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Abstract

Almost all real assets trade in decentralized markets, where trading frictions could

inhibit the efficiency of asset allocations and depress asset prices. In this paper, I

use data on commercial aircraft markets to empirically investigate whether trading

frictions vary with the size of the asset market. Intuitively, it is more difficult to sell

assets that have a thin market. As a result, firms find it optimal to hold on longer to

assets with a thinner market in case their profitability rises in the future. Thus, when

markets for firms’ assets are thin, firms’ average productivity and capacity utilization

are lower, and the dispersions of productivity and of capacity utilization are higher.

In turn, prices of assets with a thin market are, on average, lower and have a higher

dispersion, since prices depend on firms’ productivity and capacity utilization.

The empirical analysis confirms that trading frictions vary with the size of the

market, as aircraft with a thinner market have: 1) lower turnover; 2) lower capacity

utilization; 3) higher dispersion of utilization levels; 4) lower mean prices; and 5) higher

dispersion of transaction prices.
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1 Introduction

Many assets trade in decentralized markets. Classic examples are financial assets, such as

bonds and derivatives, and real assets, such as real estate and capital equipment. The

fundamental characteristics of a decentralized market are that traders must incur costs to

search for trading partners and that, once a buyer and a seller meet, they must bargain to

determine a price. In this paper, I investigate how trading frictions vary with the thickness

of the asset market, analyzing patterns of asset utilizations and prices in the market for

commercial aircraft.1

Some decentralized markets are very buoyant. The paragon is the secondary market for

U.S. Treasury securities, where the daily volume of trade was about $125 billion in 1994

(Fleming, 1997). Although secondary markets for real assets are less bustling, some are still

rather active. For example, among consumer durables, the number of used cars traded every

year in the U.S. is more than twice as large as the number of new purchases (Stolyarov,

2002); among capital equipment, the number of transactions for used commercial aircraft is

about three times the number of purchases of new aircraft (Gavazza, 2007).

In most decentralized markets, each asset trades several times during its “lifetime.” There-

fore, parties’ trading decisions incorporate not only the expected cash flow that the asset

generates, but also any cost that traders will incur in selling it at a later date.2 When the

number of potential users of the asset is small, trading in decentralized markets generates

substantial monetary and opportunity costs, as the search process to find buyers able to

generate the highest cash-flow from the asset may be difficult. For example, most capital

equipment is specialized by industry, so used assets typically have greater value inside the

industry than outside (Shleifer and Vishny, 1992). Even within an industry, however, one

firm’s assets may not be a perfect match for another firm’s.

Assets with a thin market imply that firms on each side of the market do not search

exhaustively for the best matches (Ramey and Shapiro, 2001). In turn, this affects owners’

decision over whether or not to sell when their idiosyncratic profitability changes over time.

Instead, the matching between buyers and sellers becomes easier in a thicker asset market.

In this sense, assets with a thicker market are more “liquid.” When assets have a very thick

market, they transfer immediately to the highest-profitability firms. Instead, it is optimal

for inefficient firms to keep assets with a thin market rather than selling them. The reason

is that assets with a thin market are more difficult to sell, and they have higher option

values: Firms choose to hold on to them for longer periods in case their profitability rises

in the future. Hence, when assets have a thin market, the average profitability of firms is

1In the course of the paper, I use the expressions market thickness/thinness and size of the market

interchangeably. In the empirical analysis, I will measure market thickness/size of the market of each

aircraft type in two similar ways: 1) the stock of the aircraft of that type; and 2) the number of operators

using that aircraft type.
2House and Ozdenoren (forthcoming) construct a model of durable goods in which consumers’ demand

is influenced by resale concerns. In equilibrium, resale concerns can be so strong that individuals choose to

purchase a good that they like less than other available goods.
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lower, and, at the same time, the dispersion of their profitability is higher. In summary,

asset turnover is lower in thinner markets, and assets with a thin market are less efficiently

allocated than assets with a thick market.

The effects of trading frictions on asset allocations transmits to asset prices. Market

thinness decreases the level of asset prices and increases the dispersion of transaction prices.

The reason is that when firms bargain over the price, the transaction price depends on

each firm’s ability to generate cash-flow from the asset.3 Because trading frictions are lower

for assets with a thicker market, assets with a thick market generate a high level of firms’

profitability and a small dispersion of profitability. Hence, transaction prices are high and

the dispersion of transaction prices is low. Conversely, when the asset market is thin, the

low equilibrium level and high dispersion of firm profitabilities translate into a low average

price and high dispersion of transaction prices. Asset prices reflect how active the market is

and how efficiently assets are allocated.

In this paper, I use a simple model of trading in decentralized markets with two-sided

search and bilateral bargaining to formalize the effects of the size of asset markets on asset

allocations and prices. I then test a rich number of empirical predictions by combining

several datasets on markets for one class of real assets—commercial aircraft.

The theoretical framework adapts Diamond’s (1982) seminal paper to asset markets, in

a similar way to that of a growing literature—starting with Duffie, Gârleanu and Pedersen

(2005)—that applies search models to financial markets. In particular, the setup shares a

number of features with the recent contributions by Vayanos and Wang (forthcoming) and

Weill (forthcoming), but with an important difference.4 The distribution of agents’ ability

to generate cash-flow from an asset is continuous rather than discrete. This departure allows

the characterization of the equilibrium distribution of buyers’ and sellers’ profitabilities and

the equilibrium distribution of transaction prices that can be mapped into their empirical

counterparts.

The key economic mechanism is that, under a standard assumption on the meeting rate

between buyers and sellers,5 the trading technology exhibits increasing returns to scale. Thus,

as the mass of assets increases, the flow of meetings increases more than proportionally.

Increasing returns in search capture the notion that trading costs decrease with trading

volume and that assets with a thicker market are more “liquid”—i.e., easier to trade.6,7

3Pulvino (1998) empirically establishes that sellers in worse financial conditions sell assets at a lower

price. In Section 4.7, I discuss in more detail the relationship between this paper and Pulvino (1998).
4See, also, Duffie, Gârleanu and Pedersen (forthcoming), Miao (2006), Lagos and Rocheteau (2007),

Vayanos and Weill (forthcoming), and Weill (forthcoming).
5The precise assumption is that buyers and sellers meet according to a Poisson process with a fixed arrival

rate. This is quite standard in the literature. See Duffie, Gârleanu and Pedersen (2005 and forthcoming),

Vayanos and Wang (forthcoming), and Weill (forthcoming) for a sample of recent papers adopting this

assumption.
6See Lippmann and McCall (1986) for a similar relationship between market thickness and liquidity.
7The literature on liquidity in financial markets generally uses bid-ask spreads, or market depth, or float

as measures of liquidity. In markets for corporate assets, however, bid-ask spreads and market depth cannot

be measured, and the variable that is conceptually closer to the float is probably the total stock of aircraft of a

3



Moreover, increasing returns precisely fit the characteristics of aircraft markets as reported

by industry experts and market participants. For example, according to Lehman Brothers

(1998), “[A]ircraft with a large number in current use across a wide array of users will

obviously be easier to resell or re-lease than aircraft with limited production and usage.”

Thus, assets trade more frequently in a thicker market.

Through the trading technology just described, the size of the asset market has important

implications for allocations and prices. Specifically, assets with a larger market: 1) trade

more frequently; 2) have higher average capacity utilizations; 3) have lower dispersion of

capacity utilization levels; 4) fetch higher average prices; and 5) have lower dispersion of

transaction prices.

In the empirical section, I combine four distinct datasets concerning the aircraft market

to empirically investigate the above implications. Focusing on well-defined assets such as

commercial aircraft allows control over a number of factors (e.g., technology differences,

human-capital differences, market definitions, etc.) that might confound cross-industries

studies. This allows for a clean identification of how trading frictions vary with thickness of

the asset market and, thus, of the effects of asset market thickness on input allocations and

prices. Moreover, the aircraft market provides an ideal candidate for general investigation of

a search model of trading in decentralized markets and, in particular, of scale effects. First,

secondary markets for aircraft are the typical example of decentralized markets. Aircraft is

the only form of capital equipment that can be redeployed to an operator anywhere in the

world within a day, and this characteristic means that there are global markets for aircraft.

Second, aircraft are differentiated products, designed to serve different markets and different

ranges. Thus, the differential number of different airline markets imply that some aircraft

are more popular than others. Third, commercial aircraft are registered goods with all major

“life” events (date of first flight, maintenance, scrappage, etc.) recorded, so very detailed

data are available. Thus, the richness of the data allows me to use two related measures of

the market size: 1) the stock of aircraft of a given type in a given year; and 2) the number of

operators using a given aircraft type in a given year.8 Moreover, the richness of the data also

allows me to control for a large number of factors that may plague the identification of the

effect of market thickness in the empirical analysis. For example, I control for unobservable

differences across models and even unobservable differences between vintages of the same

model to identify the effect of market thickness on aircraft prices. In addition, I can also

control for unobservable differences between aircraft of the same vintage and model, as well

as for unobservable characteristics of the carriers that may induce selection into different

aircraft types to identify the effect of market thickness on asset allocations.

The empirical analysis confirms all theoretical predictions. Moreover, the analysis reveals

given type—i.e., market thickness. Starting with Demsetz (1968), several papers (Garbade and Silber, 1976;

Tanner and Kochin, 1971 are early examples. Amihud, Mendelson and Uno, 1999 is a recent example) have

empirically investigated the relationship between bid-ask spreads and the float or the number of shareholders

(for stocks), or issue size (for bonds). All these papers consistently find lower bid-ask spreads for stocks with

larger float or a larger number of shareholders, and for bonds with a larger issue size.
8The empirical results are very similar across the two measures.
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that the magnitudes of the effects are rather large. A ten-percent increase in the stock of

aircraft of a given type implies: 1) a 1.9-percent increase in the hazard of trading the

aircraft; 2) a 1.9-percent increase in the average capacity utilization; 3) a 2.2-percent decrease

in the absolute percentage deviation of utilizations from the mean utilization; 4) a 2.7-

percent increase in the average price; and 5) a 1.5-percent decrease in the absolute percentage

deviation of transaction prices from the mean price.

This paper is one of the first to investigate the role of the microstructure of the market for

capital assets. The paper employs a unified framework to study the effects of trading frictions

in real asset markets, and it provides quantitative evidence on the importance of these

frictions for several economic outcomes. The empirical findings suggest that, even within a

well-defined asset class such as aircraft, capital is moderately specialized and market thinness

generates frictions that are a large impediment to the efficient reallocation of capital.9 These

conclusions have several potential implications. First, the notion of asset-market thinness

is similar to the notion of asset specificity, and an extensive large literature has shown the

implications of asset specificity for economic institutions (Williamson, 1975), organization

of firms (Hart, 1995), financial structure of firms (Shleifer and Vishny, 1992), and even

macroeconomic fluctuations (Caballero and Hammour, 1998). However, quantification of

specificity has remained scarce. Second, an important literature has investigated the role

of costly capital reversibility on investment behavior (e.g., Dixit and Pindyck, 1994), and

this paper provides estimates of these costs arising due to market thinness. Third, the

paper complements a series of recent papers that study the process of capital reallocation

and quantify frictions in such a process (Ramey and Shapiro, 1998, 2001; Maksimovic and

Phillips, 2001; Schlingemann et al., 2002; and Eisfeldt and Rampini, 2006).

The paper also contributes to the literature on productivity dispersion. Capacity uti-

lization is closely related to firm productivity.10 An important literature (summarized in

Bartelsman and Doms, 2000) has documented large and persistent productivity dispersion

within narrowly defined industries, and most of the explanations for this dispersion have fo-

cused on technological differences between firms. The empirical patterns documented in this

paper are similar to the ones uncovered in Syverson (2004, forthcoming), but the economic

mechanism that generates these patterns is rather different. In particular, while Syverson fo-

cuses on a demand-side factor (consumers’ inability to switch between competing suppliers),

I focus on a supply-side argument (frictions in the market for capital).11,12

9See, also, Kim (1998); Asplund (2000); Ramey and Shapiro (2001); Benmelech, Garmaise and Moskowitz

(2005), and Balasubramanian and Sivadasan (forthcoming).
10Indeed, the model shows that more-productive firms choose a higher level of capacity utlization.
11In independent work, Balasubramanian and Sivadasan (forthcoming) construct an index of sunkenness

of capital investments for US manufacturing industries and empirically establish that the mean of industry

productivity is lower and the dispersion of productivity is higher in industries with a higher value of the

index of sunkenness of capital investments.
12By focusing on input markets, this paper shares some ideas with Melitz (2003), although the precise

economic mechanism is rather different. Similarly, this paper has a few similarities with some search-theoretic

analysis of the labor market. See Rogerson, Shimer and Wright (2005) for a survey. See, also, Petrongolo
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The paper proceeds as follows. Section 2 presents some institutional details on the mar-

kets for commercial aircraft. Section 3 introduces a theoretical framework to study the effect

of market thickness on asset allocations and prices. The Section informally discusses the

main economic forces behind the bilateral search model that is fully developed in Appendix

A. Section 4 presents the data used in this paper, and tests the empirical predictions of the

model on the effect of market thickness on asset allocations and prices. Section 5 concludes.

Appendices B and C contain some mathematical derivations.

