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1 Introduction

Data evidence argues that investors are confronted with a set of multiple long-run risk

models. Long-run risk models are characterized by GDP growth and inflation dynamics

that have time-varying first moments. We provide data evidence that investors observe a

set of multiple, potentially correct, long-run risk models. Recent models in the literature

fall short in addressing how the observable set of multiple long-run risk models affects

marginal utility of investors. We close this gap in the literature by deriving and estimat-

ing a term structure model with in real-time observable set of potentially correct long-run

GDP risk- and long-run inflation risk models. The term structure information provides

direct evidence of how different sources of model uncertainty affect investors’ marginal

utility for different time horizons.

The empirical set of potentially correct long-run risk models coincides with the observ-

able amount of model estimation risk. The amount of model estimation risk is substan-

tially higher for the long-run GDP risk component, compared to the long-run inflation

risk component. Said differently, the set of potential long-run GDP risk models is higher

than the set of potential long-run inflation risk models. The relative size of both sets,

measured in terms of the amount of model estimation risk, peaked to factor ten in the

mid 1980s.

Recent research has followed this empirical characteristic by nearly exclusively study-

ing asset pricing with long-run GDP ambiguity. Bansal and Shaliastovich (2010) call that

measure ”confidence risk” and show that together with Epstein and Zin (1989) prefer-

ences that uncertainty helps to account for sharp equity return fluctuations. Buraschi and

Jiltsov (2006) use the same measure of GDP growth model uncertainty to characterize the

amount of model uncertainty (disagreement) that two investors face in the equity option

market. Cagetti, Hansen, Sargent, and Williams (2002) study in a production economy
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how a concern about ambiguity in long-run GDP growth affects equity prices.1 A similar

direction can be found in the term structure literature. Gagliardini, Porchia, and Tro-

jani (2009) argue that ambiguity about long-run GDP risk is the driver for premia in

the Government bond market.2 Similarly, Kleshecheslski and Vincent (2009) argue that

model uncertainty about short-run GDP risk generates an upward sloping yield curve.

Ulrich (2010) is the first paper who focuses on model uncertainty about inflation and

who attributes the upward sloping nominal yield curve to inflation ambiguity. It is un-

satisfactory that these studies do not include both sources of ambiguity into an analysis.

They leave open the question of whether it is indeed model uncertainty about long-run

GDP growth or model uncertainty about long-run inflation that accounts for the upward

sloping nominal yield curve.

In this paper we present a general equilibrium model that generates insights regarding

that question. Our model features observable long-run risk and accounts for the observable

amount of model estimation risk that investors face with regard to long-run GDP growth

and long-run inflation. The model is analytically very tractable and allows to account for

risk and model uncertainty in a very convenient way. This tractability allows an empirical

implementation that is not complex at all.

We find that the higher amount of observable long-run GDP ambiguity does not auto-

matically coincide with a higher equilibrium impact on marginal utility. In particular, our

maximum likelihood estimation which takes a rich panel of macro and bond yield data

into account finds that the equilibrium model uncertainty premium for long-run GDP am-

1Cagetti, Hansen, Sargent, and Williams (2002) study model uncertainty about aggregate productivity,

but this translates directly into model uncertainty about expected GDP growth.
2Similar to Cagetti, Hansen, Sargent, and Williams (2002), Gagliardini, Porchia, and Trojani (2009)

argue in terms of model uncertainty about the productivity, but in equilibrium this translates into model

uncertainty about the expected growth rate of GDP.
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biguity is substantially smaller than the model uncertainty premium for long-run inflation

ambiguity. We find that most of the nominal equilibrium term spread is paid because of

model uncertainty about the long-run inflation model.

We also find that both model uncertainty premiums have different qualitative im-

plications on real and nominal bonds. While periods of increased uncertainty lead to a

steepening of the TIPS and nominal yield curve, it is the increase in the observed set

of potential long-run GDP models which makes the TIPS yield curve slope stronger up-

wards. This highlights the finding that both sources of model uncertainty affect the term

structure of real and nominal bonds qualitatively and quantitatively differently.

The rest of the paper is structured as follows. In the next section we set up the model,

discuss the risk and model uncertainty dynamics of the economy, discuss the preferences

of the agent, and solve for real and nominal equilibrium bond yields. Section 3 compares

our model with the literature. Section 4 specifies the data and econometric method that

we use for estimating the model. In section 5 we present the empirical findings. Section 6

concludes. The appendix contains details about derivations and the estimation procedure.

2 Model Setup

2.1 Domain

Time is continuous and varies over t ∈ [0, ...,∞). Real and nominal macroeconomic risk is

represented by a complete filtered probability space (Ω,F , F, Q0), where Q0 stands for the

reference macroeconomic model for the economy. For intuitive reasons it is useful to treat

the solution of the reference model under Q0 as the solution to the rational expectations

model. All expectations in the reference model are taken under Q0. We denote these

expectations as E[.] instead of EQ0
[.]. The probability measure for the robust economy
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will be determined endogenously in equilibrium. We will denote that measure as Q.

2.2 Economy Setup

2.2.1 Long-Run Risk

We follow previous research like Bansal and Yaron (2004), Brennan and Xia (2002), Lettau

and Wachter (2009) and Piazzesi and Schneider (2006) and assume a dividend process,

d lnY , and an inflation process, d ln p, with stochastic expected growth and stochastic

variance:3

d lnYt = (g0 + zt)dt +
√

σ0g + utdW Y
t , (2.1)

d ln pt = (p0 + wt)dt +
√

σ0g + utρpgdW Y +
√

σ0p + vtdW p. (2.2)

Following the long-run risk literature, one can think of z as the long-run GDP risk com-

ponent, u as the short-run GDP risk component and w as the long-run inflation risk

component and v as the short-run inflation risk component. All Brownian motions are or-

thogonal to each other. Having ρpg 6= 0 allows the model to capture a stochastic inflation

risk premium. We let the data identify that parameter.

We group the long-run risk state variables into a state vector X(1), i.e. X(1) = [wt zt],

and we assume it follows a continuous-time AR(1) process with pairwise orthogonal in-

novations:

dX(1) = κ(1)X(1)dt + Σ(1)dW (1), (2.3)

where κ(1) is a diagonal 2×1 matrix and Σ(1) is two-dimensional lower triangular volatility

matrix:

Σ(1) :=





σw 0

σ2z σ1z



 , (2.4)

3We work with an endowment economy and with a representative agent. In these models, GDP and

consumption coincide in equilibrium. We prefer to work with GDP directly.
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here σ2z captures the correlation between long-run GDP growth and long-run inflation.4

Similarly, we collect the short-run risk state variables into a state vector X(2), i.e.

