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Abstract

This paper develops a dynamic stochastic general equilibrium model with rational

inattention. Decisionmakers have limited attention and choose the optimal allocation

of their attention. We study the implications of rational inattention for business cycle

dynamics. For example, we study how rational inattention affects the impulse responses

of prices and quantities to monetary policy, aggregate technology and micro-level shocks.

The impulse responses under rational inattention have several properties of empirical

impulse response functions, e.g., (i) prices respond slowly to monetary policy shocks,

(ii) prices respond faster to aggregate technology shocks, and (iii) prices respond very

fast to disaggregate shocks. In addition, profit losses due to deviations of the actual

price from the profit-maximizing price are an order of magnitude smaller than in the

Calvo model that generates the same real effects.

∗We thank Paco Buera, James Costain, Christian Hellwig and Giorgio Primiceri as well as seminar

and conference participants at Bank of Canada, Chicago Fed, Columbia, DePaul, European Central Bank,

European University Institute, ESSIM 2008, MIT, Minneapolis Fed, 2008 North American Winter Meeting

of the Econometric Society, Riksbank, Stony Brook and UCSD for helpful comments. The views expressed

in this paper are solely those of the authors and do not necessarily reflect the views of the European Central

Bank. E-mail: bartosz.mackowiak@ecb.int and m-wiederholt@northwestern.edu.

1

cbeck
Typewritten Text
EFCE7/9/0811:30 am



1 Introduction

This paper develops a dynamic stochastic general equilibrium model with rational inatten-

tion. We model the idea that agents cannot attend perfectly to all available information.

Therefore, the mapping between economic conditions and the price and quantity decisions

taken by agents is not perfect. Decisionmakers make mistakes. However, decisionmakers

try to minimize these mistakes.

The economy consists of households, firms and a government. Households supply differ-

entiated types of labor, consume a variety of goods, and hold nominal government bonds.

Households take wage setting and consumption decisions. Firms supply differentiated goods

that are produced with the different types of labor. Firms take price setting and input mix

decisions. The central bank sets the nominal interest rate according to a Taylor rule. In the

model prices and wages are physically fully flexible. Limited attention is the only source

of slow adjustment. We compute the impulse responses of all variables to monetary policy

shocks, aggregate technology shocks and micro-level shocks under rational inattention.

Rational inattention means that decisionmakers have limited attention and choose the

allocation of their attention. Following Sims (2003), we model decisionmakers’ limited at-

tention as a constraint on information flow, and we let decisionmakers choose how to satisfy

this constraint. In other words, decisionmakers decide what to focus on. For example, de-

cisionmakers decide how to allocate their attention across their different decision problems.

Furthermore, decisionmakers decide how to attend to the different factors that may affect

an optimal decision.

We find that rational inattention by decisionmakers in firms has the following impli-

cations. First, for our parameter values, rational inattention by decisionmakers in firms

implies that the impulse response of the price level to monetary policy shocks resembles the

impulse response in a Calvo model with an average price duration of 7.5 months. At the

same time, prices respond fairly quickly to aggregate technology shocks and almost perfectly

to micro-level shocks. The reason is the optimal allocation of attention. Decisionmakers in

firms decide to pay little attention to monetary policy, about twice as much attention to

aggregate technology, and a lot of attention to firm-specific conditions. Therefore, prices

respond slowly to monetary policy shocks, but fairly quickly to aggregate technology shocks,
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and almost perfectly to micro-level shocks. Second, losses in profits due to deviations of

the actual price from the profit-maximizing price are an order of magnitude smaller than in

the Calvo model that generates the same real effects. In particular, losses in profits due to

suboptimal price responses to aggregate conditions are 12 times smaller than in the Calvo

model; and losses in profits due to suboptimal price responses to firm-specific conditions

are 25 times smaller than in the Calvo model. One reason is the optimal allocation of

attention: under rational inattention prices respond slowly to monetary policy shocks, but

fairly quickly to aggregate technology shocks, and almost perfectly to micro-level shocks.

In contrast, in the Calvo model prices respond slowly to all these shocks. The other reason

is that under rational inattention deviations of the actual price from the profit-maximizing

price are less likely to be extreme than in the Calvo model. This also reduces profit losses.

Third, rational inattention on the side of decisionmakers in firms implies that firms produce

with a factor mix that tends to deviate from the optimal factor mix.

