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Abstract

The central issue we consider is whether university patent licensing, af-
forded by the Bayh-Dole Act, has diverted universities away from their basic
research mission. The Act, passed in 1980, was intended to stimulate the
transfer of federally funded research to industry. While statistics on licensing
activity suggest that it has served this purpose, they have also fueled debates
as to whether licensing has also led faculty to abandon basic research agen-
das. We show that, quite to the contrary, when realistic complexities of the
research environment are taken into account it is just as natural to expect
basic research productivity to have been enhanced by licensing. Our evi-
dence on disclosure, funding, and publications (their nature and impact) of
faculty in eleven universities lends credence to the notion that, rather than
diverting faculty research, licensing is part of a flurry of activities that can
be associated with fundamental discoveries from fairly basic research.
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sistance with data. Funding for the underlying research was provided by the National Science
Foundation (SES 0094573), the Alan and Mildred Peterson Foundation and the Ewing Marion
Kauffman Foundation.
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1 Introduction

Since 1980, universities have been able to patent and exclusively license results of
federally funded research under the auspices of the Bayh-Dole Act. Since then,
organized university-industry technology transfer has increased substantially. The
number of technology transfer offices increased more than eightfold, and activities
reported to the Association of University Technology Managers by these offices
show remarkable growth. The 119 US non-profit respondents to the AUTM annual
survey who responded in both 1996 and 2007 reported that inventions disclosed
by faculty between those dates almost doubled from an average of 67.1 per insti-
tution to 131.1.12 New patent applications increased from an average of 23.2 per
institution to 77.6 (growth of 334%). The number of license and option agree-
ments executed rose 80.1% from an average of 19 to 34.4. Licensing income more
than tripled in current dollars from $550.7mil to $1,715.6mil. License income as a
percent of total research expenditures rose from 2.25% to 4.31%.3

This dramatic growth in university patent licensing is alarming to some but
touted by others as evidence of the increasing role of universities in the US na-
tional innovation system. As such it has fueled the policy debates over the merits
of intellectual property rights for university inventions (Krimsky 2003, Greenburg
2007). These debates have been subject to considerable exaggeration and hyper-
bole. To wit, the enabling Bayh-Dole Act has been reported as “perhaps the most
inspired piece of legislation to be enacted in America over the past half-century”
(The Economist 2002) and as having put “the profit motive directly into the heart
of academic life,” driving faculty away from curiosity driven basic research (Wash-
burn 2005).
Bayh-Dole grew out of concerns that while the US led other nations in basic

research, it lagged in the transfer of research to industry. The Act was intended to
provide incentives for industry to adopt and develop federally funded inventions.
Today, however, there are concerns about the basic research enterprise itself given
multiyear reductions in federal funding for academic research (National Science
Board, 2008). Thus, if licensing has diverted faculty from basic research, it is
considered to be a serious matter. The problem is that the impact of financial
incentives on research is not as straightforward as one might think, depending

1An invention disclosure is the formal document filed by a faculty member with her university
technology transfer office when she believes she has an invention with commercial potential.

2Note that many of the repsondents to the AUTM Survey report for multiple institutions
(e.g., the University of California System reports as a single unit).

3This does not include the nearly $800m received by New York University in 2007.
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critically on nature of the research process as well as faculty motivations. In this
paper, we argue that the view espoused above–of basic research as distinct from
research with commercial potential— is much too simple, and perhaps misleading,
to frame the policy debate.
To see this, consider research into protein folding. A large number of neuro-

logical disorders (e.g. Alzeimer’s, Huntington’s, and Parkinson’s diseases) are now
thought to be associated with problems in the folding process, the protein mis-
alignments that arise and the strange protein structures that subsequently arise
(particularly in the brain). The examination of this phenomenon has the potential
to provide many types of research projects–some quite basic, such as the bio-
physics of the folding process, and others more applied, such as looking for ways
to disentangle the proteins or limit their entanglement to halt the progression of
particular diseases. Both types of projects are often conducted within the same
lab and both have intellectual and commercial application. For example, in 2003
a well-known molecular biologist, Sue Lindquist, published a paper in Science on
the molecular pathways underlying normal function of the alpha-synuclein protein
and the consequences of its misfolding (Outeiro and Lindquist 2003). In the same
issue, Lindquist and others published a more applied paper on the implications of
misfolding for neurodegeneration in diseases such as Huntington’s and Parkinson’s
and a paired patent application (US 7,452,670) was filed on methods of identifying
agents that diminish cellular toxicity associated with alpha-synuclein polypeptide
of Parkinson’s disease in yeast (Willingham et al. 2003). Lindquist is also one of the
scientific founders of a company, FoldRx which focuses on developing small mole-
cule therapeutics for treatment of diseases caused by misfolding. Thus, research
in this lab, and arguably many others (Murray 2002, Jensen and Murray 2005),
is in sharp contrast to the “either-or” view of basic and commercially applicable
research as distinct.
In this paper, we examine the impact of financial incentives associated with

licensing through the lens of a synthetic framework that allows us to compare
and contrast this more complex research environment, in which basic publishable
research has commercial potential, with the “either-or” view of such projects as
distinct. Our analysis takes into account the fact that academic researchers are
motivated by a “taste” for scientific research in addition to financial rewards. This
along with our models of the research production process (or in economic terms, the
research production function) provides several key insights–some quite intuitive
but others more subtle and surprising.
First, regarding motivation, the licensing statistics cited earlier may well be

simply the result of faculty being more willing to disclose their research, not only
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through publications, but also by licensing and patenting (Thursby and Thursby
2002). That is, research that is dual-purpose (in the sense that it has both
intellectual and commercial value) is now disseminated in multiple venues be-
yond traditional publications (Murray 2002, Jensen and Murray 2005, Murray
and Stern 2006). This point was quite prominent in an interview we conducted
with Dr.Lindquist. In what she called the "blooming of knowledge" in her field,
she noted that basic research has progressed so far in terms of understanding how
cells work, that applications have become more readily apparent. Further, while
the framers of Bayh-Dole may have understood the need for exclusive patent rights
for industrial development, scientists did not early on. Over time, however, they
have come to understand that unless they patent and license their research, it will
never be used. She emphasized that these activities are necessary for "her life’s
work to make a difference."
Second, simulations of our models for various production functions show that,