X(2) = [ut vt]. In order to ensure well specified volatility processes for the macro dynamics,

we assume that these states follow a diagonal system of square-root processes:

du = κuudt + σu

√
udW u (2.5)

dv = κvvdt + σv

√
vdW v. (2.6)

2.2.2 Long-Run Ambiguity

As a novelty, we assume that the investor observes a multiple set of potentially correct

long-run risk models. That means that the investor has several models for w and z on the

table which all seem equally plausible to her. We do not assume that our investor is able to

form a ”correct” prior about all these models. This prevents her from applying Bayesian

techniques to learn about the ”true” long-run risk component. As a result, the investor

has no prior on which model within that set is the correct model. Instead, the agent

wants to find the long-run risk model within that set which minimizes her continuation

utility. Since the investor has a unique reference model for GDP growth and inflation,

she only needs to find endogenously the optimal amount of long-run ambiguity that she

should take into account when doing investment decisions. We call the optimal amount

of distortion in the long-run GDP risk component hz, while the counterpart for long-run

inflation ambiguity is called hw.

The endogenous amount of long-run ambiguity coincides with the market price of

ambiguity in the multiple prior literature or with the market price of one unit model

uncertainty in the robust control literature.5 We derive the long-run ambiguity premium

4In our sample, that correlation is −0.32.
5Compare Epstein and Wang (1994), Epstein and Schneider (2003), Chen and Epstein (2002), Epstein

and Miao (2003), and Drechsler (2009) for the former and Anderson, Hansen, and Sargent (2003), Cagetti,
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h = (hw, hz)
′ in the next section. Note that h is known to the investor in every point in

time and in every state of the world.

According to equation (2.3), we can state the long-run GDP risk model under the

robust probability measure Q:

dz = κzzdt + σ1z(dW z,h + hzdt) + σ2z(dW w,h + hwdt). (2.7)

Equation (2.7) and equation (2.3) state that an ambiguity averse investor who is con-

fronted with a set of multiple long-run GDP risk models does not fully trust her reference

model in equation (2.3). Instead, she adjusts the shocks to long-run GDP risk and long-run

inflation risk in equation (2.3) by the corresponding market price of long-run ambiguity.

This coincides with hz for long-run GDP ambiguity and hw for long-run inflation ambi-

guity, respectively.

The long-run inflation risk model under the robust probability measure Q follows

analogously:

dw = κwwdt + σw(dW w,h + hwdt). (2.8)

2.3 Preferences

The risk attitude of our investor is described by an agent with log utility preferences

over the uncertain dividend stream. In addition, our investor is ambiguity averse with

regard to the observed set of multiple long-run risk models. Compared to a rational

expectations equilibrium, our investor solves a min-max optimization problem. First, the

investor maximizes her utility with regard to the optimal consumption policy for all priors

in her set of potential models. Second, the investor chooses from the set of multiple priors

the prior which minimizes her life-time expected utility. We abstract from the first step,

because we work with a standard endowment economy. This leaves us with the second

Hansen, Sargent, and Williams (2002), Hansen and Sargent (2007), Hansen and Sargent (2005), Hansen,

Sargent, Turmuhambetova, and Williams (2005), Maenhout (2004), and Maenhout (2006) for the latter.
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step only. The solution to the minimization problem provides us with the market prices

of long-run ambiguity.

The dynamic minimization problem is given by

min
Z∈Z(UB)

EZ

[
∫ ∞

t

e−ρ(s−t) ln Ysds|Ft

]

(2.9)

s.t. (2.10)

d lnYt = (g0 + zt)dt +
√

σ0g + utdW Y
t (2.11)

dzt = κzztdt + σ1z(dW z,h + hz(t)dt) + σ2z(dW w,h + hw(t)dt) (2.12)

Z(UB) = {Z ∈ Z :
1

2
h2

z(t) ≤ UBz(t)} ∩ {Z ∈ Z :
1

2
h2

w(t) ≤ UBw(t)}, (2.13)

where ρ is the subjective time discount factor of the investor. The set Z is a well defined

set of probability measures which are absolutely continuous with regard to the benchmark

measure Q0. For an observed two dimensional upper boundary UB, Z(UB) contains all

absolutely continuous macroeconomic models that fulfill the two entropy constraints.6

The first entropy constraint requires that the amount of long-run GDP ambiguity must

be weakly smaller than the observed upper boundary of potential long-run GDP risk

models. The second entropy constraint requires that the amount of long-run inflation am-

biguity must be weakly smaller than the observed upper boundary of potential long-run

inflation risk models.

The novel contribution of our model is that we allow the agent to observe both sets of

multiple long-run risk models. Said differently, our investor observes in each point in time

and in each state of the world a set of potential long-run GDP risk models and a set of

potential long-run inflation risk models. The investor chooses from that set the reference

long-run risk model. One can think of that model as being the best description of the

macroeconomic data. The amount of estimation risk that the investor faces in determining

the reference model is captured by the cross-sectional variance of all potentially correct

6Chen and Epstein (2002) contain a detailed analysis of the required conditions.
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models with regard to the reference model. The investor knows that the distance of all

potentially correct models is weakly smaller than a constant times the observed amount

of estimation risk:

UBz(t) := Azη
2
z(t) UBw(t) := Awη2

w(t), (2.14)

where η2
z and η2

w are the amount of stochastic real-time model estimation risk and Az

and Aw are positive scaling parameters. One can think of these constant parameters as

determining the size of the confidence interval within which the true model lies.

Our investor is able to measure in real-time the amount of model estimation risk. She

therefore treats these variables as additional observable macro variables. We assume the

square-root of the amount of estimation risk follows a continuous-time AR(1) process:

d





ηw(t)

ηz(t)



 =









aηw

aηz



 +





κηw
0

κηzw
κηz









ηw(t)

ηz(t)







 dt +





σηw
0

0 σηz



 d





W ηw

W ηz



 ,

(2.15)

where the Brownian shocks are pairwise orthogonal to all Brownian shocks in the econ-

omy. The scalar κzw captures a potential feedback effect from long-run inflation ambiguity

to long-run GDP ambiguity.

The solution to the minimization problem is well known in the literature7:

hz(t) = −
√

2 · UBz(t) (2.16)

hw(t) =
√

2 · UBw(t). (2.17)

The first equation states that the absolute size of the long-run GDP ambiguity premium

increases monotonically with the amount of its potential models. In ambiguous times,

7Compare Hansen and Sargent (2007), Hansen, Sargent, Turmuhambetova, and Williams (2005), Chen

and Epstein (2002) and others.
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where the set of potential long-run GDP risk models increases, the investor reduces her

expected prospects for the real growth rate of GDP by less than one to one.8 With a

similar interpretation, in the second equation, when the set of potential long-run inflation

risk models increases in ambiguous times, the investor increases her robust growth rate

for inflation by less than one to one.

