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1) DSGE Models and Questions of Interest 
DSGEs can be used to address serious (real-world) empirical questions: 
• Ask quantitative counterfactual policy questions 
• Make conditional forecasts 
• Examine effects of past policy changes (effects on means and 

variances, e.g. Great Moderation debate) 
• Solve for optimal policies 

A big breakthrough has been the development of numerical and 
conceptual methods that permit moving from calibration to estimation 
(Sargent (1989), Ireland (2000), Smets-Wouters (2003)). 
 
This talk:  the econometrics (estimation and inference) of DSGE modeling  
• Briefly review specification and solution 
• Focus will be on solved linearized models (models that have been 

written in state space form) 
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Overview of the standard DSGE methodology 
1) Specify nonlinear optimization model 
2) Obtain Euler equations 

At this point, can estimate by GMM (single equation or system) 
3) Log linearize 
4) Solve the model (solve out expectations) – log linearization 
5) Put into state space form 
6) Estimation options: 

a) Moment matching (match impulse response functions, possibly 
using simulation methods) 

b) Maximum Likelihood 
c) Bayes methods 

7) Inference and evaluation 
 
References to extensions will be given below
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Overview of the standard DSGE methodology, ctd 
 
There are some good recent references: 
 
Textbooks/monographs: 
Canova, F. (2007), Methods for Applied Macroeconomic Research,  

Princeton: Princeton University Press. 
Dejong, D.N. and C. Dave (2007), Structural Macroeconomics, Princeton: 

Princeton University Press 
 
Lecture Notes 
Christiano L.J. (2007), “A Short Course on Estimation, Solution and 

Policy Analysis using Equilibrium Monetary Models,” (extensive 
slides are on Christiano’s Web site) 
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2) Model Solution 
 
The steps: 
Euler equations 
Linearize 
Example: the linearized Gali, López-Salido, Vallés (2003) model: 

Calvo Pricing/NKPC:   πt = βEtπt+1 + κxt     
intertemporal consumption: xt = –σ–1(rt – Etπt+1 – ) + Etxt+1    *

trr

monetary policy:    rt = (1–α)φππt + (1–α)φxxt + αrt–1 + ut 
 natural interest rate:    = ρΔat +(1+φ)–1(1–λ)τt *

trr

 processes for shocks:   Δat = ρΔat–1 + a
tη  

         ut = δut–1 + u
tη  

         τt = λτt–1 + t
τη  

 Model parameters (12):  θ = (β, κ, σ, α, φz, φπ, ρ, δ, λ, 2
aσ , 2

uσ , 2
tσ )
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Model solution, ctd. 
 

Several solution methods are available for solving linearized models 
with rational expectations.  For example, a model in the form, 
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where x1t are predetermined endogenous variables, x2t are non-
predetermined endogenous variables, and x3t contains forcing variables 
(observed or unobserved) can be solved using Blanchard-Kahn (1980), see 
Dejong and Dave (2007, ch. 2) and Canova (2007, ch. 2). 
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Model solution, ctd. 
The solved model will be linear and “one-sided” and can be written, 

 
State equation:   st = Fst–1 + Rηt,   

 
where:  ηt are the system shocks, Et–1ηt = 0, Eηtηt′ = Ση,  st is the state 
vector and H, R, and Σε depend on the original model parameters θ . 
 
The system st = Fst–1 + Rηt is the state equation of the Kalman Filter, 
which is completed by adding the observer equation: 

 
Observer equation: yt = Hst + εt 

 
where εt  is i.i.d., Eεt = 0, Eεtεt′ = Σε, and Eεtηt′ = 0.  (εt is measurement 
error, and may or may not be present). 



Model solution, ctd. 
In general, the state space model, 
 

State equation:   st = Fst–1 + Rηt,   
Observer equation: yt = Hst + εt  

implies a VARMA representation for y.  If there are more η’s and ε’s than 
observables, the VARMA errors will not in general be the state equation 
errors. 
 
example (univariate permanent-transitory model): 

st = st–1 + ηt 
yt = μt + εt 

so Δyt = ηt + Δεt.  Thus var(Δyt) = 2
ησ  + 2 2

εσ  , cov(Δyt,Δyt–1) = – 2
εσ , and 

cov(Δyt,Δyt–h) = 0, |h|>1, so yt has the ARIMA(0,1,1) representation, Δyt = 
et + θet–1
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Model solution, ctd. 
 
