root of MarketScan population in a given county-
year-season. Covariance matrix allows arbitrary autocorrelation 
within each state-season. Asterisks denote p-value < 0.10 (*), <0.05 
(**), <0.01 (***). 
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Table 5--Effect of Emissions Market on Hospitalization Costs 

  (1) (2) (3) 
All Hospitalizations -5.248 3.522 -3.226 

(17.026) (16.976) (18.777) 

Respiratory 3.953 7.333*** 10.677*** 
(3.036) (2.661) (3.497) 

Cardiovascular -3.093 -0.686 -5.115 
(4.063) (5.434) (5.607) 

Injury -4.796 -4.44 -6.021 
(3.979) (4.668) (6.825) 

County-by-Season FE x x x 
Summer-by-Year FE x x x 
State-by-Year FE x x 
County-by-Year FE x 
Detailed Weather Controls x x 
Note: Response variable is dollars per person-season-year in each 
county-year-season cell. Regressions are GLS with weight equal to 
square root of MarketScan population in a given county-year-
season. Covariance matrix allows arbitrary autocorrelation within 
each state-season. Asterisks denote p-value < 0.10 (*), <0.05 (**), 
<0.01 (***). 
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Table 6--Effect of Emissions Market on Mortality Rates 

  (1) (2) (3) (4) 
All Deaths -2.273** -3.075 -1.557* -2.666* 

(0.928) (3.473) (0.813) (1.538) 

Respiratory -0.674*** -0.756 -0.496* -0.554 
(0.163) (0.540) (0.267) (0.466) 

Cardiovascular -1.373*** -1.926 -0.738* -0.552 
(0.492) (1.184) (0.418) (0.689) 

Neoplasm -0.070 0.066 0.025 -0.139 
(0.295) (0.647) (0.266) (0.394) 

External -0.169 -0.435 -0.189 0.174 
(0.200) (0.327) (0.303) (0.382) 

All Other -0.156 -0.460 -0.347 -1.421** 
(0.481) (1.524) (0.672) (0.712) 

Observations 55,858 55,858 55,858 55,858 
Clusters 82 82 82 82 

County-by-Season 
FE x x x x 
Summer-by-Year 
FE x x x x 
State-by-Year FE x x 
County-by-Year FE x x 
Detailed Weather Controls x x x 
Data Begin in 2001       x 

Note: Response variable is deaths per 100,000 population. Specification is 
same as previous tables. "All Other" all causes other than respiratory, 
cardiovascular, and neoplasm. Unless otherwise noted, data begin in 1997. 
Asterisks denote p-value < 0.10 (*), <0.05 (**), <0.01 (***). 

 
 



47 
 

Table 7--Effect of Emissions Market on Mortality Rates, by Age 

Cause of Death All Respiratory Cardiovascular 
  (1) (2) (3) 

Age 0 (Infants) 
Summer*Post*NBP -4.542 -1.667** 0.014 

(6.324) (0.710) (0.815) 
Response Var Mean 306.324 6.053 6.703 
Implied 2005 Deaths -79.802 -29.289 0.246 

Ages 1-64 
Summer*Post*NBP -0.144 0.016 0.191 

(0.503) (0.097) (0.183) 
Response Var Mean 104.329 4.636 25.596 
Implied 2005 Deaths -167.689 18.632 222.420 

Ages 65-74 
Summer*Post*NBP -1.443 -0.487 -2.344 

(6.011) (1.377) (2.652) 
Response Var Mean 963.536 90.011 327.340 
Implied 2005 Deaths -127.960 -43.185 -207.857 

Ages 75+ 
Summer*Post*NBP -20.681* -5.605* -9.036 

(10.849) (3.217) (5.671) 
Response Var Mean 3182.259 335.366 1459.421 
Implied 2005 Deaths -1792.215 -485.729 -783.060 