2 Commercial Aircraft Markets

The market for used commercial aircraft might seem relatively active compared to the market

for other more specialized equipment. All airlines in the world use the same types of aircraft,

and there are relatively few types. Also, aircraft are the only form of capital equipment that

can be delivered to a buyer or an operator anywhere in the world within a day and get

there under their own power. Thus, the secondary market for aircraft is a single, worldwide

market.

However, several other facts suggests that trading frictions may be important. In partic-

ular, compared to financial markets and to other equipment markets, the absolute number

of transactions in the aircraft market remains very small. For example, in the 12 months

between May 2002 and April 2003, of the total stock of 12,409 commercial aircraft used for

passenger transportation and older than two years, only 720 (5.8 percent) traded.13

Moreover, the market is organized around privately negotiated transactions.14 Most

major carriers have staff devoted to the acquisition and disposition of aircraft, which suggests

that trade is not frictionless. Also, independent brokers are sometimes used to match buyers

and sellers, which again indicates the importance of frictions. Moreover, aircraft are seldom

sold at auctions. Pulvino (1998) reports that in one of the first auctions organized in 1994

to enhance the liquidity of the market, only nine aircraft sold from the 35 offered for sale.

Subsequent auctions ended even without a single sale. Hence, prices are very sensitive to

party’s individual shocks, and the bargaining power of sellers and buyers is an important

determinant of transaction prices. For example, Pulvino (1998) finds that sellers with bad

financial status sell aircraft at a 14-percent discount relative to the average market price.

Furthermore, aircraft are differentiated products, and product differentiation generates

and Pissarides (2006), Bleakley and Lin (2007), Gan and Zhang (2006) and Teulings and Gautier (2005) for

recent analyses of increasing returns to scale in labor markets.
13The comparison with other capital goods is complicated because of the heterogeneity of capital goods.

In a cross-industry study of corporate asset sales, Schilngemann et al. (2002) report a cross-industry average

turnover of assets (measured in dollar values) of five percent. In their sample, more than ten two-digit

industries have an average value of turnover higher than ten percent, and in some two-digit industries, the

average value of turnover is as high as 23 percent.
14This is one characteristic that Rauch (1999) uses to measure asset-specificity. The idea is that if an asset

is sold on an organized exchange, then the market for this asset is thick and, hence, the asset is less specific

to the transaction.
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economic rents. Each type of aircraft requires human-capital investments in specific skills

for pilots, crew and mechanics that increase the degree of physical differentiation. Product

differentiation also implies that aircraft are imperfect substitutes for one another, as different

types are designed to serve different markets and different ranges. For example, a Boeing

747 is suited to serve markets in which both demand and distance are large. Thus, the

differential size and number of different airline markets imply that different aircraft types

have differential popularity, and a carrier could choose to operate an aircraft with a rather

thin market if it suits its route structure better. For a given type, the number of annual

transactions may be small. For example, only 21 used units of the Boeing 747 traded in

the 12-month period ending April 2003. Clearly, the popularity of a given type also varies

over time, as aircraft follow the typical life cycle of products. Thus, two main factors affect

the thickness of the market for a specific aircraft type over time: the production of new

units, and the retirement of old units. For example, the Boeing 727 was the most popular

commercial aircraft during the 1970s, when production rates were high, but, today, it has

a rather thin market as it has been phased out of production and many units have been

retired.

Airline industry experts and participants in the aircraft market consider the thickness of

the market a fundamental characteristic of an aircraft type. For example, as noted in the

introduction, Lehman Brothers considers “aircraft with a large number in current use across

a wide array of users [ . . . ] easier to resell or re-lease than aircraft with limited production

and usage.” Similarly, according to Wachovia Securities (2005): “[T]he following are drivers

of marketability of a commercial aircraft type: Number of current operators [ . . . ]; Number

of Aircraft in production run [ . . . ]; In-production status/backlog [ . . . ]; Existence of a

cargo conversion program [ . . . ]; Number of young aircraft on ground [ . . . ]”. Further,

describing the aircraft leasing market,15 Wachovia Securities (2005) states: “From a lessor’s

perspective, a good leasing asset is one of which, ‘if I get this aircraft back, I want a lot of

people that I can talk to about the plane....’ ”16

Why should an aircraft with a large number in current use be easier to resell than

an aircraft with limited production? There are several, often reinforcing reasons. The

most important reason is that carriers tend to minimize the number of types of aircraft

they operate in order to achieve economies of scale in aircraft maintenance, in purchasing

spare parts, in training of pilots, crew and mechanics, and in scheduling flights.17 Hence,

the number of current operators of an aircraft type captures well the number of potential

buyers (Benmelech and Bergman, forthcoming A and B; Gavazza, 2008). A larger number

15Leasing is very popular in the aircraft market, with about 50 percent of the current stock of commercial

aircraft being leased. Gavazza (2007) explores the effect of leasing on aircraft turnover. Gavazza (2008)

explores how the liquidty/redeployability of aircraft affects whether aircraft are leased or not, the equilibrium

maturity and pricing of lease contracts.
16Wachovia Securities, Structured Products Research, Commercial ABS, September 2005.
17For example, in the United States, a successful carrier like Southwest flies one type of aircraft only, and

Jetblue flies two. Similarly, in Europe, Ryanair flies one type of aircraft only, while Easyjet flies two types.

Almost all small carriers in the world (below 25 aircraft) fly one type of aircraft only.
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of potential buyers obviously increases the probability that at least one carrier is seeking to

acquire an aircraft. Furthermore, multimarket contact and geographic proximity between

carriers reduces some of the costs of trading, such as the costs of inspecting the aircraft

or registering it with the aviation authorities.18 As a result, aircraft trade more frequently

between two carriers operating in the same country than between two carriers operating in

different countries. Thus, on average, a seller is more likely to be closer to a buyer whose

fleet is composed of a more popular aircraft type. Moreover, carriers finance the purchase of

aircraft mainly by issuing debt secured by the aircraft, and more popular aircraft are better

collateral. Hence, purchasing more-popular aircraft facilitates the availability of external

financing (Littlejohns and McGairl, 1998).

Overall, all these observations suggests that trading frictions can vary with market thick-

ness. The next section introduces a theoretical framework that illustrates more precisely how

trading frictions affect equilibrium asset allocations and prices. A rich set of comparative

statics implications emerge from this framework, and I test them in Section 4.

3 Theoretical Framework

In this Section, I describe how we should theoretically expect asset allocations and prices to

differ in thick markets versus thin markets. In Appendix A, I setup a bilateral search model

to more formally investigate the effects of a thick asset market on allocations and prices.

Here, I informally discuss the main economic forces behind the model, leaving all derivations

to Appendix A. The model delivers testable implications regarding how trading frictions

vary with the thickness of the asset market and regarding the effects of these frictions on

the (endogenously determined) equilibrium asset allocations and prices.

To fix ideas, consider an industry that is populated by a continuum of firms (carriers).

Firms’ production function uses a single input (aircraft) to produce output (flights), and, for

simplicity, let us assume that all aircraft are homogenous. The exact form of product market

competition among firms is not particularly relevant for the results. The only thing that

matters is that firms have heterogenous productivity. More precisely, firms are differentiated

by an exogenous productivity parameter that evolves stochastically over time. Firms observe

their productivity and, if they own an aircraft, choose the hours of utilization of the aircraft

to maximize the per-period profits from the use of an aircraft, with more productive carriers

choosing a higher level of utilization.19

The focus of the model is on the input market. Firms can choose whether or not to

acquire an aircraft if they do not own one, and whether or not to keep operating the aircraft

18In the United States, it is more time-consuming and costly for a carrier to register an aircraft that was

previously registered to another carrier in a different country than to register an aircraft that was previously

registered to another carrier in the United States. For many other countries, similar rules apply.
19When the profit function exhibits complementarities between the exogenous productivity of the firm

and the endogenous choice of capacity utilization, more-productive firms choose a higher level of capacity

utlization. Moreover, equilibrium profits are an increasing function of productivity. Hence, profits and

productivity move one-to-one with capacity utilization.
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or sell it if they own one. If a firm wants to trade (either buy or sell) an aircraft, it enters a

decentralized search market in which it contacts other firms willing to trade. A firm seeking

to trade an asset meets other firms from the overall population according to a Poisson process

with a fixed arrival rate. Once two firms meet and are willing to trade, they negotiate a

price to trade.

In this setting, firms endogenously select based on their productivity: Higher-productivity

firms choose to operate aircraft, and lower-productivity firms choose to stay out of the

market. Hence, there exists a unique buyers’ cutoff: a value in the productivity distribution

such that a firm that does not currently own an aircraft and whose productivity jumps above

the cutoff chooses to acquire one. Similarly, there exists a unique sellers’ cutoff: a value

in the productivity distribution such that a firm that currently owns an aircraft and whose

productivity falls below the cutoff chooses to sell it. When there are trading frictions, buyers’

cutoff is higher than sellers’ cutoff: Frictions create a wedge that prevents sellers from selling

and buyers from buying.

The main point is that the buyers’ and sellers’ cutoffs change with the thickness of the

asset market. The key economic force is that, under the search technology described above,

active sellers (buyers) meet active buyers (sellers) at a rate proportional to the measure

of active buyers (sellers). Therefore, the trading technology exhibits increasing returns to

scale: Doubling the masses of active buyers and active sellers more than doubles the flow

of meetings. Increasing returns in search nicely capture the idea that trading costs are

decreasing with trading volume and precisely fit in a simple (and reduced form) way the

facts about aircraft markets described in Section 2. Thus, in a thicker market, the contact

rate between buyers and sellers is higher, so once on the market, assets with a thicker

market trade faster. In this sense, assets with a thicker market are more liquid (Lippmann

and McCall, 1986). Instead, trading frictions are higher for assets with a thin market, and

these assets have a higher option value for their owners: Firms choose to hold on to assets

with thin markets for longer periods of time in case their productivity rises in the future.

As a result, sellers’ cutoff value is lower in a thinner market: It is optimal for inefficient

firms to keep their assets rather than selling them. Similarly, buyers’ cutoff value is higher

in a thinner market: Only very productive firms choose to incur the trading costs to acquire

an aircraft. As the asset market becomes thicker, sellers’ cutoff value increases and buyers’

cutoff value decreases. Indeed, in the limit as the asset market becomes infinitely thick,

buyers and sellers cutoffs converge, and the frictionless Walrasian benchmark obtains.

Sellers’ and buyers’ cutoffs affect the entire (endogenous) distributions of aircraft oper-

ators. In particular, the lower bound of aircraft operators’ productivity is higher when the

market is thicker. Thus, the equilibrium average productivity of aircraft operators is higher

and the equilibrium dispersion of productivity is lower in thicker aircraft markets. Since

capacity utilization moves one-to-one with productivity, capacity utilization is, on average,

higher and exhibits less dispersion for aircraft with a thicker market.20

20The model implies that productivity, profitability and capacity utilization are very closely related. The

data seem to confirm this. For example, at the aggregate level, aircraft are parked inactive in the desert
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Moreover, when a buyer and a seller bargain over the price at which they trade the asset,

the individual abilities to generate cash-flow from the asset determine the buyer’s willingness

to pay and the seller’s willingness to accept and thus the transaction price. Hence, the effects

of market thickness on the equilibrium distribution of firms’ profitabilities transmit to the

distribution of transaction prices. As a result, assets with a thicker market have a higher

average level of asset prices and, simultaneously, a lower dispersion of transaction prices.

In summary, the model makes the following predictions. As the market becomes thicker,

assets: 1) have a higher turnover; 2) have a higher average level of capacity utilization; 3)

have a lower dispersion of capacity utilization; and 4) have a higher average price; 5) have a

lower dispersion of transaction prices.

4 Empirical Analysis

4.1 Sources of Data

The empirical analysis in this paper combines four distinct datasets. The first dataset is an

extensive database that tracks the history of each western-built commercial aircraft. I use

this database to construct two measures of the thickness of each type of aircraft in each year.

I then match the two measures (described in detail below) to the other datasets to investigate

the effects of market thickness on asset allocations and prices. The second database reports

the aircraft flying hours for the period 1990–2002, and I use this information to investigate

several features of aircraft capacity utilization. The third dataset reports the prices of

several aircraft models during the period 1967–2003. These prices are average values, similar

to “Blue Book” prices. The fourth dataset reports actual prices for a large number of

transactions during the period 1978–1991. I now describe each dataset in more detail.

Aircraft History—This database was compiled by a producer of aviation-market informa-

tion systems and reports the history of each Western-built commercial aircraft up to April

2003. For each aircraft serial number, the dataset contains information on the type (e.g.,

Boeing 737); the model (e.g., Boeing 737-600); the “birth” of the aircraft (date of the first

flight); the sequence of operators with the relevant dates of operation; the operational role

with each operator; and, if the aircraft is no longer in use, the date of the “death” of the

aircraft (date the aircraft was scrapped).

Aircraft Utilization—This database was compiled by the producer of the aircraft history

dataset and reports detailed information on the utilization of each aircraft by its operator.

More precisely, the file reports the monthly flying hours of each aircraft from January 1990

to April 2003. Monthly utilization is aggregated at the year level, thus obtaining an annual

more frequently in recessions than in booms. After 9/11, when the profitability of the airline industry was

severely hit, a large number of carriers decide to ground aircraft. As a result, capacity utilization decreased.