Using the KF (given the system matrices F, R, H, Σε, Ση)  and assuming 
normality, you can compute the entire joint distribution of the observables, 
which permits: 
• computing conditional forecasts (conditional expectations) 
• impulse responses (response of yt to ηt) 
• simulating data (draw ηt, εt and simulate) 
• computing complicated moments (using simulated data) 
• computing forecasts given data through date T, under changes in 

policy rules 
 



Model solution, ctd. 
For example, in the Gali, López-Salido, Vallés model above, 

State equation:   st = Fst–1 + Rηt,   
Observer equation: yt = Hst + εt 

If you observe rt, πt, and xt, then  yt = 
t

t

t

r

x
π
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 , there is no εt, and H is a 

matrix of zeros and ones selecting the appropriate elements of st: 
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3) Estimation: GMM 
 

Note: henceforth we focus on models that are not stochastically singular 
(models with “at least as many shocks as observables” – linear models 
without singularity in spectral density).  See e.g. Watson (1993) for one 
way to compare stochastically singular models to data. 
GMM methods: 

(a) Euler equations, one equation at a time 
(b) Euler equations, as a system 
(c) GMM for matching other moments 
 

(a) GMM, one equation at a time 
Hybrid NKPC:     πt = λxt + γfEtπt+1 + γbπt–1 + ηt 
Rational expectations:    Et–1(πt – λxt – γfπt+1 – γbπt–1) = 0 
Instruments (need at least 2):  Zt = {πt–1, xt–1, rt–1, …} 



(a) GMM, one equation at a time, ctd. 
 
We discussed GMM estimation in Lecture 4.  For completeness, the GMM 
setup in the NKPC example is: 
 
“errors”:      h(Yt;θ) = πt – λxt – γfπt+1 – γbπt–1 
errors × instruments:   φt(θ) = h(Yt;θ)Zt 

GMM objective function:  ST(θ) = 1/2 1/2

1 1

( ) ( )
T T

t T t
t t

T W Tφ θ φ θ− −

= =
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⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑  

GMM estimator:    θ̂  minimizes ST(θ) 

Centered sample moments: ΨT(θ) = ( )1/2

1

( ) ( )
T

t t
t

T Eφ θ φ θ−

=

−∑  

Efficient GMM:    WT = 1ˆ −Ω , Ω = E[ΨT(θ)ΨT(θ)′] 
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(a) GMM, one equation at a time, ctd. 
Under conventional (strong identification) asymptotics, the feasible 
efficient GMM estimator (two-step, iterated, CUE): 

 

T (θ̂  – θ0)  N(0, (DΩ–1D′)–1) 
d
→

 

where D = E
0

( )t

θ

φ θ
θ

∂
∂

. 

 
Assessment tools: 
• Test of overidentifying restrictions (J-test) 
• Tests for stability (split-sample tests with a known break date, or 

GMM break tests with an unknown break date as in Andrews (1993) 
and Andrews-Ploberger (1994)) 

• forecast assessment (Lecture 10) 
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(b)  System GMM estimation 
In general system estimation improves efficiency over single-equation 
estimation (cross-equation restrictions, SUR reasons). 
 
For example, in the GL-SV model, if the shocks are i.i.d., 
 

errors:      h(Yt;θ) = 
1

1
1 1

1
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errors × instruments:  φt(θ) = h(Yt;θ)⊗Zt 
 
Or, different instruments could be used for different equations. 
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(b)  System GMM estimation 
Advantages of GMM estimation of Euler equations: 
• model doesn’t need to be solved (for estimation; however the model 

needs to be solved for applications) 
• don’t need to assume distribution for Euler equation errors – just 

martingale difference sequence with moments 
• Estimation can proceed using nonlinear Euler equations (so nonlinear 

solution method can be applied only once, to the estimated parameters) 
• Standard (strong identification) estimation and asymptotics proceeds 

as in the single-equation case; standard tools for assessing fit. 
• tools are available for weak identification inference 

Disadvantages: 
• Efficiency loss relative to ML 
• requires modification for unobserved serially correlated shocks (in 

which case expectational conditions won’t hold using observables) 
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(c) GMM for matching other moments 
• Most commonly used to match model impulse responses to estimated 

impulse responses (the moments are the empirical impulse responses). 
• Examples (matching IRFs from structural VARs): Christiano, 