Plugging the parametric form of the upper boundary into the equilibrium condition

reveals that the optimal amount of protection against long-run model risk is linear in the

cross-sectional standard deviation of all potentially correct models:

hz(t) = mzηz(t) (2.18)

hw(t) = mwηw(t), (2.19)

where mz is defined as mz := −
√

2Az ∈ R− and mw is mw :=
√

2Aw ∈ R+. The intuition

of this equilibrium outcome follows the basic intuition of confidence intervals in classical

statistics. The higher the confidence interval of the estimated long-run risk model, the

more model uncertainty is in the economy. For an ambiguity averse investor it becomes

optimal to require a premium for model misspecification doubts whose market price is a

linear function of the amount of model estimation risk. The scaling parameters mz and

mw are investor specific and measure the amount of standard deviations by which the

investor perturbs her reference long-run risk model.9 One can therefore think of mz and

mw as model uncertainty preference parameters. The higher the parameters the bigger the

distance between the estimated reference model and the endogenously selected worst-case

model. This coincides with a higher premium for model uncertainty.

An application of Ito’s lemma reveals that the market prices of model uncertainty

8This concave relationship arises because shocks to long-run GDP risk are Gaussian.
9The intuition of model estimation risk is related to the notion of ”confidence risk” in Bansal and

Shaliastovich (2010) and amount of macro uncertainty in David and Veronesi (2008) and the amount

investor’s model disagreement in Buraschi and Jiltsov (2006).
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follow a Markov diffusion:

dhz(t) =

(

mzaηz
+ κηz

hz(t) + κηzw

mz

mw

hw(t)

)

dt + mzσηz
dW ηz (2.20)

dhw(t) = (mwaηw
+ κηw

hw(t)) dt + mwσηw
dW ηw . (2.21)

2.4 Government Bond Yields

The appendix shows that the equilibrium term structure of inflation-protected default-

free bond yields is affine in long-run and short-run GDP risk and the market prices of

long-run ambiguity. That means that any real yield, yr, with time to maturity τ can be

written as:

yr
t (τ) = −1

τ

(

Ar(τ) + Br ′

(τ)S(t)
)

, S(t) = (u(t) z(t) hw(t) hz(t))
′, (2.22)

where Ar and Br are deterministic functions of the underlying economy.

By a similar argument, one derives that the equilibrium term structure of nominal

default-free bond yields is affine in long-run and short-run macro risk and in the market

prices of long-run ambiguity:

y$
t (τ) = −1

τ

(

A$(τ) + B$ ′

(τ)[X(1)(t) X(2)(t)]′
)

, (2.23)

where A$ and B$ are deterministic functions of the underlying economy.

3 Related Literature

Our paper builds and extends several strands of the literature. Bansal and Yaron (2004)

have proposed a macro-finance general equilibrium model where expected and unpre-

dictable consumption growth is stochastic. Bansal and Yaron (2004) show that a difficult

to detect predictable component in expected consumption growth can in conjunction with

Epstein and Zin (1989) preferences account for the equity premium, the low risk-free rate
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and volatile stock markets. These promising results have generated a huge literature on

refining the basic set-up of Bansal and Yaron (2004). Following the tradition of Lucas

(1978), and Breeeden (1979), Mehra and Prescott (1985) most of these refinements have

focused on equity related assets, such as stocks and stock options.

A smaller class of papers has used a version of Bansal and Yaron (2004) to study

the implications for real and nominal bonds. Piazzesi and Schneider (2006) explain the

upward sloping nominal yield curve with an Epstein and Zin (1989) investor who learns

about the expected growth rate of inflation and consumption. In their benchmark model,

relative risk aversion of 59 and IES of 1 amplifies the inflation risk premium which is

induced through a negative correlation of expected GDP growth and expected inflation.

Bansal and Shaliastovich (2009) work with an Epstein and Zin (1989) investor who has

relative risk aversion of ten and IES of 1.5. Their model matches the nominal term pre-

mium through an amplified inflation risk premium, which arises in equilibrium because

unpredicted changes in realized- and expected consumption growth correlate negatively

with realized- and expected inflation.

Our paper is different in several aspects. First, we relax the assumption that the in-

vestor knows the unique prior for the long-run risk model. In our economy, investors have

model misspecification doubts about the expected GDP growth rate and about the ex-

pected inflation rate. An ambiguity averse investor selects the worst-case long-run GDP

risk and long-run inflation risk model from the observed set of potentially correct models.

This preference for robustness induces a model uncertainty premium that accounts for the

positive nominal term premium. Second, we work with a log utility model, which induces

low risk aversion and low IES. Our model shows that a logarithmic utility model does

not prevent the derivation of a meaningful macro-finance term structure model, because

(i), interest rates are primarily affected by the IES and not so much by the degree of
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risk aversion, (ii) Vissing-Jorgensen (2002) finds that the IES of bond holders is around

0.8−1, (iii) the nominal term premium of approximately 1.5% is far lower than an equity

premium of 6%, (iv) the term premium also depends on inflation and inflation premi-

ums and (v) we account for long-run ambiguity which helps to explain the nominal term

premium. Our model requires only a small amount of model uncertainty. The estimate

for model uncertainty aversion about long-run inflation is 7.7 and the model uncertainty

aversion about long-run GDP is 0.3.

There are only a few papers that study model uncertainty about long-run macro risk.

In Hansen and Sargent (2009) the investor is uncertain whether consumption follows an

i.i.d process or whether it follows a long-run risk model as in Bansal and Yaron (2004).

Drechsler (2009) introduces ambiguity aversion into a long-run risk set-up and shows that

model uncertainty can help to account for the variance premium and option skew of equity

index options. Drechsler (2009) follows the ambiguity aversion literature which treats the

set of potential models as a latent process.10 Our model adds to this literature by treating

the set of potential models as observable. The investor in our model observes in each point

in time and in each state of the world the set of potential long-run risk models. We identify

the set of potential long-run risk models by the dispersion in expected GDP growth and

expected inflation forecasts, which are published by the Survey of Professional Forecasters.

Our paper adds also insights to the term structure literature. The calibration in

Gagliardini, Porchia, and Trojani (2009) as well as the estimation of Kleshecheslski and

Vincent (2009) support the view that ambiguity about GDP growth accounts for the up-

ward sloping yield curve in U.S. data. This contradicts the finding of Ulrich (2010) who

finds that ambiguity about inflation accounts for the upward sloping nominal yield curve.

10Early contributions to that literature include Epstein and Wang (1994), Epstein and Schneider (2003),

Chen and Epstein (2002), Epstein and Miao (2003).
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While each paper has its own valid motivation to focus its ambiguity analysis on GDP

growth only or on inflation only, these studies open up the question of how an economy

looks like if the investor is faced simultaneously by model uncertainty about GDP growth

and by model uncertainty about inflation. Our model closes this gap. We derive a model

which accounts for both sources of model uncertainty and we decompose the term spread

of real and nominal bond yields into GDP ambiguity and inflation ambiguity components.

4 Data and Econometric Methodology

The goal of this section is to briefly describe the data and the econometric methodology

used for estimating the equilibrium model. The empirical exercise shows how long-run

ambiguity and long-run risk affect the term structure of nominal and real bonds. The

intuition of previous research is that long-run inflation risk is much more important for

explaining variations in nominal bond yields than fluctuations in long-run GDP risk [Ang,

Bekaert, and Wei (2008), Gürkaynak, Sack, and Swanson (2005)]. We analyze whether this

intuition carries over to long-run ambiguity.