This paper is related to two strands of literature: the literature on business cycle models

with imperfect information (e.g., Lucas (1972), Woodford (2002), Mankiw and Reis (2002),

and Lorenzoni (2008)) and the literature on rational inattention (e.g., Sims (2003, 2006),

Luo (2008), Máckowiak and Wiederholt (2008), Van Nieuwerburgh and Veldkamp (2008),

and Woodford (2008)). The main difference to the existing literature on business cycle

models with imperfect information is that in the model presented below agents choose

the information structure. The information structure is the outcome of an optimization

problem. The main difference to the existing literature on rational inattention is that we

solve a dynamic stochastic general equilibrium model.

The paper is organized as follows. Section 2 describes all features of the economy

apart from the decisionmakers’ problem of allocating their attention. Section 3 describes

the steady state of the non-stochastic version of the economy. In Section 4 we derive the

objective of decisionmakers in firms when they choose how to allocate their attention. In

Section 5 we derive the objective of households when they choose how to allocate their

attention. Section 6 describes issues related to aggregation. Section 7 characterizes the

solution of the model under perfect information. Section 8 shows numerical solutions of

the model under rational inattention by decisionmakers in firms. Section 9 presents some
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results concerning the implications of adding rational inattention by households. Section

10 concludes.

2 Model

In this section we describe all features of the economy apart from the information structure.

Afterwards we solve the model for different assumptions about the information structure:

(i) perfect information and (ii) rational inattention.

2.1 Households

There are J households. Households supply differentiated types of labor, consume a variety

of goods, and hold nominal government bonds.

Each household seeks to maximize the expected sum of discounted period utility. The

discount factor is β ∈ (0, 1). The period utility function is given by

U (Cjt, Lj1t, . . . , LjNt) =
C1−γjt − 1
1− γ

− ϕ
NX
n=1

eχjnt
L1+ψjnt

1 + ψ
, (1)

with1

Cjt =

Ã
IX

i=1

C
θ−1
θ

ijt

! θ
θ−1

. (2)

Here Cjt is composite consumption by household j in period t and Cijt is consumption

of good i by household j in period t. The household can consume I different goods. The

parameter θ > 1 is the elasticity of substitution between different goods. The parameter γ >

0 is the inverse of the intertemporal elasticity of substitution. We assume that households

supply differentiated types of labor. Furthermore, we assume that each household supplies

multiple types of labor. This assumption allows us to introduce labor-specific preference

shocks that can be insured within the household. Ljnt denotes the supply of household j’s

nth type of labor in period t, and χjnt denotes a preference shock affecting the disutility

of supplying this type of labor. We introduce labor-specific preference shocks to generate

1The assumption of a constant elasticity of substitution between varieties is only for ease of exposition.

We have also done all the derivations using a general constant returns-to-scale aggregator.
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variation in relative wage rates.2 We let each household supply N types of labor to allow for

risk sharing within the household. We will assume that N is large. The parameter ϕ > 0

affects the disutility of supplying labor. The parameter ψ ≥ 0 is the inverse of the Frisch

elasticity of labor supply.

Households can hold nominal government bonds. The flow budget constraint of house-

hold j in period t reads

IX
i=1

PitCijt +Bjt = Rt−1Bjt−1 + (1 + τw)
NX
n=1

WjntLjnt +
Dt

J
− Tt

J
. (3)

Here Pit is the price of good i in period t, Bjt are bond holdings by household j between

periods t and t+1, Rt−1 is the nominal interest rate on bond holdings between periods t−1

and t, τw is a wage subsidy, Wjnt is the nominal wage rate for household j’s nth type of

labor in period t, (Dt/J) is a pro-rata share of nominal aggregate profits, and (Tt/J) is a

pro-rata share of nominal lump-sum taxes. We assume that all J households have the same

initial bond holdings, Bj,−1 > 0. Furthermore, we assume that bond holdings cannot be

negative or zero, Bjt > 0. One can think of households holding an account. The account

holds only nominal government bonds and the balance on the account has to be positive.

Every period each household chooses a consumption vector, (C1jt, . . . , CIjt), and a vector

of nominal wage rates, (Wj1t, . . . ,WjNt). Each household commits to supply any quantity

of labor at the chosen nominal wage rates. Bond holdings, Bjt, then follow as a residual

from the flow budget constraint (3) and the labor demand function derived below.

Households take as given all aggregate variables, all wage rates set by other households

and all prices set by firms.

2.2 Firms

There are I firms in the economy. Firms supply differentiated goods that are produced with

the different types of labor.

The technology of firm i is given by

Yit = eateaitLα
it, (4)

2Alternatively, one can introduce labor-specific productivity shocks to generate variation in relative wage

rates. When we did that we obtained very similar