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Abstract

The widely-used estimator of Berry, Levinsohn and Pakes (1995) produces consistent, instrumental-
variables estimates of consumer preferences from a discrete-choice demand model with random
coefficients, market-level demand shocks and endogenous regressors (prices). The nested-fixed-
point algorithm typically used for estimation is computationally intensive, largely because a sys-
tem of market-share equations must be repeatedly numerically inverted. We provide numerical
theory results that characterize the properties of typical nested-fixed-point implementations. We
use these results to discuss several problems with typical computational implementations and, in
particular, cases which can lead to incorrect parameter estimates. As a solution, we recast estima-
tion as a mathematical program with equilibrium constraints (MPEC). In some instances, MPEC
is faster. It also avoids the numerical issues associated with nested inner loops. Several Monte
Carlo and real-data experiments support our numerical concerns about NFP and the advantages
of MPEC. We also discuss estimating static BLP using maximum likelihood instead of GMM.
Finally, we show that MPEC is particularly attractive for forward-looking demand models where
both Bellman’s equation and the market share equations must be repeatedly solved.
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1 Introduction

The discrete-choice class of demand models has become popular in the demand estimation literature

due to the models’ ability to accommodate rich substitution patterns between a potentially large array

of products. The method-of-moments estimator developed in Berry, Levinsohn and Pakes (1995),

hereafter BLP, made an important contribution to this literature by accommodating controls for

the endogeneity of product characteristics (namely prices) without sacrificing the flexibility of these

substitution patterns. BLP consider a random-coefficients, discrete-choice model with market-level

demand shocks that correlate with prices. They construct moment conditions with which they can

address price endogeneity using standard instrumental-variables methods. The approach has had a

large impact: as of October 2008, BLP generated more than 1000 citations in Google Scholar and the

approach has been used in many important empirical studies. However, the estimator is difficult to

program and can take a long time to run on a desktop computer. More importantly, many current

implementations of the estimator are sufficiently vulnerable to numerical inaccuracy that they may

produce incorrect parameter estimates. We summarize some of these computational problems and

propose an alternative procedure that is robust to these sources of numerical inaccuracy.

An important component of BLP’s contribution consists of a computationally feasible approach

to constructing the moment conditions. As in Berry (1994), the main idea is to invert the nonlinear

system of market share equations. BLP and Berry suggest nesting this inversion step directly into

the parameter search. For complex specifications such as random coefficients, this inversion step may

not have an analytic inverse. BLP propose a contraction-mapping routine to solve this system of

equations. This step nests an inner-loop contraction mapping into the parameter search. Following

the publication of Nevo’s (2000b) “A Practitioner’s Guide” to implementing BLP, numerous studies

have emerged using the BLP approach to estimating discrete choice demand systems with random

coefficients.

Our first objective consists of exploring the numerical properties of BLP’s contraction-mapping

approach. We call this contraction-mapping approach the nested-fixed point, or NFP, approach.

The GMM objective function can be called hundreds of times during a numerical optimization over

structural parameters; each call to the objective function requires a call to the nested inner loop.

Therefore, it may be tempting to use a less stringent stopping criterion for the inner loop in order

to speed up estimation. We use numerical theory to show how a less stringent stopping criterion

for the inner loop may cause two types of errors in the parameter estimates. First, in contrast with

closed-form derivatives, numerical derivatives for the optimization routine are dominated by inner-

loop numerical error. This error may cause the routine to search in the wrong direction and to report

incorrect parameter estimates. Second, even methods with closed-form derivatives may falsely stop
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at a point which is numerically close to a local minimum of the objective function, but is in fact not

a local minimum. To illustrate these problems, we construct examples based on real data and data

generated from a known model. In these examples, the errors in the parameter estimates from using

loose tolerances for the NFP inner loop are large.

Our second objective is to propose a new computational method for implementing the BLP estima-

tor that eliminates the inner loop entirely and, thus, eliminates the potential for numerical inaccuracy

discussed above. Following Su and Judd (2007), we recast the BLP problem as a Mathematical

Program with Equilibrium Constraints (MPEC). The MPEC method minimizes the GMM objective

function subject to a system of nonlinear constraints requiring that the predicted shares from the

model equal the observed shares in the data. The minimization of an objective function subject to

nonlinear constraints is a standard exercise in nonlinear programming. We prefer the MPEC approach

over the existing NFP approach for four reasons. First, there is no numerical error from nested calls.

This aspect eliminates the potential for the minimization routine to converge to a point that is not

a local minimum of the true GMM objective function, subject to the constraints within a feasibility

tolerance, usually set by default to be 10−6. Second, by eliminating the nested calls, the procedure

may be faster than the contraction mapping method proposed by BLP. Third, the MPEC algorithm

allows the user to relegate all the numerical operations to a single outer loop that can consist of a

call to a state-of-the-art optimization package. Fourth, the MPEC approach applies to more general

demand models, where no current theoretical result shows a contraction mapping exists.

From a statistical perspective, the MPEC algorithm generates the same estimator as the correctly-

implemented NFP approach. Conceptually, MPEC is just an alternative algorithm to programming

BLP’s original estimator. Therefore, the theoretical results on consistency and statistical inference in

Berry, Linton and Pakes (2004) apply equally to the contraction mapping and MPEC methods. The

related work on identification of the BLP model by Berry and Haile (2008) and Fox and Gandhi (2008)

is also agnostic to the actual computational method used in estimation. Our purpose is therefore not

to criticize rich structural methods for being too complicated. On the contrary, we view structural

methods as a valuable tool in empirical work. Our purpose is to to discuss the potential numerical

problems that can arise with a complex structural demand model and to offer a practical approach

that avoids these problems.

To illustrate the empirical relevance of the numerical theory, we provide three sets of numerical

examples for static BLP. First, we document cases where a loose tolerance for the contraction mapping

in the traditional approach leads to incorrect parameter estimates and/or the failure for the optimiza-

tion routine’s search over parameters to report convergence. The errors in the estimated own-price

elasticities are also found to be large in both real data and in simulated data, and with optimization
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routines that use closed form and numerical derivatives. Further, in one example we show that the

parameter estimates will always converge to the same incorrect point (i.e. a point that is not even a

local minimum), so that a researcher using multiple starting values will not be able to diagnose the

presence of numerical errors in the parameters. We also use this example to show that the alternative

Nelder-Meade or simplex algorithm also always converges to the wrong solution.

In a second set of numerical examples, we explore the relative speed of the traditional NFP

approach (correctly implemented) and MPEC. BLP is an empirical method and the speeds of various

implementations are sensitive to the properties of the data being used. We use numerical theory to

show that the speed of the NFP contraction mapping is bounded above by a function that is linear

in what is known as a Lipschitz constant. We derive an analytic expression for the Lipschitz constant

that depends on the data and the parameter values from the demand model. By playing around with

features of the data and the parameter values that increase the magnitude of the Lipschitz constant,

we conjecture that we can make the NFP inner loop slower. For example, in our sampling experiments

we find that decreasing the outside good share (by raising the utility intercept) decreases the speed

of the NFP estimator. We also find that the speed of NFP in these sampling experiments decreases

dramatically when the Lipschitz constant gets closer to its theoretical upper bound, 1. By contrast,

MPEC’s speed is relatively invariant to the value of the Lipschitz constant. We can construct examples

where MPEC is several times faster than NFP. A concern some might have with MPEC is that its

speed scales poorly with the number of markets in the data. We show numerically that this need not

be true. In contrast, in our Monte Carlo results, we find that NFP scales poorly when the number of

statistical observations increases.

An advantage of the contraction mapping is that is is guaranteed to converge from any starting

value. Alternative methods for the inner loop inversion, that are not guaranteed to converge from any

starting point, may be infeasible in practice. Because the NFP inner loop may be called hundreds

or thousands of times during the parameter search, it would be impractical to check convergence on

each call. Gandhi (2008) derives existence and uniqueness theorems for demand models where the

contraction mapping theorem is unlikely to apply. We expect that MPEC will work in cases where

Gandhi’s existence theorem (or a generalization of that theorem) applies but his uniqueness theorem

does not.

The numerical concerns we raise with the inner loop are magnified as new literatures generalize

BLP demand estimators to economically richer models of consumer behavior. As an extension, we

consider the discrete choice demand system with forward-looking consumers. We look at cases, such as

durable or semi-durable goods markets, where consumers can alter the timing of their purchase decision

based on expectations about future products and prices (Melnikov 2002, Carranza 2006, Hendel and
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Nevo 2007, Gowrisankaran and Rysman 2007, Nair 2007 and Dube, Hitsch and Chintagunta 2008).

Estimating demand using the NFP algorithm now involves three numerical loops, adding yet another

source of numerical error: the outer optimization routine, the inner inversion of the market share

equations, and the inner evaluation of the consumers’ value functions (the Bellman equation) for

each of the many heterogeneous consumer types. The consumer’s dynamic programming problem is

typically solved with a contraction mapping with the same slow rate of convergence as the BLP market

share inversion. Furthermore, Gowrisankaran and Rysman point out that the recursion proposed by

BLP may no longer be a contraction mapping for some specifications of dynamic discrete choice

models. Hence, the market share inversion is not guaranteed to converge to a solution, which, in turn,

implies that the outer optimization routines may not produce the GMM objective function value.

We show that MPEC extends naturally to the case with forward-looking consumers. We optimize

the statistical objective function subject to the constraints that Bellman’s equation is satisfied at all

consumer states and that the market share equations hold. Our approach eliminates both inner loops,

thereby reducing these two sources of numerical error. We produce benchmark results that show that

MPEC can be faster than NFP under realistic data generating processes. We expect the relative

performance of MPEC to improve for even more complex dynamic demand models that nest even

more calls to inner loops (Lee 2008 and Schiraldi 2008).

Our work herein focuses primarily on numerical algorithms for computing the BLP GMM estima-

tor.1 A recent stream of literature has also studied the statistical efficiency of the GMM estimator

itself and has explored likelihood-based approaches that use additional structure on the joint distribu-

tion of demand and supply (c.f. Yang et al 2003 and Jiang et al 2008). Using aggregate data, Jiang et

al (2008) propose an alternative Bayesian approach to BLP using Markov Chain Monte Carlo methods

and report much better small sample properties than the GMM estimates. In general, likelihood-based

approaches still require the numerical inversion of the system of market shares,2 subjecting them to

this additional source of numerical error that MPEC avoids. In our extensions, we discuss how one

could use MPEC to estimate demand parameters by maximizing the joint likelihood of shares and

prices.

Our assessment of BLP’s numerical properties is also broadly related to the recent work by Knittel

and Metaxoglou (2008). They explore the potential multiple local minima property of the BLP

objective function. Our goal is to study the numerical accuracy and speed of finding an apparent
1Our work on the BLP estimator operates in parallel to Petrin and Train’s (2008) control-function approach, which

avoids the inner loop by utilizing additional non-primitive assumptions relating equilibrium prices to the demand
shocks. Our proposed MPEC approach also avoids the need for numerical inversion while remaining agnostic about the
underlying process (involving the supply side) generating prices and demand shocks – the approach is statistically the
same as BLP’s original formulation.

2The transformation-of-variables theorem involves the evaluation of a Jacobian that requires computing the demand
shocks numerically.
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global minimum. However, with using multiple starting points, our fakedata Monte Carlo experiments

routinely find that BLP can recover the true structural parameters using data generated by the model.

In a short digression, we examine the same cereal dataset used by Knittel and Metaxoglou. Using

a state-of-the-art solver, we choose 50 starting values and find the same local minimum each time,

which is the global minimum found by Knittel and Metaxoglou.

The remainder of the paper is organized as follows. We discuss BLP’s model in Section 2 and their

statistical estimator in Section 3. Section 4 provides a theoretical analysis of the numerical properties

of BLP’s traditional NFP algorithm. Section 5 presents examples of practices leading to errors in

the estimates of parameters. Section 6 presents our alternative MPEC algorithm. Section 7 provides

Monte Carlo evidence about the relative performances of the NFP and MPEC algorithms. The last

two sections discuss extensions where MPEC’s advantages over NFP are magnified. First, we discuss

maximum likelihood estimation, where the need to compute the Jacobian makes MPEC especially

useful. Second, we discuss the burgeoning literature on dynamic consumer demand.

2 The Demand Model

In this section, we present the standard random-coefficients, discrete-choice demand model. In most

empirical applications, the researcher has access to market shares for each of the available products,

but does not have consumer-level information.3 The usual modeling solution is to build a system of

market shares that is consistent with an underlying population of consumers independently making

discrete choices among the various products. The population is in most instances assumed to consist

of a continuum of consumers with known mass.

Formally, each market t = 1, ..., T has a mass Mt of consumers who each choose one of the

j = 1, ..., J products available, or opt not to purchase. Each product j is described by its characteristics

(xj,t, ξj,t, pj,t) . The vector xj,t consists of K product attributes; let xt be the collection of the vectors

xj,t for all J products, The scalar ξj,t is a vertical characteristic that is observed by the consumers

and firms, but is unobserved by the researcher. ξj,t can be seen as a market- and product-specific

demand shock that is common across all consumers in the market. For each market, we define the

J-vector ξt = (ξ1,t, ..., ξJ,t)
′
. Finally, we denote the price of product j by pj,t and the vector of the J

prices by pt,

Consumer i in market t obtains the following indirect utility from purchasing product j

ui,j,t = β0
i + x′j,tβ

x
i − β

p
i pj,t + ξj,t + εi,j,t. (1)

3See Berry, Levinsohn and Pakes (2004) as well as Petrin (2002) for methods incorporating consumer-level data.
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The utility of the outside good, or “no-purchase” option, is ui,0,t = εi,0,t. The consumer i′s preferences

include of the parameter vector βxi , the tastes for the K characteristics, and the parameter βpi , the

marginal utility of income, i′s “price sensitivity”. Finally, εi,j,t is an additional idiosyncratic product-

specific shock. Let εi,t be the vector of all J + 1 product-specific shocks for consumer i.

Each consumer is assumed to pick the product j that gives her the highest utility. If tastes,

βi =
(
β0
i , β

x
i , β

p
i

)
and εi,t, are independent draws from the distributions Fβ (β; θ) , with unknown

parameters θ, and Fε(ε), respectively, the market share of product j is

sj (xt, pt, ξt; θ) =
∫
{βi,εi|ui,j≥ui,j′ ∀ j′ 6=j}

dFβ (β; θ) dFε (ε) .

To simplify aggregate demand estimation, we follow the convention in the literature and assume ε is

distributed type I extreme value, enabling one to integrate it out analytically,

sj (xt, pt, ξt; θ) =
∫
β

exp
(
β0 + x′j,tβ

x − βppj,t + ξj,t
)

1 +
∑J
k=1 exp

(
β0 + x′k,tβ

x − βppk,t + ξk,t

)dFβ (β; θ) . (2)

This is the random coefficient logit model.

In BLP, the goal is to estimate the parameters θ characterizing the distribution of consumer

random coefficients, Fβ (β; θ). McFadden and Train (2000) prove that a flexible choice of the family

Fβ (β; θ) (combined with a polynomial in xj,t and pj,t) allows the random coefficient logit model to

approximate arbitrarily any vector of choice probabilities (market shares) originating from a random

utility model with an observable linear index (meaning no ξj,t term). Bajari, Fox, Kim and Ryan (2008)

prove the nonparametric identification (no finite-dimensional parameter θ) of Fβ (β) in the random

coefficient logit model without aggregate demand shocks, using data on market shares and product

characteristics. Berry and Haile (2008) prove the nonparametric identification of the distribution of

utilities in each market (but not structural functional forms like the distribution of the parameters

β in x
′

j,tβ or u in a nonparametric u (xj,t)) in the entire BLP demand model, including allowing for

aggregate shocks. Fox and Gandhi (2008) have an alternative identification proof for heterogeneity

that does identify β in in x
′

j,tβ or u in a nonparametric u (xj,t), and which can be adapted for market

level demand shocks in the same way as Berry and Haile. However, in most applications, more

structure is imposed on the family of distributions characterizing Fβ (β; θ) through the choice of the

family Fβ (β; θ), with each family member indexed by the estimable finite vector of parameters θ. For

example, BLP assume that Fβ (β; θ) is the product of K independent normals, with θ = (µ, σ), the

vectors of means and standard deviations for each component of the K normals.

Typically, the integrals in (2) are evaluated by Monte Carlo simulation. The idea is to generate
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ns draws of (β, α) from the distribution Fβ (β; θ) and to simulate the integrals as

ŝj (xt, pt, ξt; θ) =
1
ns

ns∑
r=1

exp
(
β0,r + x′j,tβ

x,r − βp,rpj,t + ξj,t
)

1 +
∑J
k=1 exp

(
β0,r + x′k,tβ

x,r − βp,rpk,t + ξk,t

) . (3)

In principle, many other numerical methods could be used to evaluate the market-share integrals

(Judd 1998, Chapters 7–9).

