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Abstract

We characterize the solution to the problem facing a planner who

must allocate preferential treatment across two �rms who can use

preferential treatment to make pro�ts, and in turn are encouraged

to innovate by the provision of preferential treatment. The planner,

because he can allocate preference to a single �rm for multiple inno-

vations at any point in time, backloads rewards, giving the �rm with

the preponderance of the promise a preference that corresponds to a

patent o�ering complete exclusion. We show that the promised dura-

tion of preference evolves in a region that is determined by the optimal

promises in a static version of the model, which corresponds to a clas-

sic static patent problem of Arrow and Nordhaus. When there are

no static distortions, so that the optimal static patent lasts forever,

the optimal policy we study leads to monopoly, in the sense that one

�rm is excluded even though it is getting useful ideas. We show that

these basic results hold even if the planner is forced to use a restricted

set of polices where preference is always granted immediately for any

innovation that is implemented.

1 Introduction

In this paper we analyze how a planner rewards two innovators who con-
tribute to a common research agenda, for instance improving a given prod-
uct. Moral hazard precludes rewarding with a cash prize; instead, rewards
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must be earned through the allocation of preferential treatment, such as a
patent in the product market. Because of the cumulative nature of the re-
search, allowing one innovator to pro�t in the product market necessarily
restricts what can be o�ered to the other innovator, since they compete in
this common market. We model this by allowing the planner to only prefer
one �rm at a time. As a result, time to allocate preferential treatment may
be scarce. We ask how the planner can best allocate preferential treatment
in the product market in order to encourage innovation.

We focus on two features of the optimal policy. The �rst is the way that
the patent right evolves with history. Recent literature has stressed that
heterogeneity may lead to di�erent rewards for di�erent innovators. Here
there is no heterogeneity built into the structure, but the rewards are history
dependent, leading to ex post heterogeneity in the reward for di�erent inno-
vations, and as a result, heterogeneity in the degree of innovation over time.
We discuss how one can interpret this heterogeneity as a patent menu in the
spirit of Scotchmer (1999), Cornelli and Schankerman (1999), and Hopen-
hayn and Mitchell (2001). We also discuss how heterogeneous rewards can
be decentralized in a manner familiar from the buyouts used in Hopenhayn,
et al. (2006).

Because the model has repeat innovators, we can use it to study the evo-
lution of market power under the optimal policy. We show that the scarcity
of market preference can lead to monopolization, in the sense that one of
the innovators is eventually promised preference at nearly all instants under
the optimal contract. Counterintuitively, monopolization occurs even when
the marginal bene�t of preferential treatment for the monopolizing �rm is
zero at monopoly. This arises because of the planner's incentive to backload
rewards. The motive for backloading, however, is di�erent from the standard
backloading intuition from Becker and Stigler (1974) and Lazear (1981). In
those papers, backloading is bene�cial because not only does it generate
strong incentives late, but also because it generates strong incentives early,
as the agent works hard to reach the point where the backloaded incentives
kick in. Here we introduce a di�erent motive for backloading. Since the plan-
ner can prefer an agent at a given time for multiple innovations, it is useful
to push preference to the later period where it is applicable to more than one
innovation. We show more generally that the length of preference increases
with successes, eventually reaching the static optimum patent length familiar
from Arrow (1962) and Nordhaus (1969).

Our model links the recent literature on optimal patent menus with a

2



much more established literature on the role of competition between �rms
in patent policy. In papers in the former category, the problem is either
static (for instance in Scotchmer (1999) or has a sequence of agents that
never recur (Hopenhayn, et al (2006)). Here we consider a case where there
is both dynamics and recurring innovators. We consider a general structure
that allows for many possible market structures. The inclusion of recurrent
innovators is interesting because it allows us to think about the dynamic
evolution of monopoly power under the optimal policy. Does the planner
use the policy to avoid foreclosing innovators, or does it rely on backloaded
incentives to e�ciently reward innovators for a sequence of successes?

Important note: heterogeneity in patents not to deal with heterogeneity
in arrivals. Just heterogeneity in histories.

In this sense our paper has similarities with a recent paper by Acemoglu
and Akcigit (2010). In that paper, the authors use a growth theory structure
similar to Aghion, et al (2001) and consider policies that change depending on
the quality di�erential between the �rm's most recent innovations. Acemoglu
and Akcigit compute numerically the best policies within a particular class
and show that they are backloaded, in the sense that �rms that succeed
repeatedly get increasing protection. Our paper takes those ideas to consider
a more general class of policies in a more abstract environment. Although
our structure does not nest theirs, the intuition about backloading that we
develop applies to their environment, and therefore helps develop further
intuition for their numerical results. Moreover, it shows a general class of
problems where what they term "state dependency" of rewards is de�nitely
optimal.

Our abstract model can be described concisely. Two innovating �rms
randomly receive opportunities to generate social value (innovations) at in-
dependent rates. The planner rewards the innovators by o�ering, at each
instant, a given innovator the opportunity to pro�t from some subset of past
innovations; we term this grant preference, but one can think of it as a patent
on some set of innovations. We take the planner's payo� from delivering pref-
erence to a given innovator for an innovation he generates as a reduced form
function, but section 2 describes an explicit quality ladder model that delivers
the general structure we study.

The planner, then, needs to decide how to determine the allocation of
preference at each state and history. This is potentially a very complicated
problem, but the nature of our setup allows us to show that optimal policies
always involve complete exclusion: preference for all past innovations at any
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time that there is preference for any past innovations granted to a given
innovator. Further, the optimal policy always eventually reaches a state
where all future instants are promised to at least one innovator, a situation
we term duopoly.

With these results in hand, we turn to characterize the optimal policy
under duopoly more fully. We show that duration moves within an interval
bounded by each �rm's statically optimal promise of preference, nearing the
endpoints with positive probability. As a corollary, when the static optimal
level of preference is in�nite (as it is in the quality ladder model we begin
with), the optimal policy eventually enters a state where nearly the entire
future has been promised to one �rm; the other �rm is (nearly) completely
foreclosed, its ideas unused.

More generally, the optimal policy trades o� the planner's desire to take
advantage of both innovator's ideas against the bene�ts of taking full advan-
tage of a given arrival by promising su�ciently long preference that some
of the other �rm's ideas must be used at a lower rate. In the optimal pol-
icy, the history of arrivals determines the current distribution of promises,
which in turn determines how much preference will optimally be promised
to each �rm. This varying state generates the heterogeneity in otherwise
homogenous ideas and innovators.

The preference itself evolves in a stark way. The �rm with the greater
duration promise gets preference. As a result, when the future promise is
skewed su�ciently toward one �rm, even an arrival of an idea by the com-
petitor leaves the highly promised �rm with preference. That preference
includes preference for the new innovation, invented by the rival. The rival's
payo� to generating the innovation is that the promise becomes less skewed,
moving the state closer to its favor, where it gains preference, which one can
interpret as taking control of the patent right.