Similarly, at the carrier level, the data reveal that Southwest has higher capacity utilization than other US

carriers, and that capacity utilization is substantially lower before a carrier enters into bankruptcy.
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panel for the 1990–2002 period. I discard observations (a serial-number–year pair) if the

aircraft changes operator in the year in which the aircraft is traded, in order to be able to

impute the annual utilization to a single operator.21

Blue Book Prices—This dataset was compiled by a consulting company that specializes

in aircraft appraisals. It is an unbalanced panel reporting the historic values of prices of

different vintages for the most popular models during the period 1967–2003. The prices are

based on reported transactions and on the company’s experience in consulting, appraisal and

fleet evaluation. The prices assume that the transaction was made on the basis of a single

unit bought with cash from a non-bankrupt seller. All values are in U.S. dollars and I have

deflated them using the GDP Implicit Price Deflator, with 2000 as the base year.

Transaction Prices—This dataset reports actual transaction prices for almost all aircraft

traded by U.S. corporations during the period 1978–1991. Prior to 1992, the Department

of Transportation (DOT) required price disclosure for all aircraft purchased or sold by U.S.

corporations. The transaction prices used in this paper are based on these DOT filings. For

each transaction, the filings report the aircraft serial number, buyer and seller identities,

transaction price, date of transaction, and whether the transaction was a straight sale or a

sale/leaseback. The dataset also reports some technical information, such as the age of the

aircraft, the engine type, and the engine noise stage. In the empirical analysis of this paper,

I focus on all used aircraft transactions reported in this dataset. All values are in nominal

U.S. dollars, and I have again deflated them to the year 2000.22

4.2 Data Description

From the Aircraft History dataset, I calculate the thickness/size of the market for each

aircraft in a given year in two different ways. The first one is by counting the total stock

outstanding of aircraft of type i in year t, and I call this variable Airtypeit. The second

is by counting the total number of carriers operating at least one aircraft of type i in year

t, and I call this variable Optypeit. In the theoretical framework, the two variables are

identical, and in the data, they are very highly correlated (the correlation is at least .91 in

the samples on which the regressions are run). Note that the two variables vary across both

different aircraft types i and different years t.23

I then match Airtypeit and Optypeit to the dataset on aircraft utilization and the two

datasets on prices to investigate the effects of market thickness on asset allocations and prices.

More precisely, to investigate the effect of market thickness on allocations, I match Airtypeit

and Optypeit to each aircraft’s holding duration to study whether aircraft with a thicker

market have higher turnover. Further, I match Airtypeit and Optypeit to the annual flying

21The results are almost identical when observations are retained.
22For further details about these data, see Pulvino (1998).
23It is important to note that the measures of market thickness are at the aircraft-type level. As specified

above, a type is, for example, Boeing 737, Boeing 747, MD-80, and so on. Within each type, there might

be different models. For example, for the type Boeing 737, we have models B737-200, B737-300, and so

on. Within each type, the technical specifications of different models are very similar. Thus, comparisons

between types exactly capture differences in market size, which is consistent with industry norms.
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Fig. 1: Transaction price vs. Blue Book price

hours fhjkit of aircraft j of model k type i in year t to study how average utilization and the

dispersion of utilization levels covary with market thickness. More precisely, to investigate

the dispersion of utilization levels, I calculate the average flying hours of all age-a–model-k–

type-i–year-t touples, fhakit. I then compute the absolute value of the percentage deviation

of the flying hours fhjkit of aircraft j of Agejkit = a–model-k–type-i–year-t from the average

fhakit, i.e.,
∣

∣

∣

fhjkit−fhakit

fhakit

∣

∣

∣
.

Similarly, to investigate the effect of market thickness on the average level of asset prices,

I match the price p̄akit of aircraft of age-a–model-k–type-i–year-t reported in the Blue Book

dataset with the corresponding values of Airtypeit and Optypeit. To investigate the effect

of market thickness on the dispersion of transaction prices, I first match each transaction

price from the transaction dataset with the average prices of the corresponding age-model-

type-year touple from the Blue Book dataset. Then, I construct the absolute percentage

deviation of the transaction price from the Blue Book price
∣

∣

∣

pjkit−p̄akit

p̄akit

∣

∣

∣
, where pjit is the

transaction price of aircraft j of Agejit = a–model-k–type-i–year-t, and p̄akit is the Blue

Book price just defined. Next, I match this measure of price dispersion for model k to the

corresponding values of Airtypeit and Optypeit of type i (k ∈ i). Figure 1 shows that

Blue Book prices and transaction prices are highly correlated (the correlation coefficient is

equal to .96), so that the Blue Book prices capture very well the average price of a specific

aircraft. Moreover, Figure 1 shows that there are some differences between the transaction

prices and the Blue Book prices, and in the empirical analysis, I investigate whether these

differences are systematically correlated with market thickness.24

24Alternatively, I could investigate how average prices vary with the thickness of the asset market using the

transaction price pjit as the dependent variable. However, there are several disadvantages to this procedure:
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Table 1: Summary statistics

Panel A: Asset Turnover Mean St. Dev.

Holding duration 7.02 6.46

Types of aircraft 26

Aircraft per type—Airtype 1167.6 1007.1

Operators per type—Optype 96.13 85.61

Panel B: Aircraft Utilization

Flying hours fhjkit 2741.13 1097.02

Absolute percentage deviation
∣

∣

∣

fhjkit−fhakit

fhakit

∣

∣

∣
.1883 .2644

Parked aircraft .041 .198

Types of aircraft 26

Aircraft per type—Airtype 1434.58 1100.88

Operators per type—Optype 122.78 100.84

Age 11.80 7.89

Panel C: Blue Book Prices

Average price p̄jkit 32.32 27.55

Types of aircraft 18

Aircraft per type—Airtype 1019 944

Operators per type—Optype 86.97 81.09

Age 9.44 7.50

Panel D: Transaction Prices

Transaction price pjkit 30.60 24.47

Absolute percentage deviation
∣

∣

∣

pjkit−p̄akit

p̄akit

∣

∣

∣
.171 .193

Types of aircraft 13

Aircraft per type—Airtype 960.6 612.2

Operators per type—Optype 74.45 46.75

Age 7.35 6.94
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Table 1 provides summary statistics of the main variables used in the empirical analysis.

Panel A considers the turnover of assets by measuring holding durations. The average

duration is around seven years, with a standard deviation of 6.5 years. The duration of the

first operator of each aircraft tends to be, on average, nine years, longer than subsequent

durations. Some of the durations are ongoing—that is, they are right-censored—and around

70 percent of durations are completed. Moreover, panel A shows that Airtype and Optype

vary substantially, both across types and within type over time. Some aircraft types are very

popular and, thus, have been produced in large numbers and have many operators; others

have been less successful or are old types that are retired during the sample period and have

few operators. The average of Airtype is 1167 and the standard deviation is 1007; the

average of Optype is 96 and the standard deviation is 85.

Panel B considers aircraft utilizations. On average, aircraft fly around 2,700 hours per

year, with a standard deviation of 1,100 hours. Around four percent of all observations in

the sample have flying hours equal to zero—that is, they are parked inactive in the desert.

A fraction of this mass of inactive aircraft is sold to new carriers that acquire capital to enter

the industry, and the remaining fraction reenters service with the original owner. Considering

only aircraft with positive flying hours, the average utilization is 2,860 hours with a standard

deviation of 960 hours. Since the dataset reports utilization data only from 1990, the averages

of Airtype and Optype are now higher and, again, they show considerable variation: The

averages are 1,435 aircraft and 123 operators, respectively; the standard deviations are 1,101

aircraft and 101 operators, respectively.

Panel C provides summary statistics for the Blue Book dataset. There are 18 different

aircraft types in the sample. The average Blue Book price of an aircraft in the sample is 28

million (year 2000) dollars, and there is substantial variation in prices (the standard deviation

is 24 million dollars). Airtype and Optype show substantial variation, both across types

and within type over time. For example, looking at just the Boeing 737, there are as many

as 4,173 units and 345 operators in 2003, and as few as 333 units and 38 operators in 1973.

Panel D considers transaction prices. The time period during which transaction prices

were reported to the DOT (1978–1991) is considerably shorter than the time period of the

Blue Book prices (1967–2003). Thus, the number of observations is smaller (1,555), the

number of aircraft types is also smaller (13), and, overall, the variables exhibit smaller

variations. Nonetheless, the main variable of interest—the absolute percentage deviation of

the transaction price from the corresponding Blue Book price—shows considerable variation

(the standard deviation is 19 percent) around its mean of 17 percent. Market thickness—

either Airtype or Optype—again shows substantial variation, both across types and within

type over time.

1) the dataset would no longer be a panel dataset; thus, the Arellano and Bond procedure described below

cannot be employed; 2) the number of observations would be smaller, and, in particular, the time-dimension

would be much shorter. Similarly, I could investigate how the dispersion of transaction prices vary with the

thickness of the asset market by calculating the absolute percentage deviation of the transaction price from

the average transaction price of comparable aircraft. The main disadvantage of this procedure is that, for

many aircraft, the average would be calculated from very few observations, often just one.
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The strengths of the data lie in their extensive coverage of many aspects of the aircraft

market. In particular, the richness of the aircraft history dataset allows me to measure very

precisely the thickness of the market of each aircraft type, with variation both across aircraft

types and within type over time. Thus, in the empirical analysis, I can control for several

features of the asset that are often unobserved in studies that rely solely on cross-sectional

data. The time-series variation helps me control for several time-invariant unobserved factors

and obtain convincing evidence regarding how trading frictions due to market thinness affect

aircraft allocations and aircraft prices.

4.3 Some Suggestive Evidence on Trading Frictions

Before turning to a more formal analysis, I would like to present some simple conditional

correlations that speak directly to the importance of frictions generated by thin markets.

In an ideal setting, we could obtain direct evidence on the importance of frictions by look-

ing at how long an aircraft stays on the market before selling or at how many potential

buyers a seller contacts before closing a sale, and see how these quantities are related to

the thinness/thickness of the asset market. While this would be a very interesting exercise,

these quantities are, unfortunately, unobserved in the data. However, from the data, I can

reconstruct one very closely related measure of delay that can directly illustrate the frictions

implied by market thinness. In particular, from the Aircraft History Dataset, for each leased

aircraft, I can reconstruct how many days it stays with its lessor between one lessee and

the next.25 Lessors appear to be more sophisticated than carriers at turning their aircraft

over (Gavazza, 2007). Hence, delays between two consecutive lessees can be interpreted as a

lower bound on average delays. Clearly, if there were no frictions, we would expect no delay

at all between any two consecutive lessees. Moreover, if frictions did not vary with market

thickness, we would expect Airtype and Optype to be uncorrelated with delays.

In Table 2, I report the results of several negative binomial regressions in which the

dependent variable is the number of days between two consecutive lessees, and the main

explanatory variable of interest is the (log of the) thickness of the aircraft market.26 I

also include year fixed effects and aircraft type fixed effects in columns (1) and (2), and

year fixed effects and individual aircraft (a serial number) fixed effects in columns (3) and

(4).27 As the table clearly shows, aircraft with a larger market are redeployed faster to

25Thus, I can have multiple observations for the same aircraft (a serial number).
26I employ a negative binomial specification to more precisely account for the many zeros (about 55 percent

of the observations have zero days of delay between two consecutive leases), and the small set of values that

the dependent takes on.
27As Neyman and Scott (1948) first observed, estimating fixed effects in a non-linear model could generate

the incidental parameter problem if the number of observations per each fixed effect were small. However,

when using year and aircraft type fixed effects, we have a large number of observations and not too many

fixed effects, so the incidental parameter problem is not a concern in the specifications of columns (1) and

(2). In the specifications of columns (3) and (4), we have many more fixed effects. Hence, as shown by

Hausman, Hall and Griliches (1984), we can use a conditional likelihood approach to consistently estimate

the parameters of a negative binomial regression with a large number of fixed effects. However, the use of
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Table 2: Delays before Leasing Transactions: Negative Binomial Regressions

Days between two lessees (1) (2) (3) (4)

Log(Airtype)
−.20638

(.02087)

−.25078

(.04050)

Log(Optype)
−.13902

(.02411)

−.16737

(.04649)

Age
.06795

(.00782)

.06410

(.00779)

.04029

(.01310)

.03633

(.01305)

Age squared
−.00054

(.00024)

−.00041

(.00023)

−.00034

(.00039)

−.00019

(.00039)

Log-Likelihood −30637.14 −30667.57 −7782.05 −7793.91

# Obs 9358 9358 4396 4396

Notes—Standard errors clustered at the aircraft-type–year level in parentheses. The equations estimated in

columns (1) and (2) contain aircraft type fixed effects and year fixed effects (not reported). The equations

estimated in columns (3) and (4) contain aircraft (serial number) fixed effects and year fixed effects (not

reported).

a new lessee, and the results are robust to different ways of measuring market thickness.

Moreover, the negative binomial specifications imply that the coefficients of log(Airtype)

and log(Optype) are equal to the elasticities, so that the magnitudes of the conditional

correlations are non-trivial. For example, according to the more conservative estimates of

columns (1) and (2), a ten-percent increase in the stock of aircraft Airtype is associated

with a two-percent decrease in the days between two consecutive lessees, and a ten-percent

increase in the stock of operators Optype is associated with a 1.4-percent decrease in the

days between two consecutive lessees.

While the results reported in Table 2 are consistent with the idea that market thickness

generates frictions that affect the allocation of (leased) aircraft, they should also be inter-

preted with some caution. This is for two reasons. First, the data do not allow us to identify

leases that have been renewed by the previous operator. Thus, the inference is based on the

selected sample of leased aircraft for which the old lessee decided not to renew the lease.