Note: Response variable is deaths per 100,000 population. In 2005, 
market-area population levels in millions were 1.8 (infants), 116.5 (1-
64), 8.9 (65-75), and 8.7 (75-99). "All Other" all causes other than 
respiratory, cardiovascular, and neoplasm. Regressions use 1997-
2007 data. Asterisks denote p-value < 0.10 (*), <0.05 (**), <0.01 
(***).  
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Table 8--Effect of Ambient Ozone On Medication Purchases and Mortality: Least Squares and Instrumental Variables 

  Log Medication Costs   Mortality   

All Respiratory Cardiovascular Gastrointestinal All Respiratory Cardiovascular External 
All 

Other 
  (1) (2) (3) (4)   (5) (6) (7) (8) (9) 

OLS: 1997-2007   
8-Hour Ozone - - - - 0.227** 0.03 0.093 -0.013 0.037 

- - - - (0.109) (0.020) (0.063) (0.021) (0.112) 

Days �65 ppb - - - - 0.089** 0.010 0.032 -0.007 0.029 
- - - - (0.042) (0.007) (0.020) (0.008) (0.034) 

OLS: 2001-2007 
8-Hour Ozone -0.002 -0.001 -0.002 -0.0028* 0.271*** 0.033* 0.048 0.054** 0.133*** 

(0.0010) (0.0013) (0.0012) (0.0014) (0.084) (0.018) (0.037) (0.021) (0.030) 

Days �65 ppb 0.000 0.000 -0.001 0.000 0.113*** 0.014** 0.021 0.014** 0.058*** 
(0.0003) (0.0005) (0.0003) (0.0004) (0.025) (0.005) (0.013) (0.007) (0.008) 

2SLS: 1997-2007 
8-Hour Ozone - - - - 4.187 -0.282 -1.370 1.115 7.703* 

- - - - (2.657) (0.362) (1.050) (0.892) (4.363) 

Days �65 ppb - - - - 1.830 -0.123 -0.599 0.487 3.367 
- - - - (1.278) (0.169) (0.462) (0.441) (2.126) 

2SLS: 2001-2007 
8-Hour Ozone 0.004 0.013 0.020 0.004 4.025** 0.026 1.594 0.739 1.905** 

(0.0174) (0.0169) (0.0225) (0.0197) (1.776) (0.238) (0.998) (0.542) (0.811) 

Days �65 ppb 0.001 0.004 0.006 0.001 1.349*** 0.009 0.534* 0.248 0.638*** 
(0.0051) (0.0047) (0.0059) (0.0057) (0.462) (0.080) (0.306) (0.175) (0.221) 

Note: Endogenous variable is ozone. Excluded instrument is Summer*Post*NBP. OLS includes county-by-summer fixed effects, year fixed effects, and 
detailed weather control variables. GLS weights equal square root of the relevant population.  P-values in brackets. Regressions use counties with ozone 
monitors. Medication data begins in 2001; mortality data begins in 1997.  
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Table 9--Air Quality Model Interactions 

  (1) (3) (4) (5) 
Panel A: Ambient Pollution       
  Ozone -2.604*** -2.909** -3.574*** -3.141*** 

(0.936) (1.182) (0.810) (0.838) 
    CRDM Interaction 1.892 1.700 1.063 0.164 

(2.322) (2.427) (1.036) (0.353) 

Panel B: Log Medication Costs 
  All -0.011 -0.023 -0.020*** - 

(0.013) (0.022) (0.007) - 
    CRDM Interaction 0.004 -0.002 0.010*** - 

(0.011) (0.010) (0.004) - 

Panel C: Hospitalization Costs 
  All -15.902 -7.418 -8.392 - 

(18.122) (18.008) (20.633) - 
    CRDM Interaction 25.069** 22.287** 10.438 - 

(11.704) (10.994) (12.560) - 

Panel D: Mortality 
  All Causes -8.674*** -4.473** -4.261** -1.969* 

(1.671) (1.957) (1.912) (1.044) 
    CRDM Interaction 9.636*** 3.486** 3.433* 0.913 

(2.000) (1.739) (1.855) (1.166) 

County-by-Season FE x x x x 
Summer-by-Year FE x x x x 
State-by-Year FE x x 
County-by-Year FE x x 
Detailed Weather Controls x x x 
Data Begin in 2001       x 