Eichenbaum, Evans (2005), Boivin and Giannoni (2006a) (recall that 
linearized SS form implies VARMA which is restricted VAR(∞)) 

• Motivation: limited information approach (see CEE (1995))  
• Specifics: Compute sample IRFs from SVAR – call these μT(y) 

Compute implied IRFs from DSGE – call these μ(θ) 
Choose θ to minimize the distance,  

ST(θ) = [μ(θ) – μT(y)]′WT[μ(θ) – μT(y)] 
Usual GMM asymptotics apply 

• This produces lots moments – which can result in bias & poor 
performance of sampling distribution.  See Hall, Inoue, Nason, and 
Rossi (2007) for an IRF selection information criterion. 
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4) Estimation:  Simulated GMM 
 

Simulated GMM  
McFadden (1989), Pakes and Pollard (1989)  
• GMM matches moments implied by the model (for which we have 

explicit expressions) to sample counterparts based on the data, 
assuming that, in population, these match at a (unique) true value θ0. 

• Simulated GMM addresses the case that the theoretical distribution 
(moments) implied by the model is difficult to derive analytically – so 
it is computed numerically instead, by simulation. 

• Why DSGEs might not yield analytical GMM moment restrictions: 
o unobservables in Euler equations (e.g. missing variables, which 

can have dynamics under the model – so the expectational 
orthogonality condition can’t be implemented) 

o nonlinear function of SS parameters not readily calculated 



Simulated GMM, ctd. 
 
A (very) simple SMM example: 
 
model:   yt i.i.d. N(θ, 2

yσ ), 2
yσ  known; want to estimate θ 

data:   (y1,…, yT) 

GMM:   minθ ( y  – θ)2, so θ̂  = y  and T (θ̂ –θ)  N(0, 
d
→ 2

yσ ) 

SMM:    
(i) choose some θ and simulate x1,…, xm from the model N(θ, 2

yσ ) 

(ii) compute the simulated theoretical moment, x (θ) 
(iii) solve for the SMM estimator: 

ˆSMMθ :  minθ ( y  – x (θ))2  
you can do minimize this by grid search (or random 
search/simulated annealing or simplex) - no derivatives needed 
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Simple SMM example, ctd. 
What is the distribution of the SMM estimator? 

xi are drawn from N(θ, 2
yσ ) as xi = θ + ui, where ui is i.i.d N(0, 2

yσ ). 

so, x  = θ + u , so the objective function can be rewritten, 
      (θ) = (SMM

TS y  – x (θ))2 = ( y  – (θ + u ))2 

        = ( y  – u ) – θ)2 
so the SMM estimator is:  ˆSMMθ  = y  – u  

so  T ( ˆSMMθ –θ) = T ( y –θ) – T u   = T ( y –θ) – T
m

m u  

   ~ N(0, 2
yσ ) + T

m
 N(0, 2

yσ ) = 210, 1 yN σ
κ

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, where m

T
 → κ 

Comments: 
• The two normals are independent because y  and u  are independent 
• You need to reuse the same u’s (same seed) for each trial θ (why?) 
• variance is the same as efficient GMM – up to scale factor 1+1/κ 
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 SMM algorithm 
(i) generate  m = κT observations  x1(θ),…, xm(θ) from your model, using 

the same seed for different trial values of θ for smoothness of (θ) SMM
TS

(ii) compute simulated moments μm(x(θ)) = 
1

1 ( ( ))
m

t
t

h x
m

θ
=
∑  

in the simple example, μm(x(θ)) = x (θ) 

(iii) compute sample moments μT(y) = 
1

1 ( ) (example: μT(y) = 
T

t
t

h y
T =
∑ y ) 

(iv) Compute the SMM objective function, 
SMM
TS (θ) = [μm(x(θ)) – μT(y)]′WT[μm(x(θ)) – μT(y)] 

(v) go to (i) and repeat until (θ) is minimized SMM
TS

 
When WT = Ω–1 (efficient GMM weighting matrix), 

T ( ˆSMMθ –θ)  
d
→ 1 110, 1 ( )N D D

κ
− −⎛ ⎞⎛ ⎞ ′+ Ω⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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SMM, ctd. 