Our results use a structure that is amenable to recursive methods. Al-
though this is critical in our ability to make progress in solving the problem,
it also leads to the extreme form of preference (exclusive rights) that arises.
This, in turn, leads to situations where �rm innovate, rewarded by preference
not immediately, but in expectation in the future. To the extent that these
policies seem unusual, and are driven by the underlying recursive nature
of the setup, we consider an alternative structure that avoids these results.
In particular, we consider a second regime where complete exclusion is not
available to the planner.. We call this alternative regime "exclusive rights"
(following Hopenhayn, et al. (2006)); the planner can grant a �rm prefer-
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ential treatment at a single instant for any innovations from a sequence of
innovations by that �rm that have arrived consecutively, without an interven-
ing innovation by the other �rm. In other words, whenever the competitor
is granted some preferential treatment, the incumbent leading �rm loses all
rights to preferential treatment. This is comparable to a standard notion
of patents used in models of cumulative innovation, where a leading �rm
can maintain market position by �ling for new patents, until a competing
improvement makes a new �rm the market leader.

We show that under the exclusive rights regime, we still get backloading,
and the preference promises still evolve in the same interval bounded by the
static patent lengths. Moreover, the chance of a competitors innovation being
implemented (and the incumbent being ousted) is declining with successes
by the incumbent. This is familiar from the state dependent policies that
Acemoglu and Akcigit (2010) compute as optimal policies in the step-by-step
model they study. We show the sense in which this structure is driven by a
backloading incentive present in their paper as well.

2 Preferential Treatment and Patents in Qual-

ity Ladders

In the next section we introduce an abstract model of a planner who encour-
ages e�ort through the allocation of "preference." For a concrete example
of patents-as preference, consider the quality ladder structure example ex-
plored in the patent literature in papers such as O'Donoghue et al. (1998)
and Hopenhayn, et al (2006). In particular, suppose that two �rms periodi-
cally get ideas that can be turned into innovations of size ∆ in exchange for
cost c(∆). Here ∆ (and therefore c(∆)) is the non-veri�able feature that ne-
cessitates patents. It is well known in the literature (and very intuitive) that,
if the degree of innovation cannot be veri�ed by the planner, the innovators
cannot be rewarded with transfers, since they could claim the transfer and
not pay the costs of innovation. The planner can use the promise of rights
to sell in a market to successfully induce e�ort.1 There are no production
costs, only the costs of innovation c(∆).

Innovation is cumulative in the sense that an innovation re�ects an im-

1See Hopenhayn, et al. (2006) for more on this issue in the cumulative context, in a
quality ladder model like this one.
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provement to the prior state-of-the art; a �rm's innovation results in a prod-
uct that is ∆ units of quality q better than the last innovation. A single
consumer purchases one physical unit of quality q, choosing which variety
in order to maximize q − p, where p is the price paid for the quality q vari-
ety.2 We take competition to be Bertrand, so that the leading edge product
is always the one sold in equilibrium, and the social surplus at any point
in time is the quality q either in the form of pro�ts for the �rm selling the
leading edge product, or as consumer surplus if p < q. As a result, if r is the
discount rate, every innovation yields ∆/r− c(∆) additional units of present
discounted surplus for the planner. The leading edge product (i.e. the most
recent innovation) sells for a price equal to its quality di�erential over the
other �rm's best product, since that trailing product will be provided at cost
(zero) in the pricing game, and the leader charges the quality di�erential.

NOTATION FOR PRICE, etc.
We de�ne preference for an innovation as the ability to generate pro�ts

from it. In this case, then, we will say that a �rm is given preference for a
given innovation if no other �rm can o�er a (weakly) better product, that is,
one that embodies the preferred innovation or one that is better. The �rm,
therefore, makes pro�ts equal to the sum of the quality level of its preferred
innovations.3

As in Hopenhayn, et al. (2006) we study policies that are described by
contingent rights for a given innovation. In particular, the planner promises,
at any arrival, an expected discounted length of time d ≥ 0 during which the
innovator will be given preferential treatment for an innovation made under
that idea. Since the value of d, which we term the duration of preference, is
in present discounted terms, it might come in many ways, for instance, a T
period patent (where preference is guaranteed for all T periods) would have
d = (1−e−rT )/r. We use the language of duration to describe recursively how
the optimal policy proceeds, considering arbitrary duration policies, which
may be contingent on future arrivals as well as the passage of time. A patent
that o�ered T periods of protection for sure, followed by T ′ units of additional
protection with probability 1/2 would have d = (1 − e−rT )/r + 1

2
e−rT (1 −

e−rT
′
)/r. Since the planner can choose a preference policy at every instant,

2As is usual in this sort of model, in the event of a tie, the higher quality product is
chosen.

3Note that here it is impossible to give preference for a discontinuous set of innovations
(by de�nition), but that is without loss since it is never optimal to o�er such preference
in the policies we study.
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this duration can be delivered in any contingent way, evolving over time or
with later arrivals of innovators, and with the identity of the innovator that
arrives with an idea. Of course, since (discounted) time is not unbounded,
the maximum possible promise of sure preferential treatment forever is 1/r.
This dynamic budget constraint of the planner's incentive tool is the key
feature of the model.

Since the �rms pro�ts increase by ∆ with an innovation of size ∆, when
the �rm makes an innovation it solves

∆(d) = arg max
∆

d∆− c(∆)

The planner's bene�t from the innovation, since the innovation contributes
forever to either pro�t or consumer surplus, is R(d) = ∆(d)/r−c(∆(d)) Note
that

R′(d) = ∆′(d)/r − c′(∆(d))∆′(d)

= ∆′(d)(1/r − d)

Where the second line uses the fact that c′(∆) = d by the agents FOC.
Now by the implicit function theorem it must be the case that

∆′(d) =
1

c′′(∆)

We then have that

R′′(d) = ∆′′(d)(1/r − d)−∆′(d)

In order for R to be concave, then, we need the third derivative of c to be
smaller than some positive bound.

One can generalize this example so that pro�ts when the �rm is not
preferred are not zero, but just less than when the �rm is preferred. This
might be due to services it provides for the leading edge provider, in order
to make the innovations work e�ciently. Such an environment would mean
that

∆(d) = arg max
∆

d∆ + γ(1/r − d)∆− c(∆)

where γ < 1 re�ects the idea that the loss of exclusivity lowers the ability
of the �rm to pro�t from the innovation. In a sense γ in this example is
inversely related to the scarcity the planner faces; when γ = 1 the �rm gets
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the entire future for any innovation, and therefore there is no scarcity. If
γ = 0 the �rm can only pro�t when it holds the promise it was granted at
the time of innovation.