4.1 Data

In the model, the investor observes a set of potentially correct models. The data coun-

terpart is the Survey of Professional Forecasters. Macro-econometricians from business

and academic institutions as well as Wall Street econometricians are asked to provide

quarterly forecasts for GDP growth and inflation. These professionals do not enclose the

model that they use for these macro variables.11 The outcomes of these different models

differ sometimes stronger and sometimes less strong from each other. The investor does

not know the identity of these forecasters and forecasting institutions. From the investor’s

perspective, she observes several potentially correct models and has to decide how to use

11The usual amount of forecasters lies between 30 and 40.
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that information when pricing bonds.

The findings of Ang, Bekaert, and Wei (2007) suggests that the best out-of-sample

forecasts for long-run inflation risk is achieved by using the median forecast from the

Survey of Professional Forecasters. Our investor takes this into account by setting her

reference long-run risk model to the median forecast. In particular, z coincides with the

demeaned median forecast of GDP growth and g0 coincides with its unconditional ex-

pectation. In the same way, w, coincides with the demeaned forecast for inflation and p0

coincides with its unconditional expectation.

Our investor worries about the other potentially correct models which do not coincide

with the median forecast.12 According to the model, the investor determines the amount

of model estimation risk by estimating the cross-sectional standard deviation among the

forecasters. The investor requires a market price of long-run ambiguity that is given by

equation (2.18) and (2.19), where η coincides with the estimated model estimation risk.

We find the constants mz and mw via the estimation.

Realized GDP growth, the median forecast for long-run GDP risk and the amount

of model estimation risk are plotted in Figure 1. The long-run GDP component is an

unbiased estimate for realized GDP growth and it is more persistent than GDP growth.

The R2 for a predictive regression of realized GDP growth on the reference long-run GDP

risk model is 9% for a quarterly forecast horizon. The amount of model estimation risk is

strongly time-varying, peaking during the Savings and Loan Crisis in the mid 1980s and

tightening during the period of the Great Moderation.

12We have checked the accuracy of the individual forecasts and do not find any significant clustering

of past winners or past loosers.
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The amount of model estimation risk for long-run inflation is lower than the long-run

GDP counterpart. This coincides with a higher R2 of 65% when regressing realized infla-

tion on the median of the quarterly SPF inflation forecast. Graphically this is shown in

Figure 2. Figure 3 shows graphically that investor’s face substantially more model estima-

tion risk for the long-run GDP component compared to the long-run inflation component.

During the Savings and Loan Crisis of the mid 1980s, model estimation risk for former

outweighed the latter by factor ten.

Ulrich (2010) suggests to invert the short-run macro risk states from yield data. As

an alternative, we suggest to filter these states from the observed time-series of inflation

and GDP growth. We apply this technique to make the states u and v observable. The

appendix contains the details of our procedure. The estimation results and conclusions

are robust with regard to whether we use the filtered series for u and v or whether we

invert bond yields to get these two series.

We test our model with a rich panel of macro and bond yield data. Our macro variables

include realized GDP growth, realized inflation and the Federal Funds rate. We down-

loaded that data from the St. Louis FRED data base. We use continuously compounded

nominal U.S. government bond yields of maturities 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 years.

The nominal bond yields are taken from the Board of Governors of the Federal Reserve

System. We use continuously compounded yields of U.S. Treasury Inflation-Protected Se-

curities (TIPS) of maturities 5, 6, 7, 8, 9, and 10 years, for the time horizon first quarter

of 2003 to second quarter of 2009. This data is provided by the Board of Governors of the

Federal Reserve System. All data, except TIPS, start in the first quarter of 1972 and end

in the second quarter of 2009. We use TIPS data from the first quarter of 2003 onwards.

We estimate the model by Quasi Maximum Likelihood. Since we observe all state vari-
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ables, we run ols regressions to determine the mean-reversion, steady state and volatility

parameters of these processes. These regressions provide us with a 99% confidence interval

for these parameters. In the second step, we perform a maximum likelihood estimation

with macro and bond yield data. During this step we constrain the macro parameters to

lie within the pre-estimated 99% confidence interval. This procedure ties the hands of the

econometrician because it does not allow the large bond yield panel to tweak the macro

parameters to implausible values.

5 Empirical Findings

We find that the endogenously selected worst-case long-run risk model is very close to the

reference long-run risk model. In a statistical sense, both models cannot be distinguished

from each other. The estimated detection-error-probability is 47.9%. In other words, if

an econometrician were asked whether the macro and financial data in our sample was

generated by the reference long-run risk model or by the worst-case long-run risk model,

she would select the wrong model with an unconditional probability of 47.9%. The mirror

image of this statistic is that the time-series behavior of inflation and GDP growth in both

models move so closely to each other that one cannot distinguish between both models.

Figure 4 shows graphically that the time-series for the reference GDP growth process is

very close to the endogenously selected worst-case GDP growth model. Figure 5 shows

the analog for the time-series of the reference inflation model and the worst-case inflation

model. These findings argue that there is only limited scope, if any, of learning whether

the reference model or the worst-case model is the true model. This confirms the core

intuition of model uncertainty which says that model uncertainty captures uncertainties

in the data about which the agent is not able to further learn.

Our model provides an excellent fit to real and nominal bonds. Table 1 shows that

the average mean pricing error across all eight fitted nominal yields is only 7 basis points
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per quarter. Figure 10 and 11 contrasts the model implied yield curve components with

the counterparts in a Rational Expectations economy. Figure 10 shows that the model

uncertainty premium explains the entire nominal term spread. If one builds the same

model as ours but neglects the model uncertainty one is not able to explain the term

spread. Figure 11 confirms this graphically. Said differently, if one estimates our model

with the restriction that the market price of model uncertainty is zero, one recovers a

non-positive term premium.

5.1 The Cross-Section of Long-Run Ambiguity

Figure 6 presents the two channels through which model uncertainty aversion with regard

to the long-run risk components affects the cross-section of the term structure. The model

implied TIPS yield curve is affine in the state and can be written as

yr
t (τ) = αr(τ) + βr

u(τ)u(t) + βr
z(τ)z(t)+

+ βr
hw

(τ)hw(t) + βr
hz

(τ)hz(t). (5.1)

The last two beta loadings capture how the TIPS yield curve changes if the market price

of model uncertainty changes. As shown in equation (2.19) and (2.18) this market price

depends linearly on the size of the set of potential models and on the investor specific

model uncertainty parameters mw and mz, respectively. The latter model uncertainty

parameters, together with the steady state values of η, affect also the αr loadings. Both

channels together characterize the effect that model uncertainty has on the term structure

of TIPS yields.