while on average licensing draws research toward projects with higher commercial
potential, it also increases overall research effort, which in most cases leads to an
increase in the amount of basic research conducted. This result seems natural in
cases where basic and applied research are complements in the sense that applied
and basic effort conducted by the same researcher (or in the same lab) allows for
spillovers across projects. Somewhat surprisingly, however, it holds even in the
absence of such cross-project benefits. The result that basic research tends to
increase comes from two things–(i) faculty in our model respond to licensing by
spending more time in research, per se, and (ii) both types of research are published
as well as licensed–something seen in the Lindquist example. The extreme case, in
which basic research necessarily suffers from licensing, arises only when the applied
effort associated with licensing is not publishable.
Thus the impact of licensing on research is ultimately an empirical issue, and

there is a growing body of empirical research that has focused on a related topic,
the relationship between faculty publication and patenting. Two results stand out
from this work. First, only a minority of faculty in top US universities are involved
in patenting (Stephan et al. 2007), and second, for those faculty who patent and
publish, there appears to be a positive relation between them. In fact, in sharp
contrast to critics’ fears of diversion, Azoulay et al. (2006 and 2007) find evidence to
suggest the converse in the life sciences where patent applications appear to follow
flurries of publication. In this paper, we present evidence on the publication and
invention disclosure records of faculty at 11 major universities and how disclosure
is linked to sponsored research, publications and citations.
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2 Faculty Research Agendas

To understand faculty research agendas it is important to recognize that university
faculty value academic freedom (Aghion, Dewatripont, and Stein 2008; Stern 2004).
Rather than negotiating with their employers over the focus of their research and its
dissemination, they are free to choose research projects (Gans, Murray, and Stern
2008). Although university administrators can influence research by the reward
structures they put in place, the determination of research agendas is the purview of
faculty themselves. Except for the general requirement in US employment contracts
that faculty disclose inventions with commercial potential to the university, how
they disseminate their work is also their choice. Moreover, faculty contracts specify
a teaching load and a limit on outside consulting, which leaves the faculty member
to determine their effort and the type of research they conduct.
In this section, we present a framework that allows us to relate license incentives

to research agendas.We draw heavily on Thursby et al. (2007) which presents a
formal model of faculty research over the life-cycle in the context of university
licensing.

2.1 Research Motivation

One of the keys to understanding the projects faculty choose is their motivation
for research. Faculty drawn into scientific disciplines are generally thought to have
a taste for solving basic research puzzles, getting satisfaction simply by working
on them as well as being the "first" to solve them (Hagstrom 1965, Kuhn 1970,
and Merton 1957). In this context it is easy to see why the impact of financial
incentives associated with licensing is not straightforward. If research with license
potential can only be done by reducing effort on curiosity-driven projects, there is
a trade-off between the expected increase in income and job satisfaction. Further
complicating the issue, faculty reputations as well as their academic salaries are
highly dependent on the scientific merit of their research. Thus faculty research
decisions depend on the importance they attach to basic, puzzle-solving research
and its associated reputation relative to the potential monetary gains in terms of
academic and license income. For many faculty, the anticipated monetary gains
from licensing may not be sufficient to warrant the distraction from curiosity-driven
projects.
Recognize, however, that curiosity-driven and licensable projects may not be

distinct. This is easily seen in the context of Stokes’s (1997) characterization
of research projects as to whether they are motivated by the desire for general
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understanding or oriented toward solving particular problems (such as new mate-
rials, devices, products, etc.). Figure 1 shows Stoke’s quadrant model of scientific
research. The vertical axis shows whether research is curiosity-driven and the hor-
izontal axis shows whether research is use-oriented. For some types of research,
these are useful distinctions. For example, Bohr’s study of atomic structure be-
longs in the upper left-hand quadrant with very different motivation than research
in Edison’s Menlo Park lab to develop profitable electric lighting (lower right-hand
quadrant). In the context of the current debate, if a faculty member were to switch
from projects in Bohr’s quandrant to Edison’s in order to earn license income, they
would clearly have been diverted by license incentives. However, much of Pasteur’s
research which provided the foundations of modern microbiology grew out of his
applied research to improve fermentation of beet juice or pasteurization of milk.
Thus, as Stokes emphasizes, the common practice of defining basic and applied
research in terms of motivation is not particularly meaningful.4

2.2 Research Production Functions

It is also important to understand the relationship between inputs to basic and
applied research and their respective outputs—that is, the research production func-
tions. While in actuality there are many inputs to research including the stock of
existing knowledge and equipment, for our purposes the most relevant input is the
amount of time a faculty member devotes to basic and applied research. Despite
the shortcomings mentioned above, we adopt the convention of referring to basic
research as the investigation of fundamental aspects of phenomena and applied
research as directed toward specific applications. For some production functions,
basic and applied research may be complementary. More applied projects may
provide insights (and tools) of use for the lab’s basic projects and vice versa; a
phenomenon linked to Mansfield’s finding that faculty ties with industry were a
major source of ideas for their academic work (Mansfield 1995). Finally, both
types of projects can have both scientific and commercial value, as in Pasteur’s
Quadrant.
In terms of the Lindquist example, the paper on the molecular pathways under-

lying protein function would be considered basic and the paper on the implications
of misfolding for neurogeneration in Parkinson’s diseases would be applied by our
definition. Both projects have resulted in publications in top journals and both

4For example, according to the Office of Management and Budget definition, basic research
is directed at understanding fundamental aspects of phenomena and applied research is directed
toward determination of the means by which a specific need might be met.
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have clear commercial potential although perhaps on a different time scale — the
biophysics of folding might lead to new biomarkers, analytic methods or diag-
nostics, while molecules to block misfolding pathways might be patentable drugs.
Since both projects involve the function of the alpha-synuclein protein, there are
likely complementarities across the projects.As emphasized in our interview with
Dr. Lindquist, even though the papers on applications for particular diseases are
in some sense more applied, they still deal with basic biophysics.
In the current context, our interest is in the effect of financial incentives on

research outputs in the form of publications and license activity. When projects are
complementary, we can think of the production of publications, Pt, and licenses,
Lt, at time t as functions of applied effort, at, basic effort, bt, and the stock of
knowledge, Kt, given by:

Pt = at
γ1bt

γ2K
γ3
t and Lt = at

α1(1 + bt)
α2Kα3

t (1)

where γi ≥ 0 (i = 1, 2, 3) and αi ≥ 0 (i = 1, 2, 3). Complementarity of effort
means that a marginal increase in at increases the marginal productivity of bt and
vice versa. In this specification, the two types of research are complementary for
both publication and licensing. The license function loosely captures the notion
that inventions licensed require further development before they are commercially
useful (Thursby et al. 2002, and Jensen and Thursby 2001).5

This specification also captures the dual-purpose aspects of research in Pas-
teur’s Quadrant since basic and applied effort can be simultaneously published
and licensed. As seen in the next section, a critical element of this specification is
that applied research is published as well as licensed. This is meant to capture the
notion that while research licensed by firms contributes to the firm’s knowledge
base, it contributes to general public knowledge only with publication. Thus, in
our model, the knowledge base, Kt, increases with Pt so that

·
Kt = Pt − δKt (2)

where
·
Kt is the rate at which knowledge depreciates over time.