While these examples have the feature that there are no static distortions,
so that R(d) is maximized at 1/r, we will not limit ourselves to such examples
in what we study below. Focusing on the case with no static distortions,
however, is interesting for at least two reasons. First, it highlights the role
of te dynamic force that we study, namely the scarcity of preference relative
to the optimal level, without any other source of ine�ciency. Further, the
work of Gilbert and Shapiro (1990) suggests that a planner who allocates
patent rights together with the ability to regulate the strength of preference
per period (for instance through patent breadth or direct price controls) will
choose, in many circumstances, a long, narrow patent in the single innovation
context.

3 Model

We now introduce the abstract model of allocation of preference that we
study for the remained of the paper, and which nests the example of the
previous section. There is continuous time and an in�nite horizon. There are
two agents (which we sometimes call �rms or innovators) and a principal (or
planner). Each �rm receives an opportunity to generate value for the planner
with independent Poisson arrival rate λ.4 The planner cannot simply pay for
the e�ort. One might imagine that cash for transfer is not available, or that,
as in the patent example described above, the planner cannot observe inputs
or outputs and therefore cannot e�ectively use cash as a reward. The planner
can, however, commit to future �preferential treatment� for the agent, which
will allow the holder to generate value from the innovation.

We call the use of these opportunities by the �rms innovations, but it is
not the only one that can be mapped into our structure. For instance, the
planner could be a �rm selling a product, where customers can be induced to
buy with promises of future good treatment. An airline can reward today's
purchase with promises of future good seat assignments available only to
frequent �yers. These rewards are scarce; only a limited number of customers
can be allocated the good seat assignment. The �rm trades o� using current

4Although we abstract from di�erent λ across the innovators, nothing changes if λ
di�ers across agents or di�er for the �rms based on which one had the last idea.
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promises to encourage sales against the fact that current promises restrict
the possibility of later promises to other potential customers. Perhaps an
organization has a limited ability to assign a single "boss" who enjoys a share
of the organization's output while in place, but multiple agents contribute
to the improvement of the organization's ability to produce output. We use
exclusively the language of the preference-as-patents example in what follows,
but later discuss an alternative interpretation in the innovation case, were
preference is viewed as preference by a competition authority.

At any given instant preferential treatment can be granted to a given �rm
for any list of past innovations.5 In other words, for a list of arrivals of ideas
I = {1, 2, ...N}, the preference is the identity of the innovator who receives
preference i ∈ {1, 2} and a set P ⊆ I of innovations for which the agent
receives preference. Since P could be empty, it is possible that no agent
receives preference at a given instant; this will never be optimal, however.

When an idea arrives, the contract prescribes future instants during which
the innovator will be assigned preference for that idea. We summarize the
continuation contract at the instant of the arrival by the duration of prefer-
ence it promises the innovator for the idea: the expected discounted amount
of time when the innovator will receive preference for the idea that he just re-
ceived under the contract. We take the planner's expected discounted future
payo� from a promise of d units of time of future preference to an arriving
idea as R(d). Interpreted as a patent right, the function R(d) describes the
present discounted marginal bene�t from the improvement generated from
the innovator promised d, net of the innovator's cost and any product mar-
ket distortions generated by the preferential treatment. In the example of
the last section, for instance, the more duration of exclusive production is
allocated to a given arrival, the more pro�ts can be made by the innovator
with the idea, and in turn the higher will be the level of innovation and the
planner's payo�. We assume R is a di�erentiable and concave function, and
we normalize R(0) = 0.6

5Without loss of generality we let preference for a given innovation be allocated to a
single innovator at any instant; this is without loss because changing preference over time
can e�ectively "split" preference for a given innovation across innovators. Such a split
will, in addition, not be optimal.

6To add the notion of �xed costs, simply assume that planner's reward can be written
as

R(d) =

{
0, d < F

R̃(d), d ≥ F
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We interpret the shape of R as making statements about the product
market where patent rights are granted. If R′(1/r) = 0, we say that there
are no static distortions, since the allocation of the entire future (the period
that the innovation will be enjoyed) makes the agent's incentives perfectly
aligned with the planners, and maximizes social surplus. Less duration means
less than e�cient innovation, which is where the tension arises: duration is
scarce relative to the amount needed to induce e�cient research e�ort. To
get e�cient innovation on one innovation, the planner would need to preclude
future (valuable) innovations. More generally, let d∗ = arg max0≤d≤1/r R(d).
The value of d∗ is analogous to the (discounted) optimal patent length in a
static model like Arrow (1962) or Nordhaus (1969); since the market is driven
by only one innovation, that innovation is granted duration d∗ in order to
maximize the planner's value in the space of rewards by product market
treatment.

Our assumption that the promise of preferential treatment for a given
innovation is su�cient for computing social bene�t from that innovation
is important, and has strong implications. It implies that the return to
o�ering preferential treatment for a given innovation does not depend on the
way the �rm's other innovations are being treated. For instance, the �rm's
incentive to innovate is determined entirely by the duration promise for the
given innovation, and not what the �rm's promises of preferential treatment
are for other innovations. This does not imply that the �rm can only pro�t
while it gets preference, it simply implies that all units of time must generate
pro�ts only based on the preferential treatment, and pro�ts do not depend
on future units are allocated across �rms. In the same spirit, the assumption
implies that any social costs from distortions generated by the promise are,
again, independent of the promises made to the �rm's other innovations. In
other words, the impact of innovation on pro�tability and on social welfare
is not a function of the promises made for past innovations, or on the future

where R̃ is concave and di�erentiable as before. The role of F is to model the idea that
innovations may have �xed costs; nearly zero duration may not be enough for the project to
be implemented at all, but above some point the �xed costs are covered and the innovation
occurs (at some positive size). One can interpret R̃(d) as the social return were the �xed
costs not present. Note that in terms of the underlying innovation technology, one could
assume either a �xed cost to be paid before any improvement could be generated, or an
indivisibility in the spirit of Boldrin and Levine (****) where only ideas of at least a
threshold size are innovations at all. Either could give rise to returns for the planner as
described by R(d). The analysis below still applies.

10



promises that might be made for future innovations. This assumption is
also essential for the recursive solution we study: without it, one could not
compute the return, let alone the optimal policy, without knowing at any
point in time the two �rms' complete portfolio of promises, making the state
variable potentially expand without bound as time progresses.

Since R does not depend on the preference o�ered to other innovations,
in particular there is no impact of o�ering the current �rm preference for the
other �rm's past innovations; such an o�er could transfer resources to the
current �rm, so long as the transfer is assumed to be welfare neutral, but
it has no impact on the pro�tability of the �rm's current innovation, and
therefore no impact on the amount of e�ort they exert, and in turn on the
planner's payo� from the current innovation. We therefore track only the
promise of preference to a given �rm for that �rm's innovations.