Note: each observation represents a county-year-season. Each table entry represents the 
coefficient on Post*Summer*East in a separate regression. CRDM Interaction represents the 
interaction of Post*Summer*East with a dummy indicating that the air quality model predicts a 
county to have more-than-median decrease in ozone pollution. A negative CRDM coefficient 
indicates that CRDM correctly predicts that the emissions market decreased the response 
variable. Covariance matrix allows arbitrary autocorrelation within each state-season. Columns 
(1)-(4) of pollution and mortality are 1997-2007; all other regressions are 2001-2007 data. 
Asterisks denote p-value < 0.10 (*), <0.05 (**), <0.01 (***). 

 
 



50 
 

Table 10--Differences in Differences 
Health Estimates 

May-
April DD 

  (1) 
Panel A: Log Medication 
Costs   
Post*NBP 0.0177 

(0.0243) 

Panel B: Hospitalization Costs 
Post*NBP 1.1502*** 

(0.0613) 

Panel C: Mortality 
Post*NBP -6.568 

(7.040) 

Detailed Weather Controls x 
County FE x 
State-by-Year FE x 
Note: Each observation is a county-year. 
Covariance matrix allows arbitrary 
autocorrelation within each state-season. 
Mortality is 1997-2007; medications and 
hospitalizations are 2001-2007. Standard 
errors in parentheses, p-values in 
brackets. Asterisks denote p-value < 0.10 
(*), <0.05 (**), <0.01 (***). 
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Table 11--Aggregate Health Impacts of Emissions Market and Ozone 

  
Mortality       
(# Deaths)   

Mortality ($ 
Billion) 

Medications 
($ Billion) 

Total ($ 
Billion) 

Panel A. NBP Abatement 
Costs 
   Upper Bound Per Year  $0.9 
   Upper Bound, 2003-2007 
Total  $3.9 

Panel B. NBP Health Benefits  
    Total Per Year  2,113 $0.9 $0.7 $1.6 
    Total 2003-2007  9,511 $4.0 $3.3 $7.3 

Panel C: Impact of 1 ppb Ozone Decrease 
     Total Per Year 3,939 $7.6 $0.23 $7.8 

Panel D: Impact of 1 Less Day With Ozone > 65 ppb 
     Total Per Year 1,325 $2.6 $0.05 $2.6 

Note: All currency in 2006 dollars deflated using BLS CPI for urban consumers. Mortality table 
entries without dollar signs are number of deaths. Mortality dollar impact uses the VSL of $1.93 
million (2006 dollars) from Ashenfelter and Greenstone (2004) and the age adjustments from 
Murphy and Topel (2006, p. 888). The implied VSLs are as follows: $1.9 million (infants); $1.5 
million (age 1-64); $0.6 million (age 65-74); $0.2 million (age 75+). Total 2003-7 decrease due to 
NBP assumes impact is for half of 2003 summer and for all of summers 2004-2007. NBP cost 
upper bound is based on the mean permit price of $2080/ton and estimated total abatement 
quantity of 394,000 tons. 
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Appendix Figure 1. NOx Emissions, 1997-2007 
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Appendix Table 1--Sensitivity Analysis: Emitted and Ambient Pollution 

  Emitted Pollution   Ambient Pollution 

NOx  SO2 CO2 Ozone NO2 CO PM2.5 PM10 SO2 

  (1) (2) (3)   (4) (5) (6) (7) (8) (9) 
Original -0.332*** -0.071** -17.164** -3.733*** -0.850** -0.005 -0.425 -0.923 1.169 

(0.067) (0.034) (7.756) (0.703) (0.320) (0.026) (0.272) (0.986) (0.900) 

Clustered by County -0.332*** -0.071 -17.164* -3.733*** -0.85 -0.005 -0.425 -0.923 1.169 
(0.076) (0.054) (9.184) (0.591) (0.515) (0.032) (0.301) (1.218) (1.260) 