While a discrete-choice model with heterogeneous preferences dates back at least to Hausman and

Wise (1978), the inclusion of the aggregate demand shock, ξj,t, was introduced by Berry (1994) and

BLP. The demand shock ξj,t is the natural generalization of demand shocks in the textbook linear

supply and demand model. We can see in (2) that without the shock, ξj,t = 0∀ j, market shares

are deterministic functions of the x’s and p’s. In consumer level data applications, the econometric

uncertainty is typically assumed to arise from randomness in consumer tastes, ε. This randomness

washes out in a model that aggregates over a sufficiently large number of consumer choices (here a

continuum). A model without market-level demand shocks will not be able to fit data on market

shares across markets, as the model does not give full support to the data. In the next section, we

discuss estimation challenges that arise when ξj,t is included in the model.

3 The BLP GMM Estimator and the MPEC Alternative

We now briefly discuss the GMM estimator typically used to estimate the vector of structural param-

eters, θ. Like the textbook supply and demand model, the demand shocks, ξj,t, force the researcher

to deal with the potential simultaneous determination of price and quantity. To the extent that firms

observe ξj,t and condition on it when they set their prices, the resulting correlation between pj,t and

ξj,t will complicate the estimation of (2). This correlation introduces endogeneity bias.

BLP address the endogeneity of price in demand with a vector of D instrumental variables, zj,t.

They propose a GMM estimator based on the D moment conditions, E [ξj,t | zj,t] = 0. These instru-

ments can be product-specific cost shifters, although frequently other instruments are used because of

data availability. Typically the K non-price characteristics in xj,t are also assumed to be mean inde-

pendent of ξj,t and hence to be valid instruments, although this is not a requirement of the statistical

theory. The estimator does not impose a parametric distributional assumption on the demand shocks

ξj,t, besides the identifying assumption E [ξj,t | zj,t] = 0. To summarize, the data the researcher has

are
{

(xj,t, pj,t, sj,t, zj,t)
J
j=1

}T
t=1

for J products in each of T markets.

To form the empirical analog of E [ξj,t | zj,t] or the often implemented moments E [ξj,tzj,t], the

researcher needs to find the implied values of the demand shocks, ξj,t, corresponding to a guess for
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θ. The system of market shares, (2), defines a mapping between the vector of demand shocks and

the market shares : St = s (xt, pt, ξt; θ) , or St = s (ξt; θ) for short. Berry (1994) and Gandhi (2008)

prove that s has an inverse, s−1, such that any observed vector of shares can be explained by a unique

vector ξt (θ) = s−1 (St; θ). An individual demand shock ξj,t given by this vector is s−1
j,t (St; θ). For

the random coefficients logit specification in BLP, we can compute ξt using the contraction mapping

proposed in BLP. We discuss the properties of the contraction mapping in the next section.

A GMM estimator can now be constructed by using the empirical analog of the D moment con-

ditions,

g (ξ (θ)) =
1
T

T∑
t=1

J∑
j=1

ξj,t (θ) zj,t =
1
T

T∑
t=1

J∑
j=1

s−1
j,t (St; θ) zj,t,

Let S be the vector of market shares in all markets and let s−1 (S; θ) be the implied demand shocks

in all markets. For some weighting matrix, W, we define the GMM estimator as the vector, θGMM,

that solves the problem

min
θ
g
(
s−1 (S; θ)

)′
Wg

(
s−1 (S; θ)

)
. (4)

The statistical efficiency of the GMM estimator can be improved by using other, nonlinear functions

of zj,t in the vector of moments, finding more instruments, using an optimal weighting matrix in a

second step, or using an efficient one-step method such as continuously-updated GMM or empirical

likelihood. However, as we show in the following sections, the numerical precision of the algorithms

used to compute Q (θ) may be equally or more important from a practical perspective than matters

of statistical efficiency.

To avoid any suspense, our alternative MPEC approach is the problem

min
θ,ξ

g (ξ)′Wg (ξ)

subject to s (ξ; θ) = S
,

where g (ξ) = 1
T

∑T
t=1

∑J
j=1 ξj,tzj,t. In our constrained minimization formulation, we minimize over

both the structural parameters θ and the demand shocks ξ. Below we will prove that any local

minimum to (4) is a local minimum to the MPEC problem, if s−1 (S; θ) exists and is unique. However,

first we will explore some of the problems with NFP.

4 A Theoretical Analysis of the NFP Algorithm

In this section, we theoretically analyze the numerical properties of BLP’s method. The GMM esti-

mator described in section 3 consists of an outer loop to minimize the objective function, Q (θ) , and
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an inner loop to evaluate this function. Each evaluation of the GMM objective function, Q (θ) , nests

a call to a contraction mapping. We call the complete GMM estimator that nests the inner loop the

nested fixed point, or NFP, method. Each time the minimization routine calls Q (θ) , the contraction

mapping is called T times, once for each market t. If the researcher does not calculate the first and

second derivatives of Q (θ) analytically, many local minimization routines approximate the gradient

and Hessian using finite differences. The use of numerical derivatives will require many additional

calls to Q (θ) and hence the contraction mapping, proportionately to the dimension of θ.

From a practical perspective, the speed of optimization is determined almost entirely by the number

of calls to the contraction mapping and the computation time associated with each run of the inner

loop. For these reasons, some practical applications have used a fairly loose convergence criteria to

improve speed. In the subsections below, we first provide formal results on the speed of convergence

of the inner loop.4 We then show formally how numerical error from the inner loop can propagate

into the outer loop, potentially leading to incorrect parameter estimates. One goal of this section is to

provide guidelines for researchers in their selection of convergence criteria for the numerical algorithms

used to estimate θ. We also theoretically analyze the speed of the NFP algorithm and discuss when

it is likely to be slow.

4.1 The Convergence Rate of the NFP Contraction Mapping

In this section, we derive the rate of convergence of the contraction mapping proposed by BLP to

invert the demand system. Recall from section 3 that the evaluation of the GMM criterion, Q (θ) ,

requires us to evaluate the inverse: ξt (θ) = s−1 (St; θ) . For a given θ, the inner loop of the NFP

estimator solves the share equations for the demand shocks ξ by iterating the contraction mapping

ξh+1
t = ξht + logSt − log s

(
ξht ; θ

)
, t = 1, . . . , T, (5)

until the successive iterates ξh+1
t and ξht are sufficiently close.5 Formally, we choose a small number,

for example 10−8 or 10−10, for εin as the inner loop tolerance level and require ξh+1
t and ξht to satisfy

the stopping rule ∥∥ξht − ξh+1
t

∥∥ ≤ εin (6)

4Davis (2006) suggests another inner-loop method based on a nested optimization problem that might converge faster
than BLP’s contraction mapping. One could replace the contraction mapping with Newton’s method or some other
solver for a system of nonlinear equations. However, any inner loop approach has the potential to propagate numerical
error into the objective function, and hence potentially the parameters.

5In our implementation of NFP, we iterate over exp(ξ) to speed up the computation because taking logarithms in
MATLAB is slow. However, depending on the magnitude of ξ, the use of the exponentiated form exp(ξ) in a contraction
mapping can lose 3 to 5 digits of accuracy in ξ, and as a result, introduce an additional source of numerical error. For
example, if

˛̨
ξht
˛̨

= −8 and
˛̨̨
exp

`
ξht
´
− exp

“
ξh+1
t

”˛̨̨
= 10−10, then

˛̨̨
ξht − ξ

h+1
t

˛̨̨
= 2.98× 10−7.
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for the iteration h+1 where we terminate the contracting mapping (5).6 Let ξt (θ, εin) denote the first

ξh+1
t such that the stopping rule (6) is satisfied. The researcher then uses ξt (θ, εin) to approximate

ξt (θ) .

Researchers often find it tempting to loosen the inner loop tolerance if the NFP contraction map-

ping is slow. Below, we derive formally the theoretical rate of convergence of the inner loop call to

the contraction mapping in terms of the economic parameters of the BLP demand model. Numerical

theory proves that the convergence of a contraction mapping is linear at best. Linearly convergent

algorithms are typically considered to be slow compared to alternative methods, such as Newton’s

method, for solving nonlinear equations. The numerical performance of a contraction mapping is also

sensitive to the stopping tolerance criteria εin. We now state the contraction-mapping theorem and

discuss how to calculate the linear convergence rate for the inner-loop contraction mapping (5) of the

BLP estimator.

Theorem 1. Let Tθ : Rn → Rn be an iteration function and let Sr =
{
ξ |
∥∥ξ − ξ0

∥∥ < r
}
be a ball

of radius r around a given starting point ξ0 ∈ Rn. Assume that Tθ is a contraction mapping in Sr,

meaning

ξ, ξ̃ ∈ Sr ⇒
∥∥∥Tθ (ξ)− Tθ

(
ξ̃
)∥∥∥ ≤ L (θ)

∥∥∥ξ − ξ̃∥∥∥ ,
where L (θ) < 1 is called a Lipschitz constant. Then if

∥∥ξ0 − Tθ
(
ξ0
)∥∥ ≤ (1− L (θ)) r,

the multidimensional equation ξ = Tθ (ξ) has a unique solution ξ∗ in the closure of Sr, S̄r =

{ξ | ‖ξ − ξ0‖ ≤ r}. This solution can be obtained by the convergent iteration process ξh+1 = Tθ
(
ξh
)
, forh =

0, 1, . . . The error at the hth iteration is bounded:

∥∥ξh − ξ∗∥∥ ≤ ∥∥ξh − ξh−1
∥∥ L (θ)

1− L (θ)
≤
∥∥ξ1 − ξ0

∥∥ L (θ)h

1− L (θ)
.

The Lipschitz constant, L (θ) , is a measure of the rate of convergence. At every iteration, the upper

bound for the norm of the error is multiplied by a factor equal to L (θ). A proof of this theorem can

be found in many textbooks, such as Dahlquist and Björck (2008). The following theorem shows how

a Lipschitz constant for a mapping Tθ (ξ) can be expressed in terms of ∇Tθ (ξ), the Jacobian of Tθ (ξ).

We then use the Lipschitz constant result to assess an upper bound for the performance of the BLP

NFP estimator.

Theorem 2. Let the function Tθ (ξ) : Rn → Rn be differentiable in a convex set D ⊂ Rn. Then
6‖(a1, . . . , ab)‖ is a distance measure, such as max (a1, . . . , ab).

11



L (θ) = max
ξ∈D
‖∇Tθ (ξ)‖ is a Lipschitz constant for T .

The contraction mapping in the BLP estimator is

Tθ (ξ) = ξ + logS − log s (ξ; θ) .

We define a Lipschitz constant for the BLP contraction mapping T given structural parameters θ as

L(θ) = max
ξ∈D
‖∇Tθ (ξ)‖ = max

ξ∈D
‖I −∇ (log sj (ξt; θ))‖ ,

where

∂ log
“
sj (ξt; θ)

”
∂ξlt

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

nsX
r=1

264
0B@ exp

“
β0,r + x′j,tβ

x,r − βp,rpj,t + ξj,t

”
1 +

PJ
k=1 exp

“
β0,r + x′

k,t
βx,r − βp,rpk,t + ξk,t

”
1CA −

0B@ exp
“
β0,r + x′j,tβ

x,r − βp,rpj,t + ξj,t

”
1 +

PJ
k=1 exp

“
β0,r + x′

k,t
βx,r − βp,rpk,t + ξk,t

”
1CA

2375
Pns
r=1

exp
“
β0,r+x′

j,t
βx,r−βp,rpj,t+ξj,t

”
1+
PJ
k=1 exp

“
β0,r+x′

k,t
βx,r−βp,rpk,t+ξk,t

” .
, if j = l

−
nsX
r=1

264
0B@ exp

“
β0,r + x′j,tβ

x,r − βp,rpj,t + ξj,t

”
1 +

PJ
k=1 exp

“
β0,r + x′

k,t
βx,r − βp,rpk,t + ξk,t

”
1CA
0B@ exp

“
β0,r + x′l,tβ

x,r − βp,rpl,t + ξl,t

”
1 +

PJ
k=1 exp

“
β0,r + x′

k,t
βx,r − βp,rpk,t + ξk,t

”
1CA
375

Pns
r=1

exp
“
β0,r+x′

j,t
βx,r−βp,rpj,t+ξj,t

”
1+
PJ
k=1 exp

“
β0,r+x′

k,t
βx,r−βp,rpk,t+ξk,t

”
, if j 6= l.

.

For a given vector of structural parameters θ, L(θ) is the Lipschitz constant for the NFP inner loop. It

is difficult to get precise intuition for the Lipschitz constant as it is the norm of a matrix. But, roughly

speaking, the Lipschitz constant is related to the matrix of own and cross demand elasticities for the

demand shocks, ξ, as the jth element along the main diagonal is ∂sj,t
∂ξj,t

1
sj,t

. In section 7.3 below, we

use the Lipschitz constant to distinguish between simulated datasets where we expect the contraction

mapping to perform relatively slowly or fast.

4.2 Determining the Stopping Criteria for the Outer Loop in NFP

This subsection provides guidance on how to select the outer-loop tolerance to ensure the outer loop

will converge for a given inner-loop tolerance. In particular, we show how numerical error from the

inner loop can propagate into the outer loop. We characterize the corresponding numerical inaccuracy

in the criterion function, Q (θ) , and its gradient. This analysis then informs the decision of what

tolerance to use for the outer-optimization loop to ensure that the optimization routine is able to

report convergence. This subsection focuses on ensuring the outer loop can actually converge given

the numerical inaccuracy of the inner loop. In a later section, we show how this numerical inaccuracy

in Q(θ) and its gradient can generate numerical inaccuracy in the parameter estimates of θ. In some

instances, this inaccuracy could imply that the reported estimates are not a true local minimum of

Q(θ).
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Recall that the outer loop of the BLP estimator consists of minimizing the GMM objective function

(4). The convergence of this outer loop depends on the choice of an outer-loop tolerance level, denoted

by εout. In theory, εout should be set to a small number, such as 10−5 or 10−6 . In practice, we have

found cases in the BLP literature where 10−2 was used, possibly to offset the slow performance or

non-convergence of the minimization routine. As we illustrate in our Monte Carlo simulations below,

a loose stopping criterion for the outer loop can cause the routine to terminate early and produce

incorrect point estimates. In some instances, these estimates may not even satisfy the first-order

conditions for a local minimizer.

We denote by ξ (θ, εin) the approximated demand shock corresponding to a given value for θ and

an inner-loop tolerance εin that determines the inner-loop stopping rule, (6). We also denote the true

demand shock as ξ (θ, 0). We let Q (ξ (θ, εin)) be the programmed GMM objective function with the

inner-loop tolerance εin. This more general notation allows us to examine numerical inaccuracy with

the programmed inner loop, which is not present in the statistical theory of GMM.

First, we characterize the bias in evaluating the GMM objective function and its gradient at any

structural parameters, θ, when there exist inner-loop numerical errors. In a duplication of notation,

let Q (ξ) be the GMM objective function for an arbitrary guess of ξ. We also use the big-O notation,

which is a convention in the mathematics literature and is described in many textbooks such as van

der Vaart (2000).

Theorem 3. Let L (θ) be the Lipschitz constant for the inner-loop contraction mapping. For any

structural parameters θ and given a the inner-loop tolerance εin,

1. |Q (ξ(θ, εin))−Q (ξ (θ, 0))| = O
(

L(θ)
1−L(θ)εin

)
2.
∥∥∇θQ (ξ (θ))

∣∣
ξ=ξ(θ,εin) −∇θQ (ξ (θ))

∣∣
ξ=ξ(θ,0)

∥∥ = O
(

L(θ)
1−L(θ)εin

)
,

assuming both
∥∥∥∂Q(ξ)

∂ξ

∣∣
ξ=ξ(θ,0)

∥∥∥ and
∥∥∥∂∇θQ(ξ(θ))

∂ξ

∣∣
ξ=ξ(θ,0)

∥∥∥ are bounded.

The proof is in the appendix. Theorem 3 states that the biases in evaluating the GMM objective

function and its gradient at any structural parameters are of the same order as the inner-loop tolerance

adjusted by the Lipschitz constant for the inner-loop contraction mapping. Recall that a smooth

optimization routine reports convergence when the gradient of the objective function is close to zero.

