
The Confederacy of Software Production: Field Experimental Evidence on

Heterogeneous Developers, Tastes for Institutions and Effort

(Preliminary Draft for NBER 50th Anniversary Conference on the Rate

and Direction of Inventive Activity, September 30 - October 2, 2010)

Kevin J. Boudreau (London Business School) &

Karim R. Lakhani (Harvard Business School)

This version: September 3, 2010

Abstract

At least as much as other innovative and creative problem-solving sectors of the

economy, software development takes place in an extraordinary range of different sorts

of organizations thus forming a patchwork or “confederacy” of institutional forms. We

suggest one explanation that may begin to account for this heterogeneity: workers have

different intrinsic tastes or preferences for different institutional regimes. We present

field experimental evidence to show that software workers who are sorted into either a

cooperative or competitive regime, depending on their tastes, exerted on the order of

double the effort than those in a group of randomly-assigned workers (controlling for

their skills). These results suggest that sorting on the basis of institutional tastes and

preferences to different types of organizations may have large efficiency implications.

Acknowledgements: We would like to thank Eric Lonstein for his assistance throughout
this research project. We are grateful to Jeff Davis, Elizabeth Richard, Jennifer Fogarty
and Bara Reyna from NASA’s Space Life Sciences Division in helping us identify an
appropriate computational engineering challenge. We sincerely appreciate the
tremendous cooperation extended to us by the TopCoder team including Jack Hughes,
Rob Hughes, Mike Lydon, Ira Heffan, Jessie Ford and Lars Backstrom. The M-Lab at
the London Business School and HBS DRFD provided financial support for this project.
All errors remain our own.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 2

1 Introduction

Ubiquitous yet invisible, software plays an integral role in the global economy. It is

essential for the effective functioning of most modern organizations, critical to the

advancement of knowledge in many fields, and often indispensible to many individuals’

daily activities. Concomitant with widespread use, the economic footprint of software is

quite large. In 2007, the more than 110,000 firms engaged in the production and sale of

packaged and custom-developed software, and related IT services generated in excess of

$300 billion dollars in direct revenue (National Science Foundation 2010), making this

one of the largest US industries. Purchased software is complemented by software

created within user organizations (Mowery 1996) and open source software initiatives

(Lerner & Tirole 2002). The extent of internal software production and investment is

considerable, most firms typically spending 50% more for new, internally developed

software than for software obtained through external vendors (Steinmueller 1996). In the

United States alone, more than three million individuals work as software developers

(King et al. 2010), the majority employed by establishments that sell neither software nor

software related services (Steinmueller 1996).1

Among activities in the modern economy that require significant knowledge generation

and use, discovery, problem-solving, and innovation, software development is

distinguished by the sheer number and heterogeneity of participating organizations.

Software is developed in such diverse settings as small entrepreneurial firms, departments

in large multi-national organizations, universities, outsourcing consultancies,

collaborative endeavors like open source software communities, and the proverbial

“garage.” This organizational heterogeneity has also given rise to diverse approaches to,

1 The worldwide software market and employment levels are also significant.
DataMonitor, a professional market research firm, estimates 2009 revenues of software
and related-services firms to be $2.3 trillion (DataMonitor Report 0199-2139) and IDC
projects the direct software developer population to exceed 17 million individuals by
2011 (IDC Report 1517514).

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 3

and perspectives on, developing software including software factories in Japan, the

scientific method reflected in the practices of European electronics and technology

champions, the ordered, engineering orientation pioneered by the US military and

Software Engineering Institute, and the “slightly” out of control bootstrapped

development methodology practiced by Silicon Valley firms (Cusumano 2004).

Even development of similar software functionality is often achieved in quite different

ways not only across similar firms, but even within individual organizations and from

project to project (Cusumano et al. 2003). Thus, the same firm may pursue a “waterfall”

development process that utilizes military-like hierarchical command and control

structures, employ small feature-teams working on delineated functions, and utilize

paired and agile programming arrangements and even internal and external tournaments

in developing software. Firms also continually change and tinker with their development

practices in search of the “silver bullet” (Brooks 1995) to the challenge of software

development (Microsoft’s various changes in development process are well chronicled by

(Cusumano 1991a), (Cusumano & Selby 1995), (Cusumano & Yoffie 1998), and

(Sinofsky & Iansiti 2010)).

There may, of course, be any number of reasons for the wide range and diversity of

modes of organizing software development and developers. Here, we explore the

possibility that the extraordinary variety of organizations might simply reflect the equally

large variety of workers in the industry. Since the emergence of software development as

a practice and profession in the 1950s, study upon study has remarked the heterogeneity

of motivations reported by software developers and characteristics that define this distinct

occupation (Weinberg 1971; Beecham et al. 2008; Schneiderman 1980; Couger &

Zawacki 1980). In particular, the literature has reported that programmers express strong,

conflicting institutional preferences for creating software autonomously versus

interdependently, i.e. working as part of a team. If these different behavioral orientations

of workers were associated with distinct tastes for the sort of organization in which they

prefer to work, there may plausibly be systematic sorting of workers to different sorts of

organizations and productivity implications. Thus, the motivation for this work is the idea

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 4

that the large, wide, and varied confederacy of software production is at least partially

accounted for by the preferences of workers in the industry.

This chapter presents the results of a field experiment, intended to begin to explore the

efficiency implications of possible sorting of workers in the industry. Our central goal is

simply to measure whether workers assigned the institutional regime of their preference

chose to work harder than those in a randomly assigned group. The randomly-assigned

group would constitute the population average mixture of those that preferred the regime

and those that did not. The experiment involved solving a challenging computational-

engineering problem posed by NASA’s Space Life Sciences Directorate, related to the

space station program. The over 1000 workers in the experiment were assigned to groups

of twenty which were either team “cooperative” or autonomous “competitive” regimes.

In the competitive regime, individuals competed against all others in the room; in the

cooperative regime, individuals were assigned to one of four teams of five workers.

These two regimes hardly replicate the full variety of regimes we observe in the

confederacy of software organizations. However, they do exhibit a range of starkly

opposing features that accord with important distinctions in organizations and the

preferences exhibited by software developers. So, we expected the sharp choice between

the two regimes would be more than sufficient to exhibit effects of selection. Half of the

participants were asked which regime the would prefer and were then allocated to that

regime. Thus they virtually self-selected themselves to their preferred regime. The other

half were randomly assigned. We used a combination of matching and randomization to

match self-selection groups on skills and unobservables. We were also able to compare

the effects of self-selection to the effect of formal incentives, as some groups of 20

competed for $1000 in prizes; for others there was no prize.

We found that allocating individuals to their preferred regimes had a significant

impact on choice of effort level, particularly in the autonomous competitive regime, in

which self-selected participants worked, on average, 14.92 hours compared to 6.60

average hours for the randomly assigned participants. The effect was also positive and

significant in the team regime, in which self-selected participants worked, on average,

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 5

11.57 hours compared to 8.97 average hours for the randomly assigned participants. We

found that the effect in the case of the team regime was not just the result of an initial

boost of effort from self-selection to one’s preferred regime, but also an amplification of

this effect through social interaction, with individuals exerting higher levels of effort in

the presence of teammates exerting higher levels of effort. We found no evidence of

Hawthorne effects (in the sense that being given a choice per se affected choice of effort

level). Re-weighting the data in various ways to facilitate comparisons between the two

regimes and synthesize alternative control groups did not qualitatively change the

magnitudes of estimates.

The rest of the chapter is organized as follows. In Section 2, we review software

development as a practice and industry over the past 50 years, argue that it should be

understood as a confederacy of organizations and workers of many stripes, and explore

the possibility that the wide variety of organizational modes might exist to harness

heterogeneous motivations. Section 3 describes the field experiment. We elaborate the

approach at some length, given the special concerns introduced by a unique field

experiment on innovation, particularly one in which selection is treatment. In Section 4

we present our sample and variables. We present our results in Section 5, and conclude in

Section 6.

2 The Confederacy of Software Organizations and Developers

2.1 Software and “Development” Work

Software is the basic “information” component in information technology (IT),

specifically, the sets of instructions that tell computer hardware what functions to execute

and perform according to predetermined operations or in response to user or

environmental input. Computers and related devices cannot work without software of one

type or another. Music provides a useful analogy. Just as an instrument needs a score to

produce meaningful music, so computers need software to perform productive work.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 6

To program software code requires of developers the kind of creativity and invention

common to scientific work achieved through effective problem solving and trial-and-

error learning (Cusumano 2004). Development is a highly complex cognitive task that

requires programmers to simultaneously understand an abstract problem and design and

develop, and verify the viability of, a concrete solution (Hohmann 1997). Developers

hence need to be able to rapidly understand idiosyncratic user needs in specific

application domains and articulate the specific problems and sub-problems to be tackled

by the software. Effective developers must also, of course, possess software

programming expertise (i.e., knowledge of the science of logic and rules of programming

languages) and be able to define programming plans, determine interaction profiles, and

design and deliver solutions that address user concerns, all under the shadow of varied,

continuously changing requirements (Hohmann 1997). Often, users do not really know

what they want until a programmer has created a prototype system. Even as user

requirements are changing, so is the computation environment in which the programming

is to be implemented. Developers must be continually aware that hardware and operating

system software on which they create are also themselves not static, and as likely as not

to change even as programs are being written. Finally, code must be “perfect” in both

logic and syntax, as the slightest error in either can prevent a program from executing and

serving the function for which it was created (Cusumano 1991).

Brooks (1995 pg 4), reflecting on its high failure rate, difficulty, and uncertainty, termed

software development a “tar pit.”

“No scene from pre-history is quite so vivid as that of the mortal struggles of

great beasts in the tar pits. In the mind’s eye one sees dinosaurs, mammoths, and

saber-toothed tigers struggling against the grip of tar. The fiercer the struggle, the

more entangling the tar, and no beast is so strong or so skillful but that he

ultimately sinks.

Large system programming has over the past decade been such a tar pit, and many

great and powerful beasts have thrashed violently in it. Most have emerged with

running systems – few have met goals, schedules, and budgets. Large and small,

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 7

massive or wiry, team after team has become entangled in the tar. No one thing

seems to cause the difficulty – any particular paw can be pulled away. But the

accumulation of simultaneous and interacting factors brings slower and slower

motion. Everyone seems to have been surprised by the stickiness of the problem,

and it is hard to discern the nature of it.”

The extreme uncertainty that underlies software development is well documented with a

majority of projects failing to meet functionality, quality, schedule, or cost goals, and

many canceled outright upon completion (Cusumano 1991; Cusumano 2004). Perhaps

even more striking is the observation made in the 1970s, based on IBM’s experience

developing the more than one million lines of software code for its OS/360 project

(which was late by more than a year, rife with bugs, and the half-billion dollar cost of

which exceeded budget by a factor of four (Cusumano 2004)): adding human resources to

an already late software development effort actually further delays its completion

(Brooks 1975). Software thus represents an intellectual and management challenge to

both the organizations that develop it and the workers who participate in its creation.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 8

2.2 The Industry’s History and Organizations: Emergence of a Confederacy

Subsequent to its debut in the 1950s, computing’s software component has evolved from

supporting specialized military, government and business applications to the status of a

general purpose technology (GPT) (Bresnahan & Trajtenberg 1995; Bresnahan &

Greenstein 2001). Now even the inventive activity in many fields using software is highly

dependent on advances in the supporting software (Ding et al. 2010; Cusumano 2004).