First, suppose that the planner o�ers the most recent innovator preference
for all past innovations until the next arrival, and continues to follow this
strategy. Denote by d̂ the duration this o�ers to the new duration. When
the other �rm has an arrival, duration therefore drops to 1/r− d̂. Therefore
d̂ solves

rd̂ = 1 + λ(1/r − d̂− d̂)

or d̂ = r+λ
r(r+2λ)

> 1/2r. If d∗ < r+λ
r(r+2λ)

, it is immediate that the planner
can implement every innovation at the Arrow-Nordhaus duration d∗, since
the planner can always provide less than what is delivered under the plan
that delivers d̂. So we take d∗ > d̂ to ensure that the planner faces a trade-
o� across innovations. A simple description of this assumption is that if
the planner o�ers the current innovator preferential treatment until the next
arrival of the competitor, the protection is still insu�cient relative to the
Arrow-Nordhaus patent.

3.1 Dynamic Program

At any instant, the planning problem is summarized by an outstanding du-
ration d promised to the innovators for prior work; the planner's "stock" of
available preferential treatment to o�er is determined by these values. Since
one innovator can be preferred simultaneously for multiple prior innovations,
one can think of this as the largest promise that is owed across all prior in-
novations; all other promises can be kept with a fraction of d, since a given
innovator can be granted preference for multiple innovations at once.
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If an innovation by �rm 1 arrives, the planner o�ers preferential treatment
for that new innovation for duration dn1 . It continues preferential treatment
for the innovator's previous innovation (or innovations), which are owed d,
for duration dc1. The planner will then enter the next instant with promise
equal to the maximum of dn1 and dc1, since the outstanding duration that
cannot be allocated to other �rms is the larger of those promises. We will
argue below that optimally dn1 = dc1, and therefore we will eventually just
use d1 to denote the new promise. If innovator two has the next idea, then
innovator 1's duration becomes d2. We keep track of the duration promise
to the two �rms by d and d; below we discuss situations where it is (at least
eventually) su�cient to track only a single duration promise. In the interim,
we speak generically about duration as d; everything is symmetric across the
innovators, so all statements apply equally to d. In order to make everything
completely symmetric, we refer to the promise to �rm two in the event that
�rm one arrives by d2, and so on.

In addition to duration promises, the planner must also decide how to
allocate duration in intervening periods. In particular, the planner allocates a
fraction x of the next dt instants to innovator one if no idea arrives. Although
preference is the fundamental choice the planner makes, our study of the
problem focuses on the promises of duration that the planner makes, and
uses x and future promises to ensure past promises are kept.

If nothing arrives, the planner may change the duration promise by ḋ.
We include the possibility for completeness; it will turn out that the optimal
policy will have ḋ = 0, so the planner never uses the option to make changes
after no arrival of an idea takes place. The dynamic program is, then,

rV (d, d) = max
dn1 ,d

c
1,d2,ḋ,x

dc1,d
n
1 ,d2,ḋ,x


λ (R(dn1 ) + V (max{dn1 , dc1}, d2)− V (d, d)) +
λ (R(dn1 ) + V (d2,max{dn1 , dc1})− V (d, d)) +

V1(d, d)ḋ+ V2(d, d)ḋ

(1)
s.t.

rd = x+ λ(dc1 − d) + λ(d2 − d) + ḋ

rd = x+ λ(dc1 − d) + λ(d2 − d) + ḋ (2)

The �rst line of the maximand is the case where the current innovator,
promised d for prior innovations, arrives with a new idea. The second line is
the case where the competitor arrives with an idea. The �nal line is when
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nothing arrives. There are also the domain constraints:

0 ≤ max{dn1 , dc1}+ d2 ≤ 1/r

0 ≤ d2 + max{dn1 , dc1} ≤ 1/r

0 ≤ x+ x ≤ 1

The lower end of these constraints never binds, since duration is always at
least d̂.

The constraints in (1) guarantees that the planner actually does deliver
d, and is critical to understanding the problem. Given a current promise
d, the fraction x of the current period is allocated to the �rst innovator.
Unless the constraint is not binding, it is clearly optimal for x + x = 1,
since duration is scarce and should not be thrown away. The innovator gains
dc1 − d if the innovator comes up with a new idea, and moves to d2 if the
other innovator has an idea and is implemented. This constraint also shows
a key di�erence between this model and one with a sequence of innovators,
as studied in Hopenhayn, et al (2006). In both models, duration promises
to the current innovator make the PK constraint tighter in the future. In
simple terms, increasing duration today makes the planner less able to make
promises to other agents in the future. However, to the extent that future
innovations come from the same source, greater duration does not preclude
future innovations, and therefore is not making the PK constraint tighter in
the future in those states This impact of duration on the tightness of the PK
constraint is formally the fundamental di�erence of this problem from ones
with innovators who never recur.

Since greater d only makes the feasible set of possible choices of d1 and d2

smaller, it is immediate that V (d, d) is weakly decreasing in each argument.
This in turn implies that dc1 can always be taken to be at least as big as
dn1 ; if dc1 were less, raising it and o�setting the increase by lowering ḋ to
maintain promise keeping always does at least as well, and strictly better if
V is strictly decreasing. Similarly, for dc1 > dn1 , reducing d

c
1 at the margin is

identical to increasing ḋ, and therefore we can let dc1 = dn1 ≡ d1. However, in
the modi�ed program where dc1 = dn1 ≡ d1 the envelope condition is7

V1(d, d) +
1

r + 2λ
V11(d, d)ḋ = µ(d, d)

7Subscripts denote derivatives.
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where µ(d) is the Lagrange multiplier on the PK constraint for d. This
coincides with the �rst order condition for ḋ

V1(d, d) = µ(d, d)

when ḋ = 0.We summarize this in the following lemma.

Lemma 1 dc1 = dn1 and ḋ = 0

The interpretation of dc1 = dn1 is that new arrivals always extend duration
promises for all prior inventions for the incumbent. If the incumbent had
invented a drug that treats a given disease, and then came up with an im-
provement that treats the disease somewhat more e�ectively, it both obtains
preferential treatment for the improved drug for d1, and from the point of
the improvement gets d1 units of preference for the basic treatment as well.
The intuition for why this is optimal is identical to the reason why there is
no statutory limit to preferential treatment (ḋ = 0): there is no bene�t to
lowering past duration promises, given that you are o�ering dn1 to the inno-
vator for his new innovation, and therefore this is an e�cient time to deliver
duration to satisfy the outstanding promise of d on the initial innovation.
The fact that the planner's payo� from the improvement is independent of
the treatment of the basic drug is crucial to that logic. The planner is better
o� delivering duration always contingent on an arrival of the competitor, so
as to deliver the most duration to the competitor if he is next to arrive.