The upper panel of Figure 6 shows the model implied α for different ambiguity con-

stellations. Intuitively, the graph shows that if there was no model uncertainty about the

long-run risk model, the TIPS yield curve would be slightly upward sloping in steady

state. This holds because the steady state values for the macro risk factors are all zero,
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which makes the corresponding α to be the steady state TIPS yield curve in absence of

model uncertainty. Allowing for model uncertainty about the long-run GDP model lowers

the α marginally across all maturities. Introducing model uncertainty about the long-run

inflation model lowers long-term TIPS yields more than it lowers short-term yields. All

else equal, this leads to a downward sloping TIPS yield curve. It is a combination of

the higher preference parameter mw, the higher persistence of expected inflation and the

higher persistence of the market price of inflation uncertainty that gives inflation ambi-

guity a stronger effect on α, compared to GDP ambiguity.

The lower panel of Figure 6 shows how the cross-section of TIPS yields changes if the

set of potential long-run risk models increases. Short-term TIPS yields drop more if the set

of potential long-run GDP models increases. The TIPS yields drop because the expected

GDP growth rate under the worst-case scenario is lower than under the reference scenario.

Due to mean reversion in z and h, the effect of ambiguity dies out for longer duration TIPS.

The effect of ambiguity is different for the cross-section of nominal bonds. Similarly

to TIPS yields, the model predicts an affine relationship for nominal yields:

y$
t (τ) = α$(τ) + β$

u(τ)u(t) + β$
vv(t) + β$

w(τ)w(t) + β$
z (τ)z(t)+

+ β$
hw

(τ)hw(t) + β$
hz

(τ)hz(t). (5.2)

As the upper panel of Figure 7 shows, the steady state nominal yield curve would be

downward sloping if there was no model uncertainty. Being confronted with a set of sev-

eral plausible long-run inflation risk models makes even the steady state nominal yield

curve strongly upward sloping. The intuition for that result is that even when time goes to

infinity, there will always remain several models in the set of potential long-run inflation

models. Since the worst-case inflation forecast is higher than the reference forecast the cor-

responding nominal yield curve slopes upwards, because the investor cautiously expects a

higher steady state nominal growth rate than under the reference model. Said differently,
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model uncertainty has a first-order importance for bond prices and bond yields. The im-

pact of model uncertainty does not disappear in steady state and it becomes stronger the

longer the duration of the bond.

5.2 The Time-Series of Long-Run Ambiguity

For a one year nominal bond yield we find a small and time-varying ambiguity premium

for the long-run GDP ambiguity. That premium is negative, because an ambiguity averse

investor lowers her expected path of future expected GDP growth, which ceteris paribus

lowers real and nominal interest rates. The amount by which the one year nominal interest

rate is lowered coincides with the long-run GDP ambiguity premium. The second panel

of Figure 8 shows that this premium is time-varying around minus two basis points. The

upper panel shows that the long-run inflation ambiguity premium on a one year nominal

bond fluctuates around 20 basis points. That premium is positive because an ambiguity

averse investor in our model increases her worst-case inflation forecast slightly, in order to

ceteris paribus lower the anticipated worst-case GDP path. The increase in the long-run

inflation component coincides with the long-run inflation ambiguity premium. The ambi-

guity premium is small for short-term nominal bonds. The lower panel of Figure 8 shows

that the overall long-run ambiguity premium in a one year nominal bond yield is small

compared to the magnitude of that yield and its statistical standard deviation.

The longer the duration of the bond, the higher the absolute value of the long-run

ambiguity premium. The time-series pattern does not change, because it is inherited from

the observed set of model estimation risk. Figure 9 shows that the ambiguity premium

for a ten year investment horizon is dominated by model misspecification doubts about

long-run inflation. That premium fluctuates around 2.5% and has remained relatively sta-

ble since the 1991/1992 recession. The long-run GDP ambiguity premium is close to zero.
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The lower panel shows graphically, that although one is tempted to argue that the ten

year nominal bond yield with ambiguity (black solid line) looks different than the implied

ten year nominal bond yield if we shut down the long-run ambiguity channel (red dotted

line), one can hardly distinguish both models since they lie well within a standard 95%

empirical confidence interval (blue dotted line).

5.3 Relative Importance of Long-Run GDP Ambiguity vs. Long-

Run Inflation Ambiguity

As shown in Figure 3, when looking only at the amount of model estimation risk in the

data, one would conclude that there is more model uncertainty with regard to the long-

run GDP risk model than there is model uncertainty about the long-run inflation risk

model. Such a conclusion would be supported by findings of Gagliardini, Porchia, and

Trojani (2009) and Kleshecheslski and Vincent (2009) who argue that model uncertainty

with regard to the GDP process is the main contributor to the model uncertainty premium.

The conclusion changes if we use a maximum likelihood estimation that takes also real

and nominal bond yields into account. In such a specification we conclude that although

there is more model uncertainty about long-run GDP risk in the data, the resulting ambi-

guity premium is substantially smaller than the ambiguity premium for long-run inflation

risk. This result is confirmed by Ulrich (2010), who assumes that the central bank creates

model uncertainty about future inflation and who finds that this model uncertainty can

account for the positive slope of the nominal yield curve.

Our analysis allows us to analyze why investors require a substantially larger inflation

ambiguity premium, although the Survey of Professional Forecasters tells us that there is

more model uncertainty about the long-run GDP risk model. Our findings indicate that
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inflation ambiguity dominates the long-run GDP counterpart by factor 200. Our estimates

suggest that the dominance is based on two drivers. First, an ambiguity averse investor

who is uncertain about the true long-run inflation model cautiously increases her infla-

tion forecast by an endogenous amount. Our estimate for the half-life of expected inflation

indicates that it takes 5 decades for the worst-case inflation forecast to reduce by fifty

percent. Being confronted with GDP ambiguity is less costly in terms of time because the

estimated half-life of an increase in the robust long-run GDP component is only 2.4 years.

Intuitively, this means that in terms of half-life, getting the inflation model wrong is 20

times more costly. Second, we have estimated that investor’s preference for protection

against a misspecification of long-run inflation risk is approximately 20 times larger than

the preference for robustness against long-run GDP risk. In particular, we have estimated

mw = 7.6 and mz = −0.3. This dominance of inflation uncertainty outweighs the higher

amount of dispersion in GDP growth forecasts.

The qualitative implications of both ambiguity premiums is different. As Figure 7 and

6 have shown, the factor loadings on both uncertainties is upward sloping, relating an

increase in the observed amount of model uncertainty to a steepening in the real and

nominal yield curve. We have also seen that the TIPS slope becomes steeper if the set of

long-run GDP models goes up. Ambiguity about the long-run GDP model helps there-

fore to explain while the TIPS yield curve slopes upward in the U.S. An increase in the

observed set of potential long-run GDP risk models reduces the short-maturity yields

stronger than long-maturity yields.

Ambiguity about the long-run inflation risk model helps to explain the upward slop-

ing nominal yield curve. The last argument is mainly rooted in the higher persistence of

long-run inflation compared to long-run GDP growth. The main reason for inflation am-

biguity to dominate long-term nominal bond yields is consistent with Ang, Bekaert, and
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Wei (2008), Gürkaynak, Sack, and Swanson (2005), and Ulrich (2010), who all show the

importance of bond implied inflation expectations for explaining the behavior long-term

nominal bonds, compared to short-term nominal bonds.