T ( ˆSMMθ –θ)  
d
→ 1 110, 1 ( )N D D

κ
− −⎛ ⎞⎛ ⎞ ′+ Ω⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

Comments: 
1.Same distribution as efficient GMM up to the scale factor 1+1/κ  
2.Subtleties arise when variables are discrete, see Gouriéroux and 

Monfort (1997) (continuity of the objective function; solutions can 
change the asymptotics) 

3.Instead of drawing a single long path, x1(θ),…, xm(θ), you might do 
better to draw κ paths of length T – then the simulated moments will 
better approximate any finite-sample bias inherent in using data of 
length T 

4.For more on SMM see: Gouriéroux and Monfort (1997), Gallant and 
Tauchen (2001) 
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5) Estimation: Maximum Likelihood 
 

With the assumption of normal errors, the Kalman Filter can be applied to 
the (linearized solved) state space model to yield the likelihood: 
 

State equation:   st = Fst–1 + Rηt,  ηt i.i.d. N(0,Ση) 
Observer equation: yt = Hst + εt,  εt i.i.d. N(0,Σε); εt, ηt independent 

 
The Kalman filter: 

  State prediction:   st/t–1 = Fst–1/t–1, Pt/t–1 = FPt–1/t–1F´ + Ση,   

  y prediction:   μt/t–1 = Hst/t–1, Σt/t–1 = HPt/t–1H´ + Σε 

  Updating:  Kt = Pt/t−1H′ 1, st/t = st/t−1 + Kt(yt − μt/t−1), Pt/t = (I – Kt)Pt/t−1.  1
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/t t
−
−Σ

  log-likelihood:    
L(θ;YT) = c +  { }1

T

μ μ−− Σ + − Σ −/ 1 / 1 / 1 / 1
1

0.5 ln(det( )) ( ) ' ( )t t t t t t t t t t
t

y y− − − −
=
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MLE, ctd. 
      ˆMLEθ : maxθ L(θ;YT)  
Comments 
• Asymptotics of MLE (QMLE variance expression): 

T ( ˆMLEθ –θ0)  N(0, I(θ0)–1J(θ0) I(θ0)–1),  
d
→

where I(θ0) = –E
0

21 ( ; )TL Y
T θ

θ
θ θ

∂
′∂ ∂

 and J(θ0) = E
0 0

1 ( ; ) ( ; )T TL Y L Y
T θ θ

θ θ
θ θ

′∂ ∂
∂ ∂

 

which holds “under suitable regularity conditions.”  Essentially these 
regularity conditions are that the MLE is locally well-approximated by 
a quadratic with curvature that is nonrandom. 

• Likelihoods can have multiple peaks (use multiple starting values; use 
random search algorithms) and cliffs (penalized likelihood if you stray 
outside the determinacy region (Dynare); try non-derivative based 
methods)  
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6) Estimation: Bayes 
 

Bayes basics 
Bayesian inference treats the parameters as random & conditions on 

the data. 
 

Bayes law:  P(θ|YT) = ( | ) ( )
( )

T

Y T

L Y
f Y
θ π θ  

where:    L  is the pdf of YT|θ (the likelihood) 
π(θ) is the prior 
fY is the marginal distribution of YT: fY(YT)= ( | ) ( )TL Y dθ π θ θ∫  

P(θ|YT) is the posterior distribution of θ given the data 
 

Posterior mean:   Eθ|Yg(θ) = ( ) ( | )Tg P Y dθ θ θ∫  = 
( ) ( | ) ( )

( | ) ( )
T

T

g L Y d

L Y d

θ θ π θ θ

θ π θ θ
∫
∫
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Bayes – implementation 

Eθ|Yg(θ) = ( ) ( | )Tg P Y dθ θ θ∫  = 
( ) ( | ) ( )

( | ) ( )
T

T

g L Y d

L Y d

θ θ π θ θ

θ π θ θ
∫
∫

 

Comments 
• Analytic integration isn’t feasible/possible outside textbook examples 
• Breakthrough in Bayesian statistics has been simulation-based 

methods (MCMC) for numerical integration, see Geweke (2005) for 
econometrics treatment (many other books on numerical methods in 
general statistics, statistical genetics, etc).  MCMC methods were 
discussed in an earlier lecture and are implemented in Dynare. 

• Inference tools: credible sets (Bayesian “confidence intervals”, 
posterior means; more later on model evaluation) 

• Implementation in modern software is relatively painless so the 
relevant questions involve interpretation, not mechanics. 