Clustered by State -0.332*** -0.071 -17.164 -3.733*** -0.850* -0.005 -0.425 -0.923 1.169 
(0.095) (0.048) (11.037) (1.005) (0.459) (0.037) (0.381) (1.398) (1.295) 

Clustered by State-Year -0.332*** -0.071* -17.164** -3.733*** -0.850** -0.005 -0.425 -0.923 1.169 
(0.049) (0.042) (7.069) (1.102) (0.374) (0.029) (0.473) (1.378) (1.062) 

Clustered by County-
Season 

-0.332*** -0.071* -17.164*** -3.733*** -0.850** -0.005 -0.425** -0.923 1.169 
(0.053) (0.038) (6.493) (0.417) (0.363) (0.023) (0.215) (0.867) (0.895) 

Weighted by MarketScan 
Population 

-0.684** 0.003 -72.738 -3.182*** -1.421** -0.031 -0.971** 0.727 0.185 
(0.320) (0.169) (92.510) (0.802) (0.638) (0.028) (0.406) (1.270) (0.169) 

Weighted by Total 
County Population 

-0.424*** -0.012 -83.618 -3.814*** -1.554*** -0.005 -0.997*** 0.176 0.076 
(0.128) (0.149) (55.615) (0.632) (0.468) (0.032) (0.264) (1.193) (0.188) 

Including ME, NH, and 
VT 

-0.320*** -0.069** -17.284** -3.733*** -0.850** -0.003 -0.417 -0.453 1.169 
(0.064) (0.033) (7.621) (0.703) (0.320) (0.026) (0.266) (1.072) (0.900) 

Monitors Operating � 30 
weeks 

-2.953*** -0.746* -0.015 -0.554** -0.052 0.050 
(0.434) (0.380) (0.023) (0.256) (1.192) (0.140) 

Summer*Post*NBP*Air-
Conditioned-Share 

-0.722*** -0.154 -26.311 2.243 0.045 -0.015 1.008 3.007 -1.1 
(0.194) (0.131) (20.157) (1.551) (0.499) (0.068) (0.795) (3.220) (1.589) 

Summer*Post*NBP 
*VOC-Constrained 

0.087 
(1.140) 

Summer*Post*NBP* 
(High Weekend O3) 

1.583*** 
(0.580) 

Note: unless otherwise noted, each table entry shows the coefficient on Post * NBP from a separate regression. High weekend O3 indicates that the 
weekend/weekday ozone ratio exceeds 1.05. Regessions use 1997-2007 data. Asterisks denote p-value < 0.10 (*), <0.05 (**), <0.01 (***). 
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Appendix Table 2--Sensitivity Analysis: Medications 

  Log Medication Costs 

All Respiratory Cardiovascular Gastrointestinal 

  (1) (2) (3) (4) 
Original -0.016** -0.025** -0.020*** -0.008 

(0.007) (0.011) (0.007) (0.007) 

Clustered by County -0.016** -0.025* -0.020*** -0.008 
(0.007) (0.014) (0.007) (0.012) 

Clustered by State -0.016 -0.025 -0.020** -0.008 
(0.010) (0.016) (0.009) (0.010) 

Clustered by State-Year -0.016*** -0.025** -0.020*** -0.008 
(0.005) (0.010) (0.005) (0.008) 

Clustered by County-
Season -0.016** -0.025* -0.020** -0.008 

(0.007) (0.014) (0.008) (0.011) 

Including ME, NH, and 
VT -0.016** -0.025** -0.020*** -0.008 

(0.007) (0.011) (0.007) (0.007) 

Rx (Not Costs) -0.013** -0.021** -0.016*** -0.017*** 
(0.006) (0.010) (0.005) (0.005) 

Panel of People -0.011 -0.021 -0.013* -0.002 
(0.007) (0.014) (0.008) (0.010) 

Levels (Not Logs) -9.598*** -0.668** -1.826*** -1.226*** 
(2.209) (0.334) (0.514) (0.317) 

Purchase-Specific Costs -0.014** -0.025** -0.019*** -0.020** 
(0.007) (0.012) (0.006) (0.009) 