In the next theorem, we analyze the numerical properties of the gradient. The theorem indicates

circumstances in which the outer loop might report convergence despite a numerically inaccurate

inner loop.7 We also show that the choice of the outer-loop tolerance, εout, should depend on the

inner-loop tolerance εin and the Lipschitz constant L (θ). This is important because using a tight

outer loop tolerance eliminates spurious local minima.
7The numerical error in the gradient convergence test may encourage some researchers to use non-smooth optimization

methods. See section 5.6.
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Theorem 4. Let L(θ) be the Lipschitz constant of the inner-loop contraction mapping for a given θ

and let εin be the inner-loop tolerance. Let θ̂(εin) = arg max
θ

{Q (ξ (θ, εin))} . In order for the outer-loop

GMM minimization to converge, the outer-loop tolerance εout should be chosen to satisfy εout = O (εin) ,

assuming
∥∥∥∇2

θQ (ξ)
∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥ is bounded.

The proof of this theorem shows that if εin is large (the inner loop is loose), then the gradient will

be numerically inaccurate. Therefore, εout needs to be large (the outer loop must be loose) for the

optimization routine to converge. The proof is in the appendix.

An immediate consequence of these results is that the researcher may be tempted to select toler-

ances based on the convergence of the algorithms, rather than the precision of the estimates themselves.

In situations where the inner loop is slow, a researcher may loosen the inner-loop tolerance, εin, to

speed up the convergence of the contraction mapping. By Theorem 4, the resulting imprecision in

the gradient could prevent the optimization routine from detecting a local minimum and converging.

In turn, the researcher may be tempted to loosen the outer-loop tolerance to ensure convergence of

the minimization routine. Besides concerns about imprecision in the estimates, raising εout could also

generate an estimate that is not in fact a local minimum.

4.3 Finite-Sample Bias in Parameter Estimates from the Inner-Loop Nu-

merical Error

In this section, we discuss the small-sample biases associated with inner-loop numerical error. Assume,

given εin, that we have chosen εout to ensure that the algorithm is able to report convergence. Let

θ∗ = arg max
θ

{Q (ξ(θ, 0)} be the maximizer of the finite-sample objective function without numerical

error. We study the upper bound on the numerical errors in the final estimates, θ̂(εin) − θ∗, from

using an inner loop-tolerance εin.

Theorem 5. Assuming
∥∥∥∇ξQ (ξ)

∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥ is bounded, the difference between the finite-sample

maximizers with and without inner loop error satisfies

O

(∥∥∥θ̂ (εin)− θ∗
∥∥∥2
)
≤
∣∣∣Q(ξ (θ̂ (εin) , εin

))
−Q (ξ (θ∗, 0))

∣∣∣+O

 L
(
θ̂ (εin)

)
1− L

(
θ̂ (εin)

)εin
 .

The proof is in the appendix. The right side of the inequality provides an upper bound for the order of

the square of the numerical error in the parameters. There are two terms in this upper bound. The first

term, |Q (ξ (εin, εin))−Q (ξ (θ∗, 0))|, is the bias in the GMM function evaluated at the finite-sample

true and estimated parameter values.8 The second term arises from ξ
(
θ̂ (εin) , εin

)
− ξ

(
θ̂ (εin) , 0

)
,

8This term is related to a formalization of folk knowledge in the numerical-optimization literature that if a function
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the bias in demand shocks with and without the inner-loop error, is of the same of as
L(θ̂(εin))

1−L(θ̂(εin))εin.

The “2” in the exponent of
∥∥∥θ̂ (εin)− θ∗

∥∥∥2

implies that in the worst case, the significant digits of the

parameter estimates are about only half of that of bias in the objective values or that of the inner-loop

tolerance.9

While the bound in Theorem 5 is not always sharp or large, in our Monte Carlo experiments below,

we will show that the parameter errors associated with improper minimization and failure to detect

convergence are more severe issues in practice.10

4.4 Large Sample Bias from the Inner-Loop Numerical Error

The previous section focused only on numerical errors for a finite data set. We now use statistical

theory to examine the large-sample properties of the BLP estimator using the NFP algorithm. Be-

fore, θ∗ was the true minimizer of the finite-sample GMM objective function without any inner-loop

numerical errors. Now instead consider θ0, the true parameters in the data generating process. Even

a researcher with a perfect computer program will not be able to recover θ0 because of statistical

sampling error. Here we explore how numerical errors in the inner loop affect the consistency of the

BLP estimator.

Recall that θ̂ (εin) corresponds to the minimizer of Q (ξ (θ, εin)) , the biased GMM objective func-

tion with the inner-loop tolerance εin. Let Q̄ (ξ (θ, εin)) = E [Q (ξ (θ, εin))] be the probability limit

of Q (ξ (θ, εin)), as either T → ∞ or J → ∞, as in Berry, Linton and Pakes (2004). Clearly,

θ0 = arg min Q̄ (ξ (θ, 0)) if the BLP model is identified.

Let asymptotics be in the number of markets, T , and let each market be an iid observation. By

standard consistency arguments (Newey and McFadden 1994), θ∗ will converge to θ0 if Q (ξ (θ, 0))

converges to Q̄ (ξ (θ, 0)) uniformly, which is usually the case with a standard GMM estimator. Further,

the rate of convergence of the estimator without numerical error from the inner loop is the standard

parametric rate,
√
T . By the triangle inequality,

∥∥∥θ̂ (εin)− θ0
∥∥∥ ≤ ∥∥∥θ̂ (εin)− θ∗

∥∥∥+
∥∥θ∗ − θ0

∥∥ ≤ O

√√√√√∣∣∣Q(ξ (θ̂ (εin) , εin

))
−Q (ξ (θ∗, 0))

∣∣∣+
L
(
θ̂ (εin)

)
1− L

(
θ̂ (εin)

)εin
+O

(
1/
√
T
)
.

(7)

to be optimized has error η, then the minimizer of the function with error could have error of √η; see Chapter 8 in Gill,
Murray and Wright (1981).

9Ackerberg, Geweke and Hahn (Theorem 2, 2009) studied the case where the objective function is differentiable in
the equivalent of inner-loop error and found a linear rate. The differentiability of the objective function with respect to
inner-loop error has not been established for the NFP objective function and assuming differentiability could potentially
result in different conclusions. We allow for non-differentiability and find a square-root upper bound.

10An even tighter inner-loop tolerance is required when finite-difference numerical derivatives are used instead of
analytic derivatives, as we show below. Also, we discussed above about why tighter tolerances are needed when the
contraction mapping uses exp (ξj) instead of ξj directly. In our experiments, we use εin = 10−14 for the latter reason.

15



The asymptotic bias due to numerical error in the inner loop persists and does not shrink asymptoti-

cally. This is intuitive: inner-loop error would introduce numerical errors in the parameter estimates

even if the population data were used.

4.5 Loose Inner-Loop Tolerances and Numerical Derivatives

Most scholars use gradient-based optimization routines, as perhaps they should given that the GMM

objective function is smooth.11 Gradient-based optimization requires derivative information, by def-

inition. One approach is to derive algebraic expressions for the derivatives and then to code them

manually. Our results above assume that the researcher’s optimizer has information on the exact

derivatives. However, in many applications, such as the dynamic demand model we study below,

calculating and coding derivatives can be very time consuming. In these situations, researchers may

choose to use numerical derivatives. The gradient is approximated by

∇dQ (ξ (θ, εin)) =
{
Q (ξ (θ + dek, εin))−Q (ξ (θ − dek, εin))

2d

}|θ|
k=1

, (8)

where d is a perturbation to an element of θ and and ek is a vector of 0’s, except for a 1 in the kth

position of ek. As d→ 0, ∇dQ (ξ (θ, εin)) converges to ∇Q (ξ (θ, εin)), the numerically accurate deriva-

tive of ∇Q (ξ (θ, εin)). However, the ultimate goal of estimation is to minimize the objective function

without numerical error. For this, we need the derivatives without numerical error, ∇Q (ξ (θ, 0)),

although that object is not available on the computer.

Lemma 9.1 in Nocedal andWright (2006) shows that the numerical error in the gradient is bounded,

‖∇dQ (ξ (θ, εin))−∇Q (ξ (θ, 0))‖∞ ≤ O
(
d2
)

+
1
d
O

(
L (θ)

1− L (θ)
εin

)
.

There are two terms in this bound. The O
(
d2
)
term represents the standard error that arises

from numerical differentiation, (8). As d → 0, the O
(
d2
)
term converges to 0. The second term

1
dO
(

L(θ)
1−L(θ)εin

)
arises from the numerical error in the objective function, for a given εin > 0. The

O
(

L(θ)
1−L(θ)εin

)
term comes from part 1 of Theorem 3. If 1

dO
(

L(θ)
1−L(θ)εin

)
is relatively large, as it

is when the inner-loop tolerance is loose, then the bound on the error in the gradient is large. In

this case, a gradient-based routine can search in the wrong direction, and end up stopping at a pa-

rameter far from a local minimum. Therefore, combining loose inner-loop tolerances and numerical

derivatives may produce an extremely unreliable solver. Note that setting d → 0 will send the term
1
dO
(

L(θ)
1−L(θ)εin

)
→ ∞. So setting d to be extremely small will only exacerbate the numerical error

arising from using a loose inner-loop tolerance.
11See section 5.6 for why we do not prefer non-gradient methods.
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5 Parameter Errors from Loose Inner-Loop Tolerances in the

NFP Algorithm

This section presents evidence that using loose tolerances in the NFP inner loop can lead to incorrect

parameter estimates. We show that parameter errors can arise both from fake data and field data. We

use the fake data to show that a combination of numerical derivatives and loose inner-loop tolerances

can lead to grossly incorrect parameter estimates. We use the field data to show that wrong parameter

estimates can arise even with closed-form derivatives. Both the fake data and real data results are

examples: there is no guarantee that any given dataset will combine with a poor implementation of

the NFP algorithm to produce incorrect parameter estimates. However, we only need examples in

order to show that NFP with loose inner-loop tolerances can produce incorrect parameter estimates.

5.1 NFP Algorithm Implementations

For all NFP implementations, we examine the one-step GMM estimator with Nevo’s (2000) suggestion

of using the weighting matrix W = (Z ′Z)−1, where Z is the TJ ×D matrix of instruments zj,t,k.12

We use one fake dataset and one real dataset to show that NFP with loose inner loop tolerances can

lead to incorrect parameter estimates.

We use three implementations of NFP for our real data and fake data tests. We use the same data

and set of starting values for all three implementations. We use our numerical theory results from

section 4 to guide us in the selection of inner- and outer-loop tolerances for the NFP algorithm. To

assess the importance of those findings, we construct three scenarios which we examine for each Monte

Carlo experiment. In the first scenario, we explore the implications of a tight outer-loop tolerance, set

at εout = 10−6, and a loose inner-loop tolerance, set at εin = 10−4. The former outer-loop tolerance is

the default setting for most state-of-the-art optimization algorithms. However, from our numerical-

theory results, we know the latter inner-loop tolerance is too large. One could think of this scenario

as representing the “frustrated researcher” who loosens the inner loop to speed the apparent rate of

convergence. In the second scenario, we explore the results from Theorem 4, whereby the loose inner-

loop tolerance could, in turn, prevent the outer loop from converging. Specifically, we keep εin = 10−4

and set εout = 10−2. One can think of this scenario as representing the attempt of the researcher to

loosen the outer loop to force it to converge, even though in practice the converged point may not

actually satisfy the first-order conditions. In our third scenario, we implement the “best practice”

settings for the NFP algorithm with εin = 10−14 and εout = 10−6.13

12We choose a simple weighting matrix because our focus is on comparing algorithms, not finding the most statistically
efficient estimator.

13We choose 10−14 because it is tighter than the usual default outer-loop tolerance, 10−6. We are looser than 10−12

for the reasons stated in footnote 5.
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For all implementations of NFP, we use the same programming environment (MATLAB) and

the same optimization package (KNITRO using the TOMLAB interface). We selected MATLAB

because this is a commonly-used software package among practitioners. We also selected the KNITRO

optimization package instead of MATLAB’s built-in optimization routines as the former is a highly-

respected, state-of-the-art solver in the optimization community (Byrd, Nocedal and Waltz 1999).14

For our fake data example, we use numerical derivatives. For our real data example, we also supply

derivatives for each algorithm because all local optimization methods improve if the user supplies

exact derivatives of the objective function.15

We also customized several aspects of the NFP algorithm to increase speed. In the case of NFP, the

most notable speed improvements came from exploiting as much as possible the built-in linear-algebra

operations (“vectorization”) for the inner loop. In addition, we exploited the normality assumption

for Fβ (β; θ) to concentrate the means out of the parameter search under the NFP algorithm, as

suggested in Nevo (2000b). Therefore, the NFP algorithm can be recast to search only over the

standard deviation of the random coefficients, rather than both the means and standard deviations.

Relaxing the normality assumption would prevent the use of this simplification (except perhaps in

other location and scale families), which could improve the relative speed performance of MPEC over

NFP even further.

5.2 The Fake Data Generating Process

We use the demand model from section 2. In this section we describe a data-generating process. We

allow for K = 3 observed characteristics, in addition to prices. We also estimate a random coefficient

on the intercept, β0
i , which models the relative attractiveness of purchasing any of the products instead

of the outside good. βpi , the price coefficient, is also random.

We focus on markets with a fairly large number of products, J = 25, to ensure that our results are

not due to sampling error. We also consider a large number of statistically independent markets, here

T = 50. Although not reported, we noticed large biases in the mean and standard deviation of the

intercept, β0
i , as well as functions of the parameters (like price elasticities) when a small number of

markets was used. Intuitively, the moments of β0
i are identified in part from the share of the outside

good, and more markets are needed to observe more variation in the outside good’s shares.
14We found KNITRO is more likely to converge to a valid local minimum than MATLAB’s included solver, fminunc.
15Another option is to use automatic differentiation software (Griewank and Corliss 1992). Automatic differentiation

software is automatically used by some languages, such as AMPL, and can be accessed with the TOMLAB interface
for MATLAB. Software packages like AMPL are impractical for NFP algorithms because AMPL is a problem definition
language, not a general purpose programming language like MATLAB. Therefore, we use MATLAB for all our empirical
analysis. However, in practice, many users may find AMPL more convenient for the MPEC implementation. One
warning is that the automatic differentiation overhead in AMPL uses lots of computer memory.
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For product j in market t, let
x1,j,t

x2,j,t

x3,j,t

 ∼ N



0

0

0

 ,


1 −0.8 0.3

−0.8 1 0.3

0.3 0.3 1


 .

Likewise, ξj,t ∼ N
(

0, σ2
ξ

)
, with the default σ2

ξ = 1. Price is

pj,t =

∣∣∣∣∣0.5 · ξj,t + ej,t + 1.1 ·
3∑
k=1

xk,j,t

∣∣∣∣∣ ,
where ej,t ∼ N (0, 1) is an innovation that enters only price. Prices are always positive. Prices are

endogenous as ξj,t enters price. For each product j in market t, there is a separate vector zj,t of D = 6

instruments. A powerful instrument must be correlated with pj,t and a valid instrument must not be

correlated with ξj,t. Each instrument zj,t,d ∼ U (0, 1) + 1
4

(
ej,t + 1.1 ·

∑3
k=1 xk,j,t

)
, where U (0, 1) is a

standard continuous-uniform random variable.

The goal is to estimate the parameter vector θ in Fβ (β; θ), the distribution of the random coeffi-

cients. To maintain consistency with the application in BLP (1995) and the related empirical litera-

ture, we assume independent normal random coefficients on each product characteristic and the inter-

cept. Thus, Fβ (β; θ) is the product of five independent normal distributions (K = 3 attributes, price

and the intercept) characterized by means and standard deviations contained in θ. The true values of

the moments of the random coefficients βi =
{
β0
i , β

1
i , β

2
i , β

3
i , β

p
i

}
are E [βi] = {−1.0, 1.5, 1.5, 0.5,−3.0}

and Var [βi] = {0.5, 0.5, 0.5, 0.5, 0.2}.