For some research, basic and applied projects may be conducted independently
and are thus less likely to benefit directly from each other. In this case, the following
production functions provide a more accurate picture of the research environment:

5The specification of L using 1 + bt rather than bt allows for the special case where basic
research influences L only through K. That is, although basic research can be licensed, it is not
necessary for licensing while applied effort is.
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Pt = (a
γ1
t + b

γ2
t )K

γ3
t and Lt = at

α1(1 + bt)
α2Kα3

t . (3)

In this specification of the publication production function, neither type of research
has a direct impact on the productivity of the other. While basic and applied
research are substitutes in publication production, they remain complements in
license production function. As in (1), basic research can be licensed as long as it
is augmented by applied research, and both types of research add to the stock of
knowledge through publication.
In contrast, the "either-or" view in which basic and applied research are distinct

activities, leading to different types of output, can be expressed as:

Pt = bt
γ2K

γ3
t and Lt = at

α1Kα3
t (4)

Consistent with research in Bohr’s Quadrant aimed solely at scientific knowledge,
basic research in (4) produces publications which affect license output only through
their impact on the stock of knowledge. License production is consistent with
research in Edison’s Quadrant where the sole aim of effort is to produce results of
use to companies (in this case, licensed). Since applied effort is not published it
does not add to the stock of knowledge as in cases (1) and (3).

2.3 Research over the life cycle

Thursby et al. (2007) build several models of faculty research over their career
which incorporate the multiple faculty goals and production structures discussed
above. In the models considered, a faculty member faces a fixed teaching load and
chooses the amount of time to devote to research (which can be either basic or
applied) and the amount of time to take as leisure (i.e., not working on income
generating projects). This faculty member gets satisfaction from puzzle solving and
a reputation for publications, and earns a salary from the university. To examine
the impact of financial incentives associated with licensing, we solve the model with
and without the possbility of additional income from a share of license revenue.
This allows us to examine the effect of licensing on the research mix, as well as the
total amount of time working, throughout the career life cycle.
We simulated the outcomes of these models for a large number of parameter

values. In our simulations, with or without licensing and regardless of the relation-
ship between basic and applied research, faculty devote more time to research early
in their careers. This is because research is an investment in future productivity,
and the value of this investment falls toward the end of the career. Their taste
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for puzzle-solving leads faculty to conduct more research toward the end of the life
cycle than they might otherwise conduct if the only rewards are monetary (see also
Levin and Stephan 1991). The potential for license income has several effects. In
all of the simulations, the ratio of basic to applied effort is lower with licensing.
Perhaps the most important point of the analysis, however, is that licensing does
not necessarily compromise either the amount of basic research or total research
effort. Indeed, in the majority of simulations, both basic and total research efforts
increase because less time is spent on non-income generating activity. Interestingly,
this result holds whether or not applied and basic efforts are complementary. The
cases in which basic and total research effort are lower with licensing are ones in
which applied research is not publishable or when license income is extremely high.
Thus the impact of licensing activity on the direction and amount of research is

essentially an empirical issue. If licensable research is not publishable or if faculty
regularly “hit the jackpot,” then it is quite likely that basic research is compro-
mised. But to the extent faculty have a taste for basic work there may be no impact
and if their basic and applied efforts are related in some way (and both publish-
able) the research enterprise may benefit. The effect of these incentives surely
varies among faculty, so the interesting question is what has happened overall.

3 What is the Evidence?

There is a growing body of empirical work focused on the impact of commercial
activity on research. Because research effort is unobservable, the bulk of this liter-
ature has focused on the relationship between measures of research outputs, such
as invention disclosures or patents to publications and citations to publications.
Broadly speaking, this work has failed to show detrimental effects in terms of
these output measures.
Consistent with the view that faculty may not alter their behavior, several

investigators have found that the majority of faculty they study have avoided
commercial activity. In Stephan et al.’s (2007) study of full time faculty who
answered the 1995 Survey of Doctorate Recipients, only 9% of the sample made
patent applications in the prior five years. As we discuss below, only a minority of
faculty in top US universities have engaged in the licensing process.
Studies that relate patenting and publishing tend to find that they go hand-

in-hand (Murray 2002, Fabrizio and DiMinin 2008, and Stephan et al. 2007).6

6A number of European studies also find this relationship (Breschi et al. 2008, Meyer 2006,
Geuna and Nesta 2006, Van Looy et al. 2006, Czarnitzki et al. 2009). Because the policy context
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In terms of publication impact, the results are mixed. Agrawal and Henderson
(2002) find a positive relationship between patenting and publication citations for
faculty in two engineering departments at MIT. Fabrizio and DiMinin find that
after a faculty member’s first patent there is little impact, but that as faculty
repeatedly patent their publication citations fall. These studies, however, do not
directly address the extent to which the nature of research is affected by commercial
activity.
Azoulay et al. (2007) examine the life-cycle patenting behavior of 3,884 sci-

entists in biomedical fields from 1967 to 1999 and find that patenting peaks in
mid-career years. They develop a measure of the latent patentability of each sci-
entist’s research by relating areas identified by publication titles to a measure of
the extent to which other scientists working in these areas patented their discov-
eries. Using hazard-rate and logistic models, they find that patent applications
follow flurries of publication, holding constant latent patentability. This suggests
that, rather than diminishing or shifting in response to returns from patentable
research, research creates opportunities for patenting. From the perspective of an
individual researcher, then, academic patenting and entrepreneurship might be a
natural consequence of moving along a particular research trajectory rather than
a diversion away from more basic research.
Azoulay et al. (2006) employ the same database to examine related questions

in terms of the quality and content of publication. They find that scientists who
patent are more prolific publishers than those who do not, controlling for other
characteristics. Interestingly, however, the quality of publications, as measured by
the impact factor of the journal of publication in a given year, as well as the pro-
portion of publications in which the scientist appears first or last in the authorship
list, is not significantly different between scientists who patent and those who do
not.
In a series of papers (Thursby and Thursby 2007a, 2007b, and 2008), we exam-

ined a longitudinal database on research inputs and outputs of faculty at eleven
major research universities over a period of 17 years. In the next section, we pro-
vide summary statistics from that database. In Thursby and Thursby (2008) we
consider econometric models using these data. The models explain sponsored re-
search funding, publications and citations controlling for, among other things, such
factors as the age of the faculty, their major field of research (biological sciences,
engineering or physical sciences), gender, whether they have tenure, the year of
their PhD and a measure of the academic quality of their department. In all mod-

is quite different from the US, we do not discuss them here.
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els we include measures of disclosure activity. One finding of note is that faculty
who never disclose are, in general, less productive than those who do. Similar to
Fabrizio and DiMinin (2008) and Azoulay et al. (2006 and 2007) we find that
faculty who disclose are more productive in a year following their disclosure.