But from its initiation as a formal field of technology more than fifty years ago through

the present day, there has been no general consensus on a “best” way to organize

development efforts (Brooks 1995, Cusumano 2004, Cusumano et al. 2003).

Over the course of this more than half a century, a plethora of firms, government

agencies, universities, organizations, and user communities has been concurrently

developing software in many different ways (Mowery 1994). Over time, computing

architectures also evolved, from centralized, mainframe machines, to decentralized

minicomputers and personal computers, to networked personal and special purpose

computers that can reside on a desktop or in a lap and even in a mobile phone or parking

meter. The consequent pervasiveness of computing has generated ever greater demand

for software and at the same time increased the number and diversity of organizations

engaged in creating it.

The mainframe computer was the epitome of the centralized computing era. Because the

first mainframes sold by computer manufacturers in the 1950s did not come with any,

software was by default written mostly by staff of the user organizations (Campbell-Kelly

2003). A customer was expected to expend as much money for programmers as for a

computer, it not being uncommon for the purchase of a single mainframe to be

accompanied by the hiring of 30 full time programmers (Campbell-Kelly 2003).

Although firms like IBM provided training and support for programmers, each user

establishment organized software development according to its particular perspective on

the problems at hand and the best way to solve them. The significant duplication of effort

inherent in the development of even the most basic functionality, and the serious

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 9

bottleneck represented by programming staff and cost, were soon recognized by users,

who, with the encouragement of computer vendors, established user communities that

promoted the sharing of code.2 IBM’s user community, called SHARE, within a year of

its founding in 1954 had 62 member organizations each of which was estimated to have

been saved approximately $1.5 million by the 300 programs distributed among them

(Campbell-Kelly 2003).3

As business users were busily sharing code with one another, the US military, concerned

with Soviet nuclear supremacy, was seeking to develop an automated air defense system

capable of detecting incoming bombers and missiles. The core of the system was a Q-7

computer that was to integrate radar, communications, and technical analysis. The

contract to manufacture the computer hardware, awarded to IBM, generated revenues in

excess of $500 million and employed about 25% of the company’s workforce,

approximately 8,000 people in the 1950s (Campbell-Kelly 2003). Curiously, IBM

declined to develop the software for the Q-7, claiming that it would not know what to do

with the labor when the project was completed. When other vendors turned down the job

for much the same reason, the US Department of Defense tasked RAND Corporation to

develop the requisite software. RAND subsequently established a subsidiary company,

which it called System Development Corporation (SDC), and by 1959 had 700

programmers (by some estimates, half the professional programming population in the

United States at the time) supported by 1,400 additional staff working on the system

(Campbell-Kelly 2003). Owing to its military origins, SDC’s approach to developing

software emphasized standardization, requirements formation, and agreed upon coding

solutions.

In the wake of increasing demand by the military for computer software for information

processing and command and control systems, large, well-established government

contractors began to branch out into software to compete for the lucrative development

2 Campbell-Kelly (2003) reports that the cost of programming a single instruction on a
computer could be as high as $10 (pg 33).
3 SHARE was not an acronym but rather a statement of purpose, specifically, to promote
the practice of sharing information and programs among users (Campbell-Kelly 2003).

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 10

contracts (W. Edward Steinmueller 1996). The need to combine computer hardware and

software led electrical engineering firms like General Electric and Westinghouse,

computer and business machine manufacturers like NCR and Remington Rand, aerospace

companies like Lockheed and Boeing, and defense contractors like TRW and the

Planning Research Corporation to create separate divisions to act as system integrators,

porting to the world of software processes and approaches used in the development of

their respective technologies.

IBM overcame its reluctance to develop software in mid 1950s, when it helped American

Airlines create the first computerized travel reservation system, SABRE. The launch of

SABRE heralded the beginning of business applications that went beyond bookkeeping

and accounting to exploit computers to create core competitive advantages. This new

source of demand for specialized software intimately tied to computer hardware gave rise

to a number of startup firms founded by ex-employees of established software integrator

firms and computer manufacturers as well as user firms (Steinmueller 1996).

Until the mid 1960s, software not purpose built for specific functions tied to particular

hardware configurations was either provided for free by computer manufacturers or

developed by and shared freely among users. Various software functionalities it

developed for different industry verticals throughout the 1950s and 1960s, for example,

were given away by IBM, and users were so used to sharing that “everybody who

developed a piece of software was only too happy and flattered to have somebody else

use it” (Campbell-Kelly 2003).

The concept of software as a product distinct from computer hardware, that could be sold

by a third-party provider to users, emerged accidently in the wake of the collapse of a

business arrangement between RCA and Applied Data Research (ADR) for the

development of custom software. In 1964, RCA requested that ADR create a

programming analysis tool that would enable its software developers to create logic flow

charts of their programs. ADR complied, but RCA declined to accept the delivered

software. ADR being left with significant outstanding expenses, president Martin Goetz

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 11

decided to sell the software directly to RCA computer hardware customers. The market

for IBM computers being significantly larger, he reasoned that porting the software to

that platform would increase sales. ADR priced the software, called Autoflow, at $2,500.

Thus was the first ever software product and company established (Campbell-Kelly

2003).

Due to the continued availability of “free” software, demand for software products

remained limited until 1969, when IBM, under pressure from the US Department of

Justice for anti-trust violations, “unbundled” its computer hardware, software, and

training and subsequently charged separately for each product (Campbell-Kelly 2003). Its

decision appears to have had two important effects, (1) it set an independent and separate

price for formerly “free” software for which users would now have to pay, and (2) it

opened the door for other companies to market products superior to the IBM suite.

The market for software products was fueled by the debut, in the mid 1960s, of the

minicomputer, pioneered by Digital Equipment Corporation. Its PDP-8 minicomputer

had a relatively low technical performance specification, 6%-22% of IBM’s mainframe

capability, but cost a similarly low 6% of the cost of the much larger computer

(Steinmueller 1996). The low price of minicomputers spurred a significant market uptake

among smaller customers that could afford neither the prices charged for, nor the

numbers of dedicated staff required to support, IBM equipment. Minicomputers served

single purpose uses such as machine control, data entry, and data processing, and with

many more uses and users, and a growing number of software providers, a decentralized

model of computing began to emerge. By 1974, 2,928 software products (ranging in price

from $500 to $20,000) were offered by 740 different vendors (Campbell-Kelly 2003) and

the 34,000 minicomputers sold compared to 8,900 mainframes (Steinmueller 1996).

The availability of relatively cheap minicomputers also democratized the craft of

software development. Putative developers no longer needed to work at large firms or

startups with access to computers. As minicomputers spread throughout the economy,

more users became acquainted with computing and software development.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 12

The perhaps most interesting side effect of minicomputers was the formalization and

development of the open source software ethos whereby a relatively small set of actors or

even individuals could independently create relatively large system instead of resorting

managerially led teams. The development of the Unix operating system within Bell Labs

is an example. The first version of Unix to run on a DEC PDP-11 was written, initially by

just two developers, Ken Thompson and Dennis Ritchie, in about one month in 1969

(Salus 1994). Ostensibly developed to enable the creation of a patent management

program for Bell Labs, Unix’s genesis was, in fact, Thompson’s frustration at not being

able to play his “Space Travel” video game on decent, cheap hardware. In the space of a

year, Unix was a full-fledged operating system distributed freely, consequent to AT&T’s

consent decree, to any organization that wanted to run it. Equally important, the code

could, with relatively little effort, be modified and the operating system ported to any

other hardware platform. The Unix community essentially applied the ethos of the earlier

days of SHARE to all aspects of program development, not just applications and rapidly

many hundreds of independent contributors created software for the operating system

(Salus 1994). This freewheeling development forum provided yet another sustained

source of software development practices. Today, a straight line can be drawn from the

birth of Unix to the creation of community-based open source software products.

But the distribution of software development among different venues did little to abate

the inefficiency and ineffectiveness of many of the discipline’s practices. The tar pit

persisted throughout the 1970s, with many organizations struggling mightily with

increasing costs, extended delays, poor quality, and an insufficient supply of software

developers. Some posited as a solution embracing the notion of factory development for

software. Here, Japanese firms led the way, with the American firms trying at various

times, mostly unsuccessfully, to follow suit (Cusumano 1991). Core to the software

factory mentality was the belief that the labor supply for software development would

remain chronically low in Japan, necessitating reliance on lower-skilled workers

(Cusumano 1991). The factory approach embraced and formalized the “waterfall”

process that imposed a sequential separation between high-level design and detailed,

functional design in programming and testing. In keeping with the factory mentality,

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 13

standardization and documentation of programming, rigorous supervision of staff, and an

emphasis on code reuse were designed into the system. Although many US companies

flirted with, and even implemented, some of the associated ideas, software factories are

still found mostly in Japan, and to a limited extent in India (Cusumano 2004).

The distributed computing paradigm, and software development business and practice,

experienced a revolution with the introduction of the personal computer (PC) in the late

1970s. The introduction of the Apple II in 1977 was a seminal event. It was Apple and its

many imitators that envisioned computers being not just for business and government,

but also for personal, use. Personal computers were marketed to hobbyists, housewives,

students, and educators, and software for this new market, at a price point of less than

$100, was developed not by existing players but by a wave of new entrants.

The breakthrough product in this era was developed by MIT alum and Harvard Business

School graduate student Dan Bricklin to make his accounting and finance homework less

tedious. Visicalc, created by Bricklin and colleague Bob Frankston in the former’s attic

as a way to solve the problem of updating numbers in previously hand coded

spreadsheets, quickly catapulted PCs from hobbyist machines to serious business tools.

Many firms would buy Visicalc, which sold for less than $100, bundled with the Apple II

for more than $1,200 just to access the spreadsheet functionality. Visicalc was the

harbinger of small, dedicated software companies that became overnight successes by

creating products for the PC market, the so called “killer application.”

IBM’s entry into the PC market in 1981 further legitimized decentralized computing and

expanded the base of software that needed to be developed. Now PCs had legitimate

business uses as well as a range of other uses as diverse as desktop publishing, graphic

design, and music production. In bundling Microsoft’s PC-DOS operating system with its

PC, IBM provided the blueprint for entry by many new software firms with product

offerings that could satisfy the demands of the expanding market.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 14

Of the several thousand firms that entered the market during the first ten years of the PC

era, fewer than 100 achieved sales success exceeding $50 million (Campbell-Kelly

2003). Many of these firms were small ventures that turned out robust software products

developed by as few as one, two, or three individuals. Larger firms, after launching their

initial products, when new features, updates, and ongoing maintenance were required,

quickly succumbed to the vagaries of complex software development (Cusumano 2005).