• An and Schorfheide (2007) provide a survey and primer  
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Why use Bayes methods?  Some issues, old and new 
 
1.  First principles:  The likelihood principle 

 
(see Berger and Wolpert (1988))  The likelihood principle states that 
all the relevant information in the data is embodied in the likelihood 
function; two different mechanisms that yield the same likelihood 
function should yield identical inferences. 

 
Classic example:  Stopping rule for Bernoulli trials. 
(a)  Experiment #1:  Give 5 patients an experimental drug, Yi = 1 if 
they die from side effects.  Observe 0,1,0,0,1 
(b)  Experiment #2:  Give patients the experimental drug until 2 
die. Observe 0,1,0,0,1 



Bayes old and new, ctd 
The data sets are the same.  The frequentist holds that S/n is an 
unbiased estimator of p in (a), and N/s is an unbiased estimator of 1/p 
in (b).  The likelihood principle says that inference about p should be 
the same.  Said differently, the likelihood principle holds that 
experimental design doesn’t matter if it yields the same likelihood 
 

2.  First principles:  Decision theory (subjectivist Bayes) 
Loss function:     L(θ,θ0) = (θ – θ0)2  (for example) 
(Frequentist) risk function: R(θ,θ̂ ) = EL(θ,θ̂ )  (expectation over fY|θ) 

ˆ ˆ( , ) ( )R dθ θ π θ θ∫  Bayes (integrated) risk:  rπ(θ ) = 

Revised July 23, 2008 8-33 

Bayes decision rule:   choose θ̂  to minimize rπ(θ̂ )  
• If your (subjective) prior is π(θ), then use it for your decision 
• Subject to technical conditions, the complete class theorem says that 

all admissible decision rules are Bayes or limiting Bayes 
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Bayes, old and new, ctd 
 
3.  Stein (1955)/James-Stein (1960) considerations 

Suppose loss is 
   L(θ,θ0) = (θ – θ0)′ (θ – θ0) 
• OLS is inadmissible if dim(θ ) ≥ 3 (extension of Stein (1955)) 
• Frequentist risk of the form  can be reduced by using a Bayes 

estimator. 
• This is (very) important for forecasting with many predictors – when 

bias (possibly large) in individual coefficients is irrelevant, and all 
that matters is forecast performance. 

• This is not the right loss function if one is interested in inference 
about deep parameters 
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Bayes, old and new, ctd 
4.  Priors formalize the use of prior knowledge 
• A reasonable point in principle.  In experimental sciences this makes 

sense.   
• In DSGE applications, one should distinguish between information 

gleaned from micro studies (e.g. micro studies of individual attitudes 
towards risk) and data based on prior empirical analysis of aggregate 
time series data.  Running regressions on U.S. macro data then using 
the results as priors for analyzing the same macro data in DSGE 
doesn’t really count as prior knowledge.  



Bayes, old and new, ctd 
 

5.  It doesn’t matter anyway – you get the same answers using Bayes  
and ML.  This relies on the Bernstein-von Mises theorem. 
• Loosely speaking, if θ is finite-dimensional, if the prior doesn’t 

rule out any sets of θ, if the sample size is large, and θ is identified, 
then ˆMLEθ  and ˆBayesθ  (the posterior mean) will be close.  Moreover, 
the posterior distribution of θ around ˆBayesθ  will be close to the 
distribution of ˆMLEθ  around θ0.  Thus Bayes inference and MLE 
will give similar inferences (same point estimates, 95% credible 
sets and 95% confidence intervals coincide) 

• That is, enough data will overwhelm any nondogmatic prior.  See 
Lehmann and Casella (1998, Chapter 6.8) 
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Bayes, old and new, ctd. 
• Frequentist Wald tests and Bayes posterior odds tests also coincide 

(Andrews (1994)) 
• B-vM basically says the ML/Bayes choice is one of convenience. 
• However, this result is rather delicate and doesn’t hold in high 

dimensions (Freedman (1999)) and requires strong identification 
• Applicability of this argument to DSGEs? 

 
6.  Priors solve the identification problem 

• If your model is (nearly) unidentified then you can “solve” the 
identification problem by imposing a prior. 

• This is calibration. 
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Bayes, old and new, ctd. 
 
Futher comments: 
1. Communication, frequentist and Bayes. 
 
2.Why this debate, while old, still matters.  In many fields, statisticians 

have moved beyond these philosophical debates, but one reasons for 
doing so is that their data sets have evolved (expanded) while ours have 
not, see Efron (2005).  We return to this in Lecture 11. 