4 Who Discloses? A Profile of Faculty Research

In this section, we provide a more detailed look at the nature of research inputs
and outputs for faculty in the longitudinal database mentioned above. The data
cover most of the 1980s and all of the 1990s. This period is particularly important
since it coincides with a time of relative low levels of licensing and culminates in a
period of relatively intense licensing activity.
We focus on invention disclosures, rather than licenses or patents, as our mea-

sure of faculty engagement in the license process. A disclosure reflects only the
opinion of the faculty researcher on the commercial potential of an invention. It
does not reflect any judgment by the university technology transfer office (TTO)
on the invention’s commercial potential or patentability as would patent applica-
tions. Nor does it reflect the opinion of patent examiners or the market as would
patents awarded or licenses executed. In the case of patents awarded, novelty and
usefulness would influence the outcome, and in the case of licenses executed, both
the TTO ability and the market’s opinion would be reflected. Thus we argue that
disclosures are the preferable measure of faculty participation.
While all universities in the sample require their employees file invention disclo-

sures, this is hardly enforceable. Faculty may not disclose for a variety of reasons.
In some cases they may not realize the commercial potential of their ideas, but
often faculty do not disclose inventions because they are unwilling to risk delaying
publication during the patent and license process.7 Faculty who specialize in basic
research may not disclose because they are unwilling to spend time on the applied
research and development that is often needed for businesses to be interested in
licensing university inventions (Thursby and Thursby 2002 and Jensen et al. 2003).
While a disclosure signals a willingness to be involved with licensing, it need not
indicate that the research was motivated by the desire to license. As discussed in
Section 2, basic curiosity-driven research can often lead to commercially applicable
results. In their interviews with MIT faculty Agrawal and Henderson (2002) found

7Half of the firms in an industry survey noted that they include delay of publication clauses
in at least 90% of their university contracts (Thursby and Thursby 2004). The average delay is
nearly 4 months, with some firms requiring as much as a year’s delay.
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that most conducted research with the primary goal of publishing.
Thus a fundamental part of our data is the record of when and how often

faculty file invention disclosures. We divide faculty into three samples. In the first
we include only faculty who never disclose in any year they are in our sample.8 The
other two samples include faculty with at least one disclosure, and those faculty
observations are divided into periods of disclosure activity and periods of non-
disclosure activity. This allows us to characterize which faculty become involved
in licensing activity, as well as the nature of their research in periods of license
disclosure.
To characterize faculty research profiles, we use publication counts along with a

number of measures of the type of research conducted. One can think of the number
of publications in any period as a measure of the success of the overall research
effort. Measures of the type of research (basic or applied) include the number of
citations each publication receives, as well as a classification developed by Narin et
al. (1976) as to how basic are the journals in which the faculty member publishes.
Both measures incorporate the notion that the results of basic research are more
likely to be highly cited than those from applied research. Finally, we have data on
the amounts of federal and industry sponsored research funding received annually
by each faculty member. This gives us a window into how finances affect research
outputs, but it can also be thought of as an indicator of the type of research since
federally sponsored research is generally for more basic questions than is industry
sponsored research funding.

4.1 Data

Our data are the research, demographic and disclosure profiles of all faculty sci-
entists and engineers in PhD granting departments at 11 major universities: Cal-
ifornia Institute of Technology, Cornell University, Georgia Institute of Technol-
ogy, Harvard University, Massachusetts Institute of Technology, Purdue University,
Stanford University, Texas A&MUniversity, University of Pennsylvania, University
of Utah, University of Wisconsin at Madison. Each is a major research university
and each has faculty actively engaged in licensing; all compare favorably to the top
50 universities in terms of total research expenditures, licenses executed, patents
awarded and invention disclosures as reported in the 2007 AUTM Survey. For
example, the average research expenditure for our sample in 2007 is $656 million

8Unfortunately, we do not know whether faculty disclosed in a year before or after they are
in the sample.
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compared to an average of $555 million for the top 50 research universities. The
sample average number of invention disclosures in 2007 is 325 compared to 226 for
the top 50 universities.
Faculty are those on the list of science and engineering faculty in PhD granting

departments provided in the 1995 National Research Council (NRC) report. Fac-
ulty not listed in PhD granting departments are excluded; importantly, medical
school faculty are excluded unless they also hold appointments in PhD granting de-
partments. Departments are excluded if one could not reasonably expect disclosure
activity (for example, we exclude astronomy).
The technology transfer office of each university in our sample supplied the

names of disclosing faculty as well as dates of disclosure. Four universities provided
disclosure information for 1983 to 1999, and the others provided information from
1983 to 1996 or from 1987 to 1999.9 Matching these files with the NRC list provides
a sample composed of multiple years of disclosure activity for faculty in residence
in 1993. Not only are faculty in non-PhD granting departments excluded, but we
cannot include those who join a university after 1993 or who left a university before
1993. For years other than 1993 we checked to ensure that each faculty member
was in residence. There are 4,988 faculty and 60,905 observations in the sample
where an observation consists of a person in some year; on average, faculty are in
the sample for approximately 12 years.
As noted, faculty are divided into three samples based on their disclosure his-

tory. In the first we include only faculty who never disclose in any year they are
in our sample. In our figures we refer to this “Never Disc” sample. In the other
samples are faculty who disclose at least once. In one of these we include faculty
in a three year “window” around the time of a disclosure that includes the year of
the disclosure as well as the year before and the year after; in our figures we refer
to this sample as the “Disc Period” group.10 In the final sample we include faculty
who disclose in at least one year but who do not disclose in the current year, the
year before or the year after. This sample is referred to as the “Non-Disc Period”
sample. Thus, for the latter two samples we include faculty who disclose at least
once and we separate observations into periods of disclosure and non-disclosure
activity.