Our focus is not on numerical integration error, so we use the same set of 100 draws to compute

market shares in the data generating and estimation phases using (3). By using the same draws, we

have no simulation error. By using 100 draws, our code is proportionately faster, allowing us to try

more starting values and, in a later section, more Monte Carlo replications. The computational times

reported in a later section should be inflated by the ratio of the number of draws that would be used

in real-data applications (say 4000) to the number we use, 100.16

5.3 The Nevo (2000b) Cereal Data

We use the cereal dataset from Nevo (2000b) to assess whether NFP with loose inner-loop tolerances

can produce incorrect parameter estimates with real data. We refer the reader to Nevo (2000b) for
16The use of simulation in BLP is not the same as in the traditional method of simulated moments. In BLP, one

simulates an integral that is nested within the inner loop, rather than simulating the entire model by calculating its
solution for each of several draws of all error terms.
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a description of these data. Interestingly, Knittel and Metaxoglou (2008) recently used these same

data to study a related potential concern with BLP. They report that the parameter estimates are

extremely sensitive to the starting values used for the NFP algorithm because many true local minima

exist in the GMM objective function. We agree that the BLP problem is not convex and, therefore,

may potentially generate multiple optima. As a check for this problem, we use our NFP code with

50 different starting points to estimate the demand model with Nevo’s cereal data set. We set the

inner loop tolerance to be 10−14. To replicate Knittel and Metaxoglou, we pick our starting values

by taking 50 draws from the standard normal distribution.17 For each of the 50 runs, our NFP

code finds the same objective function value, 4.5615, which is also the lowest objective value found

by Knittel and Metaxoglou (2008).18 With multiple starting values, careful implementation of the

numerical procedures, and state-of-the-art optimization solvers, we find the BLP GMM estimator

produces reliable estimates.19

5.4 Fake Data, Numerical Derivatives and False Parameter Estimates

For NFP, the numerical theory in section 4 raises several concerns about the common practice of

setting the tolerance, εin, to be too high (too loose). Section 4.5 shows that a combination of a loose

inner loop, numerical derivatives and a smooth optimization routine can produce incorrect parameter

estimates. Also recall that Theorem 4 shows that if εin is too loose, εout must be set to be too loose

in order for the routine to be able to report convergence.

In this subsection, we explore empirically the problems with loose inner loop tolerances and nu-

merical derivatives. We create one simulated fake dataset, using the data-generating process from

section 5.2. Holding the simulated data fixed, we first compare the estimates produced from 100

randomly-chosen starting values for the own-price demand elasticities. We run each of the three NFP

implementations described in section 5.1 for each of the 100 vectors of starting values. Each starting

value is has a uniform (0, 7) distribution. Table 1 reports the results for the 100 different starting val-

ues. The first row reports the fraction of runs for which the routine reports convergence. As Theorem

4 shows, if the inner loop tolerance is a loose εin = 10−4 and the outer loop tolerance a standard value

of εout = 10−6, the routine will never report convergence. Column one confirms this finding as none of

the runs with a loose inner loop and tight outer loop converge. In contrast, column two indicates that
17We also experimented with multiplying the starting values by the solution reported in Nevo (2000b). The results

were similar.
18We also use the MATLAB code by Nevo (2000b), except that we use the KNITRO solver as the search algorithm.

For 50 starting points, KNITRO only converges for 25 of the 50 runs. However, all 25 successful runs converge to the
same solution with objective value 4.5615.

19We also use MATLAB’s genetic algorithm routine for one run. The genetic algorithm finds a point with the
objective function value 98.4270, which is clearly an order of magnitude higher than 4.5615, the minimum we find using
the gradient-based method. We then start KNITRO from this point found by the generic algorithm and KNITRO finds
the solution with objective value 4.5615. So the genetic algorithm does not always find a local minimum.
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Table 1: Three NFP Implementations: Varying Starting Values for One Fake Dataset, with Numerical
Derivatives

NFP NFP NFP Truth
Loose Loose Tight
Inner Both

Fraction Convergence 0.0 0.54 0.95
Frac.< 1% > “Global” Min. 0.0 0.0 1.00
Mean Own Price Elasticity -7.24 -7.49 -5.77 -5.68
Std. Dev. Own Price Elasticity 5.48 5.55 ~0
Lowest Objective 0.0176 0.0198 0.0169
Elasticity for Lowest Obj. -5.76 -5.73 -5.77 -5.68

We use 100 starting values for one fake dataset. The NFP loose inner-loop implementation has εin = 10−4 and
εout = 10−6. The NFP loose-both implementation has εin = 10−4 and εout = 10−2. The NFP-tight implementation
has εin = 10−14 and εout = 10−6. We use numerical derivatives using KNITRO’s built-in procedures.

the algorithm is more likely to converge (54% of the runs) when we also loosen the tolerance on the

outer loop. As we will show below, this semblance of convergence is merely an artifact of numerical

imprecision that leads to misleading estimates. Finally, NFP with tight tolerances converges in 95%

of the runs.

To diagnose the quality of the estimates, the second row of Table 1 shows the fraction of runs

where the reported GMM objective function value was within 1% of the lowest objective function that

we numerically found across all three NFP implementations and all 100 starting values (300 cases).

We call this value the “global” minimum, although of course we cannot prove we have found the true

global minimum. In the first two columns, corresponding to the scenario with a loose inner loop and

the scenario with a loose inner and outer loop respectively, none of the 100 starting values lead to

finding the global minimum.20 In contrast, NFP tight found the global minimum all of the time.

The perfect performance of NFP on this metric is peculiar to this one example, as NFP tight should

not find the global minimum every time, because a gradient-based optimization routine may indeed

converge to a true local minimum that is not the global minimum.

The third and fourth rows of Table 1 provide measures to assess the economic implications of our

different implementations. We use estimated price elasticities to show how naive implementations

could produce misleading economic predictions. In the third row, we report the mean own-price

elasticity, across all H = 100 starting values, all J products and all T markets:

1
H

H∑
h=1

1
T

T∑
t=1

1
J

J∑
j=1

ηpj,t

(
θ̂h
)
,

where θ̂h is the vector of parameter estimates for the hth starting value and ηpj,t
(
θ̂h
)
is the own price-

20Even with loose inner-loop tolerances, the GMM objective value function is accurate to a few decimal places. The
values reported in the fifth row of Table 1 are identical whether the reported parameter estimates are evaluated at a
NFP objective function with εin = 10−4 or εin = 10−14.
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elasticity of firm j in market t, at those parameters. The fourth row reports the standard deviation

of the mean own-price elasticity across all 100 starting values.

Beginning with the third row, first note that in the final column we report the own-price demand

elasticity evaluated at the true parameter values: -5.68. As we hoped, NFP with a tight tolerance

produces an estimate near the truth, -5.77. BLP is capable of recovering the true parameters, with

good data. On the other hand, we immediately see that the loose-tolerance implementations of NFP

produce mean elasticities that are not nearly as close to the truth as NFP with a tighter inner-loop

tolerance. The mean of the NFP loose-inner implementation is -7.24, higher in absolute value the true

value of -5.68. The loose-both mean is -7.49. The standard deviations of own-price elasticities for the

loose inner-loop tolerances are huge: 5.48 and 5.55. With a loose inner-loop tolerance and numerical

derivatives, section 4 shows that there is no reason to expect the NFP algorithm to produce correct

parameter estimates.

One question is whether a researcher who tried 100 starting values could get close to the true

estimates. If “close” is defined by getting one significant digit of the mean own-price elasticity correct,

the answer for this particular dataset is “no”. However, the reported elasticities for NFP with loose

inner loops are -5.76 and -5.73, compared to the numerically correct -5.77 from NFP tight. What is

happening is that the NFP implementations with the loose inner-loop tolerances tend to stop near the

starting values. By using 100 starting values, the researcher is exploring 100 regions of the objective

function. It is equivalent to just evaluating the objective function at 100 points and taking the final

estimates to be the minimum. However, there is no guarantee that 100 starting values will lead to

“close” estimates in other datasets. Indeed, in the next section we show an example where even the

elasticities corresponding to the lowest objective function value have economically important numerical

error in them.

5.5 Parameter Errors with the Cereal Data and Closed-Form Derivatives

There are at least three concerns one might have with the previous section’s fake-data example. First,

perhaps real data does not have the problems we found. Second, the example relied on numerical

derivatives; perhaps coding closed-form derivatives eliminates all concerns with achieving incorrect

parameter estimates with NFP with loose inner-loop errors. Third, the incorrect elasticity estimates

in Table 1 were really variable across starting values. A researcher who tried even a few starting values

and found the wildly different elasticity estimates would diagnose that something is wrong, or at least

falsely conclude that the BLP objective function has an enormity of local minima. A careful researcher

might then explore settings like the inner-loop tolerance, and eventually fix the implementation error.

This section uses Nevo’s cereal data to produce an example of incorrect parameter estimates that is
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Table 2: Three NFP Implementations: Varying Starting Values for Nevo’s Cereal Dataset, with
Closed-Form Derivatives

NFP NFP NFP NFP Tight
Loose Inner Loose Both Tight Simplex

Fraction Reported Convergence 0.0 0.76 1.00 1.00
Frac. Obj. Fun. < 1% Greater than “Global” Min. 0.0 0.0 1.00 0.0
Mean Own Price Elasticity Across All Runs -3.82 -3.69 -7.43 -3.84
Std. Dev. Own Price Elasticity Across All Runs 0.4 0.07 ~0 0.35
Lowest Objective Function Value 0.00213 0.00683 0.00202 0.00683
Elasticity for Run with Lowest Obj. Value -6.71 -3.78 -7.43 -3.76

We use the same 50 starting values for each implementation. The NFP loose inner loop implementation has εin = 10−4

and εout = 10−6. The NFP loose both implementation has εin = 10−4 and εout = 10−2. The NFP tight implementation
has εin = 10−14 and εout = 10−6. The Nelder-Meade or simplex method uses a tighter inner loop tolerance of εin = 10−14

and MATLAB’s default values for the simplex convergence criteria. We manually code closed-form derivatives for all
methods other than for Nelder-Meade, which does not use derivative information.

robust to these concerns.

The results in Table 2 are of the same format as Table 1. We try out 50 starting values on the same

dataset; the same starting values are used for each method. We also report results for the Nelder-

Meade or simplex algorithm, which we will discuss in the next section. As Theorem 4 predicts, in

row 1 we find that 0% of the NFP-loose inner-loop starting values converge. Loosening the outer loop

is one approach to finding convergence; the second column finds that 76% of starting values report

convergence when this is done. 100% of the starting values converge for NFP tight. The second row

shows that 100% of the NFP-tight starting values find the apparent global minimum, 0.00202, in

Nevo’s cereal data. None of the NFP-loose tolerance implementations find the global minimum.

The loose inner-loop and loose-both methods find a mean own-price elasticity of -3.82 and -3.69,

respectively. This is about half the value of -7.43 found with NFP tight. Further, the estimates

are all tightly clustered around the same points. With standard deviations of 0.40 and 0.07 for the

loose inner loop methods, the answers are for the most part consistently wrong across runs. The

fifth row shows the smallest objective function values found by the loose-inner-loop and loose-both

routines are 0.00213 and 0.00683, respectively. The second result is far from the truth of 0.00202. We

manually inspected all 50 starting values and found that 1 out of 50 of the loose-inner-loop=only runs

was anywhere near the apparent global minimum. This is 1 out of 50 result is somewhat of a fluke,

because with other sets of 50 starting values, the loose-inner-loop method replicated the performance

of the loose-both method and had no starting values converge to objective-function values anywhere

near the apparent global minimum.

What is going on here numerically? The points that the loose inner loop methods are converging

to look somewhat like local minima, but are indeed not minima. When the objective function is

numerically imprecise, the optimization routine thinks that is has found a local minimum, and stops
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there, whether or not it reports convergence. Thus, the Nevo cereal data have a dangerous point that

mimics a local minimum but is not actually a minimum.

These results show that a naive but otherwise careful researcher might feel that his or her estimates

were correct because even trying fifty different starting values always produces around the same

estimates. Even if the researcher correctly coded the derivatives in closed form and used a high-

quality, professional optimizer like KNITRO, the NFP loose inner and loose both implementations

can consistently converge to the wrong elasticity, and the elasticity can be half of the true value. Thus,

there is no diagnostic that a researcher can do that will detect all types of numerical error. With

Nevo’s cereal dataset, an inner loop tolerance that is too loose will lead to replicable but wrong own-

price elasticity estimates. Only using an a priori theoretically correct setting, like a tight inner-loop

tolerance, will avoid these errors.

5.6 Nelder-Meade or Simplex Algorithm

In the previous parts of this section, we have pointed out errors in parameter estimates that loose

inner-loop methods cause for search routines that use numerical derivatives (Table 1) and even closed-

form derivatives (Table 2). One logical response would be to look for methods that do not use

information on derivatives at all. Indeed, there is no particular theoretical reason to think that inner-

loop error from a loose inner-loop tolerance will cause numerical problems for search methods that

rely on numerical derivatives.

The most commonly used non-derivative method in econometrics, at least in our informal surveys

(for example, it was used in BLP’s original paper), is the Nelder-Meade or simplex algorithm. This

algorithm does not use derivative information. Our message will be that the simplex algorithm can

fail to find a global minimum, even in situations without numerical error in the objective function,

meaning with a tight inner loop. To see this, look at the fourth column of Table 2, which applies the

simplex algorithm to the Nevo cereal dataset.21 We use the same starting values as we used for the

three implementations of the gradient-based solver and a tight inner loop. We see that the simplex

algorithm fails to find the global minimum for all fifty starting values. Further, the elasticity estimate

of -3.76 is around half of the numerically correct -7.43, and the elasticity’s standard deviation across

the fifty starting values is a relatively tight 0.35. The simplex algorithm converges to roughly the same

wrong solution for each of the fifty runs. We conclude the simplex algorithm estimates are incorrect

(i.e. not local optima) in two ways. First, NFP with a tight tolerance never converged to these

solutions. Second, if we use any one of the simplex method’s converged point estimates as a starting

value for NFP tight, the latter does not report that start value as a local optimum. In summary, the
21We use the version of the simplex algorithm in MATLAB, which is fminsearch.
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simplex algorithm appears to generate false solutions in our empirical examples.

The numerical analysis literature has come to the theoretical and experimental conclusion that the

Nelder-Meade method is a poor alternative to traditional gradient-based solvers. The only theoretical

convergence results we know of for simplex methods are due to Lagarias et al. (1998), who show

convergence for only convex optimization problems with one or two unknowns. McKinnon (1998)

presents an example where the simplex method converges to a point that is not a valid local minimum.

Extensive numerical experiments by Wright (1995) show that the simplex algorithm can converge to

an acceptably accurate solution with substantially fewer function evaluations than a gradient-based

method with finite-difference gradients. Unfortunately, the results also show that the Nelder-Mead

method can be “horrifically inefficient and unreliable.” The range in performance of the Nelder-Mead

method is huge. As we have shown, it simply does not find the lowest objective-function value (the

one found by the gradient-based method all fifty times) on the Nevo dataset, even with fifty starting

values. Also, the simplex routine tends to converge to around same wrong answer, so looking at the

variability of estimates across starting values cannot diagnose the failure to find the global minimum

or even a valid local minimum.

6 MPEC: A Constrained Optimization Approach

We have established that only NFP with a tight inner-loop tolerance can produce reliable parameter

estimates. According to Theorem 5, if we wish to achieve the default numerical precision in the outer

loop of 10−6, we need to set the NFP inner loop-tolerance to 10−12 or tighter, for reliable parameter

estimates. Using a tight inner loop means NFP may be slow. Further, in the previous section, we

established that the NFP method’s inner loop converges linearly and can be slow when the Lipschitz

constant is close to 1. A slow inner loop might cause researchers to choose loose tolerances for the

inner loop, which might lead to problems in establishing the convergence of the outer loop as well as

errors in the reported parameter estimates.22

In this section, we propose an alternative algorithm based on Su and Judd’s (2007) constrained

optimization approach for estimating structural models. Below we show that the MPEC approach

generates the same solution as NFP. MPEC can save computation time while completely avoiding

issues of numerical precision by eliminating the inner loop of the NFP algorithm. MPEC can also be

used for demand models that do not have a contraction-mapping solution. In their original paper,

Su and Judd focus more on solving for the unknown variables in economic models, such as value
22Alternative methods to a contraction mapping for solving systems of nonlinear equations with faster rates of

convergence typically have other limitations. For instance, the traditional Newton’s method is only guaranteed to
converge if the starting values are close to a solution, unless one includes line-search or trust-region procedure subject
to some technical assumptions. In general, most practitioners would be daunted by the task of nesting a hybrid Newton
method customized to a specific demand problem inside the outer optimization over structural parameters.
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functions in single-agent dynamic-programming problems and the entry probabilities of rival firms in

static entry games with multiple equilibria. We apply this insight to the recovery of the unobserved

demand shocks that enter the criterion function during estimation of a structural model. In particular,

we present a constrained-optimization formulation for random-coefficients demand estimation.