Although it struggled over the years to provide the functionality, quality, and timely

delivery demanded by customers (Cusumano 2004) Microsoft pioneered a model that

could accommodate the increasing complexity of, and changing market conditions that

impinge on, PC software development. The core of Microsoft’s approach is the

distribution of work among small-feature teams, each of which develops one at a time

software functionalities over the design and development of which it has full control.

Programmers are encouraged to innovate and experiment, but also to synchronize

frequently with other teams their designs and work output. Here, making the team central

enables the development of programs with as many as several million lines of code, and

all activity centers around synchronizing and stabilizing the code on a regular basis

(Cusumano 1997).

The networked machine dominates the current computing era. Government funded and

developed for more than 30 years by DARPA and ARPA, the Internet reached

mainstream consciousness with the concurrent inventions of Hyper Text Markup

Language (by Sir Tim Berners Lee) and the supporting technologies of the Web browser

(by Marc Andreesen) and Web server (by Rob McCool) as instantiated in the World

Wide Web. Now, with islands of personal computers, mainframes, and minicomputers

able to be connected globally, new information sources and services emerged to exploit

the opportunities afforded by this vastly expanded connectivity. Web technologies further

lowered barriers to entry for software programming. Now, anyone with a computer and

network connection could write software for the Web, often developing in days

functionality that would take weeks if not months to develop in traditional settings.

Connectivity was extended beyond computers with the advent of Internet-connected

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 15

mobile phones that further expanded the population for which software could be written.

The iPhone platform alone spawned more than 250,000 software applications that are

routinely developed by teens as well as by startups and established firms and

organizations.

The results of this evolution is a sector of enormous scale, importance and varied

organizational approaches. The software sector expends, on average, 10%-15% of

revenues on R&D, equivalent to the pharmaceutical sector (Campbell-Kelly 2003; Pisano

2006). The confederacy of organizational approaches that has emerged includes

individual users, communities, internal development activities, custom, packaged, and

Web software developers, and software services firms employing myriad approaches.

Table 1 shows there to be approximately 10 times as many organizations dedicated to the

software sales business model (more than 110,000 establishments) as pharmaceutical and

contract research science organizations. But the number of employees per firm is between

four and ten times smaller compared to the commercial science sector. Figure 1 plots the

large economic footprint of the confederacy of software developers, with 2007 US sales

exceeding $300 billion, surpassing the pharmaceutical industry by about $100 billion.

<Insert Table 1 Number of Employees and Establishments in the Software, Pharma and

Contract Research Industries (2007)>

<Insert Figure 1 Comparison of Revenues in the Software Industry to those of Other

Sectors >

2.3 Inside The Confederacy: Software Developer Motivations and Preferences

From its inception as a field of endeavor, and as the economic and strategic significance

of software development increased, there have been many attempts to comprehensively

understand what drives and motivates developers. This has been an area of particular

interest given that motivation has over the years been thought to be crucial to software

developer productivity and quality, and has been viewed as difficult to manage (Sarah

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 16

Beecham et al. 2008; Sharp et al. 2009). The history of research on industry workers’

motivations and behavioral orientations is large; Sharp et al. (2009) estimate that more

than 500 papers have been written on the topic. A rising interest in varied motivations of

developers has also to some degree mirrored the changes and rising heterogeneity of

organizations in the industry, and as quality, completion, and turnover of employees

became significant issues (Bartol and Martin 1982).

Although software development projects may end up in the tar pits, the workers who

participate in creating the programs tend to have a high affinity for the task itself (Bartol

and Martin 1982, Beecham et al. 2008, Sharp et al. 2009) and infrequently face

employment shortages. The attraction to software variously lies in the sheer joy of

building and inventing, contributing to society through useful outputs, pleasure of

participating in the problem and puzzle solving activity that is at the heart of

programming, and continuous challenge of learning new techniques and approaches

(Brooks 1975). Software developers also tend to identify more with the profession and

occupational community than with the organizations in which they toil (Couger and

Zwacki 1980).

Many of the same attractors reported by software developers are reported by scientists

engaged in discovery work (Merton 1973, Dasgupta and David 1994, Stephan 1996),

which tends to exhibit similarly high levels of uncertainty and failure. But whereas the

republic of science acts as an institutional framing device for scientific workers’ work

preferences by virtue of a lengthy education process culminating in a PhD, the education

profile of software developers exhibits considerable heterogeneity. More than one-quarter

of software developers lack even an undergraduate degree, and the 1% that earn PhDs

compares to 25% among science workers (Table 2). Software developers’ preferences for

style and type of work thus tends be based more on idiosyncratic experiences than on any

overarching organized institutional frame. Moreover, as the number of individuals

engaged in programming is roughly three times the number of scientific workers (Figure

2) one can expect much more diversity in preferences, absent strong framing.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 17

<Insert Table 2 Education Levels for Software Developers and Scientists>

<Insert Figure 2 1992-2009:Total US Software vs. Science Employment>

Until the early 1980s, work on motivation tended to focus on trying to understand if those

attracted to software development were somehow “different” and distinct from those in

occupations in general, and in other technical and scientific occupations in particular

(Weinberg 1971; Couger & Zawacki 1980; Schneiderman 1980; Bartol & Martin 1982).

The research indicated that developers were similar to those in other occupations in terms

of placing high value on jobs that provided interesting work and opportunities for growth,

achievement, and career recognition (Bartol and Martin 1982). However, their need for

achievement and growth, in particular, was significantly higher than exhibited by those in

other occupations (Couger and Zawacki 1980), and they exhibited less concern for

financial incentives (Bartol and Martin 1982). The work itself hence being viewed as the

main reward for software developers.

Beecham et al.’s (2008) review of the post-1980 literature on the motivations of software

developers found, consistent with past findings, that what was attracting people to

software development were the inherent opportunities to learn, engage in problem

solving, and explore new techniques. In fact, their review identified as drivers of

engagement in software development 21 distinct motivators ranging from the need for

rewards and incentives linked to performance, to task identification and variety, to

supportive management, to a sense of belonging to a group and concomitantly enjoying a

high degree of autonomy. Table 3Table 3 presents this list of motivators.

<Insert Table 3 List of Motivators Described in the Literature>

Further examining the literature to derive the defining characteristics of software

developers, Beecham et al. (2008) identified sixteen characteristics that range from being

growth oriented, to being concerned about independence and autonomy, to requiring

competent management structures. Table 4 presents this list of characteristics. But

Beecham et al. (2008) caution against reading too much into the frequency with which a

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 18

motivator or characteristic shows up in the literature, emphasizing that the thrust of their

findings is that software developers should be viewed as having complex, heterogeneous

motivations and not as being a distinct, homogenous occupational group.

<Insert Table 4 List of Characteristics of Software Engineers Described in the

Literature>

The same stream of literature also uncovered the alarming, at least to the researchers,

finding in several studies that software developers indicated the least need for social

interaction both on and off the job (Couger and Zawacki 1980). Compared to those in

other occupations, software developers simply preferred to work on their own and

interact as little as possible with colleagues, managers, or fellow employees. Leading

researchers with normative concerns for the profession were concerned about this

finding. Schneiderman’s (1980, pg 124) discussion of the low social needs of

programmers is illustrative.

The first two decades of programming history produced the image of the

introverted, isolated programmer surrounded by stack of output. Other workers

have left the office, but our intense programmer, ignoring the absence of

colleagues, scribbles rapidly, with a felt pen, in hopes of eliminating the last

annoying bug before a 9 AM deadline. Fortunately, this image is becoming only a

wild caricature of reality. The lonely days of the programming frontier are giving

way to community, interdependency, and stability. This passage is happening

gradually—the pioneers still resent the settler groups and seek to preserve their

freedom and independence. The image of the programmer as a “loner” appears to

have some validity, but it is hopefully changing.

The formal discovery of the anti-social nature of the software developer flew in the face

of the widespread belief that interdependent team structures improved productivity at the

individual level and were better suited to tackling more complex tasks (Schniderman

1980, Couger and Zawacki 1980). During the late 1970s, software organizations explored

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 19

various team structures with an eye to improving the reliability of software, reducing time

to completion, and generally making software development tasks more predictable.

Among these were traditional hierarchical teams driven by senior programmers with

varying numbers of junior programmers at their beck and call, “egoless” teams that

favored an egalitarian community infrastructure over a competitive environment, and

“chief programmer teams” in which intellectual responsibility for the design and

development of the software code rested with a senior programmer assisted as needed by

a host of skilled sub-specialists (Schneiderman 1980). But even as these various team

structures were being evaluated, growth in the demand for software, which skyrocketed

in the wake of the PC revolution, was bringing into the market increasing numbers of

developers working both within organizations and on their own, the latter, as noted

earlier, often able to produce software products equivalent to those output by the

development teams working within organizations.

Beecham et al.’s (2008) analysis of the literature also surfaces, however, seemingly

opposing findings in other research that indicates developers in other study sites have

been found to sociable, identifying with a group, and willfully working in an

interdependent setting. Thus, it would appear that some developers may embrace teams

and prefer to work in highly socialized, interdependent environments and others prefer to

work autonomously in solitary surroundings. The consequence for the literature is that

the institutional characteristics of jobs and personal preferences of individuals will

interact to predict software developers’ levels of effort and performance (Beecham et al.

2008).

3 Experimental Design

In the remainder of the paper, we consider the possibility that the extraordinary

heterogeneity in organizations and in workers in the industry are somehow linked. Our

central goal here is to estimate the extent to which assigning individuals to work within

the regime they prefer (or have a “taste” for) influences how hard they work. The

approach is quite simple: allow half the participants to choose between a “cooperative” or

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 20

“competitive” regime and compare how they perform relative to individuals in a

randomly assigned control group. Thus, although we do not directly observe individuals’

behavioral orientation towards, or taste for, a given regime, we do rely directly on their

stated preference. We then compare, in Figure 3 below, the efforts of group A’ with A

and of B’ with B.

<Insert Figure 3 Comparison of Self-Selection into Regimes versus Random-

Assignment>

3.1 Context

Given the emphasis on measure the size of effect in relation how different types of

workers behave under different circumstances, a field setting has a clear advantage of

providing more meaningful estimates than a lab setting. Nonetheless, estimation of

selection effects requires an especially controlled environment. We conducted the

experiment on the TopCoder open software innovation platform. This provided a field

context with real, elite software developers; but, at the same time, the context provided an

unusual ability to perform manipulations and to observe relevant microeconomic

variables. Over the 10-day period of the experiment, participants developed

computational algorithms to optimize the Space Flight Medical Kit of NASA’s Integrated

Medical Model (IMM) Team. TopCoder provided substantial assistance in altering the

platform to enable us to run a multitude of treatments concurrently and in isolation, with

setting up the NASA problem on the platform, and with running the experiment.