9We started with 1983 so as to be well past the date of passage of the Bayh-Dole Act of 1980.
Universities supplied us with data as far back as disclosure information could easily be retrieved.
The 1996 end was for Purdue Universi-ty. Purdue was the basis for our pilot study in this project
and that pilot was initiated in 1997.
10We also considered a disclosure window to include only the year in which a disclosure was

made. Results are very similar to those presented here.
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The disclosure data are supplemented with data from Thomson ISI on the num-
ber of publications by year for each of the faculty as well as the total citations those
publications receive through 2003. For example, if a faculty member had three pub-
lications in 1995, then our publication measure is three and the citation measure is
the total citations those three publications had received through 2003. While the
citation data are truncated we have at least four years of citation information for
every publication.
An additional measure of the nature of research is a mapping of each journal

publication into Narin et al.’s (1976) classification of the ‘basicness’ of journals.
This classification characterizes journals by their influence on other research and
it has been updated regularly. They argue that basic journals are cited more by
applied journals than vice versa, so that journals are considered to be basic if they
tend to be heavily cited by other journals. For example, if journal B is heavily
cited by journal A, but A does not tend to be cited by B, then B is said to be a
more basic journal than A. Advantages of the Narin classification are not only its
measure of influence, but also ease of extending the measure to a large number of
journals and articles. The ratings are on a 4-point scale, and we classify as basic
only publications in the top basic category which covers about 62% of all ranked
journal publications in our sample. About a third of all publications could be
rated, but we found no systematic change over time in the number of publications
that could be rated. If none of a professor’s publications are rated in some year,
or if they do not publish in some year, then those observations are dropped. This
leaves 14,401 person/year observations for which we can measure how basic is the
research. The measure of basic publications we use is determined by finding the
fraction of rated publications that are in the most basic category of the Narin
classification. It is then assumed that this same fraction of basic work extends to
all of the researcher’s publications in that year. Thus the calculated number of
basic citations is the fraction of rated publications that are basic multiplied times
the total number of publications.
Another indicator of the type of research conducted by a faculty member is

the type of research funding received, where it is natural to expect federal funding
to support more basic research than industry sponsored funding. For eight of the
universities (Purdue, MIT, Stanford, Wisconsin, Georgia Tech, Cornell, Pennsyl-
vania and Texas A&M) the office of sponsored research provided information on
sponsored research funds from federal and industry sources. The number of faculty
at these 8 universities is 4,240.
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4.2 How Common is Disclosure?

For each person in the sample we know whether she disclosed in each year she was
on the faculty, and if so how many times she disclosed in that year. The sample
has 5,133 person/year observations (this is 8.4% of the sample) in which there is at
least one invention disclosure. Taking into account multiple disclosures in a year
the total number of disclosures is 9,240.
Consistent with the view that faculty may not alter their behavior is the finding

in our data that the number of faculty who ever disclose is remarkably low. Sixty-
three and a half percent of the 4,988 faculty in the sample never disclosed an
invention and another 14.6% disclosed in only a single year. Only 109 (2.2%)
disclosed in 8 or more of the years they were in the sample. When a faculty
member discloses in some year it is typically a single event. For 3,304 of the 5,133
person/year disclosure observations (64.4%) there was a single disclosure. In 1,040
of the disclosure years (20.3%) the faculty member had disclosed twice. Forty-five
of the disclosure years are cases of 10 or more disclosures by a faculty member in a
single year. The distribution of disclosures varies substantially by university from
a low of 4.41% of faculty disclosing to a high of 17.7%.
The yearly percent of faculty who disclose at least once in the year rises from

2.7% of the faculty in 1983 to around 10% to 11% by the mid-nineties where it
appears to have leveled off. The average number of disclosures per faculty member
per year rises from about 0.04 to about 0.25. The upward trend in the average
number of disclosures is more marked than the rise in the fraction of faculty who
disclose in each year further emphasizing that disclosure activity is concentrated
in a minority of the faculty.
Interestingly, publication among the faculty in our sample is also highly con-

centrated in a minority of faculty. For the entire sample, the average number of
publications per year is 3.84. Almost 31% of the person/year observations are ones
in which there are no publications and for another 15.2% there is only a single
publication. In only 11.2% of the sample are there 10 or more publications in a
year.

4.3 How Productive are Disclosers?

Are the disclosers the more productive faculty as in the case of Stephan et al.’s
(2007) study of patenting? Figure 2 gives the average annual number of publica-
tions for faculty in the three subsamples. Two results are striking. First, those
who disclose are on average more productive in terms of numbers of publications
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than those who never disclose. Second, those who disclose publish more in the
years surrounding disclosure than in non-disclosure years. Thus, as in Azoulay et
al. (2007) and Thursby and Thursby (2008), there is a flurry of publication activity
surrounding disclosure.
Another way to look at productivity is in terms of faculty ability to attract

research funding. Federal and industry funding by researcher and year is available
for only eight of the eleven universities. This sample includes 4,240 researchers and
51,951 person/year observations. Thirty-two percent did not have federal money in
any year in which they are in the sample and almost 63% never received industry
funding. For all person/years 54.8% are observations for which there is neither
source of funding. In 9.4% of the sample both types of funding are observed.
Figure 3 gives average annual federal funding (in real terms) for the three

samples.11 The funding pattern is clear. Faculty who never disclose have, on
average, substantially lower annual levels of federal funding, and the highest levels
of funding are for those who are in a disclosure window (“Disc Period”). In almost
every case the differences by year and across samples are statistically significantly
different from zero. Industry funding follows a similar pattern. For the sake of
economy we do not present the detail. We do note one distinct difference. For
faculty in a disclosure window industry funding rises dramatically in the late 1980s,
then falls dramatically in the early 1990s before again increasing in the late 1990s.
This “bubble” in the middle years is driven by engineering and, to a lesser extent,
physical sciences.
Not only are disclosers different from non-disclosers in levels of funding, but

they are also different in the growth of funding. From the late 1980s on, the never-
disclose sample has virtually no growth in funding. In contrast, funding for the
other two samples is increasing over the period (except for “Disc Period” industry
funding from 1992-1995). Furthermore, the increased growth for both types of
funding are consistent with the econometric analyses in Jensen et al. (2008) and
Thursby and Thursby (2008) which suggest that federal and industry funding to
universities are complementary.
Federal and industry funding can also be considered as measures of the type

of research conducted. Except for mission agencies, we typically think of federal
agencies as providing funding for more fundamental research, and industrial fund-
ing as more targeted. Interpreted in this way, the funding picture does not suggest

11There are 20 observations on federal funding that are in excess of $50 million. We have
dropped these outliers from the analysis of federal funding. Inclusion leads a “noisier” set of data
and also to roughly the same results except that “Non-Disc Period” and “Never Disc” are very
close for the last five years.
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diversion of research. In the next section, we look more directly at this question.