However, a few robustness checks using the cumulative number of days of delay for each

leased aircraft throughout its “life” confirm the results of Table 2.28 These checks suggest

individual aircraft fixed effects in the specifications of columns (3) and (4) substantially reduces the number

of observations compared to the specifications of columns (1) and (2). The reason is either because there is

just one observation per serial number, or because all outcomes within a serial number are identical (and

equal to zero.)
28More precisely, I calculate the cumulative number of days of delay for each leased aircraft throughout

its “life” and investigate how it covaries with the size of the aircraft market. Due to some coding issues,

calculating the cumulative number of days of delay is not obvious for aircraft that were owned and later

became leased, and vice versa. In any case, using different imputation assumptions, or discarding aircraft
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that sample selection is not a big concern and corroborate that delays before transactions

are shorter for aircraft with a thicker market. Second, in the data, the precise date on which

the lessor puts the aircraft on the market and starts searching for a new lessee—after the

old lessee decides not to renew the lease—is unobserved. However, there does not seem to

be any good reason why lessors of aircraft with a thinner market should start searching for

a new lessee later than lessors of aircraft with a thicker market. Indeed, the above evidence

suggests that lessors should anticipate longer delays and start searching for a lessee earlier

when aircraft have a thinner market. Hence, the evidence suggests that market thinness is

able to generate frictions that delay transactions. I next turn to a more formal empirical

analysis of the causal effects of asset market thickness on asset allocations and prices.

4.4 Empirical Framework and Identification

To test for the effect of market thickness on allocations and prices, I specify the following

reduced-form equation:

yjkit = βZjkit + ζk + ηt + ǫjkit

= β0 + βALog(Thicknessit) + βXXjkit + ζk + ηt + ǫjkit (1)

where the dependent variable yjkit is one of the outcomes of interest (holding duration,

utilization, dispersion of utilization, average price, price dispersion) for aircraft j of model

k type i in year t. Thicknessit is either Airtype or Optype. Xjkit is specific to each

individual aircraft—i.e., Agejit. ζk is an aircraft-model fixed effect, ηt is a year fixed effect

and ǫjkit is an idiosyncratic unobserved component.

The use of the quantity-based measures Airtype and Optype creates a few potential

challenges to the identifying the effects of the size of the asset market in equation (1). The

reason is that both measures of market thickness are stock variables that include the flows

of new aircraft/operators, and time-varying unobservables that affect the outcome variables

might be correlated with these new flows and, thus, with Airtype and Optype. In particu-

lar, unobservable demand shocks can pose a threat to the identification of the role of market

thickness. For example, an increase in the demand for flights could simultaneously increase

aircraft demand, production of new units—and, thus, Airtype—and entry of new carriers—

and, thus, Optype—on one side, and capacity utilization and/or prices on the other side.

Similarly, if aircraft-maintenance costs change over time, they could simultaneously affect

aircraft demand—and, thus, Airtype and Optype—and capacity utilization and prices.

Moreover, if the unobservables are serially correlated, the unobservables are correlated also

with lags and leads of market thickness.

The previous demand-side argument could invalidate the tests of some of the predictions—

in particular, the predictions on the effect of market thickness on the average level of capacity

that switched from owned to leased or vice versa, I always obtain the same result as the regressions of Table

2: Delays are shorter for aircraft with a thicker market. This suggests that sample selection is not a big

concern.
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utilization and on the average level of prices. However, the argument does not have obvious

effects on the other predictions that are more unique to the search frictions framework that

is the focus of the paper—the predictions on the effect of market thickness on the turnover of

assets, on the dispersion of capacity utilization, and on the dispersion of transaction prices.

Moreover, the inclusion of year dummies allows me to control for all aggregate effects and

any type of serial correlation of all these effects and, thus, to capture aggregate increase in

demand and the serial correlation of aggregate demand. Nonetheless, there might still be

within-year variations in demand between models correlated with Airtype and Optype,

and persistent. In principle, the direction of the bias caused by variations in demand between

models within a given year is ambiguous: Deviations from year fixed effects could very well

be negatively correlated with market thickness. The reason is that the effect of an increase

in demand should be bigger for “marginal” aircraft types—that is, aircraft that are used by

few operators and flown only when demand is very high.

In any case, when I perform the analysis on panel data—capacity utilization, dispersion

of capacity utilization, Blue Book price—I deal with these endogeneity concerns using a

procedure that uses the insights of Arellano and Bond (1991), but that employs a richer set

of supply-side instruments. Arellano and Bond suggest estimating a panel-data regression

as equation (1) first-differencing the variables to eliminate the persistent component of the

unobservable, and then instrumenting the first-difference of a potentially endogenous variable

∆zit = zit − zit−1. More formally, let the outcome equation and the error term be:

yjkit = βZjkit + ζk + ηt + ǫjkit, (2)

ǫjkit = ρǫjkit−1 + νjkit. (3)

Simply taking first-differences of the variables in equation (2) eliminates the aircraft-model

fixed effect ζ i, as well as any fixed term constant within aircraft j. However, first-differences

do not eliminate the persistent component of the error term, as ∆yjkit = β∆Zjkit + ∆ηt +

∆ǫjkit. Subtracting ρyjkit−1 from yjkit eliminates ǫjkit − ρǫjkit−1, leaving only the innovation

νjkit of the unobservable:

yjkit = ρyjkit−1 + βZjkit − βρZjkit−1 + (1 − ρ) ζk + ηt − ρηt−1 + νjkit. (4)

Taking first-differences, the following equation obtains:

∆yjkit = ρ∆yjkit−1 + β∆Zjkit − βρ∆Zjkit−1 + ∆ηt − ρ∆ηt−1 + ∆νjkit. (5)

In the differenced form, however, the new errors ∆νjkit are correlated with the differenced

lagged dependent variable ∆yjit−1 by construction, and potentially with the variables ∆Zjkit

and ∆Zjkit−1, as well. Therefore, a vector W of instruments is required to construct moments

E (∆νjkit ∗ W ) , and to estimate equation (5) via GMM.

Arellano and Bond use the lagged values yjkit−h and Zjkit−h with lags h ≥ 2 as instruments

for ∆yjkit−1 and ∆Zjkit−l l = 0, 1, respectively, as the new error term ∆νjkit is uncorrelated

18



by construction with lags of order higher than two.29 These instruments yjkit−h and Zjkit−h

with lags h ≥ 2 are “mechanically” correlated with the potentially endogenous variables

∆yjkit−1 and ∆Zjkit−l. Hence, following Arellano and Bond, I use yjkit−h with lags h = 2 as

instrument for the lagged endogenous variable ∆yjkit−1.

The commercial aircraft setting provides me with instruments for the main endogenous

variable—changes in market thickness— that have a stronger economic content than Arellano

and Bond’s instruments—i.e., instruments that shift the endogenous variable for supply-side

reasons. In particular, I previously discussed that the production of new units and the

retirement of old units are the two main factors affecting the thickness of the market for a

specific aircraft type over time.30 The instruments shift one of these two factors for supply-

side reasons. More precisely, several papers have empirically documented the importance

of learning-by-doing in aircraft production: the costs of producing an aircraft decreases

with previous cumulative production (Wright, 1936; Asher, 1956; Alchian, 1963; Argote and

Epple, 1990; Benkard, 2000). Thus, everything else equal, the supply of new units in year t is

higher if cumulative production of the same type of aircraft was higher in year t−2. In other

words, cumulative production in year t − 2 is correlated for supply-side reasons with one

component of the endogenous variable—changes in market thickness—but by construction

is uncorrelated with the innovation in demand in period t—i.e., it is a good instrument.

Moreover, lags of cumulative production of order higher than t−2 are good instruments too,

in particular given the time it takes to build an aircraft (12 to 18 months).

Furthermore, the richness of the data also allows me to use other supply-side instruments

that should not be correlated with year-to-year short-run variations in demand between dif-

ferent types. In particular, I use the number of years since the aircraft type was first released

by its manufacturer; the stock of aircraft of the same type produced more than 25 years ago;

the (deflated) price of aluminum31 and the one-year and two-year lags, each interacted with

aircraft characteristics (the number of seats, the number of enigines, the maximum take-off

weight, and the number of years since the release date);32 and the average number of days of

29First-differencing the data introduces serial correlation in the new errors ∆vjkit. Arellano and Bover

(1995) suggest an alternative procedure that does not introduce serial correlation in the new errors. The

procedure—called Orthogonal Deviations—consists of constructing the deviation for each observation from

the average of future observations in the sample for the same panel-id. However, this approach does not

work with autocorrelated errors, as in equation (3).

Alternatively, Arellano and Bover (1995) and Blundell and Bond (1998) suggest adding the original equa-

tion (1) in levels to the GMM criterion, instrumenting the endogenous variable in levels with first-differences.

However, these additional moments are valid under the assumption that first-differences of the endogenous

variables are uncorrelated with the persistent component of the unobservable, an assumption that is likely

to be violated in the current context.
30For simplicity, the discussion here focuses on Airtype as the measure of market thickness. The argument

for Optype is very similar.
31The price of aluminum is obtained from the EconStats website, from data collected by the U.S. Geological

Survey. Available at http://www.econstats.com/spot/rt alum.htm
32I use only two and three year lags of the deflated price of aluminum in the construction of all instruments

used in the regressions that investigate the effect of market thickness on the level of prices reported in Section

4.6.1. This is because the use of the contemporaneous price of aluminum may not satisfy the exclusion
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strike per worker in the manufacturing sector in the country of the aircraft manufacturer33

and the lags up to three years, and their interactions with aircraft characteristics (the num-

ber of seats, the number of enigines, the maximum take-off weight, and the number of years

since the release date). The idea of these instruments is the following. For a similar learning-

by-doing argument, we can expect the supply of new units to be lower if the aircraft type was

recently released by the manufacturer. The number of aircraft retired is on average higher

if the existing stock of aircraft is old—i.e., if the number of aircraft produced more than 25

years ago is high. The supply of new units should be lower if the price of the aluminum—one

of the main materials used in the production of aircraft—is higher. The supply of new units

should be lower if the number of strikes in the manufacturing sector in the country where

the aircraft is assembled is higher.

As Blundell and Bond (1998) demonstrate, the difference-GMM procedure does not work

well if the dependent variable—in this case, capacity utilization, dispersion of capacity uti-

lization, and Blue Book price—is very persistent. However, this does not appear to be a

concern in this case since the notorious cyclicality of the airline industry implies that capacity

utilization and prices are not very persistent. Similarly, the two main shifters of Airtype

and Optype (production of new aircraft and retirement of old aircraft) exhibit substantial

year-to-year variation.

In the analysis of the effect of market thickness on asset turnover and on the dispersion

of transaction prices, either panel-data are not available or the difference-GMM procedure

is not appropriate, as it will become clear below. However, the instruments can still be ex-

ploited. In particular, I use the following instruments for the potentially endogenous variable:

cumulative production in year t − 5; the stock of aircraft of the same type produced more

than 25 years ago; the (deflated) price of aluminum, interacted with aircraft characteristics

(the number of seats, the number of enigines, the maximum take-off weight, and the number

of years since the release date); and the average number of days of strike per worker in the

manufacturing sector in the country of the aircraft manufacturer, alone and interacted with

aircraft characteristics (the number of seats, the number of enigines, the maximum take-off

weight, and the number of years since the release date). When panel-data are not available,

the assumptions required for the instruments to yield consistent estimates are stronger than

when panel-data are available and difference-GMM can be employed. More precisely, as

pointed out previously, if the unobservables are very persistent, even distant lags of the en-

dogenous variable remain correlated with the unobservables. Hence, to reduce endogeneity

concerns to a minimum, I am using very distant lags of cumulative production (year t− 5).

Moreover, the other supply-side instruments are arguably uncorrelated with demand-side

shocks.

restriction needed for the validity of the instruments.
33The strike data are obtained from the Laborsta database operated by the International Labour Office,

Bureau of Statistics. Available at http://laborsta.ilo.org/.
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4.5 Results: the Effect of Market Thickness on Asset Allocations

This subsection investigates the effect of market thickness on two aspects related to asset

allocations. The first is the effect on asset turnover. The second is the effect on capac-

ity utilization—I analyze the effect of asset market thickness on both the average level of

utilization and the dispersion of utilization levels.

4.5.1 Asset Turnover

The first implication of the model that I test is that assets trade more frequently when

their market gets thicker. The theoretical framework highlights that the combination of two

factors should affect assets’ trading patterns. First, assets with a thicker market should

trade more frequently because they stay “on the market” for a shorter period of time. The

economic intuition is that the trading technology exhibits increasing returns to scale, and,

thus, trading frictions decrease with the size of the market. Indeed, this is exactly what the

analysis of delays between two consecutive lessees indicates. Second, the time it takes to

cash in on the asset is a cost for the seller. When assets have a thin market, this cost is

higher, making the owner less likely to put the asset on the market for sale. Hence, owners

choose to hold on to assets with a thin market for longer periods of time.

As mentioned in the description of the data, the data do not allow me to separately

identify these two effects in a precise way for all aircraft (owned and leased). The analysis

on delays between two consecutive lessees indicates that the first factor has an effect on the

allocation of leased aircraft. In any case, it is plausible to expect that the second factor

has a bigger economic relevance. Here, I simply analyze the effect of asset market thickness

on asset turnover, investigating the holding durations of each aircraft. More precisely, I

use a Cox proportional hazard model for the probability of trading an aircraft. Since the

specification I use is slightly different from equation (1), I now describe it in some detail.

