
Simultaneous Confidence Regions for Impulse

Responses ∗

Òscar Jordà

Department of Economics

U.C. Davis

One Shields Ave.

Davis, CA 95616

Phone: (530) 554 9382

e-mail: ojorda@ucdavis.edu

March 5, 2008

ReStat - FINAL

∗The hospitality of the Federal Reserve Bank of San Francisco during the preparation of this
manuscript is gratefully acknowledged. Comments by Colin Cameron, Fabio Canova, Michele

cbeck
Typewritten Text
EFSF7/11/083:30 pm



Abstract

Inference about an impulse response is a multiple testing problem with

serially correlated coefficient estimates. This paper provides a method to

construct simultaneous confidence regions for impulse responses; and con-

ditional bands to examine significance levels of individual impulse response

coefficients given propagation trajectories. The paper also shows how to

constrain a subset of impulse response paths to anchor structural identifi-

cation; and how to formally test the validity of such identifying constraints.

Simulation and empirical evidence illustrate the new techniques. A broad

summary of asymptotic analytic formulae is provided to make the methods

easy to implement with commonly available statistical software.

• Keywords: impulse response function, local projections, vector au-

toregressions, simultaneous confidence region.

• JEL Codes: C32, E47, C53.

Cavallo, David Drucker, Paul Gaggl, Jordi Galí, James Hamilton, Massimiliano Marcellino,
Paul Ruud, and Aaron Smith, as well as by seminar participants at the Bank of Italy, Bank
of Korea, BBVA, Bilkent University, CEMFI, Federal Reserve Banks of Dallas, Philadelphia,
and San Francisco, Koç University, Korea University, Sabancı University, Università Bocconi -
IGIER, U.C. Berkeley, and Universitat Pompeu Fabra were very helpful. The editor and two
anonymous referees were specially patient and helped me improve the final version of the paper
considerably.

2



1. Introduction

The plot of an impulse response function is a visual summary of the dynamic

propagation mechanisms characterizing a vector time series. Occasionally we are

interested in specific, individual coefficients; generally it is the impulse response

shapes we are most concerned about. Is the response of output to a monetary

shock hump-shaped and is this a preeminent feature that a theoretical macro-

economic model should have? Is the response of prices to a monetary shock

strictly negative in all periods? Do exchange rates respond to price and interest

rate shocks with the celerity that purchasing power parity and uncovered interest

rate parity would predict? Therefore, assessing the impulse responses’ shapes;

the precision with which they are estimated; and their statistical and economic

significance figure high in the list of questions we would like to formally answer.

Inference about an impulse response is a multiple testing problem with coef-

ficient estimates that are serially correlated. Statements about the set of possi-

ble impulse response trajectories require construction of simultaneous confidence

regions that account for this serial correlation. For approximately multivariate

normally distributed random variables, such regions are the multidimensional el-

lipsoids associated with traditional Wald statistics. Unfortunately such ellipsoids
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cannot be easily displayed in a two-dimensional graph.

Lütkepohl’s (2005) recommendation to address this problem is to construct

Bonferroni bounds, although Lütkepohl (2005) himself suggests that these bounds

are unnecessarily conservative: In a Bonferroni bound involving several parameters

(such as in an impulse response), the bound concentrates the probability mass of

the entire parameter vector on to each individual element, one at a time. Thus,

these bounds guard against such extreme situations as when the true impulse

response may coincide exactly with the estimated response at every single point,

except one. A Bonferroni bound may be the right tool to guard against large but

improbable risks, but it is not very useful for thinking about variations in the

shape of the impulse response as a whole.

Sims and Zha (1999) instead addressed the problem of serial correlation in

the impulse response coefficient estimates (see section 6 of their paper); along

with a host of other issues related to the small-sample behavior of typical vector

autoregressive (VAR) asymptotic approximations over long horizons and Bayesian

solutions that emphasize the likelihood. The first issue is central to this paper

while discussion of the second (which others such as Rossi (2005) and Pesavento

and Rossi (2006) have attacked with near-to-unity asymptotic theory) are left for

future research.
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The solution proposed by Sims and Zha (1999) to the serial correlation problem

consists in a principal component decomposition of the impulse response estimates’

covariance matrix so as to parse the information contained in the joint distribution

into a few individual factors. Unfortunately these factors are difficult to interpret:

as their paper shows, they often result in bands that cross over each other (e.g.

see figures 6, 11, and 12 of their paper), and they can provide varying probability

coverage depending on each application’s factor decomposition.

This paper provides a solution to the two problems discussed in Lütkepohl

(2005) and Sims and Zha (1999) based on Scheffé’s (1953) S-method of simulta-

neous inference; and on orthogonal linear projections of the impulse responses.

The end result is that I introduce two new sets of bands: Scheffé bands designed

to represent uncertainty about the shape of the impulse response rather than on

individual coefficients; and conditional bands designed to examine the individual

significance of coefficients in a given trajectory.

These new bands rely on the assumption that the coefficients of the impulse

response are approximately multivariate normally distributed. Such a result is a

natural consequence of impulse responses estimated with traditional vector au-

toregressions (VARs) under general conditions (see, e.g. Hamilton, 1994; and

Lütkepohl, 2005); but also when impulse responses are estimated with local pro-

5



jections (Jordà, 2005) instead. Below I summarize asymptotic results for both

methods that make calculation of the new bands simple for practitioners.

These approximate multivariate Gaussian results and the Wald principle are

also useful in anchoring structural identification of the system. Just as we use eco-

nomic theory to restrict the nature of contemporaneous relations, we can restrict

some of the impulse response trajectories (such as with non-positivity restrictions

on the response of prices to an interest rate shock). These restrictions are easily

imposed and can be formally tested to help refine inference on the dimensions of

the system we know less about a priori.

Throughout the presentation, I illustrate the techniques introduced with im-

pulse responses derived from the well known, three variable, monetary VAR that

Stock and Watson (2001) use in their review article of vector autoregressions.

Their system contains three variables: inflation (measured by the chain-weighted

GDP price index); unemployment (measured by the civilian unemployment rate);

and the average federal funds rate; and is based on a sample of quarterly data

beginning 1960:I that I extend to 2007:I. Like them, identification is achieved

with the short-run recursive ordering in which the variables are reported. Further

details on the specifics of the exercise are available from their paper.

In addition, this paper examines the small sample properties of the asymp-
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totic approximations provided here with Monte Carlo simulations that are built

around the Stock and Watson (2001) VAR. Further, I discuss briefly basic meth-

ods to implement bootstrap versions of the relevant statistics when the accuracy

of large sample approximations is a concern. However, such issues as long-horizon

asymptotic distortions in short-order VARs (Sims and Zha, 1999; Rossi, 2005; and

Pesavento and Rossi, 2006); and distortions of common implementations of the

bootstrap (Kilian, 1998a, b; 1999; 2001) require more space than is available in

this paper and are left for further research.

2. Simultaneous Confidence Regions for Impulse Responses

This section asks not how to estimate impulse responses, but rather how to sum-

marize the distributional characteristics of a given set of estimates. For this rea-

son, I will be intentionally vague about the method of estimation; its small sample

properties; structural identification assumptions; and other aspects of the impulse

response analysis that have consumed rivers of ink in the literature. Instead, the

starting point of the discussion is an assumption that, at least approximately,

a given set of impulse response estimates are multivariate Gaussian. Then, the

methods that I propose come directly from general inferential principles for mul-

tiple testing problems (see e.g., Lehmann and Romano, 2005). Asymptotic mul-
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tivariate Gaussian approximation results for impulse responses estimated with

VARs (e.g. Hamilton, 1994; Lütkepohl, 2005) or with local projections (Jordà,

2005); under general assumptions about the data generating process (DGP); and

for common methods of short-run and long-run structural identification are pro-

vided below for completeness.

Suppose the system of impulse responses over h = 1, ...H horizons associated

with the r × 1 vector times series yt is

Φ (1, H) =

⎡⎢⎢⎢⎢⎢⎢⎣
Φ1

...

ΦH

⎤⎥⎥⎥⎥⎥⎥⎦ ,

so that Φ(1, H) is an rH × r matrix and the impulse response of the ith variable

to a shock in the jth variable at horizon h corresponds to the (i, j) element of

the r × r matrix Φh. In reduced-form, Φ0 = Ir, which is non-stochastic. For

structurally identified systems, Φ0 collects the contemporaneous relations between

the elements of yt and is orthogonal to Φh, h = 1, ...,H by construction (as we

will see more formally below). For this reason but without loss of generality, I

find it more convenient to present the methods with Φ (1,H) alone and ignore Φ0

in the presentation.

8



Now suppose estimates of Φ(1,H) based on a sample of T observations of yt

are available and let bφT = vec
³bΦ (1,H)´ denote the r2H × 1 vector resulting

from stacking the columns of the matrix of structural impulse response estimates,

bΦ (1,H) . Further, assume that, at least asymptotically, this estimator has the
property

√
T
³bφT −φ0´ d→ N (0,Ωφ) . (2.1)

Traditionally, significance of the impulse response estimates is reported by

graphically displaying a two standard-error, marginal rectangular interval around

each coefficient estimate of the impulse response considered. Specifically, denote

φh(i, j) as the (i, j) element of Φh; bφh(i, j) the associated estimate based on a
sample of size T ; and bσh(i, j) as the estimate of the standard deviation of bφh(i, j),
which is the square root of the appropriate diagonal entry of the covariance matrix

bΩφ. Then, individual marginal rectangular intervals come from the realization that

Pr

"¯̄̄̄
¯bφh(i, j)bσh(i, j)

¯̄̄̄
¯ ≤ zα/2

#
= 1− α (2.2)

since the associated t-ratio
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bth(i, j) = bφh(i, j)− φh(i, j)bσh(i, j) → N (0, 1) (2.3)

is readily seen to be asymptotically standard normal given assumption (2.1), and

where zα/2 denotes the appropriate critical value of a standard normal random

variable at a 100(1− α)% confidence level.

This confidence interval is another way to present the decision problem asso-

ciated with testing the null hypothesis

H0 : φh(i, j) = 0 vs. H1 : φh(i, j) 6= 0 for any i, j = 1, ..., r and h = 1, ..., H.

(2.4)

Insofar as the primitive assumption (2.1) is correct then the marginal, individual

error bands described by (2.2) are the correct answer for the test of the individual

nulls described by (2.4).

However, researchers are often interested in the shape of the path described

by the impulse response, not the particular value that one of its coefficients may

attain. Denote φ(i, j) as the (i, j) impulse response function over the next 1 to H

periods; and let g(.) : RH → Rk for k ≤ H be a first order differentiable function

with an H × k invertible Jacobian denoted G(.). The decision problem associated
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with the shape of the impulse response can be summarized by the null hypothesis

H0 : g (φ(i, j)) = g0 for any i, j = 1, ..., r and where g0 is a k × 1 vector.

The Gaussian assumption in (2.1); the Wald principle; and the delta method

(or classical minimum distance, see e.g. Ferguson, 1958); suggest that this null

hypothesis can be tested with the usual statistic

cW (i, j) = ³g ³bφ(i, j)´− g0´0 ( bG0bΩ(i, j) bG)−1 ³g ³bφ(i, j)´− g0´ d→ χ2k (2.5)

where bG denotes the Jacobian evaluated at bφ(i, j). I find it convenient to construct
these quantities with the help of a selector matrix, Sij. This matrix is particularly

convenient for programming and can be easily constructed as Sij = e0j⊗ (IH ⊗ ei)
0

for i, j = 1, ..., r where em is the mth column of Ir for m = i, j . Accordingly,

bφ(i, j) = SijbφT ; bΩ(i, j) = SijbΩφS
0
ij and assume bΩφ

p→ Ωφ.