This logic implies that the planner is always preferring all of an innova-
tor's innovations if he is preferring any of the innovator's innovations. Since
protecting innovations of the other innovator has no impact, one can take
this to mean that any point of preference for an innovator is preference to
the entire history of innovations. We therefore call this form of preference
complete exclusion rights. In the patent context for a quality ladder, this
will naturally map to an exclusive right to the entire quality ladder. Because
this form of preference is strong, we also study below a weaker form, when
protection ends whenever a �rm's competitor arrives with an innovation.

In interpreting preference as a patent, one can imagine a patent right
allowed the leading edge product to also exclude all competing products
(except perhaps an outside good with quality normalized to zero). One might
imagine that older product infringe on newer products, but not vice-versa.
In O'Donoghue, et al. (1998) this is referred to as "lagging breadth." Then
at any time that the �rm is the market leader, it pro�ts from all of its past
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improvements (and all of the competitors, but this is a transfer and does not
impact incentives).

The planner's simpli�ed problem is

rV (d, d) = max
d1,d2,x
d1,d2,x

{
λ (R(d1) + V (d1, d2)− V (d, d)) +
λ (R(d1) + V (d2, d1)− V (d, d)) +

}
(3)

s.t.

rd = x+ λ(d1 − d) + λ(d2 − d)

rd = x+ λ(d1 − d) + λ(d2 − d) (4)

Note that we have not imposed the domain constraints such as d1 + d2 ≤
1/r. When that constraint binds, we enter a region where the planner can
keep track of just one duration promise, since he has promised every instant
to either one �rm or another. In the remainder of this section we study
(3) in order to argue that the constraint must bind at some future point in
time with positive probability; as a result, duration promises always enter
the region where the two �rms are promised all of the instants. This allows
us to study that problem (with only one state variable) in the next section
since it will always eventually be the problem that the planner �nds itself
solving, once the domain constraint has bound.

Lemma 2 V is concave

Proof. The Bellman equation can be rewritten as

V (d, d̄) =
1

r

λ

r + 2λ
max(R(d1) +R(d1) + V (d1, d2) + V (d2, d1))

From this we can see immediately that the Bellman operator maps con-
cave functions into concave functions, since the convex combination of choices
for two states (d, d̄) is feasible at the convex combination of the states, and
delivers more when V on the right is concave.

Next, we argue that for any value of the state (d, d̄), it must be the case
that d+ d̄ = 1/r

Lemma 3 d+ d̄ = 1/r

Proof. Suppose d + d̄ < 1/r. Since both d and d̄ cannot be greater than
d∗since d∗ > r+λ

r(r+2λ)
, It must be the case that x + x̄ = 1, since, if either
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duration is less than d∗the corresponding x should be increased. Since this
applies at all instants, it must always be the case that x+x̄ = 1 and as a result
all instants are promised to one of the two innovators, that is, d+ d̄ = 1/r

This further simpli�es the problem: we can study it in terms of duration
d, with d̄ = 1/r − d at all dates.

4 Evolution of Complete Exclusion Rights

4.1 Dynamic Program

Since all instants are allocated to one innovator or the other, the planner's
problem can be written as

rV (d) = max
d1,d2,x

{
λ (R(d1) + V (d1)− V (d)) +
λ
(
R(1

r
− d2) + V (d2)− V (d)

) }
s.t.

rd = x+ λ(d1 − d) + λ(d2 − d)

Since the problem is symmetric, we generally focus our discussion on the
shape of V in the set [1/2r, 1/r]. We �rst study when the promise keeping
constraint binds, which gives some basic insight into the shape of V . This
question is analogous to the question of when x is strictly between zero and
one, since from the �rst order condition for x it is clear that x could not be
interior unless the promise keeping constraint were not binding.

4.2 Characterization

Since V is globally concave and symmetric, it is maximized at 1/2r. This is
intuitive: when duration promise is identical to the two agents, you can treat
the agents identically upon the next arrival, setting d1 = 1/r − d2, which
is best since R is concave. Note that having the agents treated identically
requires

rd = x+ λ(1/r − d2 − d) + λ(d2 − d)

x = (r + 2λ)d− λ/r

Therefore an identical result can be accomplished with x between zero and
one if d ∈ [1/r − d̂, d̂]. Intuitively, in this case, the planner can deliver any
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asymmetric preference by using x, leaving the balance of the duration promise
identical across agents when the next innovation arrives, and allowing d1 =
1/r − d2. As a result it is immediate that

Lemma 4 V (d) is constant in the range of [1/r − d̂, d̂]

This range is the one where the promise keeping constraint does not bind.
Clearly, outside of this range the planner can no longer have d1 = 1/r − d2,
and therefore value must be lower, since concavity in R dictates losses when
the next arrivals are treated di�erently. It is clear that it is never optimal
to choose a point in the interior of the �at portion, since raising the current
innovator's promise has no cost. The following lemma shows that the planner
must go even further.

Lemma 5 d1(d̂) > d̂

Proof. Proof. Since it is clear that d1(d̂) can never be less than d̂, we
focus on the case where d1(d̂) = d̂. Since promise keeping does not bind, this
implies that d2(d̂) = 1/r− d̂. In that case, the system just oscillates between
d̂ and 1/r − d̂; the planners payo� is

V (d̂) =
2λ

r
R(d̂)

We show that in this case that V is di�erentiable at d̂, implying that V ′(d̂) =
0 since V is �at to the left of d̂, which means that the �rst order condition

R′(d1) = −V ′(d1) + µ(d)

cannot be satis�ed if d1 = d = d̂, since the envelope condition would then
imply

R′(d1) = −V ′(d1) + V ′(d)

= 0

To show that V is di�erentiable at d̂, we describe a di�erentiable function Ṽ
that is below V near d̂. Since V is concave, the existence of such a function
implies that V is di�erentiable.

To construct Ṽ , supposethe planner delivers duration away from d̂ by ε
units by giving �rm one extra duration at all future points when the other
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�rm has the most recent innovation (and x = 1 when �rm one has the most
recent innovation). This implies that all innovations by �rm 1 receive d̂+ r

λ
ε,

and all innovations by �rm 2 receive d̂− r
λ
ε. Therefore the planner's payo�

Ṽ (d̂+ ε) =
λ

r
R(d̂+

r

λ
ε) +

λ

r
R(d̂− r

λ
ε)

Under the maintained assumption that V (d̂) = 2λ
r
R(d̂), Ṽ is a di�eren-

tiable function equal to V at d̂. Since it is feasible choice for the planner,
must be less than the payo� V from the optimal policy. But therefore V
is di�erentiable, implying that d1(d̂) must exceed d̂, and contradicting that
V (d̂) = 2λ

r
R(d̂).