6 Conclusion

We develop an equilibrium model with only observable macroeconomic risk and model

uncertainty factors. The model accounts for misspecification doubts about the long-run

GDP risk model and the long-run inflation risk model. We connect the set of potentially

correct long-run risk models to the observable amount of model estimation risk. We use

the cross-sectional variance of the mean forecast in the Survey of Professional Forecast-

ers for inflation and GDP growth to measure the amount of model estimation risk that

investors are confronted with. Our representative agent takes that measure of model un-

certainty into account when pricing financial assets.

We find that our measure for the set of potentially correct long-run risk models is

larger for long-run GDP risk, compared to long-run inflation risk. All else equal, this

leads to the intuition that the marginal utility of investors is more affected by long-run

GDP ambiguity. We find the opposite is true. We have estimated the model with a rich

panel of macro and bond yield data and find that marginal utility of investors is dom-

inated by long-run inflation ambiguity, and not by long-run GDP ambiguity. The main

reason for this finding is based on the empirical properties of long-run GDP risk and long-

run inflation risk. Our estimates show that long-run inflation risk is more persistent and

more volatile. The former is especially important, because an ambiguity averse investor

increases her worst-case inflation forecast and it takes 20 times longer for that forecast

to reduce by fifty percent, compared to a misspecification of the long-run GDP growth

component. In addition, investors seem to seek more protection against a potentially mis-

specified long-run inflation shock, compared to a potentially misspecified long-run GDP
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shock.

Our estimated term structure model argues that both source of ambiguity are impor-

tant to capture different aspects of bond yields. We confirm empirically that our model

without model uncertainty is not able to explain the positive term spread in the bond

market. Once we control for model uncertainty we find that accounting for the set of mul-

tiple long-run GDP models helps to qualitatively account for a steepening of the TIPS

yield curve in times of higher long-run GDP ambiguity. Model misspecification doubts

about long-run inflation risk is essential to capture the upward sloping yield curve in U.S.

nominal bonds.

Our analysis concludes that a model with log utility and observable amount of model

misspecification doubts about long-run GDP risk and long-run inflation risk is very well

able to explain the real and nominal U.S. yield curve. This finding has important impli-

cations for future research. It establishes the finding that nominal uncertainty might be

even more important for understanding investor’s marginal utility than measures of real

uncertainty.
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A Appendix:

A.1 Term Structure of Inflation-Indexed Bonds:

The equilibrium price of an inflation-indexed zero-coupon bond Bt(τ) with time to matu-

rity τ equals the inflation ambiguity adjusted conditional expected value of the intertem-

poral marginal rate of consumption substitution:

Bt(τ) = e−ρ τE
Q
t

[

uY (Yt+τ )

uY (Yt)

]

. (A.1)

Plugging in the log utility function together with the consumption and inflation process

and defining κt ≡ ρt + ln(Yt) yields

Bt(τ) =
1

exp(−κt)
E

Q
t [exp(−κt+τ )] . (A.2)

The no-arbitrage price at time t of a zero-coupon bond maturing in t+τ solves the stochas-

tic problem in (A.2). To get a closed-form solution we apply Feynman-Kac’s Theorem and

solve the dual parabolic PDE:

∂B(·, τ)

∂τ
= AB(·, τ) (A.3)

s.t. B(·, 0) = 1, (A.4)

where B(·, τ) ≡ B(κt, ut, zt, hw(t), hz(t); τ) and A represents the second-order differential

operator applied to function B(·, τ). Define φ(κt, ut, zt, hw(t), hz(t); τ) to be the solution

of the stochastic problem:

φ(κt, ut, zt, hw(t), hz(t); τ) = E
Q
t [exp(−κt+τ )] . (A.5)

Since our economy has logarithmic preferences with an affine consumption process, we

guess that the solution has the form:

φ(κt, ut, zt, hw(t), hz(t); τ) = e−κtZ (τ) ebu(τ)ut+bz(τ)zt+bhw (τ)hw(t)+bhz (τ)hz(t). (A.6)
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If (A.6) solves the stochastic problem than it also solves the PDE

∂φ(·, τ)

∂τ
= Aφ(·, τ) (A.7)

s.t. lim
τ↓0

φ(·, τ) = exp(−κt), (A.8)

where φ(·, τ) ≡ φ(κt, ut, zt, hw(t), hz(t); τ). Solving the pde gives the result.

A.2 Nominal Term Structure:

The equilibrium price of a nominal zero-coupon bond Nt(τ) with time to maturity τ

equals the inflation ambiguity adjusted conditional expected value of the intertemporal

marginal rate of consumption substitution times the real payoff at maturity:

Nt(τ) = e−ρ τE
Q
t

[

uY (Yt+τ )

uY (Yt)

pt

pt+τ

]

. (A.9)

Plugging in the log utility function together with the consumption and inflation process

and defining κt ≡ ρt + ln(Yt) yields

Nt(τ) =
1

exp(−κt)
pt

E
Q
t

[

exp(−κt+τ )

pt+τ

]

. (A.10)

The no-arbitrage price at time t of a zero-coupon bond maturing in t + τ solves the

stochastic problem in (A.10). To get a closed-form solution we apply Feynman-Kac’s

Theorem and solve the dual parabolic PDE:

∂N(·, τ)

∂τ
= AN(·, τ) (A.11)

s.t. N(·, 0) = 1, (A.12)

where N(·, τ) ≡ N(κt, pt, ut, vt, wt, zt, hw(t), hz(t); τ) and A represents the second-order

differential operator applied to function N(·, τ). Define φ(κt, pt, ut, vt, wt, zt, hw(t), hz(t); τ)

to be the solution of the stochastic problem:

φ(κt, pt, ut, vt, wt, zt, hw(t), hz(t); τ) = E
Q
t

[

exp(−κt+τ )

pt+τ

]

. (A.13)
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Since our economy has logarithmic preferences with an affine consumption and inflation

process, we guess that the solution has the form:

φ(κt, pt, ut, vt, wt, hw(t), hz(t); τ) =
e−κtZ (τ) ebu(τ)ut+bv(τ)vt+bw(τ)wt+bz(τ)zt+bhw (τ)hw(t)+bhz (τ)hz(t)

pt

.

(A.14)

If (A.14) solves the stochastic problem than it also solves the PDE

∂φ(·, τ)

∂τ
= Aφ(·, τ) (A.15)

s.t. lim
τ↓0

φ(·, τ) =
exp(−κt)

pt

, (A.16)

where φ(·, τ) ≡ φ(κt, pt, ut, vt, wt, zt, hw(t), hz(t); τ). Solving the pde gives the result.

A.3 Detection Error Probability:

The derivation of the detection-error probabilities follows directly from Maenhout (2006).

We sketch the main steps in the following.