The Cox model assumes that the probability of trading aircraft jit after s years from the

acquisition, given that the aircraft has not been traded before, is equal to:

hjkit (s) = h0i (s) exp (βALog(Thicknessit) + βXXjkit + ηt) . (6)

where k denotes a model, i denotes a type, and t denotes a year; h0i (s) is the baseline

hazard function, allowed to vary across aircraft types; Thicknessit is either Airtype or

Optype; Xjkit is the Age of the aircraft at the beginning of the spell; ηt is a year fixed

effect.34,35 Equation (6) represents a very flexible specification of the conditional probability

of trading an aircraft, since the entire shape of the baseline hazard h0i (s) is allowed to vary

34To prevent the incidental parameter problem when there were few observations within a fixed effect,

I have grouped all years prior to 1960 in a single time fixed effect (the excluded category), and in the

specifications that include carriers’ fixed effects, all carriers with fewer than 50 observations in a single

carrier-fixed effect (the excluded category).
35I have also estimated a version of equation (6) that includes aircraft-vintage fixed effects to control for

the year of birth of the aircraft instead of year fixed effects. The results are almost identical to the results

in Table 3 and, thus, are omitted.
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across aircraft types.36 Moreover, this specification does not impose any functional form on

the type-specific baseline hazard h0i (s), so the effect of market thickness is identified purely

from variation in Airtype or Optype within a type i.37

As highlighted in the previous section, a potential concern with estimating equation (6)

is that the quantity-based measure Airtype or Optype could be correlated with some

unobserved components of demand. For example, an unobserved increase in the demand

for flights could simultaneously increase production of aircraft and volume of trade, and

Airtype or Optype might be correlated with this shock. A few papers in the literature

document patterns consistent with this idea in the aggregate economy: Maksimovic and

Phillips (2001) report that the number of plants sold is higher in expansion years than

in recession years, and Eisfeldt and Rampini (2006) document that the amount of capital

reallocation between firms is procyclical. Thus, a positive correlation between Airtype

or Optype and asset turnover could be a confirmation of Maksimovic and Phillips’s and

Eisfeldt and Rampini’s findings. Year fixed effects already capture most of the year-to-year

variation in demand, but there might still be within-year variations in demand between

aircraft types that are correlated with the size of the asset market.

To address this potential concern, I use a two-step control function approach as in Blun-

dell and Powell (2003), with instruments for Log(Airtype) or Log(Optype).38 As the

previous section describes, I employ instruments that arguably shift the thickness of the asset

market variable independently of short-run demand shocks: cumulative production in year

t− 5; the stock of aircraft of the same type produced more than 25 years ago; the (deflated)

price of aluminum and its lags, interacted with aircraft characteristics (the number of seats,

the number of enigines, the maximum take-off weight, and the number of years since the

release date); the average number of days of strike per worker in the manufacturing sector

in the country of the aircraft manufacturer and its lags, and the interactions with aircraft

characteristics (the number of seats, the number of enigines, the maximum take-off weight,

and the number of years since the release date).

Table 3 presents the results of the second stage. I measure the size of the market with

Airtype in columns (1) and (3), and with Optype in columns (2) and (4). The specification

36I have also estimated a more restrictive specification that allows aircraft-type fixed effects ζi to shift the

hazard only proportionally. The precise equation is:

hjkit (s) = h0 (s) exp (βALog(Thicknessit) + βXXjkit + ζi + ηt) .

The results are almost identical to those reported in Table 3, and, thus, are omitted.
37The coefficient of the variable Age at the beginning of spell is identified since each aircraft has

multiple operators during its lifetime. If we were considering only the duration of the first operator (i.e.,

when the aircraft is acquired new), clearly the coefficient of Age at the beginning of spell would not

be identified.
38The control function approach requires running a first-step regression of the endogenous variable on the

instrument plus the other explanatory variables, and computing the residuals. In the second step, the hazard

is estimated including the residual from the first step as a regressor. These residuals control for the potential

endogeneity of Airtype and Optype.
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Table 3: Market Thickness and Aircraft Turnover: Hazard Model Estimates of Trading

Hazard (1) (2) (3) (4)

Age at the Beginning of Spell
.04451

(.00453)

.04344

(.00448)

.00027

(.00487)

−.00015

(.00479)

Log(Airtype)
.25517

(.09215)

.19042

(.09835)

Log(Optype)
.37810

(.12095)

.33125

(.13469)

Log-Likelihood −136760.3 −136704.9 −132836.8 −132793.8

# Obs 241622 241622 241622 241622

Aircraft 17398 17398 17398 17398

Notes—Standard errors clustered at the aircraft-type–year level in parentheses. All equations allow the

baseline hazard to vary by aircraft-type. The equations estimated in all columns also contain year fixed

effects (not reported). The equations estimated in columns (3) and (4) additionally contain carrier fixed

effects (not reported).

of columns (1) and (2) does not include carrier fixed effects, while the specification of columns

(3) and (4) includes them. The results indicate that aircraft with a thicker market have

shorter holding durations. These results are robust across the two ways of measuring market

thickness, and to the inclusion of carrier fixed effects. The point estimates mean that an

increase of Airtype by ten percent increases the hazard rate of trading by about 1.9-2.5

percent, a sizable magnitude. Similarly, an increase of Optype by ten percent increases the

hazard rate of trading by about 3.3-3.7 percent.39

Overall, the results reported here provides strong evidence in favor of prediction 1: Assets

with a thicker market have higher turnover.

39One potential issue with the previous analysis is the role of replacement purchases of aircraft. If carriers

sell old aircraft when they acquire new ones of the same type, then, mechanically, we would observe more

frequent trading of existing aircraft when more new units of the same type are produced. The quantity-based

measure Airtype includes new units, and, thus, the observed correlation between turnover and Airtype

could be simply due to replacement purchases. In reality, the use of the instruments described in the text

eliminate this concern. Moreover, the evidence reported in Gavazza (2007) shows that aircraft replacement

accounts for a minority of aircraft trades, and most trades are, instead, due to profitability shocks to carriers.

In addition, the observed correlations would still imply that one motive for trade (replacement) is stronger

for more popular aircraft, which is perfectly consistent with the idea put forth in this paper that market

thickness matters for asset allocations and prices. In short, even if all trades were due to replacement, we

should still conclude that replacement is more frequent for more popular aircraft, indicating that trading

frictions are lower for for more popular aircraft.
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4.5.2 Capacity Utilization

The previous analysis shows that aircraft trade more frequently as their market gets thicker,

suggesting that aircraft with a thinner market are more illiquid. This has potential impli-

cations for the allocation of the assets. In fact, the model implies that aircraft that trade

more frequently should be allocated more efficiently. I now investigate another aspect of

asset allocations, testing prediction 2 that capacity utilization of aircraft operators should

be higher as the aircraft market gets thicker.

The theoretical model with endogenous capacity utilization developed in Appendix A in-

dicates that capital utilization is an increasing function of the firm’s underlying productivity,

as other papers in the literature also suggest (e.g., Burnside and Eichenbaum, 1996). More-

over, most of the extensive empirical literature on productivity cannot precisely distinguish

productivity from capacity utilization (see Jorgenson and Griliches, 1967, for an early dis-

cussion). Hence, these theory-driven considerations imply that we can infer something about

carriers’ productivity by studying utilization rates, and the link between aircraft Airtype

or Optype and capacity utilization indicates whether assets with a thicker market are more

efficiently allocated. To this end, I estimate equation (1) with log (fhjkit) as a dependent

variable, where fhjkit is the total annual flying hours of aircraft j of model k type i in year

t.

The estimation of equation (1) with log (fhjkit) as the dependent variable faces a few

econometric challenges, in addition to the ones already outlined in Section 4.4. The first

challenge is that aircraft are frequently parked inactive in the desert. Technically, parked

aircraft imply that the dependent variable is censored at zero. I could deal with this com-

plication generically—estimating a Tobit model via maximum likelihood—but in the data,

censoring acts in a slightly more subtle way. In particular, all parked aircraft have zero

flying hours, but the non-parked aircraft have flying hours that start at around 1,000 hours

per year. This gap implies that the effects of the independent variables on the extensive

and the intensive margins are likely to be different. Moreover, unobserved heterogeneity

in the extensive margin is likely correlated with unobserved heterogeneity in the intensive

margin, implying that E(ǫjkit|Qjkit, fhjkit > 0) 6= 0 and simple regressions on the sample of

aircraft with positive flying hours provide inconsistent estimates. However, in practice, all

parameters can be consistently recovered using only aircraft with positive flying hours by

estimating equation (1) in the first-difference specification—equation (5). Thus, I estimate

two separate equations: one for the extensive margin, and one for the intensive margin.40

The difference-GMM procedure outlined in section 4.4 relies on the linearity of the es-

timating equation. Hence, I use a linear probability model also in the extensive margin

equation, since the difference-GMM procedure allows me to deal with many econometric

complexities. In particular, in addition to endogeneity issues previously discussed, it is use-

ful to highlight that the difference-GMM procedure allows me also to difference out any

40Aircraft also have a maximum utilization rate, as they cannot fly more than 24 hours per day. However,

in the data, we do not observe any mass point in the upper tail of the utilization distribution, which suggests

that the upper bound is never achieved.
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Table 4: Market Thickness and Aircraft Utilization: difference-GMM estimates

(1) (2) (3) (4)

Flyjkit Flyjkit log (fhjkit) log (fhjkit)

Age
−.01497

(.00232)

−.01279

(.00281)

−.03437

(.00383)

−.03521

(.00361)

Log(Airtype)
.09842

(.04861)

.18996

(.08998)

Log(Optype)
.08586

(.02413)

.09105

(.03845)

# Obs 64279 64279 60139 60139

Aircraft 11596 11596 11240 11240

Notes—Standard errors clustered at the aircraft-type–year level in parentheses. All equations also contain

year fixed effects (not reported).

selection effect that may induce different carriers with different business models (e.g., hub-

and spoke versus point-to-point; scheduled airlines versus charter airlines) to choose different

aircraft types, and affect the average level of capacity utilization.

Table 4 presents the coefficients of the difference-GMM.41 Columns (1) and (2) present

the results of the extensive-margin equation, and columns (3) and (4) of the intensive margin.

According to the estimates in column (1), a ten-percent increase of Airtype is associated

with a 0.9 percentage point increase in the probability that the aircraft is flying, a consid-

erable magnitude. The results reported in column (2) using Optype are very similar: a

ten-percent increase of Optype is associated with a 0.8 percentage point increase in the

probability that the aircraft is flying. According to the estimates in column (3), conditional

on flying, a ten-percent increase of Airtype is associated with a 1.9-percent increase in

capacity utilization. The results obtained using Optype in column (4) are slightly smaller:

a ten-percent increase of Optype is associated with a 0.9-percent increase in capacity uti-

lization.

Overall, the results support prediction 2 that aircraft capacity utilization increases as

the aircraft market gets thicker. Since the model indicates that capacity utilization and

productivity are directly related (are a one-to-one function), the evidence, thus, suggests

that assets are more efficiently allocated when their market gets thicker.

41The number of observations in columns (1) and (2) differs from the number of observations in columns

(3) and (4) because the regressions on the intensive margin (columns (3) and (4)) use only aircraft that have

positive flying hours in periods t and t − 1.
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4.5.3 Dispersion of Capacity Utilization

As highlighted by the discussion in Section 3, the same economic forces that increase capacity

utilization when the market gets thicker imply that the equilibrium dispersions of carriers’

capacity utilization is lower as the asset market gets thicker. Thus, I now turn to the

empirical investigation of the dispersion of utilization rates, directly testing prediction 3.

I analyze the link between the size of the aircraft market and dispersion of capacity uti-

lization, investigating whether the absolute percentage deviation of flying hours
∣

∣

∣

fhjkit−fhakit

fhakit

∣

∣

∣

described in subsection 4.2 is lower for aircraft with a thicker market. More precisely, I spec-

ify equation (1) with
∣

∣

∣

fhjkit−fhakit

fhakit

∣

∣

∣
as the dependent variable. I then employ difference-GMM

to estimate equation (5) with ∆
∣

∣

∣

fhjkit−fhakit

fhakit

∣

∣

∣
as the dependent variable, with instruments for

the potentially endogenous variable market thickness.42 As previously noticed, the difference-

GMM procedure is particularly well suited to difference out any selection effect that may

induce different carriers with different business models to choose different aircraft types, and

generate dispersion of capacity utilization.

Table 5 reports the estimated coefficients. Market size is measured with Airtype in

columns (1) and (3), and with Optype in columns (2) and (4). The negative coefficients

of the market size variables show that as the aircraft market gets thicker, the dispersion

of capacity utilization decreases. The coefficients reported in column (1) imply that a ten-

percent increase in the stock of aircraft decreases dispersion of utilization by 2.2 percent.

The coefficients reported in column (2) imply that a ten-percent increase in the number of

operators decreases dispersion by approximately one percent.

In columns (3) and (4) I perform the same regressions as in columns (1) and (2), but I

consider only observations with positive flying hours. More precisely, I calculate the aver-

age fhakit only using observations with fhjkit > 0, and then calculate
∣

∣

∣

fhjkit−fhakit

fhakit

∣

∣

∣

fhjkit>0
.