If W is the GMM weighting matrix, our constrained-optimization formulation is

min
θ,ξ

g (ξ)′Wg (ξ)

subject to s (ξ; θ) = S
. (9)

The moment condition term g (ξ) is just g (ξ) = 1
T

∑T
t=1 ξtzt. In MPEC, the market share equations are

introduced as nonlinear constraints to the optimization problem. The objective function is specified

primitively as a function of the demand shocks ξ. The main difference compared to the traditional NFP

method is that we optimize over both the aggregate demand shocks ξ and the structural parameters

θ. We do not use NFP’s inner loop to enforce ξ = ξ (θ) for every guess of θ; rather we impose that the

predicted shares equal the actual shares in the data only at the solution to the minimization problem.

The next theorem shows the equivalence of the first-order conditions between the NFP method

(4) and the constrained optimization formulation (9). Hence, any first-order stationary point of

(4) is also a stationary point of (9), and vice versa. This means that MPEC and NFP are the

same estimators, statistically. Any statistical property of the original BLP estimator applies to the

estimator when computed via MPEC. Hypothesis teats and standard errors are the same between

both methods. There is no need to use the statistical theory for equality-constrained estimators to

derive the statistical properties of the MPEC estimator.

Theorem 6. Let the BLP demand model admit a contraction mapping. The set of first order con-

ditions to the MPEC minimization problem in (9) is equivalent to the set of first order conditions to

the true (no numerical error) GMM inner loop / outer loop method that minimizes (4).

The main benefit of the MPEC formulation is that it circumvents the need for the inner loop. By

eliminating the inner loop, MPEC is less prone to numerical errors and is potentially faster. We

discuss these benefits below.

The constrained optimization problem defined by (9) can be solved using modern nonlinear solvers

developed by researchers in numerical optimization. Unlike the NFP algorithm, where users need

to exercise caution in the choice of tolerance levels for both inner and outer loops, the defaults

on feasibility and optimality tolerances in nonlinear solvers for constrained optimization are usually

sufficient. These default tolerances have been established to work well in hundreds or thousands of

papers in the numerical analysis literature. The default tolerances are usually sufficient because the
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market share equations and GMM objective function (without an inner loop) are exposed to the

optimization routine. In short, MPEC lets a state-of-the-art optimization algorithm handle all of the

computational aspects of the problem. In contrast, with NFP, the researcher needs to customize a

nested-fixed-point calculation, which could result in naive errors.

In addition to simplifying implementation, bypassing the inner loop reduces several sources of nu-

merical error that could, possibly, lead to non-convergence. We have detected some common practices

with the coding of the inner loop that could naively lead to numerical error. These include loose choices

for the inner-loop tolerance (as discussed previously) and an adjustable inner-loop tolerance that is

loosened for parameter values deemed “far” from the solution to the outer loop.23 MPEC relegates

all numerical calculations to a single call to the outer loop, which is solved using a state-of-the-art

optimization package, rather than the user’s own customized algorithm.

Our approach can also create substantial speed advantages. As we showed in the previous section,

the contraction mapping in the NFP algorithm might be slow as the Lipschitz constant approaches

one. By contrast, the MPEC method does not nest any contraction mappings and so we expect

its speed to be relatively invariant to the Lipschitz constant. Most optimization solvers for smooth

problems use Newton-type methods to solve the Karush-Kuhn-Tucker system of the first-order op-

timality conditions. Newton’s method is quadratically convergent, faster than the linear rate of the

contraction mapping that is the NFP inner loop. Another potential source of acceleration of speed

comes from the fact that our approach allows constraints to be violated during the solving process.

In contrast, the NFP algorithm requires solving the share equation (2) exactly for every parameter θ

examined in the outer, optimization loop. Modern numerical optimization solvers do not enforce that

the constraints are satisfied at every iteration; it suffices that the constraints hold at the solution.

This flexibility avoids wasting computational time on iterates away from the true parameters. Still

another potential speed advantage is that the outer algorithm has more information: the optimization

routine is exposed to the constraints, the derivatives of the constraints and of the objective function,

and the sparsity pattern of the constraints. On sparsity, recall that demand shocks for market t do

not enter the constraints for market t+ 1. Therefore, this constrained optimization problem is highly

sparse.

Most constrained optimization solvers are based on sequential quadratic programming or interior

point methods. As stated earlier, these solvers use Newton-based methods. Economists are often
23The trick consists of using a loose inner loop tolerance when the parameter estimates appear “far” from the solution

and switching to a tighter inner loop tolerance when the parameter estimates are “close” to the solution. The switch
between the loose and tight inner loop tolerances is usually based on the difference between the successive parameter
iterates, e.g, if

‚‚θk+1 − θk
‚‚ ≤ 0.01, then εin = 10−8; otherwise, εin = 10−6. Suppose that the following sequence

of iterates occur:
‚‚θk+1 − θk

‚‚ ≥ 0.01 (εin = 10−6),
‚‚θk+2 − θk+1

‚‚ ≤ 0.01 (εin = 10−8), and
‚‚θk+2 − θk+1

‚‚ ≥ 0.01
(εin = 10−6). The NFP objective value can oscillate because of the use of two different inner loop tolerances. This
oscillation can prevent the NFP approach from converging.
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skeptical about Newton’s method because it might not converge if the starting point is far away from

the solution. While this perception is true for the purest textbook version of Newton’s method, modern

Newton-like methods incorporate a line-search or a trust-region strategy to give more robustness to

the choice of starting values. We refer readers to Nocedal and Wright (2006) and Kelley (1995, 1999,

2003) for further details on modern optimization methods for smooth objectives and constraints. In

any case, the researcher should always use several guesses of starting values for real empirical research.

Our implementation of MPEC for the BLP model is slightly more sophisticated than the simple

explanation in (9). We actually treat the moments as separate parameters, so that the problem being

solved is
min
θ,ξ,η

η′Wη

subject to g (ξ) = η

s(ξ; θ) = S

. (10)

The solution to this new problem is the same as (9). The objective function is now a simple quadratic,

η′Wη, rather than a more complex, direct function of ξ; the additional constraint g(ξ) − η = 0

is linear in both ξ and η and, hence, does not add additional difficulties to the original problem.

Computationally, the advantage with this equivalent formation is that we increase the sparsity of the

constraint Jacobian and the Hessian of the Lagrangian function by adding the additional variables

and constraints. In numerical optimization, it is often easier to solve a large but sparse problem than

a small but dense problem. Another advantage of MPEC over NFP is that the objective function

and constraints in MPEC are likely more “smooth” or less “nonlinear” in the unknowns than the NFP

objective function is in θ. In NFP, the mapping from θ to the objective function value uses the highly

nonlinear inner-loop transformation s−1 (St; θ), while no such inner loops are used by MPEC. Thus,

MPEC may be a “smoother” nonlinear programming problem.

A common response to practitioners when they first hear about MPEC is that maximizing over a

large number of parameters is a numerically daunting challenge. Below we show that this need not

be the case. Indeed, the performance comparison of MPEC and NFP may be relatively constant as

the number of products and markets increases.

7 Speed Comparisons of MPEC and NFP

NFP with a tight inner loop will produce correct parameter estimates if many starting values are used.

However, NFP can be slow on some datasets. This section uses fake data and the Nevo cereal data to

compare the speed of MPEC and NFP. We present examples where MPEC performs better than NFP.

This is not meant to be a theorem: there could be cases where NFP is faster than MPEC. We now
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show that, in many situations, NFP may be computationally impractical in terms of execution time.

In contrast, we will show that MPEC’s execution time appears to be relatively invariant across these

situations. Our approach exploits the Lipschitz constant for the BLP contraction mapping derived

in section 4.1. We conjecture that data with a higher Lipschitz constant, and hence a higher upper

bound on the rate of convergence of the inner loop, may slow NFP estimation. The idea will be to

manipulate various components of the data-generating process in order to measure their respective

impacts on the Lipschitz constant. We have no reason to believe cases exist where MPEC grows really

slow with some equivalent of a Lipschitz constant. Therefore, we suspect that MPEC will be more

robust against extremely slow performance. Keep in mind that it is these slow-performing cases where

a researcher will be tempted to loosen the inner-loop tolerance, leading to the problem of incorrect

parameter estimates that we earlier highlighted.

7.1 NFP and MPEC Implementations

We code NFP and MPEC using closed-form derivatives. As the proof of Theorem 6 shows, the

components of these derivatives are the same for both methods. We use the quadratic form of MPEC

in (10). We give the sparsity pattern of the constraints to the optimization routine, for MPEC.

An important point for our speed comparison is the choice of starting values. We always use five

starting values, which are uniform random numbers. For MPEC, we effectively use the same starting

values as we do for NFP; we pick values such that the two algorithms are initialized to have the same

objective function value.24 For each NFP starting value, we run the inner loop once and use this

vector of demand shocks and mean taste parameters as starting values for MPEC. This is our attempt

to equalize the starting values across NFP and MPEC.25

As before, we use 100 simulation draws for both MPEC and NFP. For the fake data experiments,

we use the same 100 simulation draws to generate the data and to estimate the model. This shuts

down simulation error. Raising the number of simulation draws to a more reasonable number, say

10,000, would increase the CPU times of both MPEC and NFP by about 100 times. So the reported

times below are 100 times too slow, compared to an actual empirical investigation.

7.2 Base Fake-Data Case

Here we define a base fake-data case, which is then perturbed to vary the Lipschitz constants in the

examples that follow. The model is nearly the same as Section 5.2. We use T = 50 to speed the
24Our MATLAB code is parallelized across multiple cores to some extent. However, we report CPU times and not

clock times.
25Adding the NFP inner loop takes two lines of code once MPEC has been coded, so it is not unreasonable to expect

a practitioner to be able to reproduce our choice of MPEC starting values.
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Table 3: Lipschitz Constants for the NFP Algorithm
Parameter Std. Dev. of # of Mean of Intercept

Scale Shocks ξ Markets T E
ˆ
β0
i

˜
Altered Mean Altered Mean Altered Mean Altered Mean
Value Lipschitz Value Lipschitz Value Lipschitz Value Lipschitz
0.01 0.985 0.1 0.808 25 0.860 -2 0.771
0.1 0.971 0.25 0.813 50 0.871 -1 0.871
0.50 0.887 0.5 0.832 100 0.888 0 0.936
0.75 0.865 1 0.871 200 0.888 1 0.971
1 0.871 2 0.934 2 0.988
1.5 0.911 5 0.972 3 0.996
2 0.938 20 0.984 4 0.998
3 0.970
5 0.993

runs somewhat. The mean of the random coefficients is E [βi] = (0.1, 1.5, 1.5, 0.5,−3.0). The prices

are pj,t = 3 + ξj,t · 1.5 + uj,t +
∑3
k=1 xk,j,t, where uj,t is a uniform(0, 5) random variable. Likewise,

zj,t,d = ũj,t,d + 1
4

∣∣∣uj,t + 1.1 ·
∑3
k=1 xk,j,t

∣∣∣, where ũj,t,d is another uniform(0, 1) random variable and

uj,t is the same variable as before. For each table below, we calculate 20 different fake datasets, and

reported means are across these 20 replications.

7.3 Lipschitz Constants

Recall that the Lipschitz constant derived in section 4.1 is related to the demand sensitivity to the

unobserved quality, ξj,t.Moreover, this demand sensitivity is roughly related to the degree of asymme-

try in market shares. Therefore, we experiment with different features of the data-generating process

that affect the degree of share asymmetry. Table 3 reports the Lipschitz constant for the base-case

data-generating process of section 5.2. Each cell reports the mean of the Lipschitz constant evaluated

at the true parameter values across 30 data sets / replications.

In our first experiment, reported in the first column of Table 3, we manipulate the scale of the

parameters, βi. We multiply the βi of each of our ns simulated consumers in the data-generating

process by one of the constants listed in the table. We find that the Lipschitz constant is non-

monotone in the scale, with the constant first falling and then rising again. This non-monotonicity

comes from the fact that our manipulation also changes the levels of the market shares. Nevertheless,

holding the sample size fixed, we see fairly large changes in the upper bound on the rate of convergence

of the contraction mapping.

The second column of Table 3 increases the standard deviation of the product-and-market-specific

demand shocks, ξj,t. When these shocks are more variable, products become more vertically differ-

entiated. Over the range of values we investigate, increases in the standard deviation of the demand
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shocks increase the Lipschitz constant. The third column of Table 3 changes the number of markets.

The number of markets has little impact on the Lipschitz constant. Finally, the fourth column of Table

3 increases the mean of the intercept, E
[
β0
i

]
, which changes the value of the inside goods relative to

the outside good. As the inside good share increases, the Lipschitz constant increases.

7.4 Monte Carlo: Varying the Lipschitz Constant

Having established that different parameter settings can change the Lipschitz constant of the con-

traction mapping, we now explore whether there is an implication for execution time. We compare

performances as we vary the mean of the intercept, E
[
β0
i

]
, from -1.9 to 3.1. As we saw in Table 3,

increasing E
[
β0
i

]
makes the Lipschitz constant higher. For each scenario, we run 20 replications of

the data. For each data replication, we estimate the GMM parameters using our two numerically-

accurate algorithms, NFP with a tight inner loop and MPEC. Because a local optimization routine

may only converge to a local minimum, we follow what a rigorous researcher should do and we use

multiple starting values for each algorithm and fake dataset. We run each algorithm five times per

replication, using five independently-drawn starting values. We take the final point estimates for

each algorithm as the run with the lowest objective function value. In all cases, the lowest objective

function corresponded to a case where the algorithm reported that an optimal local solution had been

found. We assess the estimates by looking at the own-price elasticities, computed as a mean across

products within each market and then across markets. For each algorithm, we report the total CPU

time required for all five starting values. The results are reported in Table 4. All numbers in Table 4

are means across the 20 replications.

Turning to Table 4, we can see that our numerical theory prediction holds in practice. As ex-

pected, NFP with a tight inner-loop tolerance and MPEC converge in all scenarios. We also find that

MPEC and NFP almost always generate identical point estimates, as one would expect since they are

statistically the same estimator (Theorem 6). Across the 20 runs, MPEC and NFP produce identical

estimates for the first four values of E
[
β0
i

]
. For the last two values of E

[
β0
i

]
, MPEC and NFP are

nearly identical. With only five starting values, by happenstance in one or two of the 20 replications,

MPEC and NFP found different local minima. Using ten or fifteen replications will likely make MPEC

and NFP always find the same global minimum. We compute the root mean-squared error (RMSE)

and the bias of the own-price elasticities. For a parameter θ1, the bias is E
[
θ̂1

]
− θ1, where θ1 is the

true value and the expectation is taking over many estimates with independent samples. Likewise,

the RMSE is

√
E

[(
E
[
θ̂1

]
− θ1

)2
]
. In all cases, the RMSE is low and the bias is moderate at around

0.2 off of a base elasticity of around -12, suggesting that the BLP estimator is capable of recovering

true demand elasticities. To our knowledge, this is the most comprehensive Monte Carlo performed
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on BLP in the literature.

Run times vary dramatically for NFP tight with the level of the Lipschitz constant. For the low

Lipschitz case with E
[
β0
i

]
= −1.9, the average run time across the 20 replications (using five starting

values for each replication) is roughly 17 minutes for NFP and for MPEC. However, as we increase

the intercept, we see the run times for NFP increase, while the run times for MPEC change little.

When E
[
β0
i

]
= 3.1, the highest Lipschitz case, a single run with five starting values of NFP takes, on

average, 60 minutes, whereas MPEC takes only 13 minutes. Remarkably, in this example the speed

of MPEC actually increases slightly as E
[
β0
i

]
decreases, although the big effect is, as expected, the

decrease in the speed of NFP.

One might not be so impressed if these numbers represent datasets which have unusual outside

good shares. Our mean own-price elasticity of around -12 is representative of a pretty competitive

industry, say one producing a less differentiated product. The shares of the outside good range from

90% to 47%, all large and realistic values. 90% could represent the US auto industry sampled at an

annual rate, where most families do not buy a car every year. 47% could represent purchasing staples,

such as orange juice, at weekly shopping trips.

Thus, as predicted by the numerical theory, it is easy to find cases where NFP tight could be

extremely slow to run due to the slow rate of convergence of the inner loop. In contrast, MPEC

is fairly robust in terms of run times across scenarios. This relationship to run time highlights our

earlier concern about the choice of the inner-loop tolerance. For real applications with many more

products and/or markets (e.g. 25 products and 450 market/quarters in Nevo (2000, 2002) and 250

products and 10 years in BLP (1995)), run times could be considerably slower than in our Monte

Carlo experiments with only 25 products and 50 markets. As we demonstrated previously, loosening

the inner-loop tolerance to speed the convergence of the inner loop could prevent the outer-loop

optimization from converging. This, in turn, might lead the researcher to loosen the outer-loop

tolerance, which could produce highly variable point estimates that may not even constitute local

minima. We therefore recommend MPEC as a safer and more reliable algorithm for the estimation of

the BLP GMM estimator.