For duration promises in excess of d̂, the �rst order condition for d1 and
concavity of V shows that duration is an increasing sequence for any con-
secutive ideas by innovator 1. An increasing sequence on an interval must
converge, and of course by the �rst order condition for d1 it cannot converge
to d < d∗, where R′ > 0. Therefore, sequences of arrivals by �rm one get
arbitrarily close to d∗:

Proposition 6 For all d < d∗ and π < 1 there exists a T such that duration

is greater than d with at least probability π.

When d∗ = 1/r, this state is preserved for an arbitrarily long time as d is
taken arbitrarily close to 1/r; there is near monopolization, in the sense that
eventually the system evolves to a point where one �rm is promised almost
the entire future.

Duration rises and falls with arrivals by the two �rms; the two �rms
engage in a sort of "tug of war" for duration. An interesting feature is
the evolution of x. Starting from duration in the middle region where V is
maximized, ideas by innovator 1 move duration up, and the promise keeping
constraint binds. As a result, x = 1. Note that the intervening period
between innovations is never split; for any duration d > d̂, a sequence of
innovations by the "trailing" innovator promised 1/r − d falls with every
innovation by the trailing �rm, but if d is high enough, innovations by the
trailing �rm may at �rst not change x, so long as the duration promise falls
but remains above d̂. Preference for the trailing �rm only kicks in when a
su�cient number of innovations by it have moved duration below 1/r − d̂,
i.e. to the �at portion plus one more innovation. This conforms to the idea
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that trailing �rms need to make su�cient progress before their innovations
are deemed to "not infringe" on the current leader's patent. Here, during the
period of infringement, the leader maintains preference, including the ability
to costly license the infringing ideas. The payo� to the trailing �rm is the
eventual ability to sell a product that embodies the entire history of ideas.

In the interpretation of preference as a patent right, the policy has the
very unusual feature that for some histories for instance where d2(d) > d̂,
even when �rm 2 comes up with an innovation, �rm one remains the pre-
ferred �rm � gaining preference for all innovations, including the one of the
competitor! It is as if �rm one, the incumbent holder of the patent, gets the
new patent at a license rate that extracts all of the surplus from �rm two. In
Hopenhayn, et al (2006), optimal policies were decentralized through buy-
outs. Here the buyout is costless; �rm one has such high duration promise
d that it includes the right to buy the next innovation for free. The innova-
tion by the "laggard" �rm is entirely motivated by the eventual possibility
that they might eventually enter the region where d < d̂, become the patent
holder for the frontier product, and earn the rents from the patent, including
the past contributions that were "bought out".for free.

An alternative interpretation of preference is not as patent policy, but
as favorable treatment from a regulator more generally. Suppose favorable
treatment allows the �rm to reap all the bene�ts of innovations from any
�rm, for instance by the incumbent �rm negotiating licensing contracts that
extract full surplus. Here the optimal policy uses such favorable treatment
as an incentive device.

The environment we study introduces a natural desire by the planner to
backload rewards. If the planner waits to provide a given �rm preference, it
can provide that �rm preference for more innovations, since innovations are
constantly arriving, and a given �rm can be allocated preference for multiple
innovations at a point in time. As a result, the planner waits to award the
preference until the �rm has a preponderance of the duration promise.

Backloading of rewards is similar to the quantitative result in Acemoglu
and Akcigit (2010). They stress the usual backloading motive which they
term "trickle down incentives:" rewards that come when �rms succeed re-
peatedly are useful both after several successes (when the backloaded reward
arises) and earlier, when �rms attempt to reach the stage where backloaded
rewards arise. This is the usual backloading of incentives intuition. Our
model generates backloading for a di�erent reason, and although our model
does not nest the one used by Acemoglu and Akcigit (2010), it is similar
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enough that the same force is likely at work in their numerical results.
One might be concerned that complete exclusion rights are overly broad,

in a way that might naturally lead to excessive monopoly power. For this
reason, as well as the fact that competition from prior preferred products
invented by the other �rm may be inevitable, we consider a restricted class
of polices where complete exclusion is not available to the planner, and show
that many of the same results are preserved.

5 Exclusive Preference Promises

5.1 De�nition

The previous section involved a policy where the planner kept promises of
preference to innovators, sometimes only delivering that promise at dates
far in the future. Futher, it required that the planner be able to �turn o��
preference later on: when the innovator received preference, it was absolute,
including for innovations previously receiving preference for the competition.
In the quality ladder model sense, the planner delivers an airtight promise
not only that the preferred �rm will be an exclusive producer of the leading
edge product, but also that it will not face even the threat of competiton
from any product previously marketed. In the language of patets, the earlier
innovator's patent infringes on a patent that comes later. This is contrary
to the usual notion of infringement on prior art.

In this section we restrict the planner to make preference promises that
do not involve either of these features. In particular, we force the planner
into two restrictions. First, if the planner is to give a particular innovator
preference for a given innovation, it must give that preference at the mo-
ment of the innovation's arrival, and not later. This corresponds to a patent
right that must be either granted or refused for the innovation. Further, the
planner cannot ever exclude an innovator from producing something which
it is at one point allowed to produce. In patent language, a patent can never
infringe on a patent that comes after it.

We call the policies that arise from these assumptions exclusive preference
promise. In Hopenhayn et al. (2006), a patent system is de�ned to be
exclusive if, at any given point in time, only one innovator has a duration
promise. In other words, whenever a new idea is awarded some preference,
all prior claims to market leadership by innovators other than the current one
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are set to zero, as here. Exclusivity is natural in the patent context, in that
it mirrors the sort of market structures that are assumed by many dynamic
models of patents such as O'Donoghue, et al (1998). It maps into a patent
right that is non-infringing on past rights, but does not encompass the prior
rights. That is, every patent that is granted is non-infringing on every other
patent, both before and after the arrival of a given improvement.

The implication of these two assumptions is that, when an innovation
arrives, there is a di�erence between ***

******************
IMPROVE THIS!
In Hopenhayn et al. (2006), a patent system is de�ned to be exclusive

if, at any given point in time, only one innovator has a duration promise.
In other words, whenever a new idea is awarded some preference, all prior
claims to market leadership by innovators other than the current one are set
to zero. In the non-recurring context, that corresponds to the idea that any
new innovation eliminates the ability of all prior �rms to pro�t. Here, we take
exclusivity to mean that arrival of a new idea supersedes the duration promise
of prior �rms. Since we assume that �rms cannot pro�t from future promises
made after this promise expires, we are assuming that innovations must be
rewarded immediately, and cannot be rewarded after the next allocation of
preference to the competitor. Exclusivity is natural, in that it mirrors the
sort of market structures that are generated by many dynamic models of
patents such as O'Donoghue, et al (1998). It maps into a patent right that is
non-infringing on past rights, but does not encompass the prior rights. That
is, every patent that is granted is non-infringing on every other patent, both
before and after the arrival of a given improvement.