Counties with Ozone 
Data -0.012 -0.020 -0.003 0.003 

(0.011) (0.021) (0.010) (0.018) 

Private Costs -0.009 -0.016 -0.012 -0.018** 
(0.009) (0.013) (0.008) (0.008) 

Summer*Post*NBP* Air-
Conditioned-Share 

0.017 0.029** 0.026 0.01 
(0.011) (0.015) (0.020) (0.013) 

          

Note: each table entry shows the coefficient on Summer*Post*NBP from a separate regression. May-
to-April DD includes data from May 2001 to April 2006, where year fixed effects identify the the 
period from May 1 of one calendar year through April 30 of the following calendar year. Regression 
specifications are same as in main tables. Asterisks denote p-value < 0.10 (*), <0.05 (**), <0.01 (***). 
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Appendix Table 3--Sensitivity Analysis: Hospitalizations 

  Hospitalization Costs 
All Respiratory Cardiovascular Neoplasm External 

  (1) (2) (3) (4) (5) 
Original -4.030 10.006*** -7.169 -6.337 -6.348 

(18.599) (3.652) (5.464) (4.863) (6.638) 

Clustered by County -4.030 10.006** -7.169 -6.337 -6.348 
(21.774) (4.750) (8.892) (7.025) (7.042) 

Clustered by State -0.020** -0.008 -0.016*** -0.025** -0.020*** 
(0.009) (0.010) (0.005) (0.010) (0.005) 

Clustered by State-Year -4.030 10.006* -7.169 -6.337 -6.348 
(19.874) (5.138) (7.695) (5.653) (6.919) 

Clustered by County-
Season -4.030 10.006*** -7.169 -6.337 -6.348 

(15.409) (3.363) (6.292) (4.970) (4.983) 

Including ME, NH, and 
VT 

-6.366 8.890** -7.237 -6.455 -6.949 
(18.458) (3.754) (5.400) (4.793) (6.649) 

Hospitalizations (Not 
Costs) 

0.000 0.004*** -0.002** -0.001 0.000 
(0.003) (0.001) (0.001) (0.001) (0.001) 

Panel of People 1.352 0.950 2.477 -5.339*** 0.610 
(7.277) (1.447) (3.633) (1.679) (2.568) 

Logs (not levels) 0.005 0.341** -0.128 -0.141 -0.137 
(0.038) (0.141) (0.098) (0.201) (0.118) 

Counties with Ozone 
Data 

-
78.196*** 9.120 -39.179*** -5.442 -16.104 
(25.590) (5.609) (9.138) (5.960) (9.781) 

Private Costs -1.227*** -0.070 -0.295 -0.043 -0.199 
(0.463) (0.069) (0.206) (0.093) (0.134) 

Post*Summer*T*Air-
Conditioned-Share 

-34.995 -8.178 -15.127 -1.978 10.920 
(37.162) (9.090) (17.367) (7.351) (7.227) 

 
 



56 
 

Appendix Table 4--Sensitivity Analysis--Mortality 

All Respiratory Cardiovascular Neoplasm External All Other 
  (1) (2) (3) (4) (5) (6) 
Original -1.557* -0.496* -0.738* 0.025 -0.189 -0.347 

(0.813) (0.267) (0.418) (0.266) (0.303) (0.672) 

Clustered by County -1.557 -0.496* -0.738 0.025 -0.189 -0.347 
(1.155) (0.296) (0.601) (0.443) (0.320) (0.738) 

Clustered by State -1.557 -0.496 -0.738 0.025 -0.189 -0.347 
(1.157) (0.380) (0.595) (0.379) (0.432) (0.956) 

Clustered by State-Year -1.557 -0.496 -0.738 0.025 -0.189 -0.347 
(1.646) (0.461) (0.726) (0.413) (0.348) (0.982) 

Clustered by County-Season -1.557* -0.496** -0.738* 0.025 -0.189 -0.347 
(0.817) (0.209) (0.425) (0.314) (0.226) (0.522) 

Including ME, NH, and VT -2.502 -0.590 -0.424 -0.124 0.166 -1.363* 
(1.539) (0.463) (0.701) (0.394) (0.373) (0.702) 