7.5 Varying the Number of Markets

In the previous section, we demonstrated that MPEC has a speed advantage over NFP when the

Lipschitz constant is high. However, some readers may be concerned that MPEC may not be practical

as one increases the number of products or the number of markets. The reason is that there is one

nuisance optimization parameter, ξj,t, for each product j and market t combination. As the number

of markets T (or the number of products J) increases, there will be more ξj,t’s over which to optimize
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Table 4: Monte Carlo Results Varying the Lipschitz Constant
Intercept Lipschitz Implementation Runs Converged CPU Time (s) Elasticities Outside
E
ˆ
β0
i

˜
Constant (fraction) Bias RMSE Value Share

-1.9 0.789 NFP tight 1 1012.9 -0.200 0.265 -12.00 0.900
MPEC 1 981.0 -0.200 0.265 -12.00 0.900

-0.9 0.858 NFP tight 1 1365.9 -0.203 0.266 -11.98 0.845
MPEC 1 1015.2 -0.203 0.266 -11.98 0.845

0.1 0.913 NFP tight 1 1608.4 -0.205 0.266 -11.97 0.775
MPEC 1 1001.4 -0.205 0.266 -11.97 0.775

1.1 0.952 NFP tight 1 2057.7 -0.201 0.256 -11.96 0.687
MPEC 1 832.4 -0.201 0.256 -11.96 0.687

2.1 0.976 NFP tight 1 2544.8 -0.202 0.256 -11.95 0.583
MPEC 1 810.2 -0.199 0.254 -11.96 0.583

3.1 0.989 NFP tight 1 3730.3 -0.195 0.252 -11.97 0.472
MPEC 1 767.5 -0.202 0.254 -11.96 0.472

There are 20 replications for each experiment. Each replication uses five starting values to ensure a global minimum is
found. The NFP-tight implementation has εin = 10−14 and εout = 10−6. There is no inner loop in MPEC; εout = 10−6

and εfeasible = 10−6. The same 100 simulation draws are used to generate the data and to estimate the model.

and, correspondingly, more constraints. The next set of Monte Carlo experiments compare estimation

with differing numbers of markets to see whether MPEC’s speed advantage is related to having a

small number of demand shocks.

Table 5 returns to the base specification, and varies only the number of markets, T . The mean

intercept is E
[
β0
i

]
= 1.1. As the number of markets increases, not surprisingly both methods take

longer. MPEC takes only 1373
555 = 40% of the time as NFP for T = 25, 41% of the time for T = 50,

and only 27% of the time for T = 100. We conclude that, in this example, the performance advantage

of MPEC over NFP actually increases as the number of demand shocks increase. We do not have

a theoretical prediction that MPEC’s speed advantage should increase, but we suspected MPEC’s

speed advantage would not decrease. The modified Newton method used for MPEC has a quadratic

rate of convergence whereas NFP has a linear rate of convergence for the inner loop. This means that

MPEC should have a fairly easy time accommodating more parameters. Keep in mind that we report

the sparsity pattern of the constraints to our solver for MPEC: the solver knows demand shocks for

market 1 do not enter the market share equations for market 2.

7.6 Speed Comparisons of MPEC and NFP Using Nevo’s Cereal Data

One potential criticism of our analysis above is that our Monte Carlo experiments were based on

better-quality data than typical field datasets. In section 5.3, we used NFP with a tight tolerance

to establish the reliability of the BLP GMM estimator for Nevo’s cereal data. We now compare the

speed of NFP and MPEC on this data. Like NFP, MPEC converged to the same local minimum with
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Table 5: Monte Carlo Results Varying the Number of Markets
# Markets Lipschitz Implementation Runs Converged CPU Time (s) Elasticities Outside

T Constant (fraction) Bias RMSE Value Share
25 0.903 NFP tight 1 1372.9 -0.265 0.385 -12.16 0.640

MPEC 1 555.2 -0.269 0.389 -12.16 0.640
50 0.952 NFP tight 1 2060.6 -0.201 0.256 -11.96 0.687

MPEC 1 839.0 -0.201 0.256 -11.96 0.687
100 0.956 NFP tight 1 8068.2 -0.092 0.174 -12.30 0.893

MPEC 1 2143.6 -0.106 0.225 -12.29 0.893

There are 20 replications for each experiment. Each replication uses five starting values to ensure a global minimum is
found. The NFP-tight implementation has εin = 10−14 and εout = 10−6. There is no inner loop in MPEC; εout = 10−6

and εfeasible = 10−6. The same 100 simulation draws are used to generate the data and to estimate the model.

an objective function value of 4.5615 for 48 out of 50 starting values. For only two of the runs, MPEC

converged to a different local minimum with a higher objective-function value. In terms of run time

for one starting value, we find that MPEC required an average CPU time of only 544 seconds whereas

NFP required an average CPU time of 763 seconds. In short, the relative performance of MPEC and

NFP documented in our Monte Carlo experiments appears to hold in the context of field data.

8 Other Computational Issues with BLP

8.1 Standard Errors

After obtaining point estimates, researchers need to compute standard errors to assess precision.

Berry, Linton and Pakes (2004, Theorem 2) describe the sampling distribution of the BLP GMM

estimator for fixed T and J →∞. As NFP and BLP are two computational implementations for the

same estimator (they produce exactly the same objective function values and parameter estimates),

both methods have the same sampling distribution.

One of the components of this formula requires derivatives of the mean of the moment conditions

with respect to θ, or
∂
(

1
T

∑T
t=1

∑J
j=1 ξj,t (θ)′ zj,t

)
∂θ

.

This requires differentiating the inner loop. Berry, Linton, and Pakes (page 632) suggest numerical

derivatives (finite derivatives) as one method of computing an estimate of this derivative. However,

any attempt to numerically differentiate an inner loop has the potential to introduce substantial nu-

merical error: numerical derivatives are often numerically inaccurate even when the function being

differentiated itself has little numerical error. A more numerically accurate approach is to program

the derivatives. These derivatives are found, for example, in the appendix of Nevo (2000b). The com-
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ponents of the NFP derivatives are also components of the MPEC derivatives, so coding the MPEC

derivatives makes it easy to code the standard errors.26 In the interests of simplicity and common-

ality across researchers, we recommend users conducting J → ∞ asymptotics code the asymptotic

distribution in Theorem 2 of Berry, Linton and Pakes, using closed form derivatives. Users conducting

T →∞ asymptotics and using a large enough number of simulation draws can use the standard GMM

asymptotic-variance formula.

8.2 Nonnegativity Constraints on Parameters

BLP (1995) and most subsequent empirical work uses a set of independent normal distributions

for Fβ (β; θ), the distribution of the random coefficients. Under normality, θ includes the standard

deviation of each product characteristic’s random coefficient. The normal is a symmetric distribution.

Therefore, if a guess for the standard deviation of characteristic 1’s random coefficient is σ1, −σ1

should produce the same objective-function value for NFP and both the same objective function and

constraint values for MPEC. Any failure of this equivalence of σ1 and −σ1 under normality results

from simulation error: (3) is not an accurate approximation to (2). Disregarding simulation error,

the model is not identified unless the researcher constrains each standard-deviation parameter to be

nonnegative. If one of the standard-deviation parameters is in truth zero, then Andrews (2002) shows

how to conduct asymptotically valid hypothesis tests. The limiting distribution of the parameter on

the boundary will be half-normal, as we know a standard deviation cannot be negative.

9 Extension: Maximum Likelihood Estimation

In this section, we outline how a researcher would adapt MPEC to a likelihood-based estimation of

random-coefficients-logit demand. Some researchers prefer to work with likelihood-based estimators

and, more specifically, with Bayesian MCMC estimators (c.f. Yang et al 2003 and Jiang et al. 2008)

based on the joint density of observed prices and market shares.27Besides efficiency advantages, the

ability to evaluate the likelihood of the data could be useful for testing purposes. The trade-off

relative to GMM is the need for additional modeling structure which, if incorrect, could lead to biased
26Because MPEC and NFP are the same estimator, it is not necessary to refer to results on equality-constrained

estimators. Still, for users who adopt MPEC, it may be possible to use the constrained distributions derived for
GMM in Andrews (2002). Such a procedure requires simulating the asymptotic distribution: a realization of a normal
random variable is drawn and then a constrained-optimization problem is solved for each draw. We examined the
results on extremum estimators with equality constraints in Gourieroux and Monfort (1995, Chapter 10). They derive
the distribution of the constrained estimators as a function of the unconstrained estimators. For MPEC, the finite-
sample objective function without constraints will always be minimized at ξ = 0. Therefore, the unconstrained limiting
distribution is degenerate, and the proof technique in Gourieroux and Monfort does not apply.

27One can also think of Jiang et al. (2008) as an alternative algorithm for finding the parameters. The MCMC
approach is a stochastic search algorithm that might perform well if the BLP model produces many local optima
because MCMC will not be as likely to get stuck on a local flat region. Because our goal is not to study the role of
multiple local minima, we do not explore the properties of a Bayesian MCMC algorithm.
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parameter estimates. Like GMM, the calculation of the density of market shares still requires inverting

the system of market share equations. Once again, MPEC can be used to circumvent the need for

inverting the shares, thereby offsetting a layer of computational complexity and a potential source of

numerical error. Note that we focus herein on classical MLE and not on a Bayesian approach. Below

we outline the estimation of a limited information approach that models the data-generating process

for prices in a “reduced form” (this motivation is informal as we do not specify a supply-side model and

solve for a reduced form). However, one can easily adapt the estimator to accommodate a structural

(full-information) approach that models the data-generating process for supply-side variables, namely

prices, as the outcome of an equilibrium in a game of imperfect competition (assuming the equilibrium

exists and is unique).

Recall that the system of market shares is defined as follows:

sj (xt, pt, ξt; θ) =
∫
β

exp
(
β0 + x′j,tβ

x − βppj,t + ξj,t
)

1 +
∑J
k=1 exp

(
β0 + x′k,tβ

x − βppk,t + ξk,t

)dFβ (β; θ) . (11)

We assume, as in a triangular system, that the data-generating process for prices is

pj,t = z′j,tγ + ηj,t, (12)

where zj,t is a vector of price-shifting variables and ηj,t is a mean-zero, i.i.d. shock. To capture the

potential endogeneity in prices, we assume the supply and demand shocks have the following joint

distribution: (ξj,t, ηj,t)
′ ≡ uj,t ∼ N(0,Ω) where Ω =

 σ2
ξ σξ,η

σξ,η σ2
η

.
The system defined by equations (11) and (12) has the joint density function

fs,p (st, pt; Θ) = fξ|η (st | xt, pt; θ,Ω) |Jξ→s| fη (pt | zt; γ,Ω) ,

where Θ =
(
θ, γ, σ2

ξ , σξ,η, σ
2
η

)
is the vector of model parameters, fξ|η(·|·) is the marginal density of

ξ conditional on η, fη(·|·) is a Gaussian density with variance σ2
η, and Jξ→s is the Jacobian matrix

corresponding to the transformation of variables of ξj,t to shares. The density of ξj,t conditional on

ηj,t is

fξ|η (st | xt, pt; θ,Ω) =
J∏
j=1

1
√

2πσξ
√

1− ρ2
exp

−1
2

(
ξj,t − ρ σξση ηj,t

)2

σ2
ξ (1− ρ2)

 .

Note that the evaluation of ξj,t requires inverting the market share equations, (2).
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The element Jj,k in row l and column k of the Jacobian matrix, Jξ→s, is

Jj,l =



∫
α,β

(
1− exp(β0+x′j,tβ

x−βppj,t+ξj,t)
1+
PJ
k=1 exp(β0+x′k,tβ

x−βppk,t+ξk,t)

)
exp(β0+x′j,tβ

x−βppj,t+ξj,t)
1+
PJ
k=1 exp(β0+x′k,tβ

x−βppk,t+ξk,t)dF (θ) , j = l

−
∫
α,β

exp(β0+x′j,tβ
x−βppj,t+ξj,t)

1+
PJ
k=1 exp(β0+x′k,tβ

x−βppk,t+ξk,t)
exp(β0+x′l,tβ

x−βppl,t+ξl,t)
1+
PJ
k=1 exp(β0+x′k,tβ

x−βppk,t+ξk,t)dF (θ) , j 6= l

.

Standard maximum likelihood estimation would involve searching for parameters, ΘLISML, that

maximize the following log-likelihood function

l (Θ) =
T∑
t=1

log (fs,p (st, pt; Θ)) .

This would consist of a nested inner-loop to compute the demand shocks, ξj,t, via numerical inversion

(the NFP contraction-mapping).

The equivalent MPEC approach entails searching for the vector of parameters (Θ, ξ) that maxi-

mizes the constrained optimization problem

lMPEC (Θ, ξ) =
∑T
t=1 log

(
fξ|η (st | xt, pt; θ,Ω) |Jξ→s| fη (pt | zt; γ,Ω)

)
subject to s(ξ; θ) = S

. (13)

10 Extension: Dynamic Demand Models

Starting with Melnikov (2000), a new stream of literature has considered dynamic analogs of BLP with

forward-looking consumers making discrete choice purchases of durable goods (Nair 2007, Gordon

2007, Carranza 2008, Gowrisankaran and Rysman 2008, Dubé, Hitsch and Chintagunta 2008, Lee

2008, Schiraldi 2008). The typical implementation involves a nested-fixed-point approach with two

nested inner loops. The first inner loop is the usual numerical inversion of the demand system to

obtain the demand shocks, ξ. The second inner loop is the iteration of the Bellman equation to obtain

the consumer’s value function. In this section, we describe how MPEC can once again serve as a

computationally more attractive solution than NFP,

As an example, we work with a simple model of demand for a durable good with falling prices over

time, with two competing products. Prices often fall over time for newly-introduced goods. There is

a mass M of potential consumers at date t = 1. Consumers are assumed to drop out of the market

once they make a purchase. Abstracting from supply-side specifics, we assume that prices evolve over

time as a function of the lagged prices of both firms according to the rule
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pj,t = ρj,0 + ρj,1pj,t−1 + ρj,2p−j,t−1 + ψj,t = p′t−1ρj + ψj,t, j = 1, ..., 2 (14)

where ψj,t is a random supply shock. For the remainder of our discussion, we assume that this supply

shock is jointly distributed with the demand shock: (ξj,t, ψj,t) ∼ N (0,Ω) and is independent across

times, firms and markets. We assume that consumers have rational expectations in the sense that

they use the true price process (14) to forecast future prices.

On the demand side, forward-looking consumers now have a real option associated with not pur-

chasing because they can delay adoption to the future, when prices are expected to be lower. A

consumer r’s expected value of waiting is28

vr0 (pt; θr) = δ
∫

max

 vr0 (p′tρj + ψ; θr) + ε0

maxj
{
βrj − αr (p′tρj + ψ) + ξj + εj

}
 dFε(ε)dFψ,ξ (ψ, ξ)

= δ
∫ (

log

(
exp (vr0 (p′tρj + ψ; θr)) +

∑
j

exp
(
βrj − αr (p′tρj + ψ) + ξj

)))
dFψ,ξ (ψ, ξ) .

(15)

To simplify the calculation of the expected value of waiting, we approximate it with Chebyshev

polynomials (Judd 1998). We outline the Chebyshev approximation in Appendix C. Note that by

focusing on the expected value of waiting, rather than the consumer’s value function, we are merely

exploiting the special structure of this model.

We use a discrete distribution with R mass points to characterize the consumer population’s tastes

at date t = 1,

θh ≡

 βh

αh

 =


θ1, Pr(1) = λ1

...
...

θR, Pr(R) = 1−
R−1

Σ
r=1

λr

.

This heterogeneity implies that certain types of consumers will systematically purchase earlier than

others. The mass of consumers of a given type r at the beginning of period t, Mr
t , is

Mr
t =

 Mλr , t = 1

Mr
t−1S

r
0 (Xt−1; Θr) , t > 1

.

In a given period t, the market share of product j is

sj (pt; θ) =
R

Σ
r=1

λt,r
exp(βrj−α

rpj,t+ξj,t)

exp(vr0(pt;θr))+
PJ
k=1 exp(βrk−αrpk,t+ξk,t)

, j = 1, ..., 2 (16)

28Here we make the normalization that the location parameter of the Type I Extreme Value distribution equals -0.577.
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where

λt,r =

 λr t = 1

Mr
tP

rM
r
t

, t > 1

is the probability mass associated with type r consumers still in the market at date t. The finite-types

assumption eases dynamic programming because there is only one unknown value-of-waiting function

for each type.