ǫT (mw, mz) =
1

2

(

Pr(lnQT > ln Q0
T |Q0,F0) + Pr(lnQ0

T > ln QT |Q,F0)
)

(A.17)

=
1

2
− 1

2π

∫ ∞

0

(

Re

(

φQ(w, 0, T )

iw

)

− Re

(

φ(w, 0, T )

iw

))

dw (A.18)

where φ(.) is defined as φ(w, 0, T ) := E
[

ei·w·ξ1,T |F0

]

and φQ(.) is defined as φQ(w, 0, T ) :=

EQ
[

ei·w·ξ1,T |F0

]

and ξ1,T = ln dQT

dQ0
T

.

Applying Feynman-Kac theorem to φQ and φ reveals that they are an exponentially

quadratic function in the amount of ambiguity distortion ht:

φQ(w, t, T ) = ziw+1
t eG(τ)+E(τ)hw(t)+F (τ)hz(t)+

K(τ)
2

h2
w(t)+

M(τ)
2

h2
z(t)+N(τ)hw(t)hz(t) (A.19)

φ(w, t, T ) = ziw
t eĜ(τ)+Ê(τ)hw(t)+F̂ (τ)hz(t)+ K̂(τ)

2
h2

w(t)+ M̂(τ)
2

h2
z(t)+N(τ)hw(t)hz(t) (A.20)

zT := eξ1,T , (A.21)

where G(τ), E(τ), F (τ), K(τ), M(τ), N(τ), Ĝ(τ), Ê(τ), F̂ (τ), K̂(τ), M̂(τ), N̂(τ) are deter-

ministic solutions to standard complex valued Riccati equations.

26



A.4 Filtering the Short-Run Risk Factors:

For explanatory purpose we focus on the GDP process only. An Euler-Marujama dis-

cretization for the GDP process reveals:

∆Yt+1

Yt

− g0 − zt ∼ N (A, B) , (A.22)

where A and B are given by 1
2
σ0g + 1

2
ut. The left hand side of the previous equation is ob-

servable. We approximate B by its steady state value. The resulting distribution coincides

with a Gaussian, where the drift equals A and the variance equals 1
2
σ0g. Importantly, the

trend of that distribution depends linearly on the short-run GDP risk factor u. Applying

the Kalman Filter allows to back out u from the above measurement equation. In a similar

fashion, we proceed with the inflation equation to back out v.

27



References

Anderson, E., L.P. Hansen, and T.J. Sargent, 2003, A quartet of semigroups for model

specification, robustness, prices of risk, and model detection, Journal of the European

Economic Association 1, 68–123.

Ang, A., G. Bekaert, and M. Wei, 2007, Do macro variables, asset markets or surveys

forecast inflation better?, Journal of Monetary Economics 54, 1163–1212.

Ang, A., G. Bekaert, and M. Wei, 2008, The term structure of real rates and expected

inflation, Journal of finance forthcoming.

Bansal, R., and I. Shaliastovich, 2009, A long-run risks explanation of predictability puz-

zles in bond and currency markets, Working Paper.

Bansal, R., and I. Shaliastovich, 2010, Confidence risks and asset prices, American Eco-

nomic Review, Papers and Proceedings forthcoming.

Bansal, R., and A. Yaron, 2004, Risks for the long run: A potential resolution of asset

pricing puzzles,, Journal of Finance 59(4), 1481–1509.

Breeeden, D., 1979, An intertemporal asset pricing model with stochastic consumption

and investment opportunities, Journal of Financial Economics 7, 265–296.

Brennan, M., and Y. Xia, 2002, Dynamic asset allocation under inflation, Journal of

Finance LVII, 205–246.

Buraschi, A., and A. Jiltsov, 2006, Model uncertainty and option markets with heteroge-

neous agents, Journal of Finance 61, 2841–2898.

Cagetti, M., L.P. Hansen, T.J. Sargent, and N. Williams, 2002, Robustness and Pricing

with Uncertain Growth, Review of Finanical Studies 15, 363–404.

28



Chen, Z., and L. Epstein, 2002, Ambiguity, risk and asset returns in continuous time,

Econometrica 70, 1403–1443.

David, A., and P. Veronesi, 2008, Inflation, earnings uncertainty and volatility forecasts:

A structural form approach., Working Paper.

Drechsler, Itamar, 2009, Uncertainty, time-varying fear, and asset prices, Working Paper.

Epstein, L., and J. Miao, 2003, A two-person dynamic equilibrium under ambiguity, Jour-

nal of Economic Dynamics and Control 27, 1253–1288.

Epstein, L., and M. Schneider, 2003, Recursive multiple-priors, Journal of Economic The-

ory 113, 1–31.

Epstein, L., and T. Wang, 1994, Intertemporal asset pricing under Knightian uncertainty,

Econometrica 62, 283–322.

Epstein, L.G., and S.E. Zin, 1989, Substitution, risk aversion, and the intertemporal be-

havior of consumption and asset returns, Econometrica 57, 937–969.

Gagliardini, P., P. Porchia, and F. Trojani, 2009, Ambiguity aversion and the term struc-

ture of interest rates, Review of Financial Studies 22, 4157–4188.

Gürkaynak, R., B. Sack, and E.T. Swanson, 2005, The excess sensitivity of long-term in-

terest rates: evidence and implications for macroeconomic models, American Economic

Review 95, 425–436.

Hansen, L.P., and T.J. Sargent, 2005, Robust estimation and control under commitment,

Journal of Economic Theory 124, 258–301.

Hansen, L.P., and T.J Sargent, 2007, Robustness. (Princeton University Press).

Hansen, L.P., and T.J. Sargent, 2009, Fragile beliefs and the price of uncertainty, Working

Paper.

29



Hansen, L.P., T.J. Sargent, G. Turmuhambetova, and N. Williams, 2005, Robust control

and model misspecification, Working Paper.

Kleshecheslski, I., and N. Vincent, 2009, Robust equilibrium yield curves, Working Paper.

Lettau, M., and J. Wachter, 2009, The term structures of equity and interest rates, Work-

ing Paper.

Lucas, R.E., 1978, Asset Prices in an Exchange Economy, Econometrica 46, 1429–1445.

Maenhout, P., 2004, Robust portfolio rules and asset pricing, Review of Finanical Studies

17, 951–983.

Maenhout, P., 2006, Robust portfolio rules and detection-error probabilities for a mean-

reverting risk premium, Journal of Economic Theory 128, N1, 136–163.

Mehra, R., and E.C. Prescott, 1985, The equity premium: A puzzle, Journal of Monetary

Economics 15, 145–161.

Piazzesi, M., and M. Schneider, 2006, Equilibrium yield curves, 2006 NBER Macroeco-

nomics Annual forthcoming.

Ulrich, Maxim, 2010, Inflation ambiguity and the term structure of arbitrage-free U.S.

Government bonds, Working Paper.

Vissing-Jorgensen, A., 2002, Limited asset market participation and the elasticity of in-

tertemporal substitution, Journal of Political Economy 110, 825–853.