The solution to the real, highly challenging computational-engineering problem of

developing a robust software algorithm to recommend the ideal components of the space

medical kit included in each space mission was to be used by NASA. The solution had to

take into account that mass and volume are restricted in space flight, and that the

resources in the kit needed to be sufficient to accommodate both expected and

unexpected medical contingencies encountered while in space, lest the mission have to be

aborted. The content of the kit also had to be attuned to the characteristics of the space

flight and crew. The challenge was thus to develop an algorithm that addressed mission

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 21

characteristics that traded off mass and volume against sufficient resources to minimize

the likelihood of medical evacuation. The problem, being relatively focused, was

expected to be solved as a integral project capable of being divided into a set of

subroutines and call programs. These sorts of projects might be solved by open source or

corporate development teams composed of as many as 10 people (Carmel 1999). They

are also regularly solved by participants in TopCoder tournaments.

The point of the experiment was to use self-selection as an instrument for revealing

participants’ (unobservable) behavioral inclinations towards one regime or the other. But

if self-selection is in any way correlated with skill levels, we cannot attribute differences

in outcomes exclusively to behavioral characteristics. Therefore, we must somehow

remove or account for systematic differences in the skills of individuals and groups.

3.2 Assignment Procedure: “Ordered Pair” Matching on Skills and

Randomization

One way to address the need to compare groups of similar composition is to exploit

TopCoder’s skill rating system, simply applying controls when statistically comparing

outcomes between groups and individuals. However, we go further to deal with

observable as well possibly unobservable characteristics with the combination of a kind

of matching and randomization procedure.

The process described here is summarized in Figure 4. The goal of the process is to create

groups or “rooms” of 20 participants drawn from the same skills distribution (and

equivalent unobserved characteristics), but who had different tastes for the two regimes.

The construction of treatment (self-selection) and control (random allocation) groups

begins by dividing the participants into two groups (the self-selection and random

assignment groups) with identical skills distributions (Step II in Figure 4). This is

accomplished by ordering all participants in the population from top to bottom according

to their skills rating. We divide this rank order into ordered pairs (top two highest skills,

third and fourth highest skills, etc.) and randomly allocate one member of each to the

self-selection group and the other to the random-assignment group.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 22

We then asked just the participants in the self-selection group which regime they

preferred to join (Step III). This was done in private bilateral communications between

the TopCoder platform and individual participants, each of whom was asked: “Might you

be interested in joining a team to compete against other teams?” Relative preference for

the competitive or cooperative regime was to be indicated on a 5-point Likert scale.4 The

resulting subgroups were assigned to the cooperative and competitive regimes.

Implicit in this non-random self-selection to cooperative and competitive regimes is that

these groups will not have equivalent skills differences. By assigning ordered pairs within

the random-assignment group to the same regime, however, we assure that the self-

selection and random-assignment groups within the cooperative and competitive regimes

remained identical. We thus constructed groups identical in skills distributions that

differed systematically in terms of their preferences for regimes. The self-selection group

was uniformly orientated towards the regime to which it was assigned; the random-

assignment group had the population average preferences, with some individuals

preferring, and others not, the regime in question.

The self-selection groups of cooperative and competitive participants were then divided

into groups of 20 individuals, in virtual web-based “rooms” (Step IV). Cooperative

rooms were formed of four teams composed of five indivuals (also randomly formed).

We “mirror” this random assignment in the randomly-assigned group, but essentially the

ordered pairs to comparable groups. Thus, in randomly assigning the $1000 cash prize

4 Participants were first asked their preference between the regimes, then given the
following options: (1) I DEFINITELY would prefer to join a team; (2) I think I MIGHT
prefer to join a team; (3) I am indifferent or I am not sure; (4) I think I MIGHT prefer to
compete on my own; and (5) I DEFINITELY would prefer to compete on my own. They
were then provided with additional descriptive details about each of the regimes and
asked the same question. We then asked them to consider the possibility that both
cooperative and competitive regimes were always available on the TopCoder platform
and to indicate on a provided list of options what fraction of their time they would
imagine spending in either regime. The order of responses, whether oriented towards the
competitive or cooperative regime, was randomized. The second question (the one asked
after clarifying the precise rules of each regime) was used as the basis for making
allocation decisions.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 23

awards to rooms in the self-selection group, we can then assign these prizes to the

identically-distributed rooms in the random-assignment group (Step V).

<Insert Figure 4 Illustration of Assignment Procedure>

3.3 The Experimental “Institutional Regimes”

3.3.1 Competitive Experimental Regime

In creating the competition regime, we attempted to follow the existing open innovation

competition (contest) regime regularly employed by TopCoder. Our primary unit of

analysis of competition was the 20-person groups of direct competitors we created, this

being the level at which the main prizes were rewarded. We choose $500 for the first

place, and $200 for the second place, prize for each group of 35,which is considerably

higher than average price levels but well within the typical range of prizes-per-contest

participant. A list of competitors and skill levels and solutions submitted to date was

posted for participants within a given group of direct competitors (but not to other

groups).

3.3.2 Cooperative Experimental Regime

The open cooperative regime is demarcated by four, isolated, five-person “teams.” Other

factors that differentiated the cooperative from the competition experimental regime were

communication, sharing, and information regarding competing teams and the payoff

scheme.

Within-team communication was via a message board (i.e., communications within a

group were common knowledge and broadcasted rather than bilateral). Code could also

be posted to the discussion board, but more direct sharing of output was possible as all

code submitted to be compiled, and compilations scores, were viewable by all members

of a team (but not across teams). Participants could observe details of all individuals on

their respective teams, but only average skill ratings and the highest ranked submissions

of other teams.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 24

The payoff scheme was broadly the same as in the competition regime, the top two

submissions receiving prizes of the same amount. We did not impose “team” payoffs,

simply allowed winning submitters to allocate prizes and recognition as they deemed

appropriate. Coders making a submission were asked if they drew on other coders’ inputs

or contributions and how they felt the prize money should be allocated. An alternative

(perhaps more obvious) approach would have been to impose a sharing rule, but we felt

that self-determination was closer to the ethos of most collaborative development teams.

We followed this approach after consulting with TopCoder executives and interviewing a

number of TopCoder members. Prize magnitudes were intended to weakly, and only

weakly, suggest the possibility of evenly dividing prizes among five team members.

Table 5 summarizes details of payoffs. Note that the proportion of competitive and

cooperative groups randomly assigned to compete for no rewards is equal. All

participants who submitted code were also eligible for a custom t-shirt, and the top

performing entry, regardless of prize treatment, received $1,000. The total prize pool for

the experiment was $25,000.

<Insert Table 5 Key Features of the Experimental Regimes>

4 Sample and Variables

The total sample population was 1,098 individuals.5 For the analysis, we dropped

observations for which skill rating information was insufficiently precise or difficult to

interpret. This included individuals with zero ratings and individuals who had not logged

a rating in the type of competition known as “algorithm contests,” on which we focused

given that it is the most popular rating and most relevant to the sort of problem-solving

5 Several hundred more had subscribed, but we decided, in close consultation with
TopCoder, to keep only the 1,098 individuals who had established TopCoder skill
ratings. We would have preferred to also drop those with zero ratings and without the
“Algorithm” rating we treat as the salient skill rating, but this was not possible as a
practical matter for TopCoder in managing its community of coders.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 25

involved in the experiment.6 The distribution of the 1,040 observations in the sample used

in the analysis is presented in Table 6.

<Insert Table 6 Sample Breakdown>

It should also be emphasized with regard to our research objective of measuring the

selection effects of a sort that the TopCoder membership hardly represents a random

sample of individuals from the economy, or even from the software developer labor

market. At the time of the experiment, some 15,000 TopCoder members relatively

regularly participated on the platform. Because the population in the experiment reflects a

choice to voluntarily participate, the results should be interpreted as “treating on the

treated,” or assigning what is a non-random population to different treatments. Although

there is considerable diversity in this group, which includes individuals from many

countries and from industry as well as students and researchers, it remains a subset of the

wider population of the global software developer labor market, and estimates of effects

of self-selection versus random assignment of workers should therefore be smaller than

what might be possible were we to construct a more diverse sample from the broader

labor market.

Of those in the self-selection group who were asked, 34.9% expressed a clear preference

for the cooperative, 50.5% a clear preference for the competitive, regime.7 The remaining

15.6% of participants in the self-selection group expressed uncertainty or indifference

between the regimes. We interpreted this indifference to indicate some openness to the

cooperative regime (TopCoder’s usual regime is similar to the competitive regime). In

the interest of balancing numbers in the regimes, we elected to allocate the indifferent

responses to the cooperative regime, resulting in a breakdown between the competitive

and cooperative regimes that was remarkably close to half-and-half. (As dropping the

indifferent observations had little effect on the results, they were left in the analysis.)

6 Experimenting with alternative approaches to including observations did not appreciably affect our results. We present results in
relation to the preferred sample given that their interpretation requires the least qualification and fewest caveats.
7 We originally targeted half the entire group of 1,098, but did not receive responses from a small fraction of individuals.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 26

As anticipated in the matching and randomization procedure, a clear correlation between

preference for the competitive regime and skill level emerged. Figure 5 presents a

flexible, locally weighted kernel regression of the relationship between a preference for

competition and different levels of SkillRating. Higher skills are clearly positively related

to a preference for the competitive regime.

Given that treatments were in units of groups of 20, we created 14 groups of self-selected

competitors through random assignment. We then assigned the ordered pair of each of

these self-selected competitors to 14 additional “mirror” rooms of competitors. This

assignment procedure resulted in 28 full rooms of 20 competitors. (We created a 29th

room that had fewer than 20 participants to allow other individuals to participate.)

Twelve of the 28 rooms, six assigned rooms and six self-selected rooms, competed for

cash prizes amounting to $1,000 per room. We chose 12 simply because participation in

the experiment exceeded expectations, and we had not budgeted for more than 12 prizes

for the competitive regime. Prizes were first assigned randomly across the self-selection

rooms. The “mirror” rooms of ordered pairs with corresponding assigned competitors

were then also allocated $1,000 prizes.

<Insert Figure 5 Preference for Competition versus Skill Rating>

4.1 Variables
This section discusses the meaning and construction of variables used in the analysis.

Table 7 presents variable definitions, Table 8 descriptive statistics.

4.1.1 Dependent Variables
We have both observational and self-reported survey measures of effort. The

observational measure is the number of submissions made by each participant over the

course of the 10-day experiment (NumSubmissions). This is a direct indication of the

intensity of development, given that code testing and evaluation required that code be

submitted to the platform so that its performance in relation to the test suite could be

assessed and it could be assigned a score. (Participants’ best, and typically last,

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 27

submission became their final score.) Submitting code in this fashion was costless and

resulted in virtually instantaneous feedback.