The reason for this choice is that aircraft with zero flying hours mechanically increase the

dispersion of utilization levels, and it is instructive to understand whether the dispersion is

driven exclusively by parked aircraft. The coefficients reported in columns (3) and (4) show

that, as expected, the magnitude of the effect of market thickness on dispersion is smaller

when only active aircraft are considered. However, the size of the aircraft market still has a

sizable effect: a ten-percent increase in Airtypeit decreases dispersion of utilization by 1.7

percent, and a ten-percent increase in Optypeit decreases dispersion of utilization by 0.5

percent. These regressions confirm that market thickness affects both the intensive and the

42I also undertook the same procedure calculating the average for each age a-type i-year t tuple—i.e.,

fhait, and using
∣

∣

∣

fhjkit−fhait

fhait

∣

∣

∣
as a dependent variable. The results are very similar to those reported in

Table 5 and, thus, are omitted.
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Table 5: Market Thickness and Dispersion of Capacity Utilization: difference-GMM esti-

mates

(1) (2) (3) (4)
∣

∣

∣

fhjkit−fhakit

fhakit

∣

∣

∣

∣

∣

∣

fhjkit−fhakit

fhakit

∣

∣

∣

∣

∣

∣

fhjkit−fhakit

fhakit

∣

∣

∣

fhjkit>0

∣

∣

∣

fhjkit−fhakit

fhakit

∣

∣

∣

fhjkit>0

Age
.03102

(.00559)

.03717

(.00521)

.01672

(.00267)

.01687

(.00271)

Log(Airtype)
−.22892

(.09246)

−.17437

(.06521)

Log(Optype)
−.10631

(.04163)

−.05421

(.02861)

# Obs 63886 63886 60139 60139

Aircraft 11582 11582 11240 11240

Notes—Standard errors clustered at the aircraft-type–year level in parentheses. All equations also contain

year fixed effects (not reported). The equations estimated in columns (3) and (4) uses only observations

with positive flying hours.

extensive margins of utilization.43,44

4.6 Results: the Effect of Market Thickness on Aircraft Prices

Having investigated the effect of market thickness on asset allocations, in this subsection, I

investigates the effects on prices. I present two sets of results, directly testing predictions 4

and 5 related to the first and second moments of the price distribution.

4.6.1 Average Prices

To test prediction 4 on the effect of market thickness on aircraft prices, I specify equation

(1) with log p̄jkit as the dependent variable, where p̄jkit is the Blue Book price of an aircraft

43I have also employed a second empirical strategy that follows directly from the previous analysis of the

effect of market thickness on the level of capacity utilization. More precisely, based on the estimates reported

in Table 4, I obtain the residuals ǫ̂jkit of the utilization equation. I then calculate the variance Var(ǫ̂jkit) of

these residuals, and I regress Var(ǫ̂jkit) on Airtype or Optype, aircraft-type fixed effects and year fixed

effects. I find that aircraft with a larger market have a lower variance Var(ǫ̂jkit), which is consistent with

the results reported in Table 5,
44A potential concern with the regressions in Table 5 is that the dependent variable has the average

utilization in the denominator, and the regressions reported in Table 5 indicate that average utilization

increases as the asset market gets thicker. Hence, to check the robustness of the results, I have run all

regressions with
∣

∣fhjkit − fhakit

∣

∣ as the dependent variable. The results are robust to this alternative way

of measuring dispersion.
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Table 6: Market Thickness and Aircraft Prices: difference-GMM estimates

Log(p̄jkit) (1) (2)

Age
−.01326

(.01862)

−.03776

(.01439)

Log(Airtype)
.27736

(.1418)

Log(Optype)
.20668

(.08842)

# Obs 4398 4398

Aircraft (Vintage-Model) 332 332

Notes—Standard errors clustered at the aircraft-type–year level in parentheses. The equation estimated also

contains year fixed effects (not reported).

of vintage j model k type i in year t.45 I then estimate the first-difference version (5)

with ∆ log p̄jkit as the dependent variable using GMM, instrumenting for the potentially

endogenous variable ∆Log(Airtypeit) and ∆Log(Optypeit).

Table 6 reports the estimated coefficients. The table shows that aircraft prices increase as

their market gets thicker, confirming prediction 4. Moreover, the magnitude of the economic

effect is sizable: A ten-percent increase in Airtype is associated with an increase in the

price of the aircraft by 2.7 percent. This magnitude is equivalent to the effect on price of

around six months of Age. Similarly, a ten-percent increase of Optype is associated with

an increase in the price of the aircraft by 2.0 percent.

4.6.2 Price Dispersion

The previous results showed that there exists a clear parallel between the increase in the

aircraft price levels and the increase in the level of capacity utilization as the aircraft market

gets thicker. I now investigate if the same parallel exists for dispersion. In particular, the

dispersion of transaction prices should be the mirror image of the dispersion of utilization

levels previously documented. Thus, I now test prediction 5 on the effect of market thickness

on the dispersion of transaction prices.

As reported in subsection 4.1, I measure price dispersion using the absolute percentage

deviation
∣

∣

∣

pjkit−p̄akit

p̄akit

∣

∣

∣
of the transaction price from the Blue Book price, where pjkit is the

transaction price of aircraft j of age Agejkit = a model k type i in year t, and p̄akit is the

Blue Book price of aircraft of age a model k type i in year t. Figure 1 showed that the two

price series are highly correlated, so that
∣

∣

∣

pjkit−p̄akit

p̄akit

∣

∣

∣
seems a reasonable way to measure the

dispersion of transaction prices.

45Note that the panel variable is, thus, a model-vintage pair. I have also estimated the price equation

using model-age as a panel variable. The results are identical and, thus, are omitted.
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Absolute Percentage Deviation

Empirical distributions

Above Median Below Median

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 2: Empirical distributions of deviations of transaction price from Blue Book price for above-

and below-median liquidity.

It is instructive to have a sense of the data by simply looking at the empirical distribu-

tions of
∣

∣

∣

pjkit−p̄akit

p̄akit

∣

∣

∣
corresponding to values of market thickness Airtype above and below

the median: Figure 2 plots these two empirical distributions.46 The solid line is the em-

pirical c.d.f. of absolute percentage deviation
∣

∣

∣

pjkit−p̄akit

p̄akit

∣

∣

∣
when the corresponding value of

Airtype is above the sample median, while the dotted line is the empirical c.d.f. of the same

variable when Airtype is below the sample median. The comparison of the two empirical

distributions in Figure 2 clearly shows that the dispersion of transaction prices is higher for

aircraft with a thicker market. The Kolmogorov-Smirnov test clearly rejects equality of two

distributions (the p-value is 1.7422 × 10−6).

In order to further investigate the effects of market thickness on the dispersion of transac-

tion prices, I estimate equation (1) using the absolute percentage deviation
∣

∣

∣

pjkit−p̄akit

p̄akit

∣

∣

∣
as the

dependent variable. As the dependent variable is based on transaction prices, no panel-data

are available, and the difference-GMM procedure cannot be used. Thus, I can simply instru-

ment market thickness using the instruments described in section 4.4: cumulative production

in year t − 5; the stock of aircraft of the same type produced more than 25 years ago; the

(deflated) price of aluminum and its lags, interacted with aircraft characteristics (the number

of seats, the number of enigines, the maximum take-off weight, and the number of years since

the release date); and the average number of days of strike per worker in the manufacturing

sector in the country of the aircraft manufacturer and its lags, and their interactions with

aircraft characteristics (the number of seats, the number of enigines, the maximum take-off

46The figure using Optype is very similar.
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Table 7: Market Thickness and Aircraft Price Dispersion: IV estimates

∣

∣

∣

pjkit−p̄akit

p̄akit

∣

∣

∣
(1) (2) (3) (4)

Age
.00179

(.00365)

.00265

(.00377)

.00285

(.00595)

.00393

(.00618)

Log(Airtype)
−.13635

(.04372)

−.15692

(.04116)

Log(Optype)
−.10401

(.04365)

−.11208

(.04204)

R2 .419 .413 .494 .486

# Obs 1570 1570 1570 1570

Notes—Standard errors clustered at the aircraft-type–year level in parentheses. The equation estimated

in columns (1) and (2) also contains aircraft-model, year and noise-stage fixed effects (not reported). The

equation estimated in columns (3) and (4) also contains aircraft-model, year, noise-stage and engine-type

fixed effects (not reported).

weight, and the number of years since the release date). As already highlighted, this IV

strategy is a weaker procedure than difference-GMM. Nonetheless, the use of very distant

lags of cumulative production reduce endogeneity concerns to a minimum, and the the other

supply-side instruments are clearly uncorrelated with demand-side shocks.

Table 7 reports the estimated coefficients. The table clearly shows that the dispersion

of transaction prices is lower for aircraft with a thicker market, thus verifying prediction 5.

According to the estimates, a ten-percent increase of Airtype is associated with a decrease

in the absolute value of the percentage difference between transaction price and Blue Book

price by 1.3-1.5 percent. Similarly, a ten-percent increase of Optype is associated with a

decrease in the absolute value of the percentage difference between transaction price and

Blue Book price by 1.0-1.1 percent.47,48

4.7 Discussion of Empirical Results

The empirical analysis provides quite strong evidence that trading frictions are lower for

more-popular aircraft. The results suggest that aircraft become more “liquid” as their market

gets thicker, increasing the lower bound of operators’ equilibrium productivity levels and

47Similar to the remark in footnote 44, a potential concern with the regressions of Table 5 is that the

dependent variable has the average price in the denominator, and the regressions reported in Table 5 indicate

that the average price increases as the asset market gets thicker. Hence, to check the robustness of the results,

I have run all regressions with |pjkit − p̄akit| as the dependent variable. The results (unreported) are robust

to this alternative way of measuring price dispersion.
48It may seem puzzling that, in some tables, the coefficients of Airtype is larger in absolute value than the

coefficients of Optype, while, in others, the opposite is true. As emphasized in Section 4.1, it is important

to remember that, sometimes, the data used in the different regressions correspond to different time periods.
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resulting in higher utilization rates, as well as less dispersion of capacity utilization rates. In

turn, the effects of market thickness on utilization transmit to prices, increasing the average

level and decreasing the dispersion of transaction prices. Moreover, the richness of the data

allowed me to control for a number of unobservable factors that could have made it difficult

to cleanly identify the effect of market thickness on prices and allocations. The use of

difference-GMM and instruments exclude the possibility that the quantity-based measures

Airtype or Optype capture the effect of unobserved demand shocks. I now discuss in

detail the difference between my paper and a few closely related empirical papers, and I

present evidence against some alternative hypotheses.

Related papers - The empirical patterns documented in this paper share some sim-

ilarities with the patterns uncovered by a few papers in the literature. Syverson (2004,

forthcoming) investigates the determinants of firms’ average productivity and the dispersion

of productivity levels. However, the precise economic forces behind Syverson’s papers and

that behind my paper are rather different. Syverson focuses on a demand-side effect: In

his model, consumers can more easily switch between suppliers in a denser market. As a

result, suppliers’ average productivity is higher, and the dispersion of productivities is lower

in denser markets. Instead, this paper focuses on a supply-side effect: the thickness of the in-

put market.49 Hence, Syverson’s papers and this paper offer complementary explanations of

similar economic facts, and each explanation is better suited to describe a different industry

with different characteristics (spatial differentiation versus decentralized input markets).

Pulvino (1998) investigates the determinants of aircraft transaction prices and finds that

carriers in worse financial conditions sell aircraft at bigger discounts. Two key predictions

of the theoretical framework of my paper are that sellers’ profitabilities are endogenously

lower when assets have a thinner market, and that the dispersion of transaction prices is

endogenously bigger for assets with a thinner market. Clearly, firms’ financial conditions and

profitabilities are very closely related—economic and financial distress are often two sides of

the same coin—and the dispersion of transaction prices is also very closely related to price

discounts. Hence, my paper elucidates Pulvino’s results by describing an economic mech-

anism that simultaneously implies that sellers are, on average, in worse financial condition

and that price discounts are bigger when aircraft have a thinner market.

Alternative Hypotheses - The literature on durable goods highlights the role of de-

preciation (quality differentials) in explaining patterns of trade. The literature makes differ-

ent predictions if parties have symmetric versus asymmetric information on the depreciation

(quality) of the asset. Under symmetric information, the literature (Hendel and Lizzeri, 1999;

Stolyarov, 2002) predicts that lower-quality goods should trade more frequently. In my set-

ting, since assets with a thicker market trade more frequently, we must conclude that these

assets are of lower quality. Clearly, this conclusion is inconsistent with the fact that assets

with a thicker market have higher capacity utilizations and command higher prices. Thus,

49See, also, Balasubramanian and Sivadasan (forthcoming).
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theories of quality differentials under symmetric information cannot explain the observed

patterns.

Under asymmetric information, higher-quality durable goods trade more frequently (Hen-

del and Lizzeri, 1999), in contrast with Akerlof’s (1970) original analysis. Hence, we must

conclude that assets with a thicker market are of higher quality. This explanation might

seem to explain a number of patterns. However, several institutional features of the aircraft

market and a closer look at the data show that this explanation is unlikely to account for

all observed patterns. First, the aviation authorities regulate aircraft maintenance: After a

certain number of hours flown, carriers undertake compulsory maintenance. This suggests

that quality differences cannot be too high. Moreover, Pulvino (1998) rejects the hypothe-

sis that, conditional on observable characteristics such as age, quality differentials between

aircraft explain trade patterns. Furthermore, maintenance records are readily available, and

all parties can observe the entire history of each aircraft. This suggests that asymmetries

of information cannot be too strong. Second, it is important to reiterate that panel data

techniques mean that the effect of market thickness on prices is identified from variations

in market thickness through the life of a given vintage-type combination, and the effect of

market thickness on utilization is identified from variations in market thickness through the

life of a given aircraft serial number. Thus, if the patterns were explained by asymmetries of

information, then we would have to conclude that the quality of a given vintage (of a given

serial number) improves over its lifespan in the case of prices (in the case of utilization),

which seems very unlikely. In the specific case of prices, moreover, it is not clear why such

improvements over the life of the vintage are not capitalized immediately in prices. Third,

the observed dispersion of transaction prices is exactly the opposite of that predicted by

asymmetric-information models. In particular, under information asymmetries, we should

expect a lower dispersion of transaction prices for assets with more severe information asym-

metries, as prices do not depend on unobserved quality differences.

An alternative hypothesis for assets’ patterns of trade, suggested by the finance literature,

is that firms sell assets to reduce the degree of firm diversification (e.g., John and Ofek, 1995).

This motivation for trade implies that firms tend to sell their marginal assets. However, the

evidence is inconsistent with the idea that the majority of assets sold are marginal assets.

The reason is that assets that trade more frequently are more popular, so they cannot be

marginal assets for all carriers. Moreover, the evidence shows that assets that trade more

frequently fetch higher prices. If they were marginal assets, we should expect them, instead,

to fetch lower prices.

In summary, these reasonable alternative hypotheses (and several others) do not explain

all empirical patterns documented. Therefore, I conclude that trading frictions vary with

market thickness, and that they have considerable effects on allocations and prices in the

market for capital equipment, as predicted by the theoretical framework.
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5 Conclusions

In this paper, I have investigated whether trading frictions vary with the size of the asset

market by investigating how market thickness affects asset prices and asset allocations. I

setup a model of a bilateral search market to investigate how trading frictions vary as asset

markets get thicker, and what implications market thickness has for asset allocations and

prices. The key economic mechanism in the model is that the trading technology fundamen-

tally exhibits increasing returns to scale, so that, as the mass of assets increases, the flow of

meetings increases more than proportionally. As a result, assets with a thicker market: 1)

trade more frequently; 2) have higher average capacity utilizations; 3) have lower dispersion

of capacity utilization levels; 4) fetch higher average prices; and 5) have lower dispersion of

transaction prices.

Detailed microdata on assets allow a study of the working of one specific decentralized

market, the market for commercial aircraft. The empirical analysis uncovers a number of

robust empirical findings, confirming all predictions of the theoretical framework. A ten-

percent increase in the stock of aircraft of a given type implies: 1) a 1.9-percent increase in

the hazard of trading the aircraft; 2) a 1.9-percent increase in the average capacity utilization;

3) a 2.2-percent decrease in the absolute percentage deviation of utilizations from the mean

utilization; 4) a 2.7-percent increase in the average price; and 5) a 1.5-percent decrease in

the absolute percentage deviation of transaction prices from the mean price.

This paper shows that the thickness of the asset market reduces frictions in input mar-

kets, thereby increasing the aggregate efficiency of output markets. Aircraft are among the

easiest assets to redeploy across users. Nonetheless, differences between aircraft with a thin

market and a thick market are still non-negligible. This finding has several potential impli-

cations. These differences indicate that market thinness acts like a sunk cost of investment,

and the literature on irreversible investment finds that sunk costs have a first-order effect on

firms’ investment decisions. Abel and Eberly (1996) show that even small degrees of irre-

versibility matter a lot for establishment-level dynamics. However, the aggregate effects of

irreversibility are more ambiguous. For example, Veracierto (2002) suggests that investment

irreversibilities do not play a significant role for aggregate fluctuations. This paper does not

consider aggregate shocks and aggregate fluctuations, but finds that one aggregate effect of

the expansion of asset markets is to raise the equilibrium efficiency of the firms that operate

these assets. In this sense, market thinness acts, here, in much the way that the cost of firing

labor acts in the general equilibrium model of Hopenhayn and Rogerson (1993).

This paper further contributes to the literature on productivity and productivity disper-

sion. Most of the explanations for the large and persistent productivity dispersion observed

within industries focus on technological differences between firms. Here, in the model, I show

in a simple way how productivity and capacity utilization are related, and in the empirical

analysis, how the dispersion of capacity utilization decreases when the asset market gets

larger by reducing the costs of selling inputs.

The mechanism identified in this paper potentially applies to the economy as a whole.

Investigating whether the market for corporate assets has become larger and more liquid over
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time, and whether this has affected aggregate productivity, seems an interesting question for

future research.

Appendices

A Model

In this section, I lay out a model of a decentralized market with two-sided search (Mortensen

and Wright, 2002) to theoretically investigate the effects of market thickness on asset alloca-

tions and prices. As in the recent literature on search in financial markets, the model adapts

the framework introduced by Diamond’s (1982) seminal paper.

I model frictions of reallocating assets explicitly. In particular, each agent contacts an-

other agent randomly, and this is costly for two reasons: 1) there is an explicit search cost c

that an agent pays in order to actively meet another (random) active agent; and 2) there is

a time cost in that all agents discount future values by the discount rate r > 0.

A.1 Assumptions

Time is continuous and the horizon infinite. There is a total mass S ′ > 0 of assets (i.e., the

thickness of the asset market), and a mass A = S ′ + B′ of agents, with B′ > S ′. All agents

are risk-neutral and discount the future at the positive rate r > 0.

Agents are differentiated by the exogenous productivity parameter z ≥ 0. The exogenous

productivity z is distributed in the population according to the cumulative distribution

function F (z) and follows an independent stochastic process: Each agent receives a new

draw from F (z) at the instantaneous rate λ

Each agent can own either zero or one asset.50 An agent z who owns an asset chooses

the endogenous utilization h of the asset to maximize the instantaneous payoff given by the

difference between revenue zh and costs h2

2
from operating the asset:

π (z) = max
h

zh −
h2

2
.

Hence, the optimal capacity utilization is equal to productivity (i.e., h∗ = z), and π (z) = 1
2
z2

are the instantaneous profits.51

Agents can trade assets, and an agent who wants to trade an asset pays a search cost c.

An agent who wants to trade makes contacts with other traders pairwise independently at

Poisson arrival times with intensity γ > 0. Given a contact, because of the random-matching

50Hence, I do not consider quantity decisions, like Duffie, Gârleanu and Pedersen (2005, forthcoming), Miao

(2006), Vayanos and Wang (forthcoming), Vayanos and Weill (forthcoming), and Weill (2007, forthcoming).

It will be clear that the intuition applies more generally. See Lagos and Rocheteau (2007) for a model that

considers quantity decisions.
51Under more general forms of complementarity between productivity z and capacity utilization h, the

optimal capacity utlization is still an increasing function of productivity.
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assumption, the probability that a buyer (seller) makes contact with a seller (buyer) is S

(B), where S and B are the stocks of active sellers and active buyers. In other words, the

mass of active sellers S (active buyers B) is the subset of the mass of potential sellers S ′

(potential buyers B′) that has paid the search cost c. Thus, conditional on making contact,

all traders are “equally likely” to be contacted. On aggregate, contacts between sellers and

buyers occur continually at a total (almost sure) rate of γBS.

Once an active buyer and an active seller meet, they negotiate a price to trade. I assume

that an active buyer and an active seller negotiate a price according to generalized Nash

bargaining, where θ ∈ (0, 1) denotes the bargaining power of the buyer.

A.2 Solution

The potential seller of an aircraft with profitability π (z) can put it up for sale or keep

operating it. In the former case, he pays the search cost c and meets potential trading

partners at rate γB. In the latter case, he enjoys the flow profit π (z). Similarly, a potential

buyer z can pay the search cost c and meet active sellers at rate γS, or can wait to search

later when his profitability changes. We, thus, have four categories of agents: active and

non-active buyers and sellers. I denote by VB (z) the value function of an active buyer, and

by WB (z) the value function of a non-active buyer. Similarly, VS (z) and WS (z) are the

value functions of an active and non-active seller, respectively.

Intuitively, a potential buyer prefers to be an active buyer when his productivity z is

sufficiently high, and a potential seller prefers to be an active seller when her productivity

is sufficiently low. Moreover, an active buyer that has just bought an aircraft does not

immediately become (i.e., before z changes) an active seller since he would have been better

off not buying the aircraft and not paying the search cost. Thus, when an active buyer

and active seller meet and trade, they become a non-active seller and a non-active buyer,

respectively.

I now derive formally the value functions for active and inactive agents, and the transac-

tion prices at which trade occurs. These value functions allow me to pin down the equilibrium

conditions and to characterize the endogenous distribution of productivities and capacity uti-

lizations of active firms and the endogenous distribution of transaction prices.

Numerical solutions shows that the key element affecting the first two moments of the

productivity/capacity utilization and transaction price distributions is how potential sellers’

and buyers’ cutoff values—the values at which potential sellers and buyers are indifferent

between being active or inactive—change with the thickness of the market—that is, with S ′.

In particular, the higher the sellers’ cutoff value and the lower the buyers’ cutoff value, the

higher is the average and the lower is the variance of potential sellers’ productivity. A higher

average z, then, translates into a higher average transaction price, and a lower variance of

valuation into a lower variance of transaction prices. In turn, sellers’ and buyers’ cutoff

values are determined by the (endogenous) total number of meetings γBS.

As spelled out in more detail in Section 3, the key economic force is that the trading

technology exhibits increasing returns to scale. Hence, sellers’ reservation value increases
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and buyers’ reservation value decreases as the asset market gets thicker. In turn, as the

mass of assets increases: 1) assets have a higher turnover; 2) the average productivity z and

average capacity utilization h of firms increase; 3) the dispersion of firms’ productivity and

the dispersion of firms’ capacity utilizations decrease; 4) assets have a higher average price;

and 5) assets have a lower dispersion of transaction prices.

A.2.1 Value Functions

Consider an agent with productivity b and no asset. The agent can choose to pay the search

cost c and search, or he can decide to stay inactive.

If the agent decides to be an active buyer, his value function VB (b) satisfies

rVB (b) = −c + γS

∫

max {WS (b) − p (b, s) − VB (b) , 0} dGS (s)

+λ

∫

(max {VB (z) , WB (z)} − VB (b)) dF (z) (7)

where GS (s) is the endogenous equilibrium distribution of active sellers (which is derived

below).

Equation (7) has the usual interpretation of an asset-pricing equation. An active buyer

with productivity b pays the search cost c. At any date, at most, one of two possible events

might happen to him: 1) At rate γS, he meets an active seller. If he trades, he becomes

an inactive seller and, thus, obtains a capital gain equal to WS (b) − p (b, s) − VB (b). If he

doesn’t trade, he has no capital gain. 2) At rate λ, he receives a new productivity draw.

After learning his new productivity, he decides whether to remain an active buyer (in which

case he has a capital gain/loss equal to VB (z) − VB (b)) or to become an inactive buyer (in

which case he has a capital gain/loss equal to WB (z) − VB (b)).

Similarly, the value function VS (s) of an active seller with productivity s satisfies the

following Bellman equation:

rVS (s) = −c + π (s) + γB

∫

max {p (b, s) + WB (s) − VS (s) , 0} dGB (b)

+λ

∫

(max {VS (z) , WS (z)} − VS (s)) dF (z) . (8)

where GB (b) is the endogenous equilibrium distribution of active buyers (which, again, is

derived below).

The interpretation of equation (8) is now straightforward. An active seller receives an

instantaneous payoff flow equal to the difference between her profitability π (s) and the search

cost c. At rate γB, she meets an active buyer. If she trades, she obtains a capital gain equal

to p (b, s) + WB (s) − VS (s). If she does not trade, she has no capital gain. At rate λ, she

receives a new productivity draw. After learning her new z, she decides whether to remain

an active seller (in which case she has a capital gain/loss equal to VS (z) − VS (s)) or to

become an inactive seller (in which case she has a capital gain/loss equal to WS (z)−VS (s)).
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The value functions WB and WS (s) of an inactive buyer and of an inactive seller with

productivity s satisfy:

rWB (b) = λ

∫

(max {VB (z) , WB (z)} − WB (b)) dF (z) (9)

rWS (s) = π (s) + λ

∫

(max {VS (z) , WS (z)} − WS (s)) dF (z) . (10)

Equations (9) and (10) say that the flow value of an inactive trader is equal to the instan-

taneous profits (0 for a buyer, π (s) for a seller) plus the expected capital gain/loss.52

When an active buyer b and an active seller s meet, if they trade, the negotiated price

p (b, s) = θ (VS (s) − WB) + (1 − θ) (WS (b) − VB (b)) (11)

is the solution to the following symmetric-information bargaining problem:53

max
p

[WS (b) − p − VB (b)]θ [p + WB − VS (s)]1−θ

subject to: WS (b) − p ≥ VB (b) and p + WB ≥ VS (s) .