For example, an accurate assessment of the statistical significance of the (i, j)

impulse response would consist of setting g
³bφ(i, j)´ = bφ(i, j); g0 = 0H×1 and

reporting the p-value of the resulting cW (i, j) statistic. This p-value gives a pre-
cise probabilistic answer to this specific joint null of significance. However, one of

the attractions of an impulse response analysis is the ability to graphically convey
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statistical information about the dynamic behavior of the system under consider-

ation. The natural counterpart to the marginal, rectangular, confidence intervals

associated with the individual nulls in (2.4) is the simultaneous 100(1 − α)%-

confidence region given by

Pr
hcW (i, j) ≤ c2αi = 1− α, (2.6)

where c2α is the critical value of a χ
2
H distributed random variable. Unfortunately,

the resulting confidence region is a multidimensional ellipsoid that cannot be easily

displayed in two-dimensional space.

2.1. Scheffé’s S-Method of Simultaneous Inference

One solution to this problem is to construct a simultaneous rectangular region

with Scheffé’s (1953) S-method of simultaneous inference. The intuition behind

this method is to exploit the Cauchy-Schwarz inequality to transform the Wald

statistic in (2.5) from L2 metric into L1 metric. Let me explain this more carefully.

I find it convenient to begin the exposition of this technique with a simpler,

but less general, motivating example. Suppose the elements of bφ(i, j) were un-
correlated with one another so that Ω(i, j) would be a diagonal matrix. The null

hypothesis of joint significance H0 : φ(i, j) = 0 for any i, j = 1, ..., r can then be
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tested with the statistic

cW (i, j) = bφ(i, j)0bΩ(i, j)−1bφ(i, j) d→ χ2H .

Since Ω(i, j) is diagonal (in this example) with entries σ2h(i, j) for h = 1, ...,H and

i, j = 1, ..., r then it is easy to see that

cW (i, j) = HX
h=1

bt2h(i, j); bth(i, j) d→ N(0, 1)

so that the associated simultaneous confidence region becomes

Pr
hcW (i, j) ≤ c2αi = Pr

"
HX
h=1

bt2h(i, j) ≤ c2α
#
.

Scheffé’s (1953) S-method consists in realizing that a direct consequence of Bow-

den’s (1970) lemma is that

max

⎧⎨⎩
¯̄̄PH

h=1

bth(i,j)
h

¯̄̄
qPH

h=1
1
h2

; |h| <∞

⎫⎬⎭ =

vuut HX
h=1

bt2h(i, j),
which implies that

Pr

"¯̄̄̄
¯
HX
h=1

bth(i, j)
h

¯̄̄̄
¯ ≤

r
c2α
H

#
' Pr

"
HX
h=1

bt2h(i, j) ≤ c2α
#
= 1− α. (2.7)
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I will denote the bands resulting from the first term in expression (2.7) as Scheffé

bands to differentiate them from traditional error bands reported in the VAR

literature.

Geometric arguments help clarify the method further. Suppose we consider

a standardized impulse response function over two periods so that its mean is

centered at zero, its variances are normalized to one; and its covariances are zero.

The plot of an 100(1− α)%-confidence region is clearly seen to be a circle whose

radius is cα and whose center is (0,0). Now consider moving from the center of

this circle along the main diagonal, i.e. by shifting each coefficient by an equal

amount ±δ along the 450 line (notice this shift is proportional to the variance of

each estimate because of the standardization). What would δ need to be in order

for the shift to lie on the boundary of the 100(1− α)%-confidence circle where it

intersects the 450 line? Clearly, δ meets the condition

Pr
£
δ2 + δ2 = c2α

¤
= 1− α

from where δ =
p
c2α/2, which is exactly the critical value suggested by Scheffé’s

method.
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2.2. Dealing with Impulse Response Serial Correlation

In general, the elements of φ(i, j) are serially correlated. Figure 1 provides an ex-

ample with the response of inflation to a shock in the federal funds rate in the Stock

and Watson (2001) VAR displayed in the top panel, and its associated correlation

matrix displayed in the bottom panel. Since the asymptotic 95% confidence level

critical value for these correlations is 0.15, it is clear from the table that most of its

entries are significantly different from zero. From a different angle, the correlation

between impulse response coefficients is easy to compute analytically for a simple

autoregressive model of order one (AR(1)) example with autoregressive parameter

|ρ| < 1. In that case, notice that φh = ρh and cov(φ1,φh) = ρ(h−1)(1− ρ2).

[Insert Figure 1 here]

A natural solution to this serial correlation problem is to orthogonalize the

impulse response path. As I discussed in the introduction, Sims and Zha (1999)

proposed decomposing Ω(i, j) into its first few principal components but this has

serious drawbacks. Instead, I propose orthogonalizing the impulse response path

by projecting bφh(i, j) on to bφh−1(i, j), ..., bφ1(i, j) for h = 1, ..., H so that each

impulse response at time h is transformed into the hth impulse response conditional

on its past path from 1 to h−1. Mechanically, the method is easier to understand
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by appealing to the Wald principle and the Cholesky decomposition

bΩ(i, j) = bAij bDij bA0ij; i, j = 1, ..., r
where Aij is lower triangular with ones in the main diagonal and Dij is a diagonal

matrix. Notice that unlike applications of the Cholesky decomposition for struc-

tural identification in VARs, here there is no ambiguity about the ordering: the

impulse response traces how a shock is propagated into the future and I use this

propagation over time as the ordering principle to construct the projections. It

turns out that this method provides for another interesting statistical interpreta-

tion that I now discuss.

Recall that the null hypothesis of joint significance H0 : φ(i, j) = 0H×1 for

i, j = 1, ..., r can be tested with the Wald-statistic

cW (i, j) = bφ(i, j)0bΩ(i, j)−1bφ(i, j) d→ χ2H ,

with bΩ(i, j) p→ Ω(i, j).With the help of the Cholesky decomposition, this statistic

can be recast as

16



cW (i, j) = bφ(i, j)0 ³ bAij bDij bA0ij´−1 bφ(i, j)
=

³ bA−1ij bφ(i, j)´0 bD−1ij ³ bA−1ij bφ(i, j)´ .
Defining

bψh(i, j) = EP hbφh(i, j)|bφh−1(i, j), ..., bφ0(i, j)i ; i, j = 1, ..., r;h = 1, ...,H
where EP is the linear projection operator and noticing that bDij is a diagonal
matrix whose entries correspond to the variances of bψh(i, j), say eσ2h(i, j), then

cW (i, j) =
HX
h=1

Ãbψh(i, j)eσh(i, j)
!2
=

HX
h=1

bt2h|h−1,...,1(i, j) d→ χ2H (2.8)

bth|h−1,...,1(i, j) d→ N(0, 1) (2.9)

where bth|h−1,...,1(i, j) is the t-ratio of the conditional impulse response coefficient at
time h given the impulse response path up to time h−1. It is now apparent why this

choice of orthogonalization is convenient: it transforms the decision problem of

17



testing the joint null of significance of correlated impulse response coefficients into

the sum of the t-statistics of the individual nulls of significance of the conditional

impulse response coefficients.

2.3. Error Bands for Impulse Responses

Expressions (2.7) and (2.8) lead us to the construction of two visual devices with

which to report the characteristics of the joint distribution of the impulse response

path. The first device is a direct application of Scheffé’s (1953) method to ex-

pression (2.7) in order to construct Scheffé bands with approximate simultaneous

100(1− α)%-confidence coverage. These bands are simply

bφ(i, j)± bAij bD1/2
ij

r
c2α
H
iH , (2.10)

where iH is anH×1 vector of ones. The reader whose habit is to estimate impulse

responses with a VAR with conventional statistical software will have no difficulty

in constructing Scheffé bands with expression (2.10) since all that is required is

the Cholesky decomposition of bΩ(i, j). It is important to remark that because
of serial correlation, the area inside the Scheffé bands contains impulse response

trajectories with less than an α probability of being observed. For this reason,

it may be helpful to use a fan chart consisting of plots of the Scheffé bands in
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expression (2.10) for different values of α.

Finally, notice that individual conditional (not marginal) rectangular regions

can be constructed for each impulse response coefficient by noticing that

Pr
£¯̄
th|h−1,...,0(i, j)

¯̄
≤ zα/2

¤
= 1− α.

The resulting conditional uncertainty for each impulse response coefficient can be

summarized by constructing the bands as

bφ(i, j)± zα/2diag ³ bD1/2
ij

´
(2.11)

where diag( bD1/2
ij ) is an H×1 vector with the diagonal entries of bD1/2

ij . Like Scheffé

bands, conditional bands can be trivially constructed from available econometric

software output and with expression (2.11). Conditional bands can be useful

to pinpoint individual impulse response coefficients. The t-ratios on which they

are based represent the individual contribution of each coefficient in the test of

joint significance as can be easily appreciated from expression (2.8). Further, their

variability represents the variability associated with the hth period once variability

from the correlation with previous (h− 1) periods has been sterilized.

Let me return to the AR(1) example with autoregressive parameter |ρ| < 1 to
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clarify the relation between marginal, Scheffé, and conditional bands. Specifically,

the impulse response over three periods for this AR(1) is

Φ (1, 3) =

⎡⎢⎢⎢⎢⎢⎢⎣
ρ

ρ2

ρ3

⎤⎥⎥⎥⎥⎥⎥⎦ ;Ωφ = (1− ρ2)

⎡⎢⎢⎢⎢⎢⎢⎣
1 ρ ρ2

ρ (1 + ρ2) ρ(1 + ρ2)

ρ2 ρ(1 + ρ2) (1 + ρ2 + ρ4)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where remember that the variance of the least squares estimate of ρ, say bρ, is
asymptotically, (1− ρ2) . In practice we would substitute the population moments

for sample counterparts, of course. The traditional marginal error bands are:

⎡⎢⎢⎢⎢⎢⎢⎣
bρ
bρ2
bρ3

⎤⎥⎥⎥⎥⎥⎥⎦± zα/2(1− ρ2)1/2

⎡⎢⎢⎢⎢⎢⎢⎣
1

(1 + ρ2)1/2

(1 + ρ2 + ρ4)1/2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Instead, the Scheffé bands can be easily obtained by direct application of expres-

sion (2.10) and are readily seen to be:
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⎡⎢⎢⎢⎢⎢⎢⎣
bρ
bρ2
bρ3

⎤⎥⎥⎥⎥⎥⎥⎦±
r
c2α
3
(1− ρ2)1/2

⎡⎢⎢⎢⎢⎢⎢⎣
1

(1 + ρ)

(1 + ρ+ ρ2)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where even if
q

c2α
3
were equal to zα/2, it is clear that in general

¡
1 + ρ+ ...+ ρh

¢
6=

(1 + ρ2 + ... + ρ2h)1/2 and serves to illustrate the differences in coverage between

marginal and Scheffé bands.

The conditional bands that result from applying expression (2.11) are instead

⎡⎢⎢⎢⎢⎢⎢⎣
bρ
bρ2
bρ3

⎤⎥⎥⎥⎥⎥⎥⎦± zα/2(1− ρ2)1/2

⎡⎢⎢⎢⎢⎢⎢⎣
1

1

1

⎤⎥⎥⎥⎥⎥⎥⎦ .