Our preferred main dependent variable records the total number of hours participants

invested in the preparation of solutions throughout the course of the event. This self-

reported estimate of the total number of hours worked (HoursWorked) was reported in a

survey administered the day after the event closed.9 (Participants were required to

respond to this question electronically, as the experiment closed, in order to receive a

NASA-TopCoder commemorative t-shirt imprinted with their name.) HoursWorked is

our preferred variable, as it directly conveys meaning (and perhaps even some indication

of value) and is easily interpreted. The results do not depend on which of the two

measures of effort we use in the analysis.

<Insert Table 7 Variable Definitions>

<Insert Table 8 Descriptive Statistics>

4.1.2 Explanatory Variables
The key explanatory variable, SelfSelect, indicates whether a competitor was in a self-

selection or random assignment group. A second explanatory variable, Prize, indicates

observations/individuals associated with rooms for which there was a $1,000 cash prize.

A third explanatory variable, Competition, is set to one to indicate the competitive, and

zero to indicate the cooperative, regime.

9 Nearly all participants who submitted solutions responded. A research assistant who
contacted 100 of the non-submitters who did not respond to the first survey found that
each had devoted less than one hour to the project and had not made a submission. This
enabled us to complete the non-respondents by filling in zero hours as a relatively precise
approximation. It became clear through interviews with non-submitters that they
generally believed they would not receive a commemorative t-shirt whether they
responded to the survey or not, accounting for the sharp difference in response rate
between submitters and non-submitters. Worthy of note, however, is that a number of
non-submitters whom we discovered had worked a non-trivial number of hours before
choosing not to submit did respond to the survey.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 28

Our measure of general ability to solve algorithmic problems is TopCoder’s own

rating system, which essentially calculates a participant’s ability to solve problems on the

basis of past performance. We refer to this variable as SkillRating. We use specifically

the rating calculated for what TopCoder terms “Algorithm” matches, software solutions

to abstract and challenging problems akin to the problem in the experiment.10

4.1.3 Additional Variables
In robustness tests, we use two additional variables collected for those in the self-

selection group. The variable LikertScale captures the Likert scale responses of those

asked their preferences. Recall that the numerical responses in this variable correspond to

the following scale: (1) I DEFINITELY would prefer to join a team; (2) I think I MIGHT

prefer to join a team; (3) I am indifferent or I am not sure; (4) I think I MIGHT prefer to

compete on my own; and (5) I DEFINITELY would prefer to compete on my own. The

variable OrderofQuestion captures whether the survey was designed to present all aspects

of introducing regimes with the cooperative or competitive regime first.

5 Results

5.1 Cross Tabulation Comparisons

Given the design of the experiment, just the mean outcomes should provide meaningful

comparisons, and, indeed, reveal that self-selection led to significantly higher levels,

especially in the competitive regime.

The average number of hours worked by participants during the 10-day experiment was

10.54 (standard deviation = 18.74 hours). Self-selected individuals worked, on average,

13.27 hours (maximum 190 hours), randomly assigned individuals only 7.78 hours

(maximum 120 hours). A coarser, perhaps starker indication of differences is the fraction

10 This has been found through the decade of operation of TopCoder to be a robust
measure of skills and is even commonly used in the software developer labor market
when hiring. Nonetheless, to the extent that it might be imperfect, the randomization
procedures (in particular, pair ordering and randomization of which party self-selects)
should erase any possible systematic biases in estimates.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 29

that chose to work more than 1 hour, which, for randomly assigned participants was 30%

and for self-selected participants 41%.11 NumSubmissions was also higher for self-

selecting participants, at 2.79 versus 2.20 for randomly assigned participants.

Table 9 breaks down the effects for the competitive and cooperative regimes. Average

HoursWorked was only slightly higher in the competitive (10.82 hours) than in the

cooperative (10.27 hours) regime.12 In both regimes, HoursWorked was significantly

higher for self-selecting participants, the starkest differences being in the competitive

regime (14.92 hours for self-selected participants versus 6.6 hours for randomly assigned

participants, a 126% difference, compared to 11.57 and 8.97 hours, respectively, in the

cooperative regime, a mere 29% difference).

For NumSubmissions, levels were also considerably higher for self-selected (3.77

submissions) than for randomly assigned (1.98 submissions) participants. That average

NumSubmissions was lower for self-selected participants in the cooperative regime we

speculate reflects greater coordination of activity across team members.13 (Consistent

with this interpretation, we find that self-selected teams posted greater numbers of intra-

team communications on the private team, online bulletin board.)

<Insert Table 9 Comparison of Mean Effort Levels, Cross-Tabulations>

11 Because there appears to have been a mass of participants that chose to work very little
and another mass that chose a more continuous, widely distributed level of work, we
report in Section 5 the results of an explicit distributional analysis.
12 We found the differences in magnitudes to be surprisingly small and statistically
insignificant, given the usual predictions of moral hazard in teams (Holmstrom 1982).
Section 5.2.3 presents evidence consistent with the possibility of complementary effort
choices that might plausibly be associated with any number of mechanisms such as
socialization, and mutual monitoring in the cooperative regime that go beyond the usual
notions of moral hazard in teams.
13 Adding additional controls within a regression framework does not change this.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 30

5.2 Regressions

Although the earlier comparisons of means provide meaningful results, analyzing the data

within a regression framework enables us to explicitly assess the experimental

assumptions and thereby better interpret the data. Ordinary least squares regression

results with robust standard errors are reported in Table 10.

5.2.1 Assessing the Matching and Randomization Procedure

If the estimation procedure was effective and left no systematic differences across

treatments, the estimates should be unchanged when we include skill controls.14 We focus

first on the results for the competitive regime. For ease of comparison, model (1) simply

reiterates the two-way correlation of HoursWorked with SelfSelection from the

competitive regime (essentially equivalent to the earlier stratified comparison of means in

Table 9). Model (2) re-estimates the SelfSelection coefficient with SkillRating included as

a control. The estimated coefficient is virtually unchanged, and the coefficient on the

constant, which effectively captures mean effort without self-selection, changes slightly

more (from 6.60 to 8.07), but the difference is statistically insignificant. To control for

possible subtle non-linearities, Model (3) adds dummies for different bands of skill levels

to capture possible non-linear effects, but the estimated coefficient on SelfSelection is

statistically identical and virtually unchanged (8.36 versus 8.33). Model (4) provides a

most stringest skill control by simply comparing each self-selected individual to its

ordered pair, calculating the difference (implemented by simply including ordered pair

fixed effects). The estimated effect is again statistically unchanged (although this most

stringent control only leads to a slightly large coefficient). Given the random selection of

rooms that should receive prizes, the introduction of Prize to the model should also not

have any effect on the estimated coefficient SelfSelection.15 Therefore, each of these

coefficient estimates is thus statistically identical to the simple comparison of means

presented in Table 9 (14.92 – 6.6 = 8.32 hours).

14 This includes differences in skill or unobservables correlated with skill.
15 We must go back to a model estimated on the basis of ordered pair differences, given
there is not variation in Prize within ordered pairs, given the assignment procedure
assured that if one member of an ordered pair was in a group with a prize, the situation
would be mirrored for the other pair.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 31

Importantly, the coefficient on Prize also provides some indication of the relative impact

of self-selection versus the formal incentive instrument used in this context, the $1,000

prize. The coefficient on Prize, 9.12 hours with a standard error of 1.85 hours, is

statistically indistinguishable from the effect of allowing individuals to self-select to

competition for cases in which competition is their preferred regime.

An analogous set of regressions performed on the cooperative regime similarly confirms

that estimates of the SelfSelection coefficient are insensitive to the various controls.

Model (6) reiterates the two-way correlation of HoursWorked with SelfSelection from the

cooperative regime (essentially equivalent to the earlier stratified comparison of means in

Table 9), 2.6 additional hours for inviduals who self-selected in the cooperative regime.

Re-estimating the effect on the basis of directly comparing ordered pairs (model 7) or

introducing Prize and controls for different levels of skills (model 8) generate similar

estimates. The estimated coefficient on SelfSelection is 2.60 hours. Model (6) essentially

re-estimates model (4) with each of the controls, but for the cooperative regime.

Including each of the controls does not significantly change the coefficient on

SelfSelection (2.47 hours). Again, these estimates are statistically the same as those from

the simple comparison of means in Table 9 (11.57 – 8.97 = 2.60 hours). The effect of the

formal cash incentive in the cooperative regime, as estimated by the coefficient on Prize

(9.88 hours), is essentially the same as in the competitive regime (and the self-selection

effect in the competitive regime), and considerably larger than the self-selection effects in

the cooperative regime.16

<Insert Table 10 >

5.2.2 Hawthorne Effects

Our goal was to use revealed preference as a means of allocating individuals to the

regimes for which they have an inherent preference or taste. Therefore, the earlier

16 As earlier noted, this result is perhaps surprising in light of the theory of moral hazard
in teams (Holmstrom 1982).

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 32

regressions are intended to estimate the impact of this alignment of taste with regime on

choice of effort level. But it might still be the case that individuals work harder because

of the simple fact they were asked for their preference at all. For example, if individuals

equated being asked their preferences with implicitly making a choice (i.e., with the

expectation that their stated preference would immediately translate to an allocation

decision), they could have possessed a greater sense of accountability or self-

determination. To mitigate this possibility, most importantly we designed the process in a

way to avoid any direct implication that a statement of preference implied a choice or that

an assignment would immediately follow this statement of preference.

It is also possible that those who were asked their preferences might have had higher

awareness that this particular contest was being recorded as part of an experiment. We

hoped that the regularity of such TopCoder contests, use of a high profile problem from

NASA, and relatively large overall cash prize as well as the use of the regular TopCoder

communication channels and platform would reduce the salience of the experiment in the

minds of participants.

To discern the effect of eliciting preferences per se (as distinct from the effect of the

assignment decision following these preferences) is challenging in an experiment where

assignments directly followed revealed preferences. Our approach is essentially one of

attempting to detect any such effect by comparing the subset of self-selected and

randomly-assigned participants that are most likely to have neutral and similar

preferences. Related results are presented in Table 11.