30



Table 1: PARAMETER ESTIMATES (Standard Errors

Panel A: State Variables

Drift, Volatility

κ σ a

u -0.304 (0.004) 0.0005 (1e-11) 0 (fixed)
v -0.001 (0.9e-8) 0.0005 (1e-11) 0 (fixed)
w -0.0034 (0.02e-8) 0.0098 (2e-8) 0 (fixed)
z -0.289 (3.9e-8) 0.0077 (1e-9) -0.0015 (1e-9) 0 (fixed)
ηw -0.351 (9.5e-8) 0.0035 (6e-11) 0.0015 (2e-12)
ηz -2.5 (0.0003) 0.53 (0.1e-4) 0.0048(3e-9) 0.0017(2e-9)

Panel B: Growth and Inflation

g0 0.0065 (fixed)
p0 0.0096 (fixed)
σ0g 0.000095 (8e-12)
σ0p 0.000029 (2e-12)
ρpg -0.89 (3e-4)
ρ 0.001 (fixed)
mw 7.65 (1e-5)
mz -0.33 (2e-5)

Table 2: Yield Curve, in %, per quarter

y$

maturity R 4 8 12 16 20 24 28 32 36 40
data 1.6 1.5822 1.6391 1.6819 1.7159 1.7453 1.7717 1.795 1.8154 1.8327 1.8484
model 1.51 1.5253 1.5640 1.6073 1.6525 1.6986 1.7452 1.7920 1.8389 1.8859 1.9327

yr

maturity 20 24 28 32 36 40
data 0.3782 0.4109 0.4400 0.4650 0.4859 0.5014
model 0.5360 0.5344 0.5332 0.5324 0.5317 0.5312
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Figure 1: GDP Growth, Long-Run GDP Risk, Long-Run GDP Ambiguity,

1972.I - 2009.II

This figure presents quarterly GDP growth and its ex-ante expected value together with
the empirical amount of model estimation risk. The green solid line presents realized
quarterly GDP growth. The black dotted line presents the ex-ante expected GDP growth
as measured by the median GDP growth forecast of the Survey of Professional Forecasters
(SPF). The two solid blue lines presents a 3 standard deviation confidence interval for the
precision of the median forecast. The standard deviation is based on the cross-sectional
standard deviation of the forecasted SPF models. All values are annualized an in percent.

The ex-ante expected GDP growth rate is our measure of long-run GDP risk. The cross-
sectional standard deviation of potentially correct forecast models is our real-time measure
for long-run GDP ambiguity.
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Figure 2: Inflation, Long-Run Inflation Risk, Long-Run Inflation Ambiguity,

1972.I - 2009.II

This figure presents quarterly inflation and its ex-ante expected value together with the
empirical amount of model estimation risk. The red solid line presents realized quarterly
inflation. The black dotted line presents the ex-ante expected inflation as measured by
the median inflation forecast of the Survey of Professional Forecasters (SPF). The two
solid blue lines presents a 3 standard deviation confidence interval for the precision of
that median forecast. The standard deviation is based on the cross-sectional standard
deviation of the forecasted SPF models. All values are annualized an in percent.

The ex-ante expected inflation rate is our measure of long-run inflation risk. The cross-
sectional standard deviation of potentially correct forecast models is our real-time measure
for long-run inflation ambiguity.
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Figure 3: Observable Long-Run Ambiguity, 1972.I - 2009.II

This figure plots the quarterly amount of observable long-run ambiguity. It coincides with
the amount of model estimation risk. That measure of model uncertainty coincides with
the cross-sectional standard deviation of forecasted long-run risk models. The forecasts
are taken from the Survey of Professional Forecasters. The green solid line coincides with
the amount of model estimation risk for the long-run GDP risk model. The red solid line
represents the amount of model estimation risk for the long-run inflation risk model.
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Figure 4: Empirical- vs. Worst-Case Long-Run GDP Risk Model, 1972.I -

2009.II

This figure plots the reference model (empirical) for long-run GDP risk (red star) together
with the worst-case long-run GDP risk model (blue dotted). The reference model coincides
with the median forecast of the Survey of Professional Forecasters. The worst-case model
is endogenously determined as an equilibrium outcome.
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Figure 5: Empirical- vs. Worst-Case Long-Run Inflation Risk Model, 1972.I -

2009.II

This figure plots the reference model (empirical) for long-run inflation risk (red star)
together with the worst-case long-run inflation risk model (blue dotted). The reference
model coincides with the median forecast of the Survey of Professional Forecasters. The
worst-case model is endogenously determined as an equilibrium outcome.
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Figure 6: Long-Term and Short-Term Ambiguity in TIPS Yields

This graph decomposes the channel through which ambiguity affects TIPS yields. The
cross-section is characterized by yr

t (τ) = αr(τ) + ...βr
hw

(τ)hw(t) + βr
hz

(τ)hz(t). Ambiguity
enters through αr and βr

hw
, βr

hz
. The upper panel plots the model implied αr for different

ambiguity specifications, where αr,NoAmbig refers to the case of no ambiguity at all, αr,zAmbig

stands for the case where only long-run GDP ambiguity exists and αr,wAmbig summarizes
the case if only long-run inflation ambiguity exists. The lower panel presents the factor
loadings on both long-run uncertainty measures.
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Figure 7: Long-Term and Short-Term Ambiguity in Nominal Yields

This graph decomposes the channel through which ambiguity affects nominal yields. The
cross-section is characterized by y$

t (τ) = α$(τ) + ...β$
hw

(τ)hw(t) + β$
hz

(τ)hz(t). α$,NoAmbig

refers to the case of no ambiguity at all, α$,zAmbig stands for the case where only long-
run GDP ambiguity exists and α$,wAmbig summarizes the case if only long-run inflation
ambiguity exists.
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Figure 8: Premium for Long-Run Ambiguity in Short-Term Yield, 1972.I -

2009.II

The black solid line corresponds to the one year nominal bond yield, as observed in the
data. The dashed blue line summarizes its empirical 95% confidence interval. The red
dotted line plots the model implied one year nominal yield under the reference model.
The reference and worst-case model are so close that one cannot distinguish both bond
yield time-series.
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Figure 9: Premium for Long-Run Ambiguity in Long-Term Nominal Yield,

1972.I - 2009.II

The black solid line corresponds to the ten year nominal bond yield, as observed in the
data. The dashed blue line summarizes its empirical 95% confidence interval. The red
dotted line plots the model implied ten year nominal yield under the reference model.
The reference and worst-case model are so close that one cannot distinguish both bond
yield time-series.
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Figure 10: Decomposing Nominal Yield Curve, Min-Max Preferences

The solid black line represents the model implied average nominal yield curve. The
yellow . − . line shows the average nominal yield curve in the data. The green −∗
line represents the inflation forecast (empirical measure). The red .− graph repre-
sents the ambiguity premium (GDP and inflation). The pink ∗ graph represents the
estimated TIPS yield curve. The solid blue star line represents the inflation risk premium.

The model is estimated over the entire sample 1972.I - 2009.II. The estimated parameters
and states are held fixed for the different sub-samples.
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Figure 11: Decomposing Nominal Yield Curve, Rational Expectations
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