4.4 The Nature of Faculty Research

In this section, we examine two citation-based measures of the nature of faculty
research. The first is citations per publication and the second is our Narin-based
measure of the number of basic publications. While the latter has the disadvantage
of fewer observations, the advantage is that it allows us to look at both the number
of basic publications and the portion of research that is basic. According to our
characterization of basic and applied research in Section 2, the total publication
counts for disclosers shown in Figure 2 may reflect higher productivity in both
basic and applied research (although we would expect disclosers to have a higher
ratio of applied to basic publication).
Recall the measure of citations is the number of citations to work in a particular

year received through 2003. For example, if Joe the professor has five publications
in 1995, then the citation number of for Joe in 1995 is the total number of citations
those five publications receive through 2003. Our citation measure is a measure of
the importance of work in a given year. It is also a measure of how basic is the
research to the extent that more basic research receives in general more citations
than does more applied research. The average number of citations per publication
is 27.3 and 6.8% of those who publish in some year have no citations.
In Figure 4 are the averages for the number of citations per publication.12

Annual comparisons are generally statistically significant at a 5% level, but the
comparison across the three samples is not as distinct as it is for publications or
funding. Since our citations are truncated in 2003, the falloff in citations in the
later years is not surprising. According to this measure, the research of faculty
in the “Disc Period” sample has the greatest impact, and the lowest impact is
research of the “Never Disc” sample.
As shown in Figure 5, we see a similar pattern for our Narin-based measure of

the number of basic publications. Recall that the measure of basic publications
drops any person/year observation in years with no publications so that, unlike
the prior measures this one is conditioned both on having publications and having
publications that are rated. The “Disc Period” sample has the highest number of
basic publications. However, at a 10% level of significance, there is no significant
difference between “Never Disc” and “Non-Disc Period” in 12 of the years. There is
a marked increase over time in average publications for all three samples, with the

12Citations per publication are recorded as a zero if there are no publications.
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largest increase being for the “Disc Period” sample. This is contrast to our results
on the ratio of basic to total publications shown in Figure 6 in which there is a
reversal in the relative positions of the “Never Disc” and the “Disc Period” samples,
where the “Never Disc” sample has the highest fraction of basic publications. Taken
together the results in Figures 5 and 6 suggest that both basic and applied effort
increase with licensing, but that applied effort rises more than basic, as in Thursby
et al. (2007).

4.5 Are the Biological Sciences Different?

According to our general characterization of basic and applied research, research
directed at understanding fundamental aspects of phenomena can also (from its
inception) yield results which fit specific needs or applications. While this charac-
terization can apply to work in many fields, it is generally thought to be particularly
salient for the biological sciences. In our example of research into the protein fold-
ing problem, research on how proteins function is fundamental, but from the outset
both the researcher and funding agencies know that is it quite likely to lead di-
rectly to results with medical applications. This dual use nature of much research
in biological sciences is inherent in the NIH funding model where the Institutes are
organized according to diseases. Thus while the research is typically quite basic,
it is by definition clearly placed in Pasteur’s Quadrant (Stokes 1997, particularly
pages 137-138).
Further, since the 1970s there appears to be a narrowing of the time between

basic research efforts and the development of commercial products or research
tools in the biological sciences. As well, much of the literature on the relationship
between research and commercialization has focused on the biological sciences. An
interesting question, particularly as it relates to funding, research and disclosure,
is the extent to which the biological sciences are distinct.
In this section, we split our samples into one related to faculty in the biological

sciences and the other related to the work of faculty in the physical sciences and
engineering. Thirty-five percent of the faculty (1754) are in the biological sciences.
The percent of biological science observations that are years in which a disclosure
occurs is similar to that of the other fields. This also holds for the percent of
faculty who ever disclose. In terms of publications and the number of citations per
publication, biological science faculty are not markedly different from others. The
major differences across fields relate to funding and basic publications.
Even when split by field it is the case that both federal and industry funding are

highest in a disclosure window and funding is lowest for faculty who never disclose.
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Federal funding for biological scientists tends to be flat from the mid 1980s until
the end of the period. This holds for all three samples: “Never Disc”, “Non-Disc
Period”, and “Disc Period.” In contrast, federal funding for the physical sciences
and engineering is flat only for the faculty who never disclose. For faculty who ever
disclose, there was growth in both disclosure and non-disclosure windows.
The large increase and decrease in industry funding from the mid 80s to the

mid 90s reported earlier comes entirely from the engineering and, to a lesser extent,
the physical science observations. For biological scientists, there was steady growth
in industry funding for those in a disclosure window; otherwise, industry funding
for biological scientists has been flat. Furthermore, for biological scientists in a
disclosure window, average industry funding grew sharply from about 30 thousand
dollars in 1996 to over 70 thousand dollars in 1999. For non-biological science
faculty in a disclosure window, there was also a rise in industry funding but it was
more modest, going from 60 thousand dollars to just over 80 thousand dollars.
Information on basic publications by field in Figures 7-10. Looking first at

the number of basic publications, recall that in the full sample there was rarely
a significant difference between the average number of basic publications for the
“Never Disc” and the “Non-Disc Period” samples (see Figure 5). It is clear from
Figures 7 and 8 that this result is driven primarily by the faculty in the physical
sciences and engineering. For biological scientists the number of basic publications
is highest for the “Disc Period” sample, followed by the “Non-Disc Period” sample.
Those who never disclose generally have the least number of basic publications.
This pattern is not representative of physical scientists and engineers. In the early
years those who never disclose are similar to those in a disclosure window in their
basic publications. The fewest basic publications are for the “Non-Disc Period”
sample. In contrast, the latter years are ones in which the “Non-Disc Period”
and “Never Disc” samples are very similar while the “Disc Period” sample has
significantly higher numbers of basic publications.
Tables 9 and 10 chart the fraction of publications that are basic. There is again

a marked difference between faculty in the biological sciences and others. The
fraction of basic publications for the biological science faculty does not vary signif-
icantly across the three samples. In contrast, for engineers and physical scientists
the highest fraction of basic publications occurs for those who never disclose. The
other two samples are generally similar except in the early years.
Interestingly, about 70% of publications of biological scientists are basic and

this is similar to the basic science fraction for those who never disclose in the
physical sciences and engineering.
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4.6 Econometric Analysis