 
3.Posterior mode.  MCMC (MH) might not visit full support, there might 

be cliffs, etc; if the posterior is not well estimated over the full support 
then the posterior mode can replace the posterior mean as the estimator.  
Sometimes this is called Bayes maximum likelihood. 
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Further comments, ctd. 
 
4.Robust Bayes.  Bayesian statisticians have developed a large set of tools 

for investigating and reporting sensitivity of Bayesian results to priors or 
parts of priors, including parametric methods with contaminated priors, 
or priors within density bounds, and mixtures (these might be the most 
easily implemented in the DSGE MCMC setup) and nonparametric 
methods.  These and other methods are reviewed in Berger (1994), also 
see Geweke (2005, ch. 3.3). 

 
5.Empirical Bayes.  (Robbins (1955, 1964); see Maritz and Lwin (1989)).  

Empirical Bayes isn’t really Bayes, it treats the parameters of the prior 
as the parameters to be estimated.  This is most useful when there are 
hierarchical priors so that the prior distribution is tightly parameterized.  
We return to empirical Bayes in Lecture 11. 
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Outline 
 
1) DSGE models and questions of interest 
2) Model solution 
3) Estimation: GMM 
4) Estimation:  Simulated GMM 
5) Estimation: Maximum Likelihood 
6) Estimation: Bayes 
7) Inference, identification, and weak identification 
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7) Inference, Identification, and Weak Identification 
 

Threats to validity of inferences 
 
1.Model misspecification 
 
2.Structural breaks  
 
3.Persistent regressors.  

Not a new problem – but it is relevant here too (Li (2006)) 
 
4.Weak identification.   
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Weak Identification in DSGEs 
• The identification conditions for asymptotic normality of likelihood 

inference are conceptual related to those for IV (but not the same in 
the details) – convergence of the objective function to a (local) 
quadratic with nonrandom curvature matrix. 

• Part of the challenge is figuring out what parts of the model are 
strongly identified and what are not, then communicating that 
information 

• There is no consensus about how to handle weak identification issues 
in DSGEs 

• Tools for handling weak identification (from a frequentist perspective) 
are most fully developed to date for GMM, for which there are 
(limited) tests for weak identification and robust inference methods 

• A promising approach is to get more information! (Boivin-Giannoni 
(2006b) 
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Weak identification, ctd. 
 
Three examples: 

1.Canova and Sala (2006) 
2.Smets and Wouters (2003) 
3.MC study in Ruge-Murcia (2007) 
4.MC study of the Gali, López-Salido, Vallés (2003) model 

 
Example #1:  Canova and Sala (2006 version) 



MM-IRF objective function contours of a small DSGE 
from Canova and Sala (2006) 
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Example #2: Smets and Wouters (2003) 
 
Smets-Wouters (2003) Fig 1 plots priors and posteriors for their model, 
computed by MCMC 
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Example #3:  MC study in Ruge-Murcia (2007) 
 
• Investigates small model with stochastic singularity (two unobserved 

state variables, capital growth and a disturbance), and three observed 
variables, ct, yt, nt. 

• Finds reasonably good performance of GMM and moments matching 
(“good” here means that the normal approximation performs 
reasonably well). 

• Difficult to generalize because of the stochastic singularity and the 
small size of the model. 



Example #4:  MC study of the Gali, López-Salido, Vallés (2003) model  
(thanks to Anna Mikusheva) 
 
GL-SV variant:  add markup shock, eliminate taste shock  

Calvo Pricing/NKPC:   πt = βEtπt+1 + κxt + t
πη      

intertemporal consumption: xt = –σ–1(rt – Etπt+1 – ) + Etxt+1    *
trr

monetary policy:    rt = (1–α)φππt + (1–α)φxxt + αrt–1 + ut 
 natural interest rate:    = ρΔat  *

trr

 processes for shocks:   Δat = ρΔat–1 + a
tη  

         ut = δut–1 + u
tη  

 Model parameters (11):  θ = (β, κ, σ, α, φz, φπ, ρ, δ, 2
aσ , 2

uσ , 2
πσ ) 

 Observe:      πt, rt, xt 
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GL-SV MC study, ctd 
Design details: 
• Parameter values:  β = 0.99, φx  = 0.15, φπ = 1.5, α = 0.8, ρ = 0.9, λ = 