In particular, in the language of the quality ladder model of section 2,
suppose that �rms have the exclusive right to produce quality levels they
"invent," but no right to exclude previous products invented by others. That
is, new innovations get a patent right that neither infringes nor is infringed
upon by the prior innovations. Until the other �rm has a patented innovation,
then, the leading innovator will be able to make pro�ts equal to the di�erence
between the leading edge quality and the last quality invented by the other
�rm. Let the expected discounted duration of this time be d. For this time
period until a patented innovation arrives by the other �rm, we say that
the leading �rm is given preferential treatment for that set of inventions,
since his patent right allows pro�ts to accrue. This preferential treatment
ends (and preferential treatment for the other �rm begins) when a patent
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is granted to the other �rm. Note that the other �rm's patent permanently

ends preferential treatment, since later patent rights will still not allow the
�rm to pro�t from innovations that took place before the competitors most
recent innovation.

***************
Formally, in terms of the program (3)

De�nition 7 Preference is exclusive if d2 = 0 if d1 > 0, and d2 = 0 if

d1 > 0.

In the exclusive case, the planner has less duration to allocate, since
preference can be given to a smaller number of innovations (by assumption)
at any instant: only the most recent string of innovation by a given �rm.
Therefore there is, in this environment, a natural interpretation of d = 1/(r+
λ) that is similar to d̂: all future innovations are implemented, meaning that
duration for the current incumbent is de�ned by "until the next idea of the
other �rm arrives," which in discounted terms is 1/(r + λ). As a result,
duration d ≤ 1/(r + λ) can be delivered without excluding anything, and
there is scarcity in duration if d∗ > 1/(r + λ), which is implied by d∗ > d̂.

5.2 Dynamic Program

Because only one innovator has a duration promise, we can write the plan-
ner's problem recursively as a function of that duration promise d. When
that �rm comes with another innovation, it gets a revised promise d1. When
the outside �rm has an idea, the planner must decide whether or not to im-
plement it. Duration promises to the incumbent greater that 1/(r+λ) require
some exclusion; we call the planner's current probability of implementing the
outsider p. If implemented (p > 0) the new innovation is promised duration
d2. In this case, by exclusivity, the innovator who entered the instant with
promise d has their duration adjusted to zero, and we track the new duration
promise d2.

The dynamic program is therefore

rV (d) = max
d1,d2,p

{
λ (R(d1) + V (d1)− V (d)) +
λp (R(d2) + V (d2)− V (d))

}
(5)

s.t.

rd = 1 + λ(d1 − d)− λpd
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where d, d1, and d2 can be taken to lie in [1/(r+λ), 1/r], since if d < 1/(r+λ),
the PK constraint does not bind, and you can set x < 1. Therefore the value
function is independent of d in this range, and we can restrict attention to
the domain where all durations are in the range [1/(r + λ), 1/r].8

The �rst order conditions for d1, d2, and p, respectively, are

R′(d1) = −V ′(d1) + µ(d)

R′(d2) = −V ′(d2)

R(d2) + V (d2)− V (d) = −µ(d)d

Since the FOC for p does not depend on p, we can take p to be always on
the boundary, i.e. either zero or one. Next we use these facts to completely
characterize the optimal policy.

5.3 Characterization

First, we show that if the current promise involves any exclusion (d > 1/(r+
λ)), then the current o�er to the incumbent �rm if he arrives with an idea,
d1(d), either implements the Arrow/Nordhaus static optimum d∗, or involves
as little current exclusion as is consistent with promise keeping; that is,
p(d) = 1, so that all arrivals by the non-incumbent �rm are implemented at
d.

Lemma 8 Suppose d > 1/(r + λ). Then either d1(d) ≥ d∗, or p(d) = 1.

Proof. If d = 1/r, then p = 1 and d1 = 1/r are immediate from promise
keeping. Therefore we focus on the case where d < 1/r Suppose that p < 1
and d1(d) < d∗.

Denote by dt1(d) the duration promise, starting from d, after t consecutive
arrivals of the incumbent, starting from a promise of d. Then d1(d) = d1

1(d)
Moreover, let pt(d) be the probability of implementing the entrant after t
consecutive arrivals by the incumbent; we have assumed, to a contradiction,
that p0(d) = p < 1.

Denote by τ the smallest positive integer such that pτ (d) > 0. Since
d < d∗ ≤ 1/r, it must be the case that τ is �nite. In words, τ is the number
of consecutive arrivals by the incumbent before p > 0. Note that following

8It is easy to show that this is a self generating property of the value function, and
therefore must be true of V (d) which is a �xed point of the Bellman operator.
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the promise keeping constraint, duration is weakly falling with these arrivals,
so dt1(d) < d∗ for t ≤ τ .

We show that this policy cannot be optimal by considering the following
variation. We increase p(d) by ε. In order to maintain promise keeping,
we must lower the implementation of entrants elsewhere. We do this at
the node that follows τ consecutive arrivals by the incumbent. The initial
policy dictates that the entrant, if it arrives, be implemented with probability
pτ (d). We lower this probability by (r + λ)τε; with that probability we do
not implement the entrant, but instead keep the incumbent, but increment
the incumbent's duration to the initial duration promise d from τ arrivals
hence.

Since we are, in some states, o�ering the incumbent d (rather than noth-
ing) after τ consecutive arrivals, we are of course increasing dτ (d). This in-
creases the duration promises for all dt(d) for t > 1 in turn. Since dt(d) < d∗

for t > 1, all of these are improvements to welfare.
We now claim that the change maintains initial promise keeping of d, and

has no additional impact on welfare. That it maintains d is by construction:
the exclusions after an entrants arrival following τ arrivals by the incumbent
increase duration by

1

(r + λ)τ+1
d(r + λ)τε

The �rst term is the discounting until τ arrivals by the incumbent, followed
by one by the entrant; d is the gained duration in this state; and (r+ λ)τ+1ε
is the probability that the duration is granted. This simpli�es to d(r+λ)−1ε,
which is exactly the amount of duration that is lost when an additional ε
probability of losing d at the �rst node is lost, after arrival by the entrant.

To see that it has no additional impact on welfare, note that there are
two other changes induced by the policy. First, with (discounted) probability
(r+λ)−1ε, we implement immediate arrivals by the entrant, and the planner
moves from state d to state d2, earning R(d2) from the entrant. However,
with the identical (discounted) probability, an entrant who would have been
given d2 is not implemented, and in this case the state transit to d instead of
moving to d2. Since these happen withe equal discounted probabilities, these
changes exactly cancel, and therefore the modi�cation is a strict improvement
in welfare.