The empirical model consists of the system (14) and (16), which we write more compactly as

ut ≡

 ψt

ξt

 =

 pt − p′t−1ρ

s−1 (pt, St; Θ)

 .
The multivariate normal distribution of ut induces the density on the observable outcomes, Yt =

(p, St),

fY (Yt; θ, ρ,Ω) =
1

(2π)J |Ω|
1
2

exp
(
−1

2
u
′

tΩ
−1ut

)
|Jt,u→Y |

where Jt,u→Y is the (2J × 2J) Jacobian matrix corresponding to the transformation-of-variables from

ut to Yt. We provide the derivation of the Jacobian in Appendix D.

An NFP approach to maximum likelihood estimation of the model parameters amounts to solving

the optimization problem

max
{θ,ρ,Ω}

T∏
t=1

fY (Yt; θ, ρ,Ω) . (17)

This problem nests two inner loops. For each stage of the outer loop to maximize the likelihood

function in (17), one needs to solve for a fixed point of the contraction mapping, (15), in order to

obtain the expected value of waiting. In addition, one needs to solve the fixed point of the BLP

contraction mapping, 5, to compute the demand shocks ξt (i.e. the inversion). Numerical error from

both these inner loops can potentially propagate into the outer loop. Thus, the numerical concerns

regarding inner loop convergence tolerance discussed for static BLP are exacerbated with dynamic

analogs of BLP.
LetD be the support of the state variables. An MPEC approach to maximum likelihood estimation

of the model parameters amounts to solving the optimization problem

max
{θ,ρ,Ω,ξ,v}

TQ
t=1

1

(2π)J |Ω|
1
2

exp
“
− 1

2
u
′
tΩ
−1
u ut

” ˛̨
Jt,u→Y

˛̨
subject to s(ξt; θ) = St ∀ t = 1, . . . , T

and vr0 (pd) = δ log

0BBB@
exp

`
vr0(p′dρj + ψ)

´
+ ...P

j
exp

“
βrj − αr

`
p′dρj + ψ

´
+ ξj

” 1CCCA dFψ,ξ (ψ, ξ)

∀ d ∈ D, r = 1, . . . , R.
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In this formulation, we now optimize over the demand shocks, ξ, and the expected value of waiting

evaluated at each point, νr (pd). In this case, D⊂R2
+, which is the support of the two products’ prices.

While this approach increases the number of parameters in the outer-loop optimization problem

substantially compared to NFP, MPEC completely eliminates the two inner loops. Note that we

reduce the dimension of this problem substantially by using Chebyshev approximation. Rather than

searching over the value function at each point in a discretized state space, we search over the weights

of the Chebyshev approximation.

To assess the relative performance of MPEC versus NFP in the context of our dynamic durable

goods example, we construct the following Monte Carlo experiments. In the first experiment, we

assume there is only a single consumer type, R = 1. It is easy to show that in this case, ξt can be

computed analytically by log-linearizing the market shares, (16).29 We begin with this case because

it only involves a nested call to the calculation of the expected value of waiting. Below we will allow

for more consumer types to see what happens when we also require a nested call to the numerical

inversion of the shares. We assume that the consumers’ preferences are: (β1, β2, α) = (4, 3,−1) . It

is straightforward to show that the speed of the contraction mapping associated with the consumer’s

expected value of waiting is related to the discount factor. Therefore, we compare performance with

the two different discount factors, δ = 0.99 and δ = 0.96. For an annual interest rate of 4%, δ = 0.96

would be the corresponding annual discount rate and δ = .99 would be the corresponding quarterly

discount rate. We assume that the density of prices has the transition rules p1,t = 5 + .8p1,t−1 + 0.0p2,t−1 + ψ1,t

p2,t = 5 + 0.0p1,t−1 + 0.8p2,t−1 + ψ2,t

 .
Note how the lagged price of product 2 could potentially affect the price of product 1, and vice versa.

Finally, we assume the supply and demand shocks satisfy (ψj,t, ξj,t) ∼ N

0,

 1 0.5

0.5 1

 and are

independent across markets and time periods. For our Chebyshev approximation, we use six nodes

and a fourth order polynomial. For the NFP algorithm, we use an inner loop tolerance of 10−14 for

the calculation of the expected value of waiting.

It is very difficult to derive analytic expressions for the Jacobian of the outer-loop optimization

associated with dynamic BLP, both under NFP and MPEC.30 As we discussed in section 4.5, the

use of numerical derivatives introduces yet another source of numerical error into the outer-loop

optimization. However, due to its formulation as a standard constrained-optimization problem, the

MPEC formulation can potentially exploit automatic differentiation to obtain exact derivatives for
29See Berry (1994) on how to invert the demand shocks in the homogeneous logit model.
30We computed the derivatives in Mathematica, and they ran to 100 pages of algebraic expressions.
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Table 6: Monte Carlo Results for Dynamic BLP with One Consumer Type for δ = 0.96: NFP versus
MPEC

MPEC NFP
Speeds 335.55 secs. 553.50 secs.
Parameters Mean RMSE Mean RMSE Truth
Utility intercept product 1 3.9557 0.1780 3.9556 0.1780 4.0000
Utility intercept product 2 2.9572 0.2015 2.9572 0.2015 3.0000
Utility price coefficient, type 1 -1.0030 0.0101 -1.0030 0.0101 -1.0000
Price, product 1, constant 0.2111 0.0345 0.2111 0.0345 0.2000
Price, product 1, lagged price of product 1 0.7962 0.0136 0.7962 0.0136 0.8000
Price, product 1, lagged price of product 2 0.0026 0.0098 0.0026 0.0098 0.0000
Price, product 2, constant 0.2071 0.0378 0.2071 0.0378 0.2000
Price, product 2, lagged price of product 1 0.0037 0.0168 0.0037 0.0168 0.0000
Price, product 2, lagged price of product 2 0.7935 0.0156 0.7935 0.0156 0.8000
Demand shocks, Cholesky variance term 0.9958 0.0173 0.9958 0.0173 1.0000
Covariance btw supply and demand, Cholesky variance term 0.5015 0.0215 0.5015 0.0215 0.5000
Supply shocks, Cholesky variance term 0.8647 0.0152 0.8647 0.0152 0.8660

There are 20 replications for each of MPEC and NFP. The same fake data are used for both MPEC and NFP. Each
replication uses five starting values to do a better job at finding a global minimum. The NFP implementation has
εξin = 10−14 , εVin = 10−14 and εout = 10−6. There is no inner loop in MPEC; εout = 10−6 and εfeasible = 10−6.
The data have T = 50 periods and M = 20 distinct markets. Each market has two competing products. The
Chebyshev regression approximation to the value function uses a fourth-order polynomial and five interpolation nodes.
The numerical integration of future states uses Gauss-Hermite quadrature with three nodes. NFP uses numerical
derivatives, as coding the derivatives of dynamic BLP is infeasible for many problems and it is not clear automatic
differentiation works with nested inner loops. MPEC uses automatic differentiation in the form of the package MAD.

the outer loop (Griewank and Corliss 1992). To the best of our knowledge, it would be non-standard

to apply automatic differentiation to an NFP problem because of the nested calls to fixed-point

calculations. Therefore, in our Monte Carlo experiments, we compare the performance of NFP using

numerical differentiation and MPEC using automatic differentiation.31

Results from twenty replications of this first experiment are reported in Table 6, where we use

the discount factor δ=0.96. We report the average point estimate and RMSE associated with each

of the structural parameters, for MPEC and NFP respectively. With very tight inner-loop settings

and allowing for 5 different starting values, we find that MPEC and NFP produce identical point

estimates. Indeed, inspection of the replications found that MPEC and NFP found the same solution

for all replications. However, in terms of speed, MPEC is roughly 60% faster in terms of CPU time

than NFP.

In Table 7, we run another twenty replications of the same one-type model using a discount factor

of δ = 0.99, corresponding to quarterly data for a possibly fast-changing market. Interestingly, even

with five starting values per replication, MPEC appears to perform slightly better overall in terms of
31We use the MAD (MATLAB Automatic Differentiation) package, which is part of TOMLAB.
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Table 7: Monte Carlo Results for Dynamic BLP with One Consumer Type for δ = 0.99: NFP versus
MPEC

MPEC NFP
Speeds 671.49 secs. 1295.50 secs.
Parameters Mean RMSE Mean RMSE Truth
Utility intercept product 1 4.0684 0.7235 3.3907 1.7473 4.0000
Utility intercept product 2 3.0692 0.7316 2.3913 1.7844 3.0000
Utility price coefficient, type 1 -0.9885 0.0380 -0.9987 0.0152 -1.0000
Price, product 1, constant 0.1929 0.0682 0.2171 0.0655 0.2000
Price, product 1, lagged price of product 1 0.8170 0.0532 0.8022 0.0546 0.8000
Price, product 1, lagged price of product 2 -0.0044 0.0295 0.0000 0.0520 0.0000
Price, product 2, constant 0.1770 0.1102 0.2058 0.0813 0.2000
Price, product 2, lagged price of product 1 -0.0195 0.0557 -0.0065 0.0436 0.0000
Price, product 2, lagged price of product 2 0.8330 0.0860 0.8089 0.0585 0.8000
Demand shocks, Cholesky variance term 1.0139 0.0468 1.0053 0.0334 1.0000
Covariance btw supply and demand, Cholesky variance term 0.4985 0.0255 0.5050 0.0219 0.5000
Supply shocks, Cholesky variance term 0.8652 0.0152 0.8640 0.0159 0.8660

There are 20 replications for each of MPEC and NFP. The same fake data are used for both MPEC and NFP. Each
replication uses five starting values to do a better job at finding a global minimum. The NFP implementation has
εξin = 10−14 , εVin = 10−14 and εout = 10−6. There is no inner loop in MPEC; εout = 10−6 and εfeasible = 10−6.
The data have T = 50 periods and M = 20 distinct markets. Each market has two competing products. The
Chebyshev regression approximation to the value function uses a fourth-order polynomial and four interpolation nodes.
The numerical integration of future states uses Gauss-Hermite quadrature with three nodes. NFP uses numerical
derivatives, as coding the derivatives of dynamic BLP is infeasible for many problems and it is not clear automatic
differentiation works with nested inner loops. MPEC uses automatic differentiation in the form of the package MAD.

RMSE, especially for the utility intercepts. Furthermore, MPEC is just under twice as fast at NFP

in terms of CPU time.32

Thus far, we have established that MPEC is faster and, potentially, more reliable than NFP for

the one-type case. We now run a final Monte Carlo using MPEC only to illustrate its applicability

to a case with consumer heterogeneity. In particular, we allow for a second type of consumer with

heterogeneity in the price sensitivity:

(β1, β2, α)′ =

 (4, 3,−1) , with probability λ=0.7

(4, 3,−2) , with probability (1− λ)=0.3
.

This case now requires constraints corresponding both to the expected value of waiting for each of

the R = 2 consumer types and for the share equations. To conserve on computer time, we use only
32Inspection of the replications found that for two replications of NFP, the optimization routine was not able to

diagnose convergence for the greatest likelihood function value out of the five starting values. Indeed, in these two
replications NFP found a worse objective function value than MPEC did. All replications of MPEC converged to a
valid local maximum. However, for three of the twenty replications, MPEC converged to a worse solution than NFP.
For δ = 0.99 and unlike the δ = 0.96 case, it appears five starting values are not enough to always find the same solution
with MPEC and NFP.
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Table 8: Monte Carlo Results for Dynamic BLP with Two Consumer Types and δ = 0.90 MPEC Only

MPEC
Speeds 9397 secs.
Parameters Mean RMSE Truth
Utility intercept product 1 3.6604 0.5719 4.0000
Utility intercept product 2 2.6980 0.5287 3.0000
Utility price coefficient, type 1 -1.0159 0.0299 -1.0000
Utility price coefficient, type 2 -2.0369 0.2623 -2.0000
Frequency, type 1 0.7907 0.1016 0.7000
Price, product 1, constant 0.1894 0.0818 0.2000
Price, product 1, lagged price of product 1 0.7919 0.0333 0.8000
Price, product 1, lagged price of product 2 -0.0013 0.0274 0.0000
Price, product 2, constant 0.2283 0.0929 0.2000
Price, product 2, lagged price of product 1 -0.0013 0.0262 0.0000
Price, product 2, lagged price of product 2 0.7919 0.0341 0.8000
Demand shocks, Cholesky variance term 0.9001 0.4386 1.0000
Covariance btw supply and demand, Cholesky variance term 0.4537 0.4609 0.5000
Supply shocks, Cholesky variance term 0.6891 0.5616 0.8660

There are 20 replications. Each replication uses two starting values to do a better job at finding a global minimum.
There is no inner loop in MPEC; εout = 10−6 and εfeasible = 10−6. The data have T = 50 periods and M = 5 distinct
markets. Each market has two competing products. The Chebyshev regression approximation to the value function uses
a fourth-order polynomial and four interpolation nodes. The numerical integration of future states uses Gauss-Hermite
quadrature with three nodes. The code uses automatic differentiation in the form of the package MAD.

M = 5 markets per replication. Results are reported in Table 8. Not only do we find that the

parameters are recovered quite well, the average run time requires only 2.6 hours of CPU time. In

short, these results are encouraging for MPEC as a practical approach to estimating dynamic BLP

with unobserved heterogeneity in a broader context.

11 Conclusions

In this paper, we analyzed the numerical properties of the NFP approach proposed by BLP to estimate

the random-coefficients-logit demand model. Theoretically, the NFP approach may be slow, as NFP’s

inner loop is only linearly convergent. NFP is also more vulnerable to error due to the inner loop.

We showed the Lipschitz constant is a measure of an upper bound to the convergence rate of NFP’s

inner loop’s contraction mapping. We numerically evaluated the Lipschitz constant for particular

data-generating processes and showed when the inner loop is likely to be slow. A researcher is likely

to use a loose inner loop tolerance when the speed of NFP is slow. Using both numerical theory

and computational examples with both real and fake data, we showed that setting loose inner-loop

tolerances can lead to incorrect parameter estimates and a failure of the optimization routine to report

that it has converged. Using the cereal data, we showed a case where the estimates with multiple
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starting values always reported (more or less) the same wrong estimate.

We then proposed a new constrained-optimization formulation, MPEC, for estimating the random-

coefficients-logit demand model. MPEC is quicker to compute and avoids numerical errors because it

avoids repeatedly inverting the market shares equations numerically. It also allows the researcher to

access state-of-the-art constrained optimization solvers.

To assess the practical aspects of MPEC versus NFP, we conducted a number of Monte Carlo

experiments. In many instances, we found that the NFP approach could produce accurate estimates

of the demand parameters in a reasonable amount of time – so long as it was implemented carefully.

However, we find that NFP is comparatively quite slow under several data generating processes. We

used the Lipschitz constant to identify cases where NFP was quite slow. Loosening the inner-loop

tolerance to improve the speed of NFP, as is often done in practice, leads to a failure to converge

unless the optimization method’s tolerance is also significantly loosened, which can potentially lead

to incorrect estimates.

In contrast, MPEC produces good estimates relatively quickly for all the data-generating processes

we considered. The reason is that there is no inner loop in MPEC, so issues like a high Lipschitz

constant (or slow contraction mapping) are irrelevant for MPEC. The speed of MPEC was roughly

invariant across data generating-processes with different Lipschitz constants, in contrast with NFP.

In principle, MPEC can also be used for demand models where there is a unique vector of demand

shocks that rationalize the market shares, but no contraction mapping. Moreover, it can be applied

to demand models where multiple vectors of demand shocks may solve the system of market-share

equations. For the last case, NFP will certainly not work. MPEC is also useful for estimating the

BLP demand model using maximum likelihood, where a Jacobian term involving the demand shocks

must be computed.

As an extension, we adapt the MPEC approach to a new class of applications with forward-looking

consumers. The relative advantage of MPEC is even stronger with dynamics because two inner loops

must be solved: the dynamic-programming problem and the market-share inversion. This burdensome

collection of three loops (optimization, market shares, dynamic programming) makes the traditional

BLP approach nearly untenable in terms of computational time. Current work (Lee 2008, Schiraldi

2008) further extends the number of inner loops being solved in estimation. As demand models become

richer, the computational benefits of MPEC over NFP become greater.
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A Proofs

In all the proofs below, we assume the sum of the second order and other higher order terms in a Taylor

seris expansion is bounded. This is a conventional assumption in the numerical optimization literature

and allows us to use the big-O notation with a second order term, e.g., O
(∥∥∥ξ(θ̂(εin), εin)− ξ(θ̂(εin), 0)

∥∥∥2
)

or O
(∥∥∥θ̂(εin)− θ∗

∥∥∥2
)
.