<Insert Table 11 Results of Test for Presence of Hawthorne Effects>

A first step in this strategy was to synthesize a variable that influenced an individual’s

choice but was completely unrelated to their preferences. To create such a variable, we

randomized the order in which regimes were presented. Model (1) shows that this order

significantly affected the expression of preferences, and Model (2) that this correlation is

unaffected by adding additional control variables. We test for Hawthorne effects by re-

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 33

estimating the earlier model using the order of the question as an instrumental variable

(IV).17 We run the model on the 15% of self-selectors who expressed the most neutral

response when asked to gauge their relative preferences for regimes (i.e., those who

expressed “I am indifferent or I am not sure”18). This IV test thus offers a means to better

isolate individuals in this group who were susceptible to varying their responses with

order (as opposed to, say, those who expressed neutral relative preferences that, in fact,

reflected equal and opposing strong preferences for both regimes). Model (3) reports

results for a simple specification without the instrumental variable; Model (4) uses the

instrumental variable. In both cases, the estimated coefficient on Prizes is essentially

unchanged, but the coefficient on SelfSelection becomes statistically insignificant and

indistinguishable from zero, particularly in the IV specification. We therefore fail to

detect any evidence of Hawthorne effects.19

5.2.3 Interaction between Individual and Regime or with Other Individuals

The experiment was designed to capture individuals’ choices of effort in response to

being assigned to the institutional regime they preferred. Individuals had no prior

17 More precisely, this instrumental variable is an indicator (1-0) switched on in cases in
which the choice of regime matched the order in which it was presented.
18 Recall that indifferent individuals were assigned to the cooperative regime (Section
3.2).
19 We emphasize that this is not a perfect estimate of the magnitude of the Hawthorne
effect, but simply an attempt to detect any evidence of such an effect. Although it is
naturally appealing to focus on the self-selectors with neutral preferences (in relation to
those who express clear preferences), this group is not necessarily neutral in the sense of
apathetic. They simply have no relative preference for one or the other (they may have
equally strong preferences, for example). The IV attempts to go a step further to isolate
those individuals that were especially susceptible influence by the order of the question,
and therefore just partially increase the prominence of variation associated with those
who would have been more susceptible to change in response to order. Another
imperfection of this test is the control group. Ideally, we would compare individuals who
chose to be in their preferred regimes with identical individuals who were assigned to
their preferred regimes. The econometric test, however, compares individuals with their
orderd pairs, equivalent in skill—but not with the same preferences. Given that the
control group will sometimes allocate individuals to their preferred regimes and
sometimes not, this imperfect control group will create an upward bias in our attempt to
detect Hawthorne effects.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 34

knowledge of the identities of participants in their chosen regime, only of the rules of the

game. It nevertheless remains possible that the predicted effects of self-selection might

emerge from interactions among participants rather than from the regime itself. For

example, a hard-working competitor or teammate could plausibly occasion an increase or

decrease in one’s choice of effort level. Related results are reported in Table 12.

To measure social interactions, we included measures of other individuals’ choices of

effort level. Model (1) reruns the model on the competitive regime including the mean

level of hours worked by others in the same room, designated HoursWorkedGroup.

Whether regressed on the entire sample for the competitive regime (model 1) or on the

self-selecting or random-assignment subsamples (models 2 and 3), the regression finds no

association with effort level. (SelfSelection drops out of the model when we regress the

model on subsets of self-selected and random-assignment participants individually.)

Including any other measures of the distribution of effort—variance, skew, or max—or

estimating on the basis of differences between ordered pairs also finds no effect.

Quite different patterns are observed when the test is repeated on the cooperative regime.

Model (4) includes both the effort of others in the room, HoursWorkedGroup, and effort

of others on the team, HoursWorkedTeam. This regression finds a clear association

between choice of effort and the effort level of others on the same team. Dropping the

group level measure (Model 5) increases the estimated magnitude of the relationship

between choice of effort level and the effort level of teammates from .26 to .32.20

Accordingly, including this interaction effect in the model reduces the coefficients on

SelfSelection and Prize relative to the earlier estimates. This is because any direct

difference occasioned by these factors should be amplified by social interaction. The

estimated effect on SelfSelection even becomes statistically insignificant as it drops

slightly in magnitude. (Re-estimating on the basis of differences in ordered pairs, or

20 The simple interpretation of this coefficient is an association of a .32 hour increase in
effort with a one hour increase in others’ average effort. It is important that the
coefficient capture “reflection” (Manski XX), whereby individuals, if the team increases
its effort, will increase their effort, leading the team to further increase its effort, and so
on. The coefficient should thus be taken as an association that relects this process.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 35

including other measures of the distribution of team effort, does not change this result.)

The direct impact of SelfSelection on team effort, already found to be considerably less

than in the competitive regime, is found to be smaller still and dependent on (positive)

social interactions to stimulate the effect. Regressing the model on subsets of self-

selected (model 6) and randomly assigned (model 7) teams finds a substantially larger

interaction in the case of self selection (.34) than in that of random assignment (.23), but

the difference between them is not statistically significant.

<Insert Table 12 Results of Tests for Presence of Within-Group Interactions Among

Effort Choices>

These tests suggest that the earlier-estimated coefficients on SelfSelection (i.e., models

(10-1) through (10-8)) should be interpreted, in the case of the competitive regime, as

reflecting a direct effect of matching individuals with their preferred regimes, and in the

case of the cooperative regime, as reflecting this direct effect together with its

amplification by social interaction.

5.3 Reweighting the Sample and Adjusting the Control Group to Recalibrate the
Self-Selection Effect

The earlier estimates in Section 5 enabled us to compare the self-selection groups to the

randomly assigned groups, controlling for skill (and randomizing to exclude the effect of

unobservables). Although these estimates were meaningful, in this section we reconsider

the composition of the compared groups to re-calibrate estimated magnitudes of effects.

Results are reported in Table 13.

5.3.1 Re-weighting the Sample to Enable Direct Comparisons between Regimes
Whereas the skills distributions were, by design, the same across the self-selection and

random assignment groups, they were unequal across the competitive and cooperative

regimes (Figure 8, Panel I). This was unavoidable given that preferences and assignment

were correlated with skill (Figure 5). Consequently, earlier estimates of the coefficients

on SelfSelection in the cooperative and competitive regimes should not be directly

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 36

comparable if the magnitude of an individual self-selection effect is somehow related to

skill.

To enable more direct comparisons of the magnitude of effects in the cooperative and

competitive regimes, we re-weight the data from the competitive regime to have the same

skills distribution as that of the cooperative regime (as in Figure 8).21 As reported in

model (XX), re-estimating the model with the competitive data, but re-weighting to

match the skills distribution of the cooperative data, increases the estimated coefficient

on SelfSelection from 8.32 hours (model XX) to 10.28 hours.22

<Insert Figure 6 Skills Distribution in Cooperative and Competitive Regimes>

5.3.2 Synthesizing an Alternative Control Group to Recalibrate Self-Selection
Magnitudes

The estimated self-selection effect will, of course, depend on the control group to which

the self-selected group is compared. The earlier regressions essentially compare the self-

selection group (in which 100% of participants preferred the regime) to a population

average group. Although we do not directly observe the institutional preferences of

members of the random-assignment group, we should expect the same distribution of

preferences as the self-selection group, given the matching and randomization procedure.

Based on the stated preferences of those within the self-selection group, we should expect

roughly half (50.7%) of randomly assigned participants to prefer the competitive regime.

(For compactness, we refer to propensity for competition rather than to propensity for

both competition and cooperation at each turn.) important to note, however, the

21 We re-weight these observations using an algorithm that will enable us to later
simultaneously re-weight on a second dimension (propensity to choose competition). We
divide the sample into 250-point SkillRating blocks and re-weight observations within
each of these blocks to match the weight in the corresponding block in the cooperative
regime.
22 This result accords with the fact that the self-selection effect interacts negatively with
skill level (not reported), and that the competitive regime has a disproportionately high
proportion of high-skill competitors. Consequently, re-weighting the estimates towards
lower-skill participants should increase the estimated effect.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 37

proportion that prefers competition at any particular skill level should not be expected to

conform to this aggregate average, as we saw a clear correlation between skills and

preference for competition (Figure 5). The control group for the competitive regime

should therefore include individuals more similar to the self-selection group within the

band of participants with relatively high skills. This makes the self-selection group more

similar to the control group among higher-skilled participant and less similar among

lower-skilled participants, in terms of the propensity or inclination to prefer competition.

(A reverse situation exists for the cooperative regime.) As a result, the earlier estimates of

the self-selection effect in the competitive regime implicitly placed greater emphasis on

the effect among lower-skilled participants. Although this meaningfully reflects the self-

selection process observed here, the analysis investigates whether neutralizing this

compositional effect significantly affects the magnitude of the estimate.

To synthesize estimates in which the effective propensity to choose competition does not

change with different skill levels within the control group, we re-weight the sample on

the basis of propensity to compete (while continuing to re-weight on the basis of skills, as

above). Because we do not observe it, we estimate propensity to compete by constructing

a propensity score, which we do by first modeling the likelihood within the self-selection

population of choosing competition. In a Logit model, we regress an indicator variable

switched to one for individuals who selected into competition on the basis of

demographic variables collected by TopCoder when its members originally signed up.

This includes dummies for country of origin, type of developer (student, professional,

part-time, etc.), age of participant, and stated motivation for joining the TopCoder

platform (learn, make money, meet other coders, etc.). This is a purely empirical model

and so we simply add many explanatory variables. We use these same data and model

coefficients to generate propensity scores for individuals of the randomly assigned

control group. Consistent with the composition of the control group being similar to that

of the self-selection group, a fitted curve of estimated propensity scores for the randomly

assigned control group is similar to a fitted curve of the actual fraction of self-selection

participants that chose competition, as in Figure 7 below. (Again, the high skilled

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 38

competitors have a higher propensity than the aggregate average to choose competition

and the low-skilled are lower than the aggregate average.)

<Insert Figure 7 Propensity to Compete Across Different Levels versus the Overall

Population Average>

Model (XX) re-estimates the model for the competition regime, further re-weighting the

control group data such that the average propensity score at every skill level is held to the

population average (50.7%), as described above, and simultaneously re-weighting such

that the skills distribution virtually matches that within the cooperative regime.23

Consistent with a small self-selection effect in the case of relatively high-skilled

participants, the coefficient on SelfSelection decreases slightly when the control group is

normalized to shift emphasis towards the effect among higher skilled participants. Model

(XX) estimates the same model with the data for the cooperative regime, which, sensibly,

slightly increases the magnitude of the coefficient.

Re-weighting the sample and synthesized control groups enables more direct

comparisons of effects across the cooperative and competitive regimes as well as

unbiased estimates the self-selection and formal instrument (prize) effects. These are

therefore our preferred estimates. To provide a more palpable sense of the substantive

impact of allocating individuals to their preferred regimes, we use this approach to

present the distribution of choice of effort for both self-selection and random assignment,

as in Figure 8.

23 This is possible because at every skill level there are ample observations both above
and below the population average propensity. The re-weighting approach consisted of
dividing the observations into ascending blocks of 250 SkillRating points and then
linearly adjusting the weight of the observations within each block to match the
population average propensity (i.e., the weight was 1+ω × Propensity Score, solving for
the ω in each block). Each entire skills block was then reweighted to lead each group to
have the same skills distribution.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 39

<Insert Figure 8 Distribution of Effort Choices for Self-Selected and Randomly-

Assigned Participants (Reweighted to Match Skills Distribution and with Skills-Neutral

Control Group)>

6 Conclusions
Software design and development is done in settings as diverse as small entrepreneurial

firms, large multi-national organizations, universities, outsourcing consultancies,

collaborative efforts like open source software communities, and the proverbial solo

developer in the garage. More software development occurs within user organizations

than is done by firms dedicated to selling the software to customers. Perhaps at least as

much as in other areas of the economy involving problem solving and innovation, there is

a heterogeneous “confederacy” of organizations engaged in software work. In this paper,

we explore the possibility that the presence of this wide range of organizations might in

part reflect the varied and idiosyncratic behavioral orientations and sources of motivation

of the workers who create the product, that is, the software developers. In short, we

hypothesize that different “types” of developers may sort themselves into different

“types” of organizations, and that this could have implications for efficiency.