Logs -0.006*** -0.012 -0.005 0.003 -0.004 -0.011** 
(0.002) (0.007) (0.004) (0.004) (0.013) (0.005) 

Counties with Ozone Data -4.682** -0.091 -1.899* -0.035 -0.507 -2.657** 
(2.163) (0.382) (1.104) (0.323) (0.479) (1.295) 

Post*Summer*T*Air-
Conditioned-Share 

-1.500* -0.302 -0.571 0.129 -0.184 -0.756 
(0.851) (0.197) (0.417) (0.290) (0.299) (0.694) 

Note: each table entry shows the coefficient on Summer*Post*NBP from a separate regression. Regressions use 1997-2007 
data. Asterisks denote p-value < 0.10 (*), <0.05 (**), <0.01 (***). 
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Appendix Table 5--Event Study Regressions 

  
Emitted 

NOx 

Ambient 
8-Hour 
Ozone 

Ambient 
NO2 

Ambient 
CO 

Ambient 
PM2.5 

Ambient 
SO2 

Log 
Medication 

Costs 
Hospitzliation 

Costs Mortality 
Respiratory 
Mortaliity 

Elderly 
Repsiratory 
Mortality 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Summer * . . .        
   NBP * Year=1998 -10.128*** 0.628 2.799 

(2.428) (0.550) (8.428) 
   NBP * Year=1999 -7.803*** -0.806 -12.892 

(2.386) (0.873) (16.027) 
    NBP * 
Year=2000 -7.524*** -0.477 -4.131 

(2.170) (0.801) (14.671) 
   NBP * Year=2001 0.293 0.694 5.989 

(2.674) (0.571) (9.645) 
    NBP * 
Year=2002 -0.003 0.891 -0.486 0.003 1.094** 0.276 0.021** -0.066* -8.749*** -0.569 -7.358 

(0.045) (1.071) (0.359) (0.024) (0.450) (0.260) (0.009) (0.035) (2.238) (0.634) (12.051) 
    NBP * 
Year=2003 -0.250*** -2.104* -1.775*** 0.034 -0.302 -0.599 0.033*** -0.075** -4.341* 0.497 6.681 

(0.053) (1.130) (0.531) (0.040) (0.482) (0.422) (0.005) (0.036) (2.245) (0.816) (13.222) 
    NBP * 
Year=2004 -0.347*** -5.559*** -1.305** 0.134*** -0.439 0.068 0.049*** -0.045 -11.091*** -2.205*** -20.617* 

(0.060) (1.066) (0.498) (0.037) (0.391) (0.234) (0.009) (0.032) (2.255) (0.666) (11.441) 
    NBP * 
Year=2005 -0.361*** -6.370*** -1.404** 0.075*** 1.396*** -0.191 0.059*** -0.035 -13.487*** -1.867* -18.252 

(0.082) (1.419) (0.669) (0.027) (0.461) (0.252) (0.007) (0.034) (2.807) (1.017) (16.307) 
    NBP * 
Year=2006 -0.362*** -4.613*** -1.384*** 0.044 0.076 0.455* 0.063*** -0.054 -0.366 1.117 5.812 

(0.071) (0.742) (0.460) (0.038) (0.412) (0.248) (0.005) (0.038) (2.400) (0.763) (11.456) 
   NBP * Year=2007 -0.288*** -5.915*** -0.649 0.159*** 1.970*** 0.702*** 0.071*** -0.043 -6.289*** -1.174 -8.509 

(0.082) (1.045) (0.585) (0.040) (0.466) (0.257) (0.010) (0.030) (1.891) (0.782) (13.322) 

Observations 35,546 2,212 1,540 938 4,172 1,470 32,677 28,836 55,858 55,852 55,852 
Clusters 82 52 46 40 80 62 82 82 82 82 82 

Note: Each regression is GLS weighted by number of underlying raw observations for each county-year. Covariance matrix allows arbitrary autocorrelation within each state-
season. Medication and Emergency Department data are per 1000 persons. 

 