A.1 Proof of Theorem 3

By a Taylor series expansion of Q (ξ) around ξ (θ, 0), we have

Q (ξ (θ, εin))−Q (ξ (θ, 0))

=
[
∂Q(ξ)
∂ξ

∣∣
ξ=ξ(θ,0)

]′
(ξ (θ, εin)− ξ (θ, 0)) +O

(
‖ξ (θ, εin)− ξ (θ, 0)‖2

)
and

∇θQ (ξ)
∣∣
ξ=ξ(θ,εin) −∇θQ (ξ)

∣∣
ξ=ξ(θ,0)

=
[
∂∇θQ(ξ(θ))

∂ξ

∣∣
ξ=ξ(θ,0)

]′
(ξ (θ, εin)− ξ (θ, 0)) +O

(
‖ξ (θ, εin)− ξ (θ, 0)‖2

)
.

Because ‖ξ (θ, εin)− ξ (θ, 0)‖ ≤ L(θ)
1−L(θ)εin by Theorem 1, and assuming both

∥∥∥∂Q(ξ)
∂ξ

∣∣
ξ=ξ(θ,0)

∥∥∥ and∥∥∥∂∇θQ(ξ(θ))
∂ξ

∣∣
ξ=ξ(θ,0)

∥∥∥ are bounded, we obtain

|Q (ξ (θ, εin))−Q (ξ (θ, 0))| = O

(
L(θ)

1− L(θ)
εin

)
∥∥∇θQ (ξ (θ))

∣∣
ξ=ξ(θ,εin) −∇θQ (ξ (θ))

∣∣
ξ=ξ(θ,0)

∥∥ = O

(
L(θ)

1− L(θ)
εin

)
.

A.2 Proof of Theorem 4

We define θ̂(εin) to be the numerically incorrect estimates with the inner-loop tolerance εin,

θ̂(εin) = arg max
θ

{Q (ξ (θ, εin))} .

Because ∇θQ (ξ)
∣∣∣ξ=ξ(θ̂(εin),εin) = 0, the application of the second result in Theorem 3 at θ̂(εin) gives

∥∥∥∇θQ (ξ)
∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥ = O

 L
(
θ̂(εin)

)
1− L

(
θ̂(εin)

)εin
 . (18)

48



Note that we have evaluated the GMM objective function with no numerical error at the point θ̂(εin)

that minimizes the GMM objective function with inner loop numerical error.

Let θ̃ be any value of the structural parameters near θ̂(εin). By first the inverse triangle inequality,

then the regular triangle inequality, and then finally a Taylor series expansion, we have

∥∥∥∇θQ (ξ (θ))
∣∣∣ξ=ξ(θ̃,εin)

∥∥∥− ∥∥∥∇θQ (ξ (θ))
∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥
≤

∥∥∥∇θQ (ξ (θ))
∣∣∣ξ=ξ(θ̃,εin) −∇θQ (ξ (θ))

∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥
=

∥∥∥∇θQ (ξ (θ))
∣∣∣ξ=ξ(θ̃,εin) −∇θQ (ξ (θ))

∣∣∣ξ=ξ(θ̃,0) +∇θQ (ξ (θ))
∣∣∣ξ=ξ(θ̃,0) −∇θQ (ξ (θ))

∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥
≤

∥∥∥∇θQ (ξ (θ))
∣∣∣ξ=ξ(θ̃,εin) −∇θQ (ξ (θ))

∣∣∣ξ=ξ(θ̃,0) ∥∥∥
+
∥∥∥∇θQ (ξ (θ))

∣∣∣ξ=ξ(θ̃,0) −∇θQ (ξ (θ))
∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥
≤ O

(
L(θ̃)

1−L(θ̃)
εin

)
+
∥∥∥∇2

θQ (ξ (θ))
∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥∥∥∥θ̃ − θ̂(εin)
∥∥∥+O

(∥∥∥θ̃ − θ̂(εin)
∥∥∥2
)
.

As we have assumed
∥∥∥∇2

θQ (ξ (θ))
∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥ is bounded, the second order term O

(∥∥∥θ̃ − θ̂(εin)
∥∥∥2
)

term can be ignored. By rearranging the above inequality, we obtain

∥∥∥∇θQ (ξ (θ))
∣∣∣ξ=ξ(θ̃,εin)

∥∥∥ ≤
∥∥∥∇θQ (ξ (θ))

∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥+O

(
L(θ̃)

1−L(θ̃)εin

)
+O

(∥∥∥θ̃ − θ̂(εin)
∥∥∥)

= O
(

L(θ̂(εin))

1−L(θ̂(εin))
εin

)
+O

(
L(θ̃)

1−L(θ̃)εin

)
+O

(∥∥∥θ̃ − θ̂(εin)
∥∥∥2
)

= O (εin) +O

(∥∥∥θ̃ − θ̂(εin)
∥∥∥2
)
,

where the first equality uses (18).

A.3 Proof of Theorem 5

We define θ∗ to be the true estimate when there are no inner-loop numerical errors (εin = 0), i.e., θ∗ =

arg max
θ

{Q (ξ (θ, 0))} . First, we can quantify the bias between the numerically correct and incorrect

objective function values, Q
(
ξ( ˆθ(εin), εin)

)
and Q (ξ(θ∗, 0)). By two Taylor series expansions, we have

Q
(
ξ( ˆθ(εin), εin)

)
−Q (ξ(θ∗, 0))

= Q
(
ξ(θ̂(εin), εin)

)
−Q

(
ξ(θ̂(εin), 0)

)
+Q

(
ξ( ˆθ(εin), 0)

)
−Q (ξ(θ∗, 0))

=
[
∇ξQ (ξ (θ))

∣∣∣ξ=ξ(θ̂(εin),0)

]′ (
ξ(θ̂(εin), εin)− ξ(θ̂(εin), 0)

)
+O

(∥∥∥ξ(θ̂(εin), εin)− ξ(θ̂(εin), 0)
∥∥∥2
)

+[
(∇θξ (θ))′∇ξQ (ξ)

∣∣
ξ=ξ(θ?,0)

]′ (
θ̂(εin)− θ∗

)
+O

(∥∥∥θ̂(εin)− θ∗
∥∥∥2
)

=
[
∇ξQ (ξ)

∣∣∣ξ=ξ(θ̂(εin),0)

]′ (
ξ(θ̂(εin), εin)− ξ(θ̂(εin), 0)

)
+O

(∥∥∥ξ(θ̂(εin), εin)− ξ(θ̂(εin), 0)
∥∥∥2
)

+O

(∥∥∥θ̂(εin)− θ∗
∥∥∥2
)
,
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because ∇ξ(θ∗)′∇ξQ (ξ(θ∗)) = 0 at the true estimates θ∗.

Rearranging the equality involvingQ
(
ξ(θ̂(εin), εin)

)
−Q (ξ(θ∗, 0)) to focus on theO

(∥∥∥θ̂(εin)− θ∗
∥∥∥2
)

term, we have

O

(∥∥∥θ̂(εin)− θ∗
∥∥∥2
)

= Q
(
ξ(θ̂(εin), εin)

)
−Q (ξ(θ∗, 0))−

[
∇ξQ (ξ)

∣∣∣ξ=ξ(θ̂(εin),0)

]′ (
ξ(θ̂(εin), εin)− ξ(θ̂(εin), 0)

)
−O

(∥∥∥ξ(θ̂(εin), εin)− ξ(θ̂(εin), 0)
∥∥∥2
)

≤
∣∣∣Q(ξ(θ̂(εin), εin)

)
−Q (ξ(θ∗, 0))

∣∣∣+
∥∥∥∇ξQ (ξ)

∣∣∣ξ=ξ( ˆθ(εin),0)

∥∥∥ ∥∥∥ξ( ˆθ(εin),εin)− ξ(θ̂(εin), 0)
∥∥∥

−O
(∥∥∥ξ(θ̂(εin), εin)− ξ(θ̂(εin), 0)

∥∥∥2
)
.

Since we assume
∥∥∥∇ξQ (ξ)

∣∣∣ξ=ξ(θ̂(εin),0)

∥∥∥ is bounded, the second-order termO

(∥∥∥ξ(θ̂(εin), εin)− ξ(θ̂(εin), 0)
∥∥∥2
)

can be ignored. This allows us to focus on the numerical error from the NFP algorithm’s inner loop

and the bias in objective values. From Theorem 1, we also know
∥∥∥ξ(θ̂(εin), εin)− ξ(θ̂(εin), 0)

∥∥∥ ≤
L(θ̂(εin))

1−L(θ̂(εin))
εin. Hence, we obtain

O

(∥∥∥θ̂(εin)− θ∗
∥∥∥2
)
≤
∣∣∣Q(ξ(θ̂(εin), εin)

)
−Q (ξ(θ∗, 0))

∣∣∣+O

(
L(θ̂(εin))

1− L(θ̂(εin))
εin

)
.

A.4 Proof of Theorem 6

The NFP method (4) solves the following unconstrained problem

minθQ (ξ (θ)) . (19)

The first-order condition of (19) is

∂Q (ξ (θ))
∂θ

=
dξ

dθ

′ ∂Q

∂ξ
= 0. (20)

The constrained optimization formulation of (19) is

min
(θ,ξ)

Q (ξ)

s.t. s(ξ; θ) = S.
(21)
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The Lagrangian for (21) is L (θ, ξ, λ) = Q(ξ) − λT (S − s(ξ; θ)), where λ is the vector of Lagrange

multipliers. The first-order conditions of (21) are

∂L (θ, ξ, λ)
∂θ

= − ds(ξ; θ)
dθ

′
λ = 0

∂L (θ, ξ, λ)
∂ξ

=
∂Q

∂ξ
− ds(ξ; θ)

dξ

′
λ = 0

∂L (θ, ξ, λ)
∂λ

= S − s(ξ; θ) = 0.

(22)

Since the BLP inner loop is a contraction mapping, the matrix ds(ξ;θ)
dξ

′
is invertible.33 Solving the

second set of first order conditions for λ gives λ =
(
ds(ξ;θ)
dξ

′)−1
∂Q
∂ξ . Then

∂L
∂θ

= −ds(ξ; θ)
dθ

′(
ds(ξ; θ)
dξ

′)−1
∂Q

∂ξ
= 0, (23)

which is identical to (20), the first-order condition from the NFP formulation. To see the equivalence,

note that the implicit function theorem (Theorem M.E.1 in Mas-Collel, Whinston and Green 1995)

states
∂ξ (θ)
∂θ

= −
(
ds(ξ; θ)
dξ

)−1
ds(ξ; θ)
dθ

,

so by substitution,
∂L
∂θ

=
∂ξ (θ)′

∂θ

∂Q

∂ξ
=
∂Q (ξ (θ))

∂θ
.

B Gradients for the MPEC Objective Function and Constraints

Here we derive the gradients of the MPEC objective function and constraints with respect to the

optimization parameters in MPEC. These gradients are an important input, for both numerical ac-

curacy and speed. Nevo (2000) lists the gradients for NFP. This section uses the independent normal

distribution for each of the random coefficients, as in BLP (1995) and many other empirical papers.

Market Share

sj (ξt; θ) =
∫ exp(x′j,tβ−ᾱpj,t+ξj,t+

P
k x
′
kj,tνkσβk−pj,tνK+1σα)

1+
PJ
i=1 exp(x′itβ−ᾱpi,t+ξi,t+

P
k x
′
k,i,tνkσβk−pi,tνK+1σα)dF (ν)

=
∫
Tj(ξt, ν; θ)dF (ν)

where θ = (β, α, σβ , σα)′, and ν ∼ N(0, IK+1).

MPEC Criterion Function
33We thank Ken Judd and John Birge for pointing out this property.
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min
θ,ξ

g (ξ)′Wg (ξ)

subject to s(ξ; θ) = S
. (24)

where g(ξ) =
1
T

T∑
t=1

ξ′tzt

Gradients for MPEC

∂sj(ξt; θ)
∂βk

=
∫
Tj(ξt, ν; θ)(xj,k,t −

∑
i

Ti(ξt, ν; θ)xk,i,t)dF (ν)

∂sj(ξt; θ)
∂α

=
∫
Tj(ξt, ν; θ)(pj,k,t −

∑
i

Ti(ξt, ν; θ)pk,i,t)dF (ν)

∂sj(ξt; θ)
∂σβk

=
∫
Tj(ξt, ν; θ)(xj,k,t −

∑
i

Ti(ξt, ν; θ)xk,i,t)νkdF (ν)

∂sj(ξt; θ)
∂σα

=
∫
Tj(ξt, ν; θ)(pj,k,t −

∑
i

Ti(ξt, ν; θ)pk,i,t)νK+1dF (ν)

∂sj(ξt; θ)
∂ξj,t

=
∫
Tj(ξt, ν; θ)(1− Tj(ξt, ν; θ))dF (ν)

∂sj(ξt; θ)
∂ξi,t

= −
∫
Tj(ξt, ν; θ))Ti(ξt, ν; θ))dF (ν)

∂g(ξ)′Wg(ξ)
∂ξ

= 2g(ξ)′W
∂g(ξ)
∂ξ

C Chebyshev Approximation of the Expected Value of Waiting

First, we bound the range of prices as follows, p = (p1, p2)
′
∈ [0, b] × [0, b], where b is large (b is 1.5

times the largest observed price in the data). We then approximate the expected value of delaying

adoption with Chebyshev polynomials, vr0 (p; θr) ≈ γr′Λ(p), where γr is a K × 1 vector of parameters

and Λ (p) is a K × 1 vector of K Chebyshev polynomials. Therefore, we can re-write the Bellman as

γr
′
Λ (p) = δ

∫
log

exp
(
γr
′
Λ (pρ+ ψ)

)
+
∑
j

exp
(
βrj − αr (p′ρj + ψ) + ξj

) dFψ,ξ (ψ, ξ) .
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To solve for the Chebyshev weights, we use the Galerkin method described in Judd (1992). We define

the residual function:

R (p; γ) = γr
′
Λ (p)− . . .

δ
∫

log

(
exp

(
γr
′
Λ (pρ+ ψ)

)
+
∑
j

exp
(
βrj − αr (p′ρj + ψ) + ξj

))
dFψ,ξ (ψ, ξ)

.

(25)

Next, we let X be the matrix of K Chebyshev polynomials at each of the G points on our grid (i.e.

G nodes). Our goal is to search for parameters, γ, that set the following expression to zero:

X ′R (p; γ) = 0. (26)

We use an iterated least squares approach for NFP.

1. Pick a starting value γr,0, vr,00 (p; Θr) = γr,0
′
ρ (p)

2. Compute Y
(
p; γr,0

)
= δ

∫
log

(
exp

(
γr,0

′
Λ (pρ+ ψ)

)
+
∑
j

exp
(
βrj − αr (p′ρj + ψ) + ξj

))
dFψ,ξ (ψ, ξ)

using quadrature

3. solve the least squares problem: min
γ
R(p; γ)′R(p; γ)⇒ min

γ

(
Xγr − Y

(
p; γr,0

))′ ((Xγr − Y (p; γr,0))
• for which the solution is: γr,1 = (X ′X)−1

X ′Y
(
p; γr,0

)
.

4. Compute vr,10 (p; Θr) = γr,1
′
Λ (p)

5. Repeat steps 2 and 3 until convergence.

D Jacobian of the Density of (pt, St) in the Dynamic BLP model

The Jacobian is defined as follows:

Jt,u→Y =

 ∂ψt
∂pt

∂ψt
∂St

∂ξt
∂pt

∂ξt
∂St

 .
Since ∂ψt

∂ log(pt)
= IJ and ∂ψt

∂ log(pt)
= 0J (a square matrix of zeros), we only need to compute the matrix

of derivatives,
[
∂ξt
∂St

]
. We can simplify this calculation by applying the implicit function theorem to

the following system

G (St, ξt) = s (p, ξt; Θ)− St = 0
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and computing the lower block of the Jacobian as

Jt,ξ→S = −
[
∂G
∂ξt

]−1 [
∂G
∂St

]
=

[
∂s
∂ξt

]−1 ,

where the (j, k) element of ∂sj,t
∂ξk,t

is

∂Sj,t
∂ξk,t

=


∑
r
λr,tsj (pt, ξt; Θr) (1− sj (pt, ξt; Θr)) , if j = k

−
∑
r
λr,tsj (p, ξt; Θr) sk (p, ξt; Θr) , otherwise.
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