A natural question is whether the summary results presented above continue to
hold when factors associated with faculty and universities are controlled for. In
Thursby and Thursby (2008) we formulate a series of econometric models to explain
sponsored research funding, publications, citations per publication, and the number
and fraction of basic publications controlling for, among other things, the age of
the faculty, their major field of research (biological sciences, engineering or physical
sciences), gender, whether they have tenure, the year of their PhD and a measure of
the academic quality of their department. The analysis also controls for university
and year. In the funding equations we control for prior year funding as well as
their research output in the prior year and the current level of the other type of
funding.13 The publication, citation and basic regressions control for prior year
funding. In all models we include the following measures of disclosure activity:
disclosure activity in the year before the observation, the cumulative number of
disclosures in prior years, and an indicator of whether the faculty member ever
disclosed during their years in the sample.
While the disclosure variables in the econometrics do not exactly match those

considered in Sections 4.3− 4.5, broadly speaking the results paint the same pic-
ture. We find that those who ever disclose publish significantly more and have
significantly more federal and industry funding. Disclosure in the prior year also
has a signficantly positive effect on these measures of research activity as well as
citations per publication. However, the ever disclose measure of disclosure has no
significant effect on citations per publication.
By including cumulative disclosures, we are able to discern whether long term

disclosure activity is more or less likely to show diversion from traditional research
activity. For example, the number of cumulative disclosures has a negative effect
on federal funding, so that while some disclosure activity is positively related to
funding a great deal of disclosure activity can have a net negative effect. However,
in terms of the number of publications, cumulative disclosures mirror our other
results, that is they increase the number of publications. As with the ever disclose
measure, cumulative disclosures have no effect on citations.
The econometric evidence on disclosure and basic publication is more mixed

and depends on the measure of disclosure and faculty discipline. For the entire
sample, cumulative disclosures have a significantly positive effect on the number
of basic publications and those who ever disclose have a lower fraction of basic

13We use instrumental variables estimation to account for possible simultaneity between sources
of funding.
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research. If we confine attention to only engineering and physical science faculty,
only cumulative disclosure has a significant effect on the number of basic publica-
tions, while for the biological sciences, only ever disclose has a significant positive
effect on the number of basic publications. Nonetheless these results support the
results of Figures 7 and 8 and the simulation results using the production function
specifications 1 and 3 from Section 2.
Regarding the ratio of basic research, the results for engineering and physical

science faculty are more mixed than shown in Figure 10. That is, the ratio of
basic research is significantly lower from those who ever disclose, but cumulative
disclosure is positively related to the ratio of basic research. For the biological
scientists our econometric results are similar to those in Figure 9, in that for only
one measure of disclosure (the number of cumulative disclosures) do we find a
significant difference. In that case the ratio is lower for those with more cumulative
disclosures.
Thus, broadly speaking the econometric results support the notion that while

licensing attracts researchers to applied projects, it also increases overall publi-
cation activity so that in many cases basic publication counts rise. The overall
publication results are quite strong and consistent with the Thursby et al. (2007)
simulation results using production specifications (1) and (3). While we report
mixed results on basic publications depending on disclosure measure, one point is
clear. None of the regressions lend support to the simple "either-or" specification
(4) which predicts a reduction in publication activity. .

5 Conclusion

The central issue we consider is whether university patent licensing, afforded by the
Bayh-Dole Act, has diverted universities away from their basic research mission.
The Act, passed in 1980, was intended to stimulate the transfer of federally funded
research to industry. While statistics on licensing activity suggest that it has served
this purpose, they have also fueled debates as to whether licensing has also led
faculty to abandon basic research agendas. Our evidence, as well as that of others
(Azoulay et al. 2007), suggests that while faculty have increasingly participated
in such commercial activity, the implications for research are not as dire as the
popular press reports (Washburn 2005, Greenberg 2007, and Rae-Dupree 2008).
Taken together, our results on disclosure, funding, and publications (their na-

ture and impact) lend credence to the notion that, rather than diverting faculty
research, licensing is part of a flurry of activities that can be associated with
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fundamental discoveries from fairly basic research. Our earlier example from the
Lindquist Lab is a case in point. From the early 1980s Lindquist’s work focused on
protein function, and in 1993 she published a number of influential papers exam-
ining the role of heat shock proteins and thermotolerance in yeast cells (Parsell et
al. 1993, Xu and Lindquist 1993, Parsell and Lindquist 1993). These three publi-
cations alone have received 1301 citations in ISI tracked journals to date. Her first
patent application was in 1994 (involving mechanisms to reduce stress in plants).
Since then she has been listed as an inventor on 21 other US utility patent ap-
plications, but there is no evidence either of a decline in her publications or their
scientific significance. Since 1994, she has published 143 additional papers which
have received over 10,622 citations in ISI tracked journals. Moreover, all but one of
her publications are in journals rated as a 4 in Narin’s classification. By Lindquist’s
own characterization of her research in our interview, even her papers dealing with
specific diseases report very basic research on the biophysics of protein function.
Our most striking empirical result is the strong positive relationship between

publication and disclosure activity. As shown in Figure 11, Lindquist’s work shows
a similar pattern (albeit measured by publications and patent applications—for
which there would have been disclosures). Publications and patents track each
other quite closely. Interestingly, if one looks at Lindquist’s annual publications
after her first patent, the rate doubled from 5 to 10 per year between 1994 and
2001.
Our results, as well as those of other empirical studies that fail to find a diver-

sion of scientists away from basic research need to be interpreted with care. First,
our measures of basic research may simply be too crude to distinguish basic from
more applied work. Here again our Lindquist example is useful. All but one of
her publications appear in journals listed as a 4 in Narin’s 4-point rating. Yet,
by our conceptual characterization, the work by Outeiro and Lindquist (2003) is
about general protein function while Willingham et al. (2003) reports implications
for specific diseases. For this example, citations may more accurately depict dis-
tinctions, as the general paper has received 125 citations while Willingham et al.
(2003) and the two other papers in the same year on specific diseases received a
total of 207 citations.
Second, none of the empirical work on this topic is capable of discerning whether

scientists have been diverted from purely curiosity driven basic research (Bohr’s
quadrant in the lexicon of Stokes (1997)) to basic research aimed at specific prob-
lems (Pasteur’s quadrant). It is, of course, not clear whether such diversion is
good or bad. Further, existing empirical studies have, of necessity, been primarily
focused on older cohorts of faculty. Recent cohorts may have been attracted to a
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faculty career path in part because of increased licensing activity in universities.
If this is the case diversion of faculty is likely to show up only in future empirical
studies dominated by recent cohorts.
Our conceptual framework has strong policy implications. First, once one goes

beyond the simplistic notion of basic and applied research as distinct, there is no
reason a priori to believe that university licensing should tarnish the basic research
enterprise. Certainly we have found no empirical results suggesting that Bayh-Dole
has compromised university research. Second, the complementarity of basic and
applied research bolsters the National Science Council’s call for increased federal
funding for basic research. If, indeed, much of the basic research conducted readily
improves the productivity of applied research, increased federal funding for univer-
sities will have a larger impact. The same argument also supports the Council’s
recommendation for increased actions by industry, the academic sector, and pro-
fessional organizations to encourage greater intellectual exchange between industry
and academic institutions (National Science Board 2008b). Complementarity also
argues against the wisdom of the NIH ethics ban on consulting.
Also recall that the positive effects of applied activity in our conceptual model