0.5, δ = 0.2, φ = 1, θ = 0.75, σa = στ = σu = σπ = 1. 
• Two parameters fixed at true value (not estimated): β = 0.99 and σ = 1 

– so there are 9 estimated parameters 
• T = 160  
• 50 MC repetitions (need more) 
• Statistics computed: 

o MLE of each element of θ, fixing others at true value (1-
dimensional) 

o Unrestricted MLEs, t-statistics testing θ0, standard errors 
o LR statistic = 2×(unrestricted L – restricted L), one variable at a 

time, all others estimated 
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Table A 

One coefficient at a time – all others fixed at θ0 (restricted ML) 
 
 φx φπ α ρ δ κ σa σu σπ 
True values: 0.15 1.5 0.8 0.9 0.2 0.172 1 1 1 
          

(a) LR test statistic 
LR test: Size 0.02 0.04 0.06 0.04 0.06 0.06 0.04 0.04 0.06 
KS chi-squared? (p-value) 0.545 0.809 0.395 0.709 0.877 0.215 0.840 0.922 0.192 
KS statistic 0.11 0.088 0.125 0.098 0.082 0.146 0.086 0.077 0.150 
         

(b) Wald t statistic: 
Wald t size 0.02 0.04 0.06 0.04 0.06 0.06 0.04 0.06 0.06 
KS normal? (p-value) 0.390 0.873 0.645 0.929 0.067 0.659 0.965 0.415 0.230 
KS statistic 0.125 0.082 0.103 0.075 0.181 0.102 0.069 0.123 0.144 
          

(c) Point estimator 
Bias 0.003 0.009 -0.001 0.000 -0.003 0.003 0.002 -0.009 -0.005 
RMSE 0.0389 0.0651 0.0118 0.0087 0.0153 0.0371 0.0537 0.0533 0.0595 
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Table B 
All coefficients estimated (full ML) 

 
 φx φπ α ρ δ κ σa σu σπ 
True values: 0.15 1.5 0.8 0.9 0.2 0.172 1 1 1 

 
(a) LR test statistic 

LR test size 0 0 0.08 0.08 0 0.04 0.08 0 0.02 
KS chi-squared? (p-value) 0.045 0.027 0.704 0.061 0.738 0.258 0.143 0.100 0.258 
KS statistic 0.189 0.204 0.098 0.183 0.095 0.140 0.159 0.170 0.140 
          

(b) Wald t statistic 
Wald t size 0.46 0.26 0.20 0.14 0.14 0.60 0.34 0.72 0.64 
fraction |t|>10 0.14 0.10 0.02 0.04 0.00 0.44 0.18 0.36 0.26 
          

(c) Point estimator 
p-value testing MLE  
normality (Lilliefors) 0 0 0.01 >0.5 >0.5 0 0 0 0 
value of KS stat 0.275 0.253 0.145 0.080 0.067 0.208 0.183 0.278 0.214 
          
bias 0.44 0.71 0.00 -0.00 0.00 0.13 0.36 0.57 0.18 
sqrt(mean(SE2)) 4.379 7.693 0.655 0.154 0.282 0.221 1.825 1.106 0.291 
RMSE 1.065 1.615 0.077 0.085 0.033 0.390 0.998 1.342 0.536 



t-statistics, all parameters estimated (MC simulation) 
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MLE point estimates, all parameters estimated (MC simulation) 
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Some final comments and references 
 
Model comparison and assessment  
• Bayesian model assessment/model comparison – see Rabanal and 

Rubio-Ramirez (2005) and Del Negro, Schorfheide, Smets, and 
Wouters (2007) 

• Model assessment via forecasting – see Adolfson, Lindé, and Villani 
(2007) and Edge, Kiley, and Laforte (2008) 

o Methods for forecast comparisons will be covered in Lecture 14 
 
Higher order solution methods (not just linearized). 
• Higher order perturbations:  Schmitt-Grohe and Uribe (2004) 
• Particle filter:  Fernandez-Villaverde and Rubio Ramirez (2007), An 

and Schorfheide (2007) 
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Some final comments and references, ctd.  
• Some evidence that estimation is better behaved using higher order 

approximations: 
o An and Schorfheide (2007) 
o Fernandez Fernandez-Villaverde and Rubio Ramirez (2007) 
o DeJong and Dave (2007), ch. 11.3, comparison of MLEs using KF, 

a nonlinear approximation, and an exact (particle filter) solution (6 
parameter optimal growth model) 