We begin to explore this possibility via a field experiment in which we allocated

individual workers to either a competitive (autonomous) or cooperative (team) software

development regime. This regime to some extent represents the basic elemental form of

how programming activity is organized by software development managers. We were

mainly interested in determining whether assigning individuals to the regime of their

preference affected how much effort they would exert over a 10-day period. The

experiment was performed on the TopCoder platform, on which we created isolated

“virtual rooms” in which groups of 20 individuals either worked autonomously,

competing with one another to develop code, or worked cooperatively in teams of five

that competed against three other teams. Each room of autonomous individuals and

cooperative teams worked on the same software development task, a challenging “real-

life” algorithmic optimization problem supplied by the Space Life Sciences Directorate at

NASA. The challenge was to create a medical kit that optimized the mass and volume of

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 40

the contents while minimizing the probability of astronaut evacuation in the event of a

medical emergency in space.

Our approach was simply to ask half the subjects their preferences, and then assign these

individuals to their preferred regimes. Thus, the first half of participants virtually “self-

selected” into the competitive or cooperative regime. (Strictly speaking, we assigned

these individuals to their preferred regimes in a way intended to be perceived as

independent of their statement of preferences.) Here, we were attempting to determine if

individuals’ expressed “taste” for one regime or another subsequently affected the level

of effort they expended. We used a combination of matching and randomization

approaches to assure that the other half of participants were identical to the self-selected

group in distributions of observable skills and other (unobservable) characteristics, but

had different (population average) tastes for the regimes. The control group should thus

be understood not as having opposing preferences, but rather as having a distribution of

tastes, some preferring and some not the regime to which they were assigned. Our

approach is also a departure from traditional experimental setups in which subjects are

randomly assigned to treatments. Because we were interested in “selection as treatment,”

one half of the population had its preferences met.

Across the 1,040 individuals in the sample there was a wide distribution in effort levels

chosen, with an average of 10.54 hours and a wide skew to the right of several dozen

hours. A large minority, roughly a third, worked less than one hour. We found that

allocating individuals to their preferred regimes had a significant impact on choice of

effort level, particularly in the autonomous competitive regime, in which self-selected

participants worked, on average, 14.92 hours compared to 6.60 average hours for the

randomly assigned participants. The effect was also positive and significant in the team

regime, in which self-selected participants worked, on average, 11.57 hours compared to

8.97 average hours for the randomly assigned participants. We found that the effect in the

case of the team regime was not just the result of an initial boost of effort from self-

selection to one’s preferred regime, but also an amplification of this effect through social

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 41

interaction, with individuals exerting higher levels of effort in the presence of teammates

exerting higher levels of effort.

We found no evidence of Hawthorne effects (in the sense that being given a choice per se

affected choice of effort level). Re-weighting the data in various ways to facilitate

comparisons between the two regimes and synthesize alternative control groups did not

qualitatively change the magnitudes of estimates.

Perhaps the most remarkable feature of these results is not just the positive effect of

assigning individuals to regimes for which they have a taste or preference (controlling for

skills and other characteristics), but the magnitude of the effects. That individuals worked

such a large fraction of additional hours across the regimes is notable given that the

experiment was run over a 10-day period of regular work weeks for most participants.

The boost in effort was also large in relation to the average number of hours worked

overall, 10.54 hours. Perhaps most telling, the effect of allocating individuals to their

preferred regimes had an impact that was roughly equivalent to the effect of applying

formal, high-powered incentives. Randomizing which rooms competed for $1,000 cash

prizes and which rooms did not, we found that this formal incentive resulted in, on

average, over 9 more hours worked.

We emphasize that these results are a preliminary step towards understanding the role

and presence of heterogeneous individuals and heterogeneous organizations in the

production of software (and perhaps in the economy more generally). The assignments

applied in the experiment were exogenous and taken out of the context of a competitive

economy or any sort of market equilibrium. Further, we examined the effect of one-sided

sorting rather than two-sided matching, as when an employer or team leader might also

screen, and found evidence of the potential for individuals’ “tastes” for different sorts of

institutions, and even simply the mechanical rules of the game, to have (very large)

implications for efficiency. We might imagine more socialized identities and characters

of “living” organizations further moderating behaviors and performance implications.

This was even strongly suggested by social interactions found in the cooperative regime.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 42

Although we tried, as best we could, to isolate an interaction between individuals’ tastes

and preferences for institutional regimes and the rules of the game, and despite a context

that, with one-shot interactions over a short (10-day) period through a sparse and narrow

digital communications medium, could hardly be described as “socially embedded,” the

effect of group interactions nonetheless surfaced in the results.

Although our field context is limited to software development, the core task required for

success, creative problem solving, is representative of an increasing and important part of

the economy. Fifty years ago, most US workers were engaged in the production of goods

and services. Today, roughly half of the more than 40% of workers that have over the

past decade come to be classified as information processors (Radner 1993) are considered

problem solvers engaged in professions like management consulting, social policy

development, programming, law, and medical and scientific research (Hong & Page

2001). Thus, our findings have general implications for the organization of creative

problem solvers engaged in inventive activity. Inasmuch as managers have significant

discretion over how problem-solving work is organized, the preferences of workers and

design of work may be important considerations with significant implications for

efficiency, productivity, and performance.

7 References
Azoulay, P., Zivin, J. & Manso, G., 2009. Incentives and Creativity: Evidence from the

Academic Life Sciences. NBER Working Paper #15466.

Bartol, K. & Martin, D., 1982. Managing Information Systems Personnel: A Review of

the Literature and Managerial Implications. MIS Quarterly, 6, 49-70.

Beecham, S. et al., 2008. Motivation in Software Engineering: A systematic literature

review. Inf. Softw. Technol., 50(9-10), 860-878.

Belenzon, S. & Schankerman, M.A., 2008. Motivation and Sorting in Open Source

Software Innovation. SSRN eLibrary. Available at:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1401776 [Accessed
September 3, 2010].

Bresnahan, T. & Greenstein, S., 2001. The economic contribution of information

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 43

technology: Towards comparative and user studies. Journal of Evolutionary
Economics.

Bresnahan, T.F. & Trajtenberg, M., 1995. General Purpose Technologies 'Engines of

Growth'? Journal of Econometrics, 65(1), 83-108.

Brooks, F.P., 1995. The mythical man-month: Essays in software engineering

(Anniversary Edition), Reading, MA: Addison-Wesley.

Brooks, F.P., 1975. The mythical man-month : essays on software engineering, Reading,

Mass.: Addison-Wesley Pub. Co.

Campbell-Kelly, M., 2003. From Airline Reservations to Sonic the Hedgehog: A History

of the Software Industry, Cambridge, MA: MIT Press.

Carmel, E., 1999. Global software teams : collaborating across borders and time zones,

Upper Saddle River, NJ: Prentice Hall.

Cockburn, I.M. & Henderson, R.M., 1998. Absorptive Capacity, Coauthoring Behavior,

and the Organization of Research in Drug Discovery. Journal of Industrial
Economics, 46(2, Inside the Pin-Factory: Empirical Studies Augmented by
Manager Interviews: A Symposium), 157-182.

Couger, J.D. & Zawacki, R.A., 1980. Motivating and managing computer personnel,

New York: Wiley.

Cusumano, M. et al., 2003. Software Development Worldwide: The State of the Practice.

IEEE Softw., 20(6), 28-34.

Cusumano, M. & Selby, R., 1995. Microsoft secrets: how the world's most powerful

software company creates technology, shapes markets and manages people, New
York, NY: Free Press.

Cusumano, M.A., 1991a. Japan's software factories : a challenge to U.S. management,

New York: Oxford University Press.

Cusumano, M.A., 1991b. Japan's software factories : a challenge to U.S. management,

New York: Oxford University Press.

Cusumano, M.A., 1997. How Microsoft makes large teams work like small teams. Sloan

Management Review, 39(1), 9-20.

Cusumano, M.A. & Yoffie, D.B., 1998. Competing on Internet time: lessons from

Netscape and its battle with Microsoft, New York: The Free Press.

Cusumano, M.A., 2004. The Business of Software: What Every Manager, Programmer,

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 44

and Entrepreneur Must Know to Thrive and Survive in Good Times and Bad, New
York: Free Press.

Dasgupta, P. & David, P.A., 1994. Towards a new economics of science. Research

Policy, 23, 487-524.

Ding, W.W. et al., 2010. The Impact of Information Technology on Academic Scientists'

Productivity and Collaboration Patterns. MANAGEMENT SCIENCE,
mnsc.1100.1195.

Hohmann, L., 1997. Journey of the Software Professional: The Sociology of Software

Development, Upton Saddle River, NJ: Prentice Hall.

Holmstrom, B., 1982. Moral Hazard in Teams. The Bell Journal of Economics, 13(2),

324-340.

Hong, L. & Page, S.E., 2001. Problem Solving by Heterogeneous Agents. Journal of

Economic Theory, 97(1), 123-163.

King, M. et al., 2010. Integrated Public Use Microdata Series, Current Population

Survey: Version 3.0, University of Minnesota. Available at:
http://cps.ipums.org/cps.

Lakhani, K.R. & Wolf, R., 2005. Why Hackers Do What They Do: Understanding

Motivation and Effort in Free/Open Source Software Projects. In Perspectives on
Free and Open Source Software. Cambridge, MA: MIT Press.

Lakhani, K.R. & von Hippel, E., 2003. How Open Source Software Works: Free User to

User Assistance. Research Policy, 32(6), 923-943.

Lazear, E., 2000. Performance pay and productivity. The American Economic Review.

Lerner, J. & Tirole, J., 2002. Some simple economics of open source. The Journal of

Industrial Economics, 50(2), 197-234.

Lerner, J. & Tirole, J., 2002. Some Simple Economics of Open Source. Journal of

Industrial Economics, 50(2), 197-234.

Manso, G., 2009. Motivating Innovation.

Mowery, D.C., 1996. The international computer software industry : a comparative study

of industry evolution and structure, New York: Oxford University Press.

National Science Foundation, 2010. National Patterns of R&D Resources: 2008 Data

Update, Arlington, VA: National Science Foundation. Available at:
http://www.nsf.gov/statistics/nsf10314/pdf/nsf10314.pdf.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 45

Pisano, G.P., 2006. Science business : the promise, the reality, and the future of biotech,

Boston, Mass.: Harvard Business School Press.

Radner, R., 1993. The Organization of Decentralized Information Processing.

Econometrica: Journal of the Econometric Society, 61(5), 1109-1146.

Roach, M. & Sauermann, H., 2010. A taste for science? PhD scientists' academic

orientation and self-selection into research careers in industry. Research Policy.