rely on applied research being publishable. In addition, the simulation results we
reported here are based on averages across parameters. If the financial returns to
licensing are extreme they can reduce the amount of basic research (Thursby et al.
2007). Thus, we call into question the notion that universities should count patents
in tenure decisions and annual pay raises. To the extent that applied research is
publishable, counting patents double-counts some aspects of productivity. Also
counting patents increases the returns to licensing, with the potential negative
effects noted above.
In closing, we make two suggestions for further research. First, while we have

not related funding, disclosure, and publication in any causal way, it is quite likely
that the patterns we observe are as much a function of funding as the legal envi-
ronment for licensing. While this has been discussed in other contexts (Cohen et
al. 1998) there is little research in this regard. Second, much of our understanding
of faculty research choices comes from thinking about individual research choices.
But science and engineering is conducted in labs. If, as we suggest, basic science
has not suffered from licensing activity, it may be a result of increased lab funding.
Thus basic research that spawns both further basic and applied questions may
enhance the lab’s ability to attract funding, allowing the lab to take advantage of
economies of scale and/or scope.
It is also important to put our discussion in a broader perspective. The question

of how faculty research is affected by license opportunities is but one of many issues

23



about the interface between university research and commerce. Just in the context
of patent licensing, there are other issues such as how tying up research with
licensed commercial application affects the ability of others to use the research (see,
for example, Cohen and Walsh 2007, Murray and Stern 2007, and Thursby and
Thursby 2008). There are also questions as to how the growth of licensing relates to
aspects of public policy well beyond Bayh-Dole, such as increased patentability of
bioengineering and software inventions enabled by the Supreme Court (Mowery et
al. 2004). We abstract from these issues here. While we are able to relate licensing
activity to faculty funding, we do not examine the extent to which industry funding
for research upfront (that is, sponsored research as opposed to ex post licensing to
industry) can skew either the research itself or its dissemination (Rosenberg and
Nelson 1994). There are also much broader issues related to university funding that
we do not address, such as the pros and cons of a variety of commercial activities
in universities, such as sports, medical services etc. (Bok 2003, Noll 1998).
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Figure 1. Quadrant Model of Scientific Research* 

 
Use oriented 

No Yes 

Curiosity driven 
understanding 

Yes Pure basic research (Bohr) 
Use-inspired basic research 

(Pasteur) 

No   Pure applied research (Edison) 
 

*  Adapted from Stokes ( 1997, p.73) 
 

 
Figure 2. Average Publications 

 

 
• All annual comparisons are statistically significantly different at a 5% level. 
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Figure 3. Average Real Federal Funding 
 

 
• Differences between “Never Disc” and “Disc Period” are significant at a 5% level for 16 years.  
• Differences between “Never Disc” and “Non-Disc Period” are significant at a 5% level for 16 years.  
• Differences between “Disc Period” and “Non-Disc Period” are significant at a 5% level for 11 years; two 

other years are significant at a 10% level. 
 

Figure 4. Averages of Citations per Publication  
 

 
• Differences between “Never Disc” and “Disc Period”) are significant at a 1% level for 14 years; two other 

years are significant at a 10% level.  
• Differences between “Never Disc” and “Non-Disc Period” are significant at a 5% level for 9 years. 
• Differences between “Disc Period” and “Non-Disc Period” are significant at a 5% level for 11 years; two 

other years are significant at a 10% level.   
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Figure 5. Average Number of Basic Publications 
 

 
• Differences between “Never Disc” and “Disc Period” are significant at a 5% level for 12 years. 
• Differences between “Never Disc” and “Non-Disc Period” are significant at a 5% level for only 2 years; 

three other years are significant at a 10% level. 
• Differences between “Disc Period” and “Non-Disc Period” are significant at a 5% level for 7 years; four 

other years are significant at a 10% level. 
 

Figure 6. Average Ratios of Basic Publications to all Publications 
 

 
• Differences between “Never Disc” and “Disc Period” are significant at a 5% level for 10 years; four other 

years are significant at a 10% level. 
• Differences between “Never Disc” and “Non-Disc Period” are significant at a 5% level for only 3 years; 

three other years are significant at a 10% level. 
• Differences between “Disc Period” and “Non-Disc Period” are significant at a 5% level for only 3 years; 

four other years are significant at a 10% level. 
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Figure 7. Biological Sciences Average Number of Basic Publications 

 
• Differences between “Never Disc” and “Disc Period” are significant at a 5% level for 14 years; one other 

year is significant at a 10% level. 
• Differences between “Never Disc” and “Non-Disc Period” are significant at a 5% level for 9 years; two 

other years are significant at a 10% level. 
• Differences between “Disc Period” and “Non-Disc Period” are significant at a 5% level for 6 years; two 

other years are significant at a 10% level. 
 

Figure 8. Engineering and Physical Sciences Average Number of Basic Publications 

 
• Differences between “Never Disc” and “Disc Period” are significant at a 5% level for 6 years; two other 

years are significant at a 10% level. 
• Differences between “Never Disc” and “Non-Disc Period” are significant at a 5% level for only 3 years; 

one other year is significant at a 10% level. 
• Differences between “Disc Period” and “Non-Disc Period” are significant at a 5% level for 6 years; three 

other years are significant at a 10% level. 
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Figure 9. Biological Sciences Average Ratio of Basic Publications to all Publications 

 
• Differences between “Never Disc” and “Disc Period” are significant at a 5% level for only 1 year; one oth-

er year is significant at a 10% level. 
• Differences between “Never Disc” and “Non-Disc Period” are significant at a 5% level for only 2 years; 

one other year is significant at a 10% level. 
• Differences between “Disc Period” and “Non-Disc Period” are significant at a 5% level for only 1 year. 

 
Figure 10. Engineering and Physical Sciences Average Ratio of  

Basic Publications to all Publications 

 
• Differences between “Never Disc” and “Disc Period” are significant at a 5% level for 15 years; one other 

year is significant at a 10% level. 
• Differences between “Never Disc” and “Non-Disc Period” are significant at a 5% level for 15 years. 
• Differences between “Disc Period” and “Non-Disc Period” are significant at a 5% level for only 2 years; 

three other years are significant at a 10% level. 
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Figure 11. Lindquist Count of Publications and Patent Applications 
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