The characterization Lemma (8) shows the sense in which duration is
backloaded: it is backloaded maximally, subject to not exceeding Arrow/Nordhaus.
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The proof makes clear the reason for the backloading, which di�ers from stan-
dard theories of backloaded incentives. Since the planner is committed to d,
he is committed to a �xed amount of exclusions of the non-incumbent �rm.
When those exclusions occur is welfare neutral, in the sense that all of the
exclusions cost the planner missing out on a new incumbent starting with
d2. When the planner implements duration d by excluding arrivals of the
outside �rm later, he raises the duration promise for all intervening arrivals
by the incumbent, though, which raises the incumbents level of innovation.
Intuitively, for a given d, every implemented non-incumbent is "bad luck"
for the incumbent. The planner resolves this bad luck as soon as possible by
making every "unfortunate" (for the incumbent) idea of the non-incumbent
end the incumbents duration early on. Whenever the incumbent gets an
arrival, then, the "good luck" for the incumbent is large: he has avoided
a state where all his competitors ideas are implemented, and therefore gets
the maximal duration increase d1(d) that the planner could have o�ered and
maintained the promise of d. This makes the incumbent respond to an ar-
rival of an idea with the maximal e�ort. Of course the planner does not drive
d1(d) beyond d∗, since although doing so might be feasible, it would not be
productive.

We know that duration starts at a point (d2) that can not exceed d∗,
since lowering d2 is unambiguously better (in terms of current R and future
payo� V (d2)). The following shows that d1 never goes above d∗, so duration
promises must always lie in the range [1/(r + λ), d∗]. This is natural since
V (d) is decreasing; there is no incentive to promise any idea more than the
Arrow/Nordhaus duration.

Lemma 9 Suppose d ≤ d∗. Then d1(d) ≤ d∗.

Proof. Suppose d1(d) > d∗. If you lower p and d1 along (PK), (same
exclusions, so gains from that cancel, and then you do better from tomorrow
on)

These results together imply that d1(d) moves in the interval [1/(r+λ), d∗]
following

rd = 1 + λd1 − 2λd (6)

whenever such d1 is less than d∗, and d1(d) = d∗ otherwise. Following this
evolution immediately gives us the following two implications of the dynamic
evolution of duration.
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Corollary 10 Suppose d > 1/(r + λ). Then d1(d) ≥ d, with d reaching d∗

for a �nite number of consecutive ideas for one �rm

This implies the following dynamics, starting from d > 1/(r + λ): rising
duration to d∗, and then, for d∗ < 1/r, a constant probability of returning
to d2. With positive probability the system reaches the Arrow/Nordhaus
solution. If that static solution involves permanent preference for one �rm,
this implies that the system reaches monopolization in �nite time:

Corollary 11 Suppose d2 > 1/(r + λ). Then for any probability π < 1
there exists T such that d∗ has been achieved in no more than T periods with

probability π.

If new market leaders are granted any promise of exclusion of their com-
petitor, it is optimal to completely monopolize the industry (in the sense
that one �rm is promised 1/r, and the other is never implemented) in �nite
time. The question, then, is whether d2 exceeds 1/(r + λ), so that duration
ever enters this region. We show next that the answer is always yes, and
therefore we have a complete characterization of the dynamics of d: increas-
ing duration with arrivals by the incumbent to d∗, periodically resetting to
d2 when an idea is implemented by the non-incumbent.

Lemma 12 d2 > 1/(r + λ).

Proof. Consider a small exclusion, only if the entrant arrives immediately
after τ − 1 arrivals by the incumbent. As in the proof of, in this event of
exclusion, set the incumbents duration back to 1/(r+λ), so it has no change
in continuation utility (in other words, this is a one shot exclusion). This
generates losses due to exclusions of(

1

λ+ r

)τ
R(1/(r + λ))

It generates gains for the τ periods from the beginning to the τ − 1 arrival
of incumbent ideas. For instance, the τ − 1 arrival by an incumbent has
duration increased at rate

1

λ+ r

1

λ+ r
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since, if the next arrival is by the entrant (the �rst term) then there is an
increase of 1

λ+r
for every unit of exclusion. This generates gain(

1

λ+ r

)τ−1

R′(1/(r + λ))

(
1

λ+ r

)2

where the �rst term is the discounting until the duration promise increases,
the second term is the gain from the increased duration, times the rate at
which duration is increasing.

It is easy to verify that all of the bene�t terms simplify to the same(
1

λ+r

)τ+1
R′(1/(r+λ)); earlier terms get less duration increase by a factor of

1
λ+r

, but happen sooner by the same factor. Therefore the total gain is

τ

(
1

λ+ r

)τ+1

R′(1/(r + λ))

and therefore there is an improvement if

τ

(
1

λ+ r

)τ+1

R′(1/(r + λ)) >

(
1

λ+ r

)τ
R(1/(r + λ))

τ >
R(1/(r + λ))

1
λ+r

R′(1/(r + λ))

The Lemma shows that new incumbents are promised some exclusions of
their competitors. The earlier results show that these exclusions are maxi-
mally backloaded, which generates duration promises that climb, with posi-
tive probability, to d∗. If d∗ = 1/r, the planner monopolizes the market, in
the sense of excluding all of one �rm's ideas from preferential treatment, in
�nite time.

The intuition behind o�ering some exclusions to new incumbents is re-
lated to backloading. If the planner were forced to grant exclusions that gen-
erate d2 immediately (i.e. for ideas that arrive immediately after the change
in incumbency), then exclusions would not be bene�cial and d2 would be
exactly 1/(r + λ). The reason is concavity of R: immediate exclusions cost
R(d2) in un-implemented projects, but generate R′(d2). The latter is always
smaller when R is strictly concave, but would be identical if R were linear.
However, backloading leaves the cost of exclusions the same, but increases
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their bene�t: exclusions far in the future generate bene�ts for all of the in-
cumbents ideas that arrive in sequence in the meantime. For linear R, this
extra bene�t of exclusions shows immediately that backloaded exclusions are
bene�cial; by continuity they must be bene�cial for R that are nearly linear.
The proof extends this logic to show that for any concave R,a small amount
of exclusions, su�ciently backloaded, is bene�cial to the planner.

6 Conclusions

We have characterized the solution to the problem facing a planner who
must allocate preferential treatment across two �rms who can use preferential
treatment to make pro�ts, and in turn are encouraged to innovate by the
provision of preferential treatment. The planner, because he can allocate
preference to a single �rm for multiple innovations at any point in time,
backloads rewards, giving the �rm with the preponderance of the promise
a preference that corresponds to a patent o�ering complete exclusion. We
show that the promised duration of preference evolves in a region that is
determined by the optimal promises in a static version of the model, which
corresponds to a classic static patent problem of Arrow and Nordhaus. When
there are no static distortions, so that the optimal static patent lasts forever,
the optimal policy we study leads to monopoly, in the sense that one �rm
is excluded even though it is getting useful ideas. We show that these basic
results hold even if the planner is forced to use a restricted set of polices
where preference is always granted immediately for any innovation that is
implemented.
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