Salop, J. & Salop, S., 1976. Self-selection and turnover in the labor market. The

Quarterly Journal of Economics.

Salus, P.H., 1994. A Quarter Century of UNIX, Reading, MA: Addison-Wesley.

Schneiderman, B., 1980. Software Psychology: Human Factors in Computer and

Information Systems, Scott Foresman & Co.

Shapin, S., 2008. The scientific life: a moral history of a late modern vocation, Chicago,

IL: University of Chicago Press.

Shapiro, J.S. & David, P.A., 2008. Community-Based Production of Open Source

Software: What Do We Know About the Developers Who Participate? SSRN
eLibrary. Available at:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1286273 [Accessed
September 3, 2010].

Sharp, H. et al., 2009. Models of motivation in software engineering. Information and

Software.
Sinofsky, S. & Iansiti, M., 2010. One strategy! : organization, planning, and decision

making, Hoboken, N.J.: Wiley.

Steinmueller, W.E., 1996. The U.S. Software Industry: An Analysis and Interpretive

History. In David C. Mowery, ed. The International Computer Software Industry:
A Comparative Study of Industry Evolution and Structure. New York: Oxford
University Press.

Stephan, P., 1996. The Economics of Science. Journal of Economic Literature, 34(3),

1199-1235.

Stern, S., 2004. Do scientists pay to be scientists? Management Science, 50(6), 835-854.

Weinberg, G.M., 1971. The psychology of computer programming, New York,: Van

Nostrand Reinhold.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 46

8 Tables

Table 1 Number of Employees and Establishments in the Software, Pharma and Contract

Research Industries (2007) 
Table 2 Education Levels for Software Developers and Scientists 
Table 3 List of Motivators Described in the Literature 
Table 4 List of Characteristics of Software Engineers Described in the Literature 
Table 5 Key Features of the Experimental Regimes 
Table 6 Sample Breakdown 
Table 7 Variable Definitions 
Table 8 Descriptive Statistics 
Table 9 Comparison of Mean Effort Levels, Cross-Tabulations 
Table 10 Regression Results of Tests for Randomization and Assignment Procedures 
Table 11 Results of Test for Presence of Hawthorne Effects 
Table 12 Results of Tests for Presence of Within-Group Interactions Among Effort

Choices 
Table 13 Re-Estimated Effects with Reweighted Skills and Synthesized Control Group 

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 47

Table 1 Number of Employees and Establishments in the Software, Pharma and Contract Research
Industries (2007)

Source: U.S. Bureau of the Census - 2007 Economic Census

Table 2 Education Levels for Software Developers and Scientists

Source: Miriam King, Steven Ruggles, J. Trent Alexander, Sarah Flood, Katie Genadek,
Matthew B. Schroeder, Brandon Trampe, and Rebecca Vick. Integrated Public Use
Microdata Series, Current Population Survey: Version 3.0. [Machine-readable database].
Minneapolis: University of Minnesota, 2010. http://cps.ipums.org/cps

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 48

Table 3 List of Motivators Described in the Literature

Source: Beecham et al. 2008, pg 868

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 49

Table 4 List of Characteristics of Software Engineers Described in the Literature

Source: Beecham et al., pg 867

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 50

Table 5 Key Features of the Experimental Regimes
 Competition Regime Cooperation Regime
Group Size 20 competitors Four five-person teams

(assigned)
Payoffs Total: $1,000, divided five

ways

$500 – best submission

$200 – second best
submission

$125 – third best
submission

$100 – fourth best
submission

$75 – fifth best submission

Total: $1,000, divided five
ways

$1,000 – divided among
winning team members
(according to average of
team members’
suggestions)

Communications and Code
Sharing

None Private team message board
and ability to send directed
messages

Information Competitors “see” who is in
the group, their ratings, and
top code submissions to
date.

Competitors “see” other
teams’ best scores to date
and their own team
members’ detailed
information and statistics
and background.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 51

Table 6 Sample Breakdown

Table 7 Variable Definitions

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 52

Table 8 Descriptive Statistics

Table 9 Comparison of Mean Effort Levels, Cross-Tabulations

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 53

Table 10 Regression Results of Tests for Randomization and Assignment Procedures

Model: 1 2 3 4 5 6 7 8

Explanatory Variables

Two-Way
Correlation

Linear Skllls
Control

Skills-Level
Dummies

Ordered Pair
Differences

Prize
Control

Two-Way
Correlation

Ordered Pair
Differences

Prize
Control

SelfSelection 8.33*** 8.33*** 8.36*** 8.71*** 8.32*** 2.60* 2.50* 2.48*
(1.75) (1.75) (1.76) (1.79) (1.71) (1.47) (1.43) (1.40)

Prize 9.14*** 9.88***
(1.85) (1.48)

SkillRating -1.09 -4.87 -3.60 2.01
(1.59) (4.30) (4.19) (4.22)

 Skills Dummies Yes Yes Yes

Constant 6.60*** 8.07*** 8.97***
(.84) (2.28) (.98)

R-Squared .04 .04 .05 .55 .09 .04 .55 .09

Competitive Regime Cooperative Regime

Notes. *, **, and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively; heteroskedasticity robust standard
errors reported; number of observations = 516 participants in the cooperative regime; 524 in the cooperative regime.

Depenedent Variable = HoursWorked

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 54

Table 11 Results of Test for Presence of Hawthorne Effects

v

Model: 1 2 3 4

Explanatory Variables No Controls Controls OLS IV

SelfSelection 3.72 -.05
(2.61) (4.40)

Prize -.10 9.39*** 9.43***
(.12) (2.77) (2.79)

SkillRating .37 3.47 3.79
(.37) (8.03) (8.20)

 Skills Dummies Yes Yes Yes

QuestionOrder 0.27** 0.28**
(.12) (.12)

R-Squared .01 .05

Dependent Variable =
LikertResponse

Dependent Variable =
HoursWorked

Notes. *, **, and *** indicate statistical significance at the 10%, 5% and 1%
levels, respectively; heteroskedasticity robust standard errors reported; number
of observations = 156 participants.

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 55

Table 12 Results of Tests for Presence of Within-Group Interactions Among Effort Choices

Model: 1 2 3 4 5 6 7

Explanatory Variables
All

Competitive
Self-

Selected
Randomly
Assigned

All
Cooperative

All
Cooperative

Self-
Selected

Randomly
Assigned

SelfSelection 7.43*** 1.30 1.69
(2.25) (1.30) (1.34)

Prize 8.16*** 9.93** 6.56*** 5.13*** 6.69*** 8.75*** 4.95**
(2.69) (4.75) (2.28) (1.94) (1.53) (2.14) (2.15)

HoursWorkedGroup .11 .11 .06 .21
(.18) (.24) (.26) (.19)

HoursWorkedTeam 0.26*** 0.32*** 0.34*** 0.23**
(.09) (.09) (.12) (.11)

SkillRating -3.46 1.59 -8.46* 2.76 2.54 5.78 -.69
(4.18) (7.23) (4.36) (4.12) (4.12) (6.08) (5.53)

 Skills Dummies Yes Yes Yes Yes Yes Yes Yes

R-Squared .09 .06 .10 .15 .15 .20 .10

Competitive Regime Cooperative Regime

Notes. *, **, and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively; heteroskedasticity robust
standard errors reported; number of observations = 516 participants in the cooperative regime; 524 in the cooperative
regime.

Depenedent Variable = HoursWorked

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 56

Table 13 Re-Estimated Effects with Reweighted Skills and Synthesized Control Group

To be inserted

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 57

9 Figures
Figure 1 Comparison of Revenues in the Software Industry to those of Other Sectors 
Figure 2 1992-2009: Total US Software vs. Sciences Employment (Thousands) 
Figure 3 Comparison of Self-Selection into Regimes versus Random-Assignment 
Figure 4 Illustration of Assignment Procedure 
Figure 5 Preferences for Competition versus Skill 
Figure 6 Skills Distribution of Self-Selection versus Assigned Groups 
Figure 7 Preference for Competitive Regime versus Skill 
Figure 8 Skills Distributions in Cooperative and Competitive Regimes 
Figure 9 Propensity to Compete Across Different Levels versus the Overall Population

Average 
Figure 10 Distribution of Effort for Self-Selected and Randomly-Assigned Participants

(Reweighted to Match Skills Distribution and with Skills-Neutral Control Group) 

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 58

Figure 1 Comparison of Revenues in the Software Industry to those of Other Sectors

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 59

Figure 2 1992-2009: Total US Software vs. Sciences Employment (Thousands)

SOURCE: Miriam King, Steven Ruggles, J. Trent Alexander, Sarah Flood, Katie

Genadek, Matthew B. Schroeder, Brandon Trampe, and Rebecca Vick. Integrated Public

Use Microdata Series, Current Population Survey: Version 3.0. [Machine-readable

database]. Minneapolis: University of Minnesota, 2010.

http://cps.ipums.org/cps/citation.shtml

0 

500 

1,000 

1,500 

2,000 

2,500 

3,000 

3,500 

4,000 

1993  1995  1997  1999  2001  2003  2005  2007  2009 

Software Developers 

Life, Physical and Social 
Scientists 

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 60

Self-Selection

(Treatment Groups)

A’

B’

Random

Assignment

(Control Groups)

A

B

 Cooperative Regime Competitive Regime

 Experimental Regimes
Figure 3 Comparison of Self-Selection into Regimes versus Random-Assignment

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 61

Figure 4 Illustration of Assignment Procedure

Skills distribution of population of participants

Divide into 2 Identical
Skills Distributions

(“Ordered Pairs
Matching Procedure”)

All Participants

Half of
Participants

Participants asked which
regime they would prefer and
assigned to preferred regime

“Self-Selection”
Cooperation

Group

“Self-Selection”,
Competition

Group

Half of
Participants

Matched Subset Matched Subset

Assign to
groups/rooms of 20

(4 teams of 5 in a group)

Treatment Groups

Form identically distributed matched
subsets, exploiting ordered pairs, without

regard to preference

Random draws

Control Groups

(Step I)

(Step II)

(Step III)

(Step IV)

Assign to
Groups/rooms of 20

Assign to
groups/rooms of 20

(4 teams of 5 in a group)

Assign to
groups/rooms of 20

Mirror random assignment
to rooms with ordered

pairs

(Step IV)
Randomly choose rooms

to compete for $1000
prize

“Mirror” self-selection
grooms compete for

$1000 prize

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 62

Figure 5 Preferences for Competition versus SkillRating

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 63

Figure 6 Skills Distribution in Cooperative and Competitive Regimes

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 64

Figure 7 Propensity to Compete Across Different Levels versus the Overall Population Average

Boudreau & Lakhani The Confederacy of Software (Preliminary Draft)

 65

To be inserted

Figure 8 Distribution of Effort Choices for Self-Selected and Randomly-Assigned Participants
(Reweighted to Match Skills Distribution and with Skills-Neutral Control Group)