Using the equilibrium price (11), the value function of an active buyer b becomes

rVB (b) + c = γSθ

∫

max {−VS (s) + WB + WS (b) − VB (b) , 0} dGS (s)

+λ

∫

(max {VB (z) , WB (z)} − VB (b)) dF (z) . (12)

Similarly, a value function of an active seller s is:

rVS (s) + c = π (s) + γB (1 − θ)

∫

max {−VS (s) + WB + WS (b) − VB (b) , 0} dGB (b)

+λ

∫

(max {VS (z) , WS (z)} − VS (s)) dF (z) . (13)

Since VB (b) is increasing in b, there exists a reservation value RB such that only buyers

with productivity b ≥ RB (and, hence, profits π (b) ≥ π (RB)) have positive gains from trade.

RB satisfies

VB (RB) =
λ

∫

(max {VB (z) , WB}) dF (z)

r + λ
.

Similarly, there exists reservation value RS such that only sellers with productivity s ≤ RS

(profits π (s) ≤ π (RS)) have positive gains from trade. RS satisfies

VS (RS) =
π (RS) + λ

∫

max {VS (z) , WS (z)} dF (z)

r + λ

52Thus, the value of an inactive buyer is independent of his profitability.
53The characteristics of aircraft markets described in section 4.7 support the assumption of symmetric

information.
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When r is small, it can be shown that −VS (s)+VB (s)+VS (b)−VB (b) ≥ 0 for all possible

meetings of active buyers and sellers.54 Hence, Appendix B shows that we can rewrite the

value function of an active buyer as

VB (b) = k (π (b) − π (RB)) +
λ

∫

max {VB (z) , WB} dF (z)

r + λ
(14)

where k = γSθ

(r+λ)(r+λ+γSθ)
. Similarly, the value function of an active seller is

VS (s) =
π (s) − π (RS)

δ
+

π (RS) + λ
∫

max {VS (z) , WS (z)} dF (z)

r + λ
(15)

where δ = r + λ + γB (1 − θ) . Thus, the transaction price when seller s and buyer b meet is

equal to

p (b, s) = θ

(

π (s) − π (RS)

δ
+

π (RS)

r + λ

)

+ (1 − θ)

(

π (b)

r + λ
− k (π (b) − π (RB))

)

+

∫

RS

λπ (z)

r (r + λ)
dF (z) +

λ

r

∫ RS
(

π (z) − π (RS)

δ
+

π (RS)

r + λ

)

dF (z) −

∫

RB

λk (π (z) − π (RB))

r
dF (z) . (16)

A.2.2 Distributions of Buyers and Sellers

I now derive the endogenous equilibrium distribution of potential buyers B′ and potential

sellers S ′ and the endogenous distribution of active buyers B and active sellers S.

Steady state requires that traders’ flows for each interval of the distribution functions

of potential buyers B′ and potential sellers S ′ are equal to traders’ flows out. Appendix

C shows the exact calculations. Moreover, it is easy to show that for c sufficiently large,

RB > RS. Thus, the endogenous distribution of potential sellers S ′ satisfies

gS′ (z) =











B′

S′

γS

λ+γS
f (z) + f (z) for RB ≤ z

f (z) for RS ≤ z < RB

λ
λ+γB

f (z) for z < RS.

Similarly, the endogenous distribution of potential buyers satisfies

gB′ (z) =











λ
λ+γS

f (z) for RB ≤ z

f (z) for RS ≤ z < RB

S′

B′

γB

λ+γB
f (z) + f (z) for z < RS

Hence, the distribution of active sellers is simply

gS (z) =

{

0 for RS ≤ z
f(z)

F (RS)
for z < RS

(17)

54See Mortensen and Wright (2002).
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and active buyers is

gB (z) =

{

f(z)
1−F (RB)

for RB ≤ z

0 for z < RB.
(18)

A.3 Equilibrium

The equilibrium conditions determine the four endogenous variables (RS, RB, S, B) .

Definition 1 A steady-state equilibrium is a set of reservation values (RS, RB) , and a stock

of active buyers and sellers (B, S) satisfying the following conditions:

1. The reservation values (RS, RB) satisfy the following indifference conditions:55

c = γSθ

∫
(

π (RS) − π (s)

δ
−

π (RS) − π (RB)

r + λ

)

dGS (s) (19)

c = γB (1 − θ)

∫
(

π (b) − π (RS)

r + λ
− k (π (b) − π (RB))

)

dGB (b) (20)

where GS (s) and GB (b) are the cumulative distribution functions of active sellers and

active buyers, respectively. GS (s) and GB (b) are derived from the probability density

functions gS (s) and gB (b) defined in (17) and (18);

2. Active buyers are all potential buyers with productivity above RB, and active sellers are

all potential sellers with productivity below RS:

B = (1 − GB′ (RB))B′ = B′ (1 − F (RB))
λ

λ + γS

S = GS′ (RS)S ′ = S ′
λ

λ + γB
F (RS) .

A.4 A Numerical Illustration

Unfortunately, the equilibrium conditions do not admit an explicit solution of the endoge-

nous variables (RS, RB, S, B) as a function of the exogenous parameters. Thus, in order to

understand how market thickness S ′ affects the equilibrium distribution of productivity and

prices, I fix values of the exogenous parameters and the exogenous distribution F (z) , and

then solve the model numerically.56 More precisely, the numerical solutions illustrate how

moments of the distributions of productivities and prices change as the thickness of the asset

market S ′ increases, while holding the ratio of potential sellers (and, thus, assets) S ′ and

potential buyers B′ constant.

55The conditions are obtained by combining equations (12), (14) and (9), and equations (13), (15) and

(10), respectively.
56The numerical values of the exogenous parameters are: θ = .5; c = 150; r = .05; γ = .2; λ = .2;

B′ = 1.5S′ and F (z) is the normal distribution with mean µ equal to 20 and standard deviation σ equal to

5.
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Fig. 3: Numerical solutions
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Figure 3 illustrates several features of the equilibrium. The behavior of the endogenous

variables (RS, RB) plotted in the first plot (first row, first column) is the key to understanding

the effects of market thickness on asset allocations and asset prices. The plot shows that

sellers’ reservation value RS increases and buyers’ reservation value RB decreases as the

number of assets increases. This is intuitive: When the asset market is thin, trading frictions

are high. Thus, sellers rationally choose to hold on to assets with a thin market for longer

periods of time in case their productivity z rises in the future. Moreover, as market thickness

increases, frictions vanish. Hence, the reservation values RS and RB converge, and their

common limit is given by the Walrasian benchmark R∗ that solves 1 − F (R∗) = S′

S′+B′
.57

The second plot (first row, second column) shows that the turnover of assets γBS

S′
increases

as the mass of assets increases. This is due to two reasons: 1) Sellers’ cutoff value is higher,

so the probability that assets are put on the market for sale is higher; and 2) the meeting

rate is higher, so conditional on being on the market, assets trade faster.

The plots in the second row document the effects of market thickness on capacity utiliza-

tion. In the third plot (second row, first column), I plot how the average capacity utilization

E (h) =
∫

h (z) gS′ (z) dz varies with the mass of assets. Moreover, since each agent chooses

the capacity utilization h to be equal to its productivity parameter z, the distribution gS′ (z)

reflects the efficiency of the allocation of assets. The plot clearly shows that average capac-

ity utilization and average productivity increase as the asset market becomes thicker. This

suggests that, on average, assets are more efficiently allocated when their market becomes

thicker. The plot also shows that the average capacity utilization and productivity converge

to the Walrasian benchmark given by µ+σ
φ
(

R∗
−µ

σ

)

1−Φ(R∗
−µ

σ )
, where φ (·) and Φ (·) denote the stan-

dard normal p.d.f. and c.d.f., respectively.58 In the fourth plot (second row, second column)

I plot the dispersion of capacity utilization E
∣

∣

∣

h(z)−E(h)
E(h)

∣

∣

∣
, which is identical to the dispersion

of productivity E
∣

∣

∣

z−E(z)
E(z)

∣

∣

∣
, and the plot shows that the dispersion of capacity utilization and

productivity decrease as asset markets become thicker.

The plots in the third row document the effects of market thickness on asset prices. The

fifth plot (third row, first column) of Figure 3 documents that the average asset price E (p) =
∫ ∫

p (b, s) gS (s) gB (b) dsdb increases when the asset market becomes thicker. Moreover, the

price converges to the Walrasian price equal to π(R∗)
r

.59 The sixth plot (third row, second

column) shows that the dispersion of transaction prices E
∣

∣

∣

p(b,s)−E(p)
E(p)

∣

∣

∣
decreases as the size of

the asset market increases.60

57Given the numerical values assumed, the Walrasian limit R∗ of RS and RB is equal to 21.26.
58The numerical value of the Walrasian limit is equal to 24.83.
59The numerical value of the Walrasian limit is equal to 4522.7.
60I am reporting the quantities E

∣

∣

∣

h(z)−E(h)
E(h(z))

∣

∣

∣
and E

∣

∣

∣

p(b,s)−E(p)
E(p)

∣

∣

∣
to measure the dispersion of capacity

utilizations and prices, rather than the more common variances because the empirical analysis is based on

these quantities E

∣

∣

∣

h(z)−E(h)
E(h)

∣

∣

∣
and E

∣

∣

∣

p(b,s)−E(p)
E(p)

∣

∣

∣
. The variances of capacity utilizations and prices display

identical qualitative patterns, i.e. they decrease as the number of assets increases.
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B Value Functions and Transaction Prices

To obtain the value functions, first note that ∂VB(x)
∂π(x)

satisfies

(r + λ + γSθ)
∂VB (x)

∂π (x)
=

γSθ

r + λ
.

Similarly, ∂VS(x)
∂π(x)

satisfies

∂VS (x)

∂π (x)
=

1

r + λ + γB (1 − θ)
.

Thus, both VB (x) and VS (x) are linear in π (x) , with slopes given by ∂VB(x)
∂π(x)

and ∂VS(x)
∂π(x)

,

respectively. Moreover, we can use the conditions on the marginal traders VS (RS) and

VB (RB) to find the intercepts. Thus, we have

VB (b) = k (π (b) − π (RB)) +
λ

∫

max {VB (z) , WB (z)} dF (z)

r + λ
(21)

VS (s) =
π (s) − π (RS)

δ
+

π (RS) + λ
∫

max {VS (z) , WS (z)} dF (z)

r + λ
(22)

where k = γSθ

(r+λ)(r+λ+γSθ)
and δ = r + λ + γB (1 − θ) .

Moreover, define EB and ES as follows:

EB =

∫

max {VB (z) , WB (z)} dF (z) ; ES =

∫

max {VS (z) , WS (z)} dF (z)

and note that we can calculate

EB =

∫ RB

WB (z) dF (z) +

∫

RB

VB (z) dF (z)

=
λEB

r + λ
+

∫

RB

k (π (z) − π (RB)) dF (z) =
(r + λ)

∫

RB
k (π (z) − π (RB)) dF (z)

r

and

ES =

∫ RS

VS (z) dF (z) +

∫

RS

WS (z) dF (z)

=

∫ RS
(

π (z) − π (RS)

δ
+

π (RS) + λES

r + λ

)

dF (z) +

∫

RS

π (z) + λES

r + λ
dF (z)

=
r + λ

r

∫ RS
(

π (z) − π (RS)

δ
+

π (RS)

r + λ

)

dF (z) +
r + λ

r

∫

RS

π (z)

r + λ
dF (z)
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Thus, when seller s and buyer b meet, the transaction price satisfies

p (b, s) = θ (VS (s) − WB (s)) + (1 − θ) (WS (b) − VB (b))

= θ

(

π (s) − π (RS)

δ
+

π (RS) + λES

r + λ
−

λEB

r + λ

)

+

(1 − θ)

(

π (b) + λES

r + λ
− k (π (b) − π (RB)) −

λEB

r + λ

)

= θ

(

π (s) − π (RS)

δ
+

π (RS)

r + λ

)

+ (1 − θ)

(

π (b)

r + λ
− k (π (b) − π (RB))

)

+

∫ RS λ

r

(

π (z) − π (RS)

δ
+

π (RS)

r + λ

)

dF (z) +

∫

RS

λπ (z)

r (r + λ)
dF (z) −

∫

RB

kλ

r
(π (z) − π (RB)) dF (z)

C Steady State Distributions of Buyers B′ and Sellers

S′

Let gS′ (·, t) and gB′ (·, t) be the distributions of potential sellers and potential buyers, respec-

tively. Consider a small interval of time of length ǫ. Up to terms in o (ǫ) , the distributions

of potential sellers gS′ (·, t) evolves from time t to time t + ǫ according to:

gS′ (z, t + ǫ) =







γS B′

S′
ǫhB′ (z, t) + λǫf (z, t) + (1 − λǫ) gS′ (z, t) for RB ≤ z

λǫf (z, t) + (1 − λǫ) gS′ (z, t) for RS ≤ z < RB

λǫf (z, t) + (1 − λǫ − γBǫ) gS′ (z, t) for z < RS

Similarly, the distribution of potential buyers gB (·, t) evolves over time according to:

gB′ (z, t + ǫ) =







λǫf (z, t) + (1 − λǫ − γSǫ) gB′ (z, t) for RB ≤ z

λǫf (z, t) + (1 − λǫ) gB′ (z, t) for RS ≤ z < RB

γB S′

B′
ǫgS′ (z, t) + λǫf (z, t) + (1 − λǫ) gB′ (z, t) for z < RS

Rearranging and taking the limit for ǫ → 0, the steady-state distributions (17) and (18) are

obtained.
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