The intuition for the conditional bands comes from realizing that in this model,

bφh = bφh−1bρ, that is, given bφh−1, the value of the impulse response in the next
period is determined by the propagation forward of the impulse response through

the AR(1) process. This propagation entails a scaling of the impulse response by bρ
and the uncertainty associated with this estimate is (1− ρ2)

1/2
, which is precisely

the asymptotic standard deviation from the usual least squares estimate of the

AR(1) parameter.
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2.4. Practitioner’s Corner

Scheffé bands provide a rectangular approximation to the elliptical simultaneous

confidence region implied by the Wald principle and hence provide an approxi-

mation of the set of possible impulse response trajectories for a given probability

level. A fan chart based on Scheffé bands evaluated at different confidence levels

may be useful in sorting out what particular shapes the impulse responses can

have given their serial correlation: 95% Scheffé bands alone require the reader to

be disciplined enough to avoid erroneously assuming that any path between the

bands has a 5% or better chance of being the true path.

Conditional error bands distill the variability of each impulse response esti-

mate from the variability caused by the serial correlation with previous impulse

response coefficients. Conditional bands therefore give a better sense about the

significance of individual impulse response coefficients in a manner consistent with

the joint null of significance — as we saw in expression (2.8), their sum of squares

is precisely the usual chi-square test. When the impulse response function is

naturally uncorrelated, marginal and conditional bands are equivalent.

Scheffé bands and conditional bands can be constructed with existing statisti-

cal software. Most researchers accustomed to estimating impulse responses with

VARs need only request the covariance matrix from their software and then ap-
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ply the appropriate formulas (expressions 2.10, and 2.11) to construct the desired

bands. This simplicity means that the methods described here can be immedi-

ately applied by practitioners. In later sections, asymptotic results with analytic

expressions for local projections and for VARs under a variety of scenarios are

provided for completeness.

Concern about the validity of the asymptotic approximations in an applica-

tion with a small sample, suggests the use of resampling techniques instead. Kil-

ian (1998, 1999) and Lütkepohl (2005) discuss several ways of implementing the

bootstrap in practice. Here I showcase two natural approaches for the purposes of

illustration but not as a comprehensive guide since this would require an entirely

new paper.

Suppose that a sample of B bootstrap estimates bφbT for b = 1, ..., B is available.
This can be the result of applying the bootstrap to a VAR or to local projections

— the end result is independent of estimation method. Then there are two choices.

One is to rely on the asymptotic formulas provided below to construct b estimates

of bΩbφ and hence bΩb(i, j). Then the Cholesky decomposition of each bΩb(i, j) can be
used to construct a b resample of the Scheffé bands, the conditional bands, and

the fan charts. Under this option, the bootstrap provides any pivotal statistics

(such as the conditional bands) an asymptotic refinement. The second option
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does not rely on asymptotic expressions (and hence does not provide asymptotic

refinements but may behave better in small samples) for the covariance matrix

and instead uses a bootstrap-sample-based estimate of Ω(i, j), say eΩB(i, j) whose
typical entry will be

cov(bφBh (i, j); bφBg (i, j)) =
PB

b=1

µbφbh(i, j)− PB
b=1

bφbh(i,j)
B

¶µbφbg(i, j)− PB
b=1

bφbg(i,j)
B

¶
B − 1

for h, g = 1, ..., H; i, j = 1, ..., r. Given eΩB(i, j), its Cholesky decomposition can
then be used to construct Scheffé and conditional bands with expressions (2.10)

and (2.11).

A fan chart for different α levels can be constructed by ranking theB resamples

of each impulse response function with the auxiliary Wald metric

fW b(i, j) =
³bφb(i, j)− bφ(i, j)´0 eΩB(i, j)−1 ³bφb(i, j)− bφ(i, j)´ ;

b = 1, ..., B; i, j = 1, ..., r.

This metric ranks each bootstrap resample according to its Wald distance to the
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sample estimate. Then a fan chart can be constructed with the bootstrap sample

paths corresponding to each desired percentile of the ranking of fW b(i, j).

As an example, Figure 2 displays the response of the U.S. unemployment rate

(UN) to a shock in inflation (P) in the Stock and Watson (2001) VAR and serves

to illustrate what Scheffé and conditional bands look like in practice. The top

panel displays the estimated impulse response along with conventional (marginal)

two standard error bands (the wider bands in the figure) and the just introduced

conditional, two standard error bands (the narrower bands). The bottom values

in that panel refer to the p-value of the joint significance test (“Joint 0.033”) and

the p-value of the significance test of the accumulated response after 24 periods

(“Cum 0.001”). The bottom panel displays a Scheffé fan chart of the same impulse

response.

[Insert Figure 2 here]

The impulse response displayed in the top panel is emblematic of the VAR

literature: the width of the marginal error bands is often taken as evidence that

there is little information in the sample about the relationship between unem-

ployment and prices (the marginal error bands include zero for all but six out of

the 24 periods displayed). In fact the opposite conclusions are true. The p-value
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of the joint tests of significance and cumulative significance (0.033 and 0.001 re-

spectively) leave little doubt that the response is significantly different from zero:

the impulse response does not wiggle around the zero line like, say, the plot of

a white noise process would; instead it is decidedly positive over all but one of

the 24 periods displayed. The conditional error bands suggest that, although the

response is mostly indistinguishable from zero during the first three to five quar-

ters after impact, it is distinctly positive thereafter and for the duration of the

remaining periods, thus suggesting that the effect on unemployment is delayed

by about four periods. The fan chart in the bottom panel of figure 2 further

confirms the high degree of serial correlation in the impulse response estimates

and the improbability that the impulse response would fluctuate widely between

positive and negative values, which one would have expected by looking at the

usual marginal error bands.

2.5. Small Sample Monte Carlo Experiments

A full scale investigation of the small sample properties of Scheffé and conditional

bands deserves far more space than is available here. Instead, by using as back-

ground the Stock and Watson (2001) VAR, I hope to remove arbitrariness in the

selection of DGP and to provide evidence for a situation that is likely to be typ-
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ical in many practical applications. This section provides Monte Carlo evidence

based on simulations generated with the Stock and Watson (2001) VAR, where I

begin by estimating the model over the expanded sample (1960:I to 2007:I, 188

observations) using four lags and saving the resulting coefficient estimates to then

generate 1,000 samples of observations of varying length (T = 50, 100, 200, and

400) that are always initialized with the first few observations in the original

sample.

For each replication, I estimate a VAR(4); compute its impulse responses over

6, 12, and 24 horizons (and thus generate nine responses for each replication

and each horizon choice); and then compute the covariance matrix for each of

the nine impulse responses (with the Monte Carlo replications to abstract from

distortions generated by computational method). Figure 3 displays the theoretical

structural impulse responses over 24 periods and the Monte Carlo average for

models estimated with a sample of T = 200 observations (which is approximately

the size of the original sample). This figure is directly comparable to figure 1 in

Stock and Watson (2001) (except that I do not display the h = 0 coefficients)

and serves to illustrate both, that the impulse responses I generate are virtually

identical to those in the Stock and Watson (2001) VAR, and that Monte Carlo

estimation biases are negligible except perhaps at very long horizons (notice that
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here 24 periods are six years of quarterly data).

[Insert Figure 3 here]

The first set of experiments is collected in tables 1, 2 and 3 and consist in com-

paring the joint probability coverage of Scheffé and traditional marginal bands for

probability levels 50%; 68% (one standard deviation); and 95% (two standard de-

viations). The comparisons are made along the joint probability coverage implied

by the Wald statistic in expression (2.8). For each impulse response, I calculate

this Wald statistic and then report the proportion of impulse responses that fall

within the cut-off values implied by the Scheffé and the marginal bands.

[Insert Tables 1, 2, and 3 here]

Several results deserve comment. First, it is very clear from the tables that

the marginal bands provide inadequate probability coverage irrespective of the

sample size or the length of the impulse response (and it is particularly poor

for 50% and 68% probability levels). The differences are less dramatic for 95%

nominal coverage and in some cases the effective coverage of the marginal bands is

close to the nominal level. However, even then the differences in coverage from one

impulse response to the other can vary quite significantly. On the other hand and

even though Scheffé bands are meant to be approximate, the effective coverage
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is very close to nominal for impulse response horizons six and twelve, even for

relatively small samples. At 24 horizons, there appear some distortions in the

coverage (85% effective versus 95% nominal) that are perhaps to be expected (see

Pesavento and Rossi, 2006; and Sims and Zha, 1999).

The second set of experiments is reported in tables 4, 5 and 6. Because of

space considerations, I have omitted some of the combinations of sample size

and impulse response horizon, which are available from me upon request. The

experiments report the empirical power and size (by simulating a white noise

process) of the individual coefficient significance tests implied by the marginal

and the conditional bands. The bottom row of each table reports the power of

the joint significance test (which is the same regardless of the type of band and

is therefore repeated to make it easier to read) as a guide to the results and for

completeness. The reader may also wish to glance at figure 3 to look at the

impulse responses themselves.

[Insert Tables 4, 5, and 6 here]

The tables clearly indicate that conditional bands have superior power to mar-

ginal bands. For example, impulse response (3,1), which corresponds to the re-

sponse of the federal funds rate to a price shock, would not appear to be significant
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if one had a sample T = 50 and the marginal bands. Such a conclusion would

seem to be consistent with the joint chi-square test reported at the bottom of that

impulse response, whose power is 0.17. However, the conditional bands explain

both of these results: while there is some ambiguity about the early horizons of

the impulse response, these are clearly non-zero over time. The larger sample T

= 200 provides further confirmation of this suspicion.

Summarizing, the Monte Carlo evidence suggests the new methods introduced

provide adequate guides to questions about the shape of the impulse response and

the individual significance of coefficients, with some distortions in the coverage for

impulse response horizons that are long relative to the lag structure of the system

and the sample size. In any case, the new methods appear to be far more reliable

than traditional marginal bands for the specific questions that the new methods

were designed to answer.

3. Anchoring Structural Identification with Testable Re-

strictions

Structural identification in an impulse response exercise is commonly achieved by

imposing restrictions on the contemporaneous conditional covariance matrix of
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the system’s variables. Often such restrictions just-identify the system (such as

when identification is achieved with a Wold causal ordering and the ubiquitous

Cholesky decomposition) meaning that enough zero restrictions are introduced to

achieve identification, but not enough to formally test the implied restrictions.

Exceptions to this tradition are papers that use overidentifying restrictions or the

papers by Granger and Swanson (1997) and Demiralp and Hoover (2003), who

develop formal statistical methods based on graph theory.

It seems natural that if economic theory is brought forward to achieve identifi-

cation through the nature of contemporaneous correlations, that it should also be

used to anchor the impulse response exercise with implied restrictions on the im-

pulse response paths themselves. Examples of such constraints may include zero

impulse response restrictions; restrictions that the impulse response path of a cer-

tain variable is strictly positive (or negative), or in general, any linear constraint

on the coefficients of a subset of the system’s impulse responses.

The assumption that the vector of impulse responses is at least approximately

multivariate Gaussian can be particularly useful here. Suppose economic theory

constrains the way variable k responds to a shock to variable l, k, l ∈ {1, ..., r}.

Call the resulting constrained path φc(k, l). Then, assumption (2.1) and standard

properties of linear projections for multivariate Gaussian random variables can be
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used to show that for any i, j ∈ {1, ..., r} except the pair (k, l)

bφ(i, j)|φc(k, l) = bφ(i, j) + SijbΩφS
0
kl
bΩ(k, l)−1 ³φc(k, l)− bφ(k, l)´ ,

where Sij and Skl are selector matrices that have been described previously. Fur-

thermore, the covariance matrix for bφ(i, j)|φc(k, l) can be obtained from the same
projection results as

bΩ(i, j)|(k, l) = bΩ(i, j)− ³SijbΩφS
0
kl

´ bΩ(k, l)−1 ³SklbΩφS
0
ij

´
.

Notice that the second term is a positive semi-definite matrix so that tr
³bΩ(i, j)|(k, l)´ ≤

tr
³bΩ(i, j)´ , that is, the variance of bφ(i, j)|φc(k, l) is smaller than the variance

of bφ(i, j). The reason is that the unknown path for φ(k, l) is replaced by our as-
sumption φc(k, l). It is important to remark that it would have been just as easy

to condition the exercise on any other linear restrictions, and for any subset of the

entire vector of impulse responses (from conditioning on the paths of two impulse

responses at the same time, to conditioning on the first few horizons only, and so

on).

An attractive feature of this type of experiment is that its validity can be

formally assessed with standard statistics. Specifically, the null hypothesis H0 :
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φ(k, l) = φc(k, l) can be tested with the Wald statistic

cW c(k, l) =
³bφ(k, l)−φc(k, l)´0 bΩ(k, l)−1 ³bφ(k, l)−φc(k, l)´ d→ χ2H . (3.1)

Similarly, notice that in the special case in which SijbΩφS
0
kl = 0 then φ(i, j) is

independent of φ(k, l) (under Gaussianity) and any constraint φc(k, l) imposed

onφ(k, l) will not affect bφ(i, j), a natural consequence of exogeneity. This suggests
that one way to categorize which impulses are most sensitive to assumptions on

φc(k, l) is with a rank order of the Wald metric

cW c(i, j) =
³bφ(i, j)|φc(k, l)− bφ(i, j)´0 bΩφ(i, j|k, l)−1

³bφ(i, j)|φc(k, l)− bφ(i, j)´ .
(3.2)

The assumption φc(k, l) represents a conjecture about the true value of the

unobservable φ(k, l). The available sample of data provides us with an estimate,

bφ(k, l), and its sampling distribution. Thus, as long as φc(k, l) is close to bφ(k, l)
in the statistical sense, conditioning on φc(k, l) is a way of focusing the multi-

variate distribution of all impulse responses along the direction implied by the
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conditioning event φc(k, l). This is different from counterfactual experimentation

in the sense discussed by Lucas (1976) and more recently, Leeper and Zha’s (2003)

“modest policy interventions.”

It is tempting to think of φc(k, l) as a counterfactual, which if chosen to be

sufficiently near bφ(k, l), would not incur in the Lucas critique by virtue of being a
trajectory that would fall within the distribution of the agents’ expectations. How-

ever, to make such a statement requires careful consideration about the relation

between the sampling distribution of the impulse responses, and the distribution

that reflects the public’s and the policy maker’s expectations. In addition, one

needs to formally determine the amount of allowable variability in the counter-

factual that would not cause changes in the behavior of agents from an optimal

control point of view. These are clearly important issues that require research left

for another paper.

I now return to the Stock and Watson (2001) VAR to illustrate how this type

of restriction can be used in practice. In particular, consider the impulse response

of inflation (P) in response to a shock in the federal funds rate (FF) displayed

in the bottom panel of figure 4 as the impulse response in squares (along with

two standard error conditional bands). As is often the case, prices appear to

respond positively to a positive shock in interest rates, at least for the first few
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quarters, in what is now commonly dubbed as the “price puzzle” in the monetary

economics literature (e.g. Sims, 1992). Suppose now that, given our theory on

how economies should behave, we impose that this response is negative starting

in the first period. As an example, I have subtracted 0.25% to every coefficient

in that impulse response to construct the conditioning path. The new response is

represented by the line in circles in the bottom panel of figure 4.

[Insert Figure 4 here]

The p-value of the Wald test measuring the distance between the conditioning

event and the sample estimates (given by the Wald test in expression (3.1)) is

0.217 so that the restriction is clearly not rejected by the data. The original and

the conditional impulse responses of unemployment (UN) and interest rates (FF)

in response to an interest rate shock are plotted in the top panels of figure 4 along

with their respective two conditional standard error bands. It is interesting to

see that the conditional response of interest rates is shifted upwards (on impact,

interest rates go up by a full percentage point instead of 0.65% and remain ap-

proximately 20 basis points higher than the unconditional response throughout)

whereas the response of unemployment during the first two years is approximately

the same but with a much sharper decline for the conditional response thereafter.

35



Interestingly, the conditional impulse responses that I report in figure 4 correspond

rather well to the impulse responses in figure 2 of Stock and Watson (2001). How-

ever in that paper, Stock and Watson achieve these results by imposing a version

of the Taylor-rule on the contemporaneous structure of their VAR. Instead the

results in figure 4 combine a basic Cholesky assumption with a restriction on how

prices should respond to interest rates and whose likelihood has been formally

tested.

4. Summary of Asymptotic Results

Large-sample approximations provide analytic expressions of statistics of interest

with minimal assumptions and serve to justify the validity of finite-sample cal-

culations with resampling methods (e.g. for the bootstrap, see Horowitz, 2001).

This section presents asymptotic results for structural impulse responses under

a variety of assumptions (summarized in the appendix) and estimation methods

based on least-squares techniques. Although many of the derivations are scattered

elsewhere in the literature, it is perhaps useful to catalog the main results together

and compile a brief guide for practitioners here.

Recall that the r(H+1)×1 matrix Φ(0, H) collects the structural impulse re-

sponses of a system yt of r variables over H+1 horizons. These are constructed as
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Φ (0,H) = B (0,H)P where B (0, H) is an r (H + 1)× r matrix of reduced-form

impulse responses and P is the r×r rotation matrix required for structural identi-

fication. Accordingly, I begin by discussing results for bbT = vec³ bBT (0,H)´ first.
Then, I derive estimates of P under short-run (Cholesky) and long-run (Blanchard

and Quah, 1989; Galí, 1999) recursive identification assumptions. Given bbT and
bPT , then it is straight forward to derive the distribution of vec(Φ (0,H)) = bφT =³ bP 0T ⊗ I´ bbT . Many of the results in this section are derived, with a little bit of
work, directly from standard references such as Hamilton (1994) and Lütkepohl

(2005).

4.1. The Reduced-Form Estimators

Let yj for j = H, ..., 1, 0,−1, ...,−K be the (T−K−H)×r matrix of stacked obser-

vations for the 1×r vector y0t+j. Hence, let Yh ≡ (y0, ...,yh) be the (T −K −H)×

rh matrix of dependent variables for any h = 0, 1, ...,H. Next, define the matrix

of regressors Xk ≡ (y−1, ...,y−k) , which is of dimensions (T −K −H) × rk for

k = 1, ..., K. Let 1T denote a vector of ones (meant for the constant term) of dimen-

sion (T −K −H)×1 and the associated projection matrixM1 = IT−K−H−1T10T .

Let Zk ≡ (1T ,y−2, ...,y−k) be an (T−K−H)×r(k−1)+1 matrix for k = 2, ..., K

with associated projection matrix Mz = IT−K−H − Zk (Z 0kZk)
−1 Z 0k of dimensions
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(T −K −H)× (T −K −H).

Estimates of the reduced-form impulse response coefficients based on a VAR(K)

can be obtained from the least-squares estimates

bAT ≡
⎡⎢⎢⎢⎢⎢⎢⎣
bA1
...

bAK

⎤⎥⎥⎥⎥⎥⎥⎦ = (Y
0
1M1XK) (X

0
KM1XK)

−1 (4.1)

and with the recursions bBh = Ph
j=1

bBh−1 bAj for h = 1, 2, ...,H and B0 = Ir

from which it is straightforward to construct bBT (0,H) . I will denote with bε the
(T −K −H)×r the matrix of residuals from this VAR(K), which coincide exactly

with the residuals for the first local projection in expression (4.2) below.

Instead, impulse response coefficients can be obtained directly by local projec-

tions with the least-squares estimates

bBT (1,H) = (Y 0HMzX1) (X
0
1MzX1)

−1 (4.2)

and by setting B0 = Ir. The large-sample distributions of these two estimators

will depend on a set of assumptions for covariance-stationary but possibly infinite-

order processes, or a set of assumptions for finite-dimensional but possibly inte-
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grated vector processes.

4.2. Propositions

Before stating the relevant results, it is useful to define the following auxiliary

expressions:

Σv ≡ ΨB (IH+1 ⊗ Σε)Ψ
0
B (4.3)

ΨB
r(H+1)×r(H+1)

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0r 0r 0r ... 0r

0r Ir 0r ... 0r

0r B1 Ir ... 0r

...
...

... ...
...

0r BH−1 BH−2 ... Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and notice that a consistent and asymptotically normal estimate of Σε (see e.g.,

proposition 15.2 in Lütkepohl, 2005) can be obtained as:

bΣε =
bε0bε

(T −K −H) (4.4)
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where bε are the least-squares residuals of the VAR(K) estimates in expression
(4.1). The following two propositions provide the asymptotic distribution of the

reduced-form impulse response coefficients.

Proposition 1. Let bbV ART denote vec( bBT (0, H)) for bBT (0,H) estimated from the
VAR(K) estimates in expression (4.1) and the recursion bBh = Ph

j=1
bBh−j bAj for

h = 1, 2, ..., H and B0 = Ir. Then under assumptions A1-A8 in the appendix

p
(T −K)

³bbV ART − b0
´

d→ N (0,ΩB)

where ΩB can be consistently estimated with bΩB = ³bΣ−1ε ⊗ bΣv´ based on expres-
sions (4.3) and (4.4).

Proof. The proof is a direct result of proposition 15.4 in Lütkepohl (2005)

and is mostly based on results by Lewis and Reinsel (1985) and Lütkepohl and

Poskitt (1991).

Proposition 2. Let bbLPT denote vec( bBT (0,H)) for bBT (0,H) estimated by local
projections as in expression (4.2). Then, under assumptions A1-A8 in the appen-

dix p
(T −K −H)

³bbLPT − b0´ d→ N (0,ΩB)
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where ΩB can be consistently estimated with bΩB = ³(X 0
1MzX1)

−1 ⊗ bΣv´ based
on expressions (4.3) and (4.4).

Proof. The proof is a direct consequence of theorem 3 in Jordà and Kozicki

(2006) and Lewis and Reinsel (1985).

Several results deserve comment. First, the consistency of the VAR(K) coef-

ficients Aj is only guaranteed up to lag K by the conditions that lead to propo-

sition 1 (specifically, assumptions A7-A8 ). Since impulse responses estimated

with a VAR(K) are Bh =
Ph

j=1Bh−jAj, then consistency of the bBh requires that
the truncation lag K be chosen to be such that K ≥ H. Thus, while efficiency

may suffer in small samples, consistency of the impulse response function suggests

a preference for VAR specifications with relatively long lags. In contrast, local

projection estimates of Bh only require that the residuals be approximately uncor-

related and can be specified with more parsimonious lag length choices. Second,

the assumption that the εt are i.i.d. could be replaced by the assumption that

they are instead a conditionally heteroskedastic martingale difference sequence of

errors. The basic consequence of this alternative assumption would be to replace

the estimate of Σε with a heteroskedasticity-robust covariance estimator such as

White (1980). The reader is referred to Kuersteiner (2001, 2002) and Gonçalves

and Kilian (2007) for related applications.
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Propositions 1 and 2 extend to systems with unit roots as follows.

Proposition 3. Let bbV ART denote vec( bBT (0, H)) for bBT (0,H) estimated from the
VAR(K) estimates in expression (4.1) and the recursion bBh = Ph

j=1
bBh−j bAj for

h = 1, 2, ..., H and B0 = Ir. Then under assumptions A1’-A6’ in the appendix

p
(T −K)

³bbV ART − b0
´

d→ N (0,ΩB)

where the i, jth block of ΩB can be consistently estimated with bGibΣα
bG0j for i, j =

1, ..., r with Gi ≡ ∂vec(Bi)
∂vec(A)

as in proposition 3.6 in Lütkepohl (2005) and Σα as

given in Corollary 7.1.1. in Lütkepohl (2005).

Proof. The relevant proofs and discussion are all contained in Hamilton (1994)

chapter 18 and Lütkepohl (2005) chapter 7 (more specifically corollary 7.1.1 and

proposition 3.6).

Proposition 4. Let bbLPT denote vec( bBT (0,H)) for bBT (0,H) estimated by local
projections as in expression (4.2). Then, under assumptions A1’-A6’ in the ap-

pendix p
(T −K −H)

³bbLPT − b0´ d→ N (0,ΩB) .
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Proof. The proof is based on applying the results in Hamilton (1994), chapter

18 and by realizing that the asymptotic distribution of the impulse response coef-

ficients is dominated by the terms converging at rate
√
T so that terms converging

at rate T do not affect the resulting asymptotic distribution.

Several results deserve comment. For systems with exactly r unit roots, im-

pulse responses based on the system in the differences have the same distribution

as that obtained for covariance-stationary processes under assumptions A1-A8.

When there is cointegration, the only alternatives are to either estimate the vector-

error correction form or to estimate the system in levels (i.e., without imposing

cointegrating restrictions). Propositions 3 and 4 deal with the latter case where

the most important caveat is to keep in mind that ΩB is reduced rank and that,

although the distribution of the bAj is asymptotically normal, the distribution of
quantities based on

PK
j=1

bAj is non-standard (such as would be required to ob-
tain the long-run cumulated response, for example). Rossi (2005) and Pesavento

and Rossi (2006) raise an important caveat to these results that I do not discuss

here. The caveat arises when the impulse response horizon is relatively long. In

that case, the exponential decay of the components of the impulse response that

converge at
√
T relative to the decay of the components with unit roots or near-

to-unit roots (which converge at rate T ), will cause distortions in the Gaussian
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approximation.

4.3. Structural Impulse Responses

The residuals εt in assumptions A1-A1’ in the appendix are not assumed to be or-

thogonal to each other and thereforeE (εtε0t) = Σε is a symmetric, positive-definite

matrix with possibly non-zero entries in the off-diagonal terms. Let the structural

residuals ut be the rotation of the reduced-form residuals εt given by Put = εt,

where E (utu0t) = Ir and hence Σε = PP
0. Notice that the decomposition of Σε

is not unique: Σε contains r(r + 1)/2 distinct terms but P contains r2 terms and

therefore r(r−1)/2 additional conditions are required to achieve just-identification

of the terms in P. Traditional methods of estimating P consist in exogenously im-

posing r(r−1)/2, ad-hoc, constraints. Two common approaches are identification

via the Cholesky decomposition of Σε (which is equivalent to imposing r(r− 1)/2

zero restrictions on P ); and identification with long-run restrictions that impose

r(r − 1)/2 zero restrictions on the long-run matrix of structural responses.

4.3.1. Short-Run Identification

When identification is achieved by imposing short-run identification assumptions

via the Cholesky decomposition, then
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Ωφ =
∂φ

∂b
ΩB

∂φ

∂b0
+

∂φ

∂vec(P )

∂vec(P )

∂vech(Σε)
ΩΣ

∂vec(P )

∂vech(Σε)0
∂φ

∂vec(P )0
(4.5)

with ΩΣ ≡ E
£
vech (Σε) vech (Σε)

0¤ and E [b, vech(Σε)] = 0 since

E [X 0
1M1ε/ (T −K −H)]

p→ 0. Since Φ(0, h) = B (0, h)P then it is easy to see

that

∂φ

∂b
=
¡
P 0 ⊗ Ir(h+1)

¢
;

∂φ

∂vec(P )
= (Ir ⊗B (0, h))

Lütkepohl (2005), chapter 3 provides the additional results

∂vec(P )

∂vech(Σε)
= L0r {Lr (Ir2 +Krr) (P ⊗ Ir)L0r}

−1 (4.6)

√
T
³
vech

³bΣε

´
− vech (Σε)

´
d→ N (0,ΩΣ)

ΩΣ = 2D+
r (Σε ⊗ Σε)D

+0
r ,

where Lr is the elimination matrix such that for any square r × r, matrix A,

vech(A) = Lrvec(A), Krr is the commutation matrix such that vec(A0) = Krrvec(A),

and D+
r = (D

0
rDr)

−1Dr, where Dr is the duplication matrix such that vec(A) =

Drvech(A) and hence D+
r vec(A) = vech(A). Notice that D

+
r = Lr only when A

is symmetric, but does not hold for the more general case in which A is just a
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square (but not necessarily symmetric) matrix.

Putting together all of these results, we have,

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

Ωφ =
¡
P 0 ⊗ Ir(h+1)

¢
ΩB
¡
P ⊗ Ir(h+1)

¢
+

2 (Ir ⊗B (0, h))CD+
r (Σε ⊗ Σε)D

+0
r C

0 ¡Ir ⊗B (0, h)0¢
C = L0r {Lr (Ir2 +Krr) (P ⊗ Ir)L0r}

−1

where in practice, bΩφ can be calculated by plugging the sample estimates bB (0, h) ;
bΩB; bP ; and bΣε into the previous expression.

4.3.2. Long-Run Identification

The infinite order process in assumption A1 in the appendix can be rewritten,

without loss of generality, as

yt =
∞X
j=1

Cj∆yt−j + C0yt−1 + εt (4.7)

with Ci = −
P∞

j=iAj and C0 =
P∞

j=1Aj. Let Π = (I − C0) then Π−1 is the

reduced-form, long-run impact matrix. Notice that if the system has unit roots,
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Π is not full rank (in the case of cointegration) and it is exactly 0 if there are

r unit roots in the system. Thus, when unit roots are present, care should be

exercised since some recursive long-run restrictions may not actually carry any

proper identifying information on the true structure in the system. This is a

point often overlooked in the literature. Of course, a similar situation would arise

if Σε were a diagonal matrix already and one were to impose short-run recursive

assumptions to achieve identification. For these reasons, I assume that Π is full

rank and briefly discuss below what happens if it is reduced-rank.

If P is the structural rotation matrix such that Put = εt, then the structural

long-run impact matrix is

Φ∞ = Π−1P.

Lütkepohl (2005) then shows that long-run identification assumptions can be eas-

ily imposed by applying the Cholesky decomposition to

Φ∞Φ
0
∞ = Π−1PP 0Π0−1 = Π−1ΣεΠ

0−1 = QQ0 (4.8)

and hence P = ΠQ.

A direct estimate of Π can be easily obtained with the least-squares estimate
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of a truncated version of the Beveridge-Nelson decomposition of expression (4.7).

Assuming the system is covariance-stationary, this estimate will be asymptotically

normally distributed with covariance matrix, say, Ωπ.

The structural impulse responses can be constructed as

bΦ (0, h) = bB (0, h) bΠ bQ (4.9)

where the asymptotic normality of each element ensures that

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

but where now

Ωφ =
∂bφT
∂bbT ΩB ∂

bφT
∂bb0T + ∂bφT

∂bπT Ωπ
∂bφT
∂bπ0T + (4.10)

∂bφT
∂bqT

⎡⎢⎣ ∂bqT
∂bπT Ωπ

∂bqT
∂bπ0T + ∂bqT

∂vech
³bΣε

´ΩΣ
∂bqT

∂vech
³bΣε

´0
⎤⎥⎦ ∂bφT

∂bq0T
with bqT = vech³ bQT´ ; ΩΣ is the covariance matrix of vech

³bΣε

´
and we make use

of the fact that bqT and vech³bΣε

´
are uncorrelated.
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It is easy to see that the partial derivatives in (4.10) are:

• ∂bφT
∂bbT = bQ0bΠ0 ⊗ I

• ∂bφT
∂bπT = −

³ bQ⊗ bB (0, h)´
• ∂bφT

∂bqT = I ⊗ bB (0, h) bΠL0r
• ∂bqT

∂bπT =
n³ bQ⊗ I´L0ro−1 nbΠ−1bΣε ⊗ I

onbΠ0−1 ⊗ bΠ−1o
• ∂bqT

∂vech(bΣε)
=
n
L
hbΠ⊗ bΠi (Ir2 +Krr)

³ bQ⊗ I´L0o−1
When Π is less than full rank but non-zero, we are dealing with a cointegrated

system. The immediate consequence of this is that Π converges at rate T and the

distribution of bφT is then dominated by the terms converging at rate √T so that
expression (4.10) simplifies considerably to essentially the expression we had for

the short-run recursive case, that is

Ωφ =
∂bφT
∂bbT ΩB ∂

bφT
∂bb0T + ∂bφT

∂bqT
⎡⎢⎣ ∂bqT
∂vech

³bΣε

´ΩΣ
∂bqT

∂vech
³bΣε

´0
⎤⎥⎦ ∂bφT

∂bq0T (4.11)

where the formulas for each of the terms in the previous expression are the same

as those already derived above.
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5. Conclusion

This paper introduces simultaneous confidence regions for impulse responses that

summarize uncertainty about its shape and uncertainty about the individual sig-

nificance of its coefficients. These results require solving two problems: con-

struction of appropriate rectangular regions for a multiple testing problem; and

adjustments to the serial correlation of the response coefficients. The solutions

introduced rely on Scheffé’s (1953) S-method, and on orthogonal linear projec-

tions. The resulting regions can be trivially constructed with available statistical

software, which should facilitate their diffusion among practitioners.

Underlying these derivations are conditions under which multivariate Gaussian

approximations appropriately characterize the joint distribution of the impulse

response coefficients. The paper synthesizes a number of asymptotic justifications

for impulse responses based on VAR estimates and introduces a number of novel

results when the impulse responses are estimated by local projections (Jordà,

2005) instead. An advantage of the multivariate Gaussian approximation is that

it allows anchoring of the impulse response exercise by extending assumptions

on the nature of contemporaneous correlations to testable assumptions on the

impulse response paths themselves.
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Numerous important topics have been raised in this paper that have been post-

poned for future research. Impulse responses are a type of conditional forecast

so it is natural to think of extending the methods introduced here to forecasting.

In ongoing work with Massimiliano Marcellino (Jordà and Marcellino, 2007) we

investigate evaluation of forecast paths by adjusting for simultaneity and fore-

cast serial correlation, and introducing new measures of forecasting accuracy and

predictive ability testing.

Several factors can affect the small sample properties of asymptotic approxi-

mations and numerous papers have dealt with such issues in the context of im-

pulse responses. An important source of such distortions is the existence of unit

of near-to-unit root behavior, specially for long impulse response horizons (e.g.

Rossi, 2005). Similarly, optimal ways to implement the bootstrap for VARs and

calculation of impulse response marginal error bands have been extensively dis-

cussed (e.g., Kilian, 1999). Thus, it is natural to examine how these issues affect

the new confidence regions and results introduced here.

Finally, developing conditions under which counterfactual experimentation

with empirical models is valid would be an important contribution. Leeper and

Zha (2003) have made some progress in this direction but as the discussion in this

paper makes clear, more work is needed to establish appropriate formal conditions
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along the lines of the anchoring exercise presented here.

6. Appendix

6.1. Assumptions for Covariance-Stationary Processes

A1. Let yt be an r× 1, covariance-stationary vector time-series generated by the

infinite order process

yt =
∞X
j=1

Ajyt−j + εt,

where the constant term and other deterministic terms have been omitted for

simplicity but without loss of generality.

A2. E(εt) = 0 and εt are i.i.d.

A3. E(εtε0t) = Σε
r×r

and finite.

A4.
P∞

j=1 kAjk <∞ where kAjk2 = tr(A0jAj)

A5. yt can also be represented by the infinite moving average process

yt =
∞X
j=0

Bjεt−j

with B0 = Ir and the constant term and other deterministic terms omitted
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for simplicity.

A6. det
³P∞

j=0Bjz
j
´
6= 0 for |z| ≤ 1; and

P∞
j=1 j

1/2||Bj|| <∞.

A7. K3/T →∞;K,T →∞. K is the truncation lag of the VAR(K).

A8. K1/2
P∞

j=K+1 ||Aj||→ 0 as K,T →∞.

Notice that assumption A1 includes as a special case finite-dimensional processes

since for a finite value K, we can set AK+j = 0 for j ≥ 1. Assumption A1 im-

poses covariance-stationarity but below I show that in the finite-dimensional case,

the asymptotic results carry through as long as the process yt admits a Beveridge-

Nelson decomposition. Assumption A2 is more stringent than is necessary and

it can often be relaxed to accommodate general forms of heteroskedasticity. I will

remark on the effect of relaxing the assumption where appropriate. Assumption

A5 is really a consequence of assumptions A4 and A6 (see, e.g. Anderson, 1994).

Assumptions A1-A6 cover a wide class of models that includes the well worn fi-

nite dimensional VAR but also include finite-dimensional VARMA models and

potentially other covariance-stationary processes.
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6.2. Assumptions for Systems with Unit Roots

A1’. Let yt be an r × 1 vector time-series generated by the process

yt =
KX
j=1

Ajyt−j + εt

with K finite, and define Cs ≡ − [As+1 + ...+AK ] for s = 1, 2, ...,K − 1

and C0 = A1+ ...+AK so that the system can be expressed in the differences

as

∆yt =
K−1X
j=1

Cj∆yt−j + (C0 − I)yt−1 + εt.

Depending on rank (C0 − I) = g, we can have that if g = 0, then the system

has exactly r unit roots and C0 − I = 0; if 0 < g < r then the system is

cointegrated; and if g = r then the system is stationary in the levels and we

can revert back to assumptions A1-A8.

A2’. Same as assumption A2.

A3’. Same as assumption A3.

A4’. If 0 < g < r then we can rewrite C0 − I = αβ0 where α and β are r × g.

Let α⊥ and β⊥ denote the space spanned by vectors orthogonal to the space

54



spanned by α and β respectively, then assume that

α0⊥

Ã
Ir −

K−1X
j=1

Cj

!
β⊥

is non-singular. If g = 0, then assume that all values z satisfying¯̄
Ir − C1z − ...− CK−1zK−1

¯̄
= 0 lie outside the unit circle.

A5’-A6’. ∆yt is a stationary process with infinite MA representation

∆yt =
∞X
j=0

Bjεt−j

where
P∞

j=0 j||Bj|| <∞;B(1) =
P∞

j=0Bj 6= 0 and hence yt has a Beveridge-

Nelson decomposition given by

yt = y0 +B (1)
tX
j=1

εj +
∞X
j=0

B∗jεt−j +
∞X
j=0

B∗j ε−j

where B∗j = −
P∞

i=j+1Bj for j = 0, 1, ...; y0 and ε−j are initial conditions;

and
P∞

j=0

¯̄
B∗j
¯̄
<∞.

Often times the covariance-stationary assumption in A1 is violated in macro-

economic data. When the source of non-stationarity are the presence of unit roots
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in the system, it will turn out to have little effect on the large-sample results re-

ported below — impulse response estimates based on a VAR or on local projections

are still asymptotically normally distributed although the covariance matrix now

has reduced rank. This has the only consequence of affecting the rates of con-

vergence and asymptotic distribution of certain linear combinations of parameters

(such as the long-run accumulated responses) but leaves all other relevant statistics

unchanged. However, when the system has unit roots (or near-to-unit roots) and

one considers impulse responses at long horizons, then distortions to the Gaussian

approximation will result from the exponential rate of decay of the stationary com-

ponents relative to the persistent components and the differing rates of asymptotic

convergence. This is a subtle and important issue that was discussed in Rossi

(2005) but here I operate under the assumption that the impulse response hori-

zon is short relative to the rate of decay of the stationary components so that the

elements converging at
√
T will dominate the distribution for every h considered,

and hence the results can be expressed in standard form.
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Table 1 - Probability Coverage Comparison: Marginal vs. Scheffé Bands 

Impulse Response Horizons: 6 

T = 50 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  2%  2%  2%  3%  2%  3% 4% 2%  2% 51% 52%  54% 53% 51% 52% 55%  53% 51%
68%  10%  9%  7%  13%  11%  11% 17% 10%  11% 71% 69%  71% 68% 70% 69% 69%  71% 69%
95%  71%  64%  63%  73%  68%  64% 75% 69%  68% 94% 94%  94% 94% 94% 93% 92%  93% 94%

 

T = 100 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  2%  4%  2%  2%  2% 1% 2% 2% 2% 53% 51%  49% 52% 53% 55% 53% 53% 50%
68%  9%  13%  9%  14%  9% 8% 11% 11% 9% 69% 69%  69% 69% 69% 70% 69% 69% 68%
95%  69%  71%  63%  75%  67% 63% 71% 65% 65% 94% 95%  94% 94% 94% 93% 95% 94% 95%

 

T = 200 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  3%  2%  1%  2%  3% 1% 3% 1% 1% 51% 51%  49% 49% 52% 52% 51% 51% 52%
68%  11%  9%  7%  9%  11% 8% 13% 6% 7% 68% 69%  68% 70% 68% 69% 69% 69% 70%
95%  71%  69%  60%  72%  70% 63% 73% 61% 66% 94% 95%  95% 94% 94% 95% 94% 95% 94%

 

T = 400 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  2%  1%  1%  2%  2% 1% 3% 1% 1% 52% 51%  52% 50% 52% 51% 51% 52% 50%
68%  10%  9%  7%  10%  10% 7% 10% 6% 9% 68% 68%  68% 67% 69% 68% 68% 68% 68%
95%  72%  66%  61%  67%  71% 62% 71% 61% 63% 94% 96%  94% 96% 94% 94% 95% 94% 94%

Notes: DGP is Stock and Watson (2001) three variable, VAR(4) orthogonalized with the Cholesky decomposition using the same Wold order. (i,j) 
refers to the impulse response of variable i to a shock in variable j, where prices = 1; unemployment = 2; federal funds rate = 3. T is the sample 
size. Probability coverage calculated as the percentage of Monte Carlo impulse responses (derived from VAR estimates at each replication) within 
the Wald statistic implied by the bands considered. 1,000 Monte Carlo replications. Contemporaneous responses are excluded. 
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Table 2 - Probability Coverage Comparison: Marginal vs. Scheffé Bands (cont.) 

Impulse Response Horizons: 12 

T = 50 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  0%  1%  0%  1%  1%  0% 1% 1%  0% 64% 60%  62% 61% 61% 61% 64%  60% 60%
68%  1%  8%  2%  4%  11%  3% 6% 9%  4% 74% 71%  71% 71% 72% 70% 72%  70% 71%
95%  43%  69%  38%  46%  77%  48% 56% 66%  47% 90% 89%  88% 87% 88% 88% 87%  87% 89%

 

T = 100 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  0%  1%  0%  0%  1% 0% 0% 2% 0% 64% 60%  60% 59% 61% 60% 60% 60% 62%
68%  3%  10%  2%  4%  12% 1% 3% 12% 2% 73% 71%  70% 71% 72% 71% 72% 72% 72%
95%  51%  73%  46%  56%  82% 43% 48% 76% 48% 89% 89%  88% 89% 89% 89% 88% 89% 89%

 

T = 200 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  0%  1%  0%  0%  1% 0% 0% 3% 0% 61% 59%  58% 59% 59% 57% 62% 59% 60%
68%  5%  12%  1%  3%  13% 1% 4% 22% 2% 71% 70%  70% 73% 70% 71% 72% 70% 70%
95%  63%  83%  49%  59%  84% 44% 56% 88% 48% 90% 89%  90% 90% 89% 90% 90% 88% 89%

 

T = 400 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  0%  3%  0%  0%  0% 0% 1% 5% 0% 60% 56%  56% 59% 58% 55% 61% 58% 58%
68%  5%  24%  1%  3%  13% 1% 4% 33% 2% 73% 70%  70% 70% 69% 70% 73% 69% 71%
95%  71%  96%  45%  61%  88% 38% 59% 96% 51% 90% 91%  91% 91% 90% 92% 91% 89% 90%

Notes: DGP is Stock and Watson (2001) three variable, VAR(4) orthogonalized with the Cholesky decomposition using the same Wold order. (i,j) 
refers to the impulse response of variable i to a shock in variable j, where prices = 1; unemployment = 2; federal funds rate = 3. T  is the sample 
size. Probability coverage calculated as the percentage of Monte Carlo impulse responses (derived from VAR estimates at each replication) within 
the Wald statistic implied by the bands considered. 1,000 Monte Carlo replications. Contemporaneous responses are excluded. 
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Table 3 - Probability Coverage Comparison: Marginal vs. Scheffé Bands (cont.) 

Impulse Response Horizons: 24 

T = 50 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  0%  0%  0%  1%  1%  0% 1% 1%  0% 75% 72%  72% 72% 71% 71% 73%  69% 71%
68%  2%  6%  2%  3%  8%  3% 5% 8%  2% 79% 76%  78% 77% 77% 75% 78%  74% 78%
95%  43%  58%  34%  35%  60%  37% 49% 56%  36% 87% 85%  86% 85% 84% 84% 84%  84% 85%

 

T = 100 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  0%  1%  0%  1%  0% 0% 0% 1% 0% 73% 71%  70% 72% 73% 73% 73% 74% 73%
68%  3%  8%  2%  3%  8% 1% 2% 10% 1% 77% 76%  76% 76% 78% 78% 78% 78% 78%
95%  52%  65%  44%  55%  67% 39% 43% 68% 39% 86% 86%  84% 85% 87% 87% 85% 86% 86%

 

T = 200 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  0%  8%  0%  0%  37% 1% 0% 8% 0% 72% 70%  70% 71% 70% 70% 73% 72% 72%
68%  8%  38%  6%  3%  74% 12% 6% 40% 2% 77% 75%  76% 76% 75% 75% 77% 77% 77%
95%  66%  91%  66%  56%  98% 78% 60% 89% 48% 85% 85%  85% 85% 85% 86% 86% 85% 86%

 

T = 400 Marginal Scheffé 
Nom (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 
50%  0%  70%  1%  0%  93% 41% 1% 50% 0% 72% 69%  69% 72% 68% 69% 72% 69% 71%
68%  9%  93%  16%  4%  99% 81% 9% 82% 7% 78% 74%  75% 78% 73% 75% 78% 75% 77%
95%  79%  100%  85%  68%  100% 99% 72% 99% 72% 87% 85%  87% 86% 84% 87% 87% 84% 87%

Notes: DGP is Stock and Watson (2001) three variable, VAR(4) orthogonalized with the Cholesky decomposition using the same Wold order. (i,j) 
refers to the impulse response of variable i to a shock in variable j, where prices = 1; unemployment = 2; federal funds rate = 3. T  is the sample 
size. Probability coverage calculated as the percentage of Monte Carlo impulse responses (derived from VAR estimates at each replication) within 
the Wald statistic implied by the bands considered. 1,000 Monte Carlo replications. Contemporaneous responses are excluded. 
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Table 4 Power and Size Comparison: Marginal vs. Conditional Bands 

Impulse Response Horizons: 6 

T=50 Marginal Conditional 
H (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Size (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Size 
1 0.62  0.05  0.16  0.47  1.00 0.89 0.09 0.05 0.92 0.05 0.62 0.05  0.16 0.47 1.00 0.89 0.09 0.05 0.92 0.05
2 0.26  0.05  0.28  0.22  0.99 0.68 0.05 0.10 0.20 0.06 0.38 0.40  0.57 0.29 1.00 0.88 0.10 0.42 0.44 0.06
3 0.22  0.06  0.22  0.25  0.88 0.71 0.06 0.16 0.10 0.05 0.37 0.52  0.61 0.37 0.99 0.94 0.12 0.60 0.38 0.05
4 0.45  0.08  0.13  0.30  0.61 0.62 0.06 0.20 0.11 0.05 0.69 0.56  0.58 0.60 0.96 0.96 0.13 0.78 0.50 0.05
5 0.32  0.10  0.13  0.32  0.27 0.44 0.06 0.25 0.07 0.05 0.71 0.72  0.73 0.70 0.88 0.91 0.32 0.89 0.58 0.06
χ2 0.50  0.11  0.16  0.30  1.00 0.74 0.12 0.18 0.94 0.50 0.11  0.16 0.30 1.00 0.74 0.12 0.18 0.94

 

T=100 Marginal Conditional 
H (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Size (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Size 
1 0.99  0.06  0.31  0.80  1.00 1.00 0.16 0.05 1.00 0.04 0.99 0.06  0.31 0.80 1.00 1.00 0.16 0.05 1.00 0.04
2 0.79  0.08  0.58  0.43  1.00 0.99 0.10 0.14 0.72 0.06 0.89 0.43  0.85 0.51 1.00 1.00 0.15 0.44 0.89 0.06
3 0.73  0.13  0.52  0.54  1.00 0.99 0.06 0.24 0.40 0.05 0.86 0.61  0.84 0.66 1.00 1.00 0.14 0.75 0.76 0.05
4 0.96  0.18  0.36  0.61  0.95 0.96 0.06 0.39 0.47 0.05 0.99 0.71  0.77 0.87 1.00 1.00 0.23 0.92 0.91 0.05
5 0.87  0.25  0.35  0.61  0.65 0.88 0.04 0.58 0.31 0.05 0.99 0.89  0.89 0.92 0.99 1.00 0.44 0.98 0.88 0.05
χ2 0.99  0.25  0.39  0.67  1.00 1.00 0.15 0.53 1.00 0.99 0.25  0.39 0.67 1.00 1.00 0.15 0.53 1.00

 

T=200 Marginal Conditional 
H (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Size (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Size 
1 1.00  0.06  0.58  0.98  1.00 1.00 0.30 0.05 1.00 0.05 1.00 0.06  0.58 0.98 1.00 1.00 0.30 0.05 1.00 0.05
2 0.99  0.11  0.89  0.69  1.00 1.00 0.18 0.25 0.99 0.05 1.00 0.48  0.98 0.76 1.00 1.00 0.24 0.61 1.00 0.06
3 0.99  0.24  0.81  0.83  1.00 1.00 0.07 0.46 0.87 0.05 1.00 0.72  0.97 0.93 1.00 1.00 0.15 0.85 0.98 0.05
4 1.00  0.41  0.64  0.88  1.00 1.00 0.04 0.66 0.90 0.06 1.00 0.89  0.93 0.99 1.00 1.00 0.27 0.97 1.00 0.06
5 1.00  0.59  0.66  0.89  0.96 1.00 0.05 0.86 0.78 0.06 1.00 0.98  0.97 0.99 1.00 1.00 0.51 1.00 0.99 0.06
χ2 1.00  0.63  0.76  0.93  1.00 1.00 0.38 0.93 1.00 1.00 0.63  0.76 0.93 1.00 1.00 0.38 0.93 1.00

Notes: DGP is Stock and Watson (2001) three variable VAR(4) orthogonalized with the Cholesky decomposition using the same Wold order. (i,j) refers to the response of variable i to a shock in 
variable j, where prices = 1; unemployment = 2; federal funds rate = 3. T is the sample size. The column “Size” controls the size of the test for an impulse response that is theoretically zero at all 
horizons. Power calculated as 1 minus the proportion of impulse response coefficients inside the corresponding marginal or conditional 95% confidence interval at each horizon. Hence theoretical size is 
5%. 1,000 Monte Carlo replications. Contemporaneous responses are excluded (marginal and conditional bands are the same). 
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Table 5 Power and Size Comparison: Marginal vs. Conditional Bands 

Impulse Response Horizons: 24 

T=50 Marginal Conditional 
H (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Size (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Size 
1 0.62  0.05  0.16  0.47  1.00 0.89 0.09 0.05 0.92 0.05 0.62 0.05  0.16 0.47 1.00 0.89 0.09 0.05 0.92 0.05
2 0.26  0.05  0.28  0.22  0.99 0.68 0.05 0.10 0.20 0.06 0.38 0.40  0.57 0.29 1.00 0.88 0.10 0.42 0.44 0.06
3 0.22  0.06  0.22  0.25  0.88 0.71 0.06 0.16 0.10 0.05 0.37 0.52  0.61 0.37 0.99 0.94 0.12 0.60 0.38 0.05
4 0.45  0.08  0.13  0.30  0.61 0.62 0.06 0.20 0.11 0.05 0.69 0.56  0.58 0.60 0.96 0.96 0.13 0.78 0.50 0.05
5 0.32  0.10  0.13  0.32  0.27 0.44 0.06 0.25 0.07 0.05 0.71 0.72  0.73 0.70 0.88 0.91 0.32 0.89 0.58 0.06
6 0.24  0.12  0.14  0.23  0.10 0.29 0.06 0.29 0.04 0.07 0.68 0.79  0.79 0.72 0.78 0.87 0.46 0.94 0.60 0.07
7 0.19  0.16  0.15  0.18  0.05 0.21 0.07 0.28 0.05 0.06 0.68 0.85  0.81 0.73 0.76 0.85 0.56 0.94 0.66 0.06
8 0.19  0.18  0.13  0.15  0.10 0.14 0.07 0.25 0.05 0.07 0.74 0.90  0.83 0.72 0.84 0.83 0.63 0.95 0.73 0.08
9 0.16  0.21  0.11  0.12  0.17 0.11 0.08 0.21 0.05 0.06 0.76 0.92  0.85 0.73 0.91 0.82 0.70 0.94 0.77 0.08

10 0.14  0.23  0.11  0.10  0.23 0.08 0.09 0.17 0.06 0.07 0.75 0.94  0.85 0.76 0.94 0.83 0.73 0.96 0.81 0.09
11 0.11  0.22  0.10  0.09  0.24 0.07 0.08 0.13 0.06 0.06 0.74 0.96  0.89 0.76 0.96 0.82 0.76 0.93 0.82 0.08
12 0.11  0.22  0.09  0.07  0.24 0.06 0.08 0.10 0.06 0.06 0.76 0.96  0.88 0.78 0.96 0.86 0.79 0.93 0.85 0.09
13 0.08  0.19  0.08  0.07  0.21 0.05 0.08 0.08 0.05 0.06 0.77 0.97  0.89 0.80 0.96 0.87 0.83 0.94 0.84 0.08
14 0.08  0.18  0.08  0.06  0.17 0.05 0.07 0.07 0.05 0.06 0.77 0.97  0.90 0.83 0.97 0.89 0.83 0.94 0.86 0.09
15 0.07  0.17  0.07  0.06  0.15 0.05 0.07 0.07 0.05 0.06 0.76 0.98  0.90 0.83 0.96 0.91 0.84 0.95 0.89 0.07
16 0.07  0.16  0.07  0.06  0.12 0.06 0.07 0.06 0.05 0.05 0.81 0.97  0.90 0.84 0.97 0.91 0.86 0.95 0.89 0.09
17 0.06  0.15  0.07  0.06  0.09 0.06 0.06 0.06 0.05 0.06 0.80 0.97  0.89 0.86 0.97 0.92 0.86 0.94 0.90 0.08
18 0.06  0.14  0.06  0.05  0.08 0.05 0.06 0.06 0.06 0.05 0.82 0.97  0.90 0.86 0.97 0.93 0.86 0.95 0.91 0.09
19 0.05  0.12  0.06  0.05  0.07 0.05 0.06 0.06 0.06 0.05 0.85 0.97  0.92 0.87 0.97 0.94 0.88 0.96 0.92 0.07
20 0.05  0.11  0.06  0.05  0.06 0.05 0.06 0.06 0.05 0.05 0.86 0.96  0.91 0.89 0.97 0.95 0.88 0.96 0.92 0.09
21 0.05  0.10  0.06  0.04  0.06 0.05 0.05 0.05 0.05 0.05 0.86 0.98  0.92 0.89 0.98 0.94 0.88 0.96 0.92 0.08
22 0.05  0.10  0.05  0.04  0.05 0.05 0.05 0.05 0.06 0.04 0.88 0.98  0.93 0.89 0.98 0.94 0.87 0.97 0.93 0.06
23 0.05  0.08  0.05  0.04  0.06 0.05 0.05 0.05 0.05 0.04 0.89 0.98  0.94 0.91 0.97 0.95 0.89 0.97 0.93 0.08
χ2 0.21  0.17  0.16  0.20  0.83 0.33 0.17 0.19 0.54 0.21 0.17  0.16 0.20 0.83 0.33 0.17 0.19 0.54

Notes: DGP is Stock and Watson (2001) three variable VAR(4) orthogonalized with the Cholesky decomposition using the same Wold order. (i,j) refers to the response of variable i to a shock in 
variable j, where prices = 1; unemployment = 2; federal funds rate = 3. T is the sample size. The column “Size” controls the size of the test for an impulse response that is theoretically zero at all 
horizons. Power calculated as 1 minus the proportion of impulse response coefficients inside the corresponding marginal or conditional 95% confidence interval at each horizon. Hence theoretical size is 

5%. Last row (labeled χ2 ) is the power of the joint significance test. 1,000 Monte Carlo replications. Contemporaneous responses are excluded (marginal and conditional bands are the same). 
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Table 6 Power and Size Comparison: Marginal vs. Conditional Bands 

Impulse Response Horizons: 24 

T=200 Marginal Conditional 
H (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Size (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) Size 
1 1.00  0.06  0.58  0.98  1.00 1.00 0.30 0.05 1.00 0.05 1.00 0.06  0.58 0.98  1.00  1.00 0.30  0.05  1.00 0.05
2 0.99  0.11  0.89  0.69  1.00 1.00 0.18 0.25 0.99 0.05 1.00 0.48  0.98 0.76  1.00  1.00 0.24  0.61  1.00 0.06
3 0.99  0.24  0.81  0.83  1.00 1.00 0.07 0.46 0.87 0.05 1.00 0.72  0.97 0.93  1.00  1.00 0.15  0.85  0.98 0.05
4 1.00  0.41  0.64  0.88  1.00 1.00 0.04 0.66 0.90 0.06 1.00 0.89  0.93 0.99  1.00  1.00 0.27  0.97  1.00 0.06
5 1.00  0.59  0.66  0.89  0.96 1.00 0.05 0.86 0.78 0.06 1.00 0.98  0.97 0.99  1.00  1.00 0.51  1.00  0.99 0.06
6 0.99  0.76  0.78  0.76  0.55 0.97 0.06 0.96 0.43 0.06 1.00 1.00  0.99 0.98  0.98  1.00 0.73  1.00  0.96 0.06
7 0.97  0.88  0.78  0.60  0.11 0.87 0.09 0.98 0.27 0.06 1.00 1.00  0.99 0.99  0.92  1.00 0.83  1.00  0.92 0.06
8 0.97  0.92  0.70  0.46  0.08 0.71 0.14 0.98 0.21 0.08 1.00 1.00  0.99 0.97  0.95  1.00 0.89  1.00  0.92 0.08
9 0.93  0.94  0.70  0.35  0.35 0.48 0.19 0.98 0.14 0.06 1.00 1.00  0.99 0.97  0.99  0.99 0.94  1.00  0.93 0.07
10 0.86  0.96  0.71  0.25  0.59 0.29 0.22 0.96 0.09 0.07 1.00 1.00  0.99 0.97  1.00  0.99 0.96  1.00  0.95 0.10
11 0.81  0.97  0.71  0.18  0.74 0.20 0.26 0.91 0.07 0.07 1.00 1.00  1.00 0.97  1.00  0.98 0.97  1.00  0.97 0.08
12 0.75  0.98  0.69  0.13  0.77 0.15 0.29 0.82 0.06 0.06 1.00 1.00  1.00 0.98  1.00  0.98 0.99  1.00  0.97 0.07
13 0.68  0.98  0.67  0.10  0.78 0.12 0.33 0.69 0.05 0.05 1.00 1.00  1.00 0.98  1.00  0.99 1.00  1.00  0.98 0.08
14 0.60  0.97  0.66  0.07  0.74 0.11 0.36 0.53 0.05 0.06 1.00 1.00  1.00 0.98  1.00  0.98 1.00  1.00  0.99 0.09
15 0.53  0.97  0.63  0.06  0.68 0.11 0.38 0.39 0.05 0.06 1.00 1.00  1.00 0.99  1.00  0.99 1.00  1.00  0.99 0.07
16 0.45  0.96  0.61  0.06  0.61 0.11 0.40 0.26 0.05 0.05 1.00 1.00  1.00 0.99  1.00  0.99 1.00  1.00  0.99 0.08
17 0.38  0.94  0.58  0.06  0.52 0.12 0.40 0.18 0.05 0.05 1.00 1.00  1.00 0.99  1.00  0.99 1.00  1.00  0.99 0.08
18 0.32  0.91  0.56  0.05  0.45 0.13 0.41 0.13 0.05 0.05 1.00 1.00  1.00 0.99  1.00  1.00 1.00  1.00  1.00 0.08
19 0.28  0.89  0.53  0.05  0.38 0.15 0.41 0.10 0.05 0.05 1.00 1.00  1.00 0.99  1.00  1.00 1.00  1.00  1.00 0.07
20 0.23  0.87  0.50  0.05  0.32 0.16 0.42 0.07 0.06 0.04 1.00 1.00  1.00 1.00  1.00  1.00 1.00  1.00  1.00 0.06
21 0.18  0.84  0.48  0.05  0.27 0.17 0.41 0.06 0.06 0.04 1.00 1.00  1.00 1.00  1.00  1.00 1.00  1.00  1.00 0.08
22 0.15  0.82  0.44  0.06  0.25 0.18 0.41 0.06 0.06 0.04 1.00 1.00  1.00 1.00  1.00  1.00 1.00  1.00  1.00 0.08
23 0.12  0.77  0.40  0.06  0.23 0.18 0.40 0.06 0.07 0.03 1.00 1.00  1.00 1.00  1.00  1.00 1.00  1.00  1.00 0.07
χ2 1.00  0.62  0.43  0.52  1.00 1.00 0.24 0.54 1.00 1.00 0.62  0.43 0.52  1.00  1.00 0.24  0.54  1.00

Notes: DGP is Stock and Watson (2001) three variable VAR(4) orthogonalized with the Cholesky decomposition using the same Wold order. (i,j) refers to the response of variable i to a shock in 
variable j, where prices = 1; unemployment = 2; federal funds rate = 3. T is the sample size. The column “Size” controls the size of the test for an impulse response that is theoretically zero at all 
horizons. Power calculated as 1 minus the proportion of impulse response coefficients inside the corresponding marginal or conditional 95% confidence interval at each horizon. Hence theoretical size is 

5%. Last row (labeled χ2 ) is the power of the joint significance test. 1,000 Monte Carlo replications. Contemporaneous responses are excluded (marginal and conditional bands are the same). 

 



 68

Figure 1 – Correlation Among Impulse Response Coefficients: Response of Inflation 
to a shock in the Federal Funds Rate 
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Correlation Matrix: asymptotic critical value of significance is 0.15 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 0.52 0.34 0.27 0.37 0.22 0.21 0.14 0.20 0.10 0.13 0.08 0.09 0.07 0.11 0.13 0.11 0.07 0.08 0.08 0.04 0.04 0.03 0.08
2 0.52 1 0.61 0.43 0.45 0.46 0.33 0.26 0.23 0.22 0.13 0.15 0.10 0.09 0.11 0.14 0.14 0.09 0.08 0.10 0.08 0.05 0.05 0.05
3 0.34 0.61 1 0.64 0.52 0.51 0.50 0.36 0.31 0.24 0.23 0.15 0.15 0.10 0.11 0.13 0.15 0.13 0.10 0.09 0.10 0.09 0.06 0.06
4 0.27 0.43 0.64 1 0.67 0.55 0.54 0.52 0.39 0.32 0.26 0.24 0.16 0.16 0.12 0.13 0.14 0.15 0.14 0.11 0.09 0.10 0.09 0.07
5 0.37 0.45 0.52 0.67 1 0.70 0.59 0.54 0.54 0.38 0.31 0.26 0.23 0.15 0.17 0.14 0.14 0.12 0.15 0.14 0.11 0.10 0.10 0.10
6 0.22 0.46 0.51 0.55 0.70 1 0.73 0.60 0.56 0.53 0.37 0.32 0.26 0.22 0.16 0.18 0.14 0.12 0.12 0.15 0.14 0.12 0.11 0.11
7 0.21 0.33 0.50 0.54 0.59 0.73 1 0.74 0.62 0.56 0.52 0.39 0.33 0.26 0.24 0.18 0.19 0.13 0.13 0.13 0.15 0.15 0.13 0.12
8 0.14 0.26 0.36 0.52 0.54 0.60 0.74 1 0.75 0.64 0.57 0.54 0.41 0.35 0.29 0.27 0.20 0.20 0.15 0.15 0.14 0.17 0.17 0.15
9 0.20 0.23 0.31 0.39 0.54 0.56 0.62 0.75 1 0.76 0.66 0.60 0.56 0.44 0.39 0.33 0.30 0.22 0.23 0.18 0.17 0.17 0.19 0.20

10 0.10 0.22 0.24 0.32 0.38 0.53 0.56 0.64 0.76 1 0.77 0.68 0.62 0.59 0.47 0.42 0.35 0.32 0.25 0.25 0.20 0.19 0.19 0.22
11 0.13 0.13 0.23 0.26 0.31 0.37 0.52 0.57 0.66 0.77 1 0.78 0.69 0.64 0.61 0.50 0.45 0.38 0.35 0.27 0.27 0.22 0.21 0.22
12 0.08 0.15 0.15 0.24 0.26 0.32 0.39 0.54 0.60 0.68 0.78 1 0.79 0.71 0.66 0.63 0.51 0.46 0.40 0.36 0.29 0.29 0.24 0.24
13 0.09 0.10 0.15 0.16 0.23 0.26 0.33 0.41 0.56 0.62 0.69 0.79 1 0.80 0.73 0.68 0.65 0.53 0.48 0.42 0.37 0.31 0.31 0.27
14 0.07 0.09 0.10 0.16 0.15 0.22 0.26 0.35 0.44 0.59 0.64 0.71 0.80 1 0.82 0.75 0.69 0.66 0.55 0.50 0.43 0.39 0.33 0.33
15 0.11 0.11 0.11 0.12 0.17 0.16 0.24 0.29 0.39 0.47 0.61 0.66 0.73 0.82 1 0.83 0.75 0.70 0.67 0.56 0.50 0.44 0.40 0.35
16 0.13 0.14 0.13 0.13 0.14 0.18 0.18 0.27 0.33 0.42 0.50 0.63 0.68 0.75 0.83 1 0.83 0.76 0.71 0.68 0.57 0.51 0.45 0.43
17 0.11 0.14 0.15 0.14 0.14 0.14 0.19 0.20 0.30 0.35 0.45 0.51 0.65 0.69 0.75 0.83 1 0.83 0.77 0.72 0.68 0.57 0.52 0.47
18 0.07 0.09 0.13 0.15 0.12 0.12 0.13 0.20 0.22 0.32 0.38 0.46 0.53 0.66 0.70 0.76 0.83 1 0.84 0.77 0.72 0.68 0.57 0.53
19 0.08 0.08 0.10 0.14 0.15 0.12 0.13 0.15 0.23 0.25 0.35 0.40 0.48 0.55 0.67 0.71 0.77 0.84 1 0.84 0.77 0.72 0.68 0.58
20 0.08 0.10 0.09 0.11 0.14 0.15 0.13 0.15 0.18 0.25 0.27 0.36 0.42 0.50 0.56 0.68 0.72 0.77 0.84 1 0.84 0.77 0.72 0.69
21 0.04 0.08 0.10 0.09 0.11 0.14 0.15 0.14 0.17 0.20 0.27 0.29 0.37 0.43 0.50 0.57 0.68 0.72 0.77 0.84 1 0.84 0.78 0.72
22 0.04 0.05 0.09 0.10 0.10 0.12 0.15 0.17 0.17 0.19 0.22 0.29 0.31 0.39 0.44 0.51 0.57 0.68 0.72 0.77 0.84 1 0.85 0.78
23 0.03 0.05 0.06 0.09 0.10 0.11 0.13 0.17 0.19 0.19 0.21 0.24 0.31 0.33 0.40 0.45 0.52 0.57 0.68 0.72 0.78 0.85 1 0.85
24 0.08 0.05 0.06 0.07 0.10 0.11 0.12 0.15 0.20 0.22 0.22 0.24 0.27 0.33 0.35 0.43 0.47 0.53 0.58 0.69 0.72 0.78 0.85 1  

 
Notes. Top Panel: impulse response calculated by local projections with 6 lags for the 
Stock and Watson (2001) system. Traditional, marginal two, standard-error bands 
displayed. Bottom Panel: correlation matrix of impulse response coefficients. Asymptotic 
critical value of significance is 0.15. 
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Figure 2 – 95% Conditional Error Bands for Response of Unemployment to 
Inflation Shock 
 

 
 
 
Notes: Dashed lines are traditional two marginal standard error bands. Dashed lines with 
circles are two conditional standard error bands. “Joint 0.033” refers to the p-value of the 
null hypothesis that all the response coefficients are jointly zero. “Cum 0.001” is the p-
value of the null that the accumulated impulse response after 24 periods is equal to zero. 
Impulse response calculated by local projections with 6 lags on the Stock and Watson 
(2001) system. 

 
 
 
Notes: Percentile bounds for 95th , 25th , and 1st percentiles of the Wald test of joint 
significance.  Impulse response calculated by local projections with 6 lags on the Stock 
and Watson (2001) system. 
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Figure 3 – True and Monte Carlo Average Estimates of Stock and Watson’s (2001) 
based Impulse Responses 
 

 
 
Notes: dotted lines are the true impulse responses generated with the Stock and Watson 
(2001) DGP. Dashed lines are the Monte Carlo averages over 1,000 of impulse response 
estimates based on VARs estimated on samples of 200 synthetic observations.
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Figure 4 – Anchoring Experiment: Making the Initial Response of Prices to a Shock 
in the Federal Funds Rate Negative 
 
 

 
 

 
 

Notes: solid lines with squares and companion dashed lines are the original impulse 
responses with 95% conditional confidence error bands. Solid line with circles is the 
counterfactual response in the bottom graph and the conditional responses given this 
counterfactual for the top panels with associated 95% conditional error bands. All 
impulse responses come from Stock and Watson’s (2001) system estimated by local 
projections with 6 lags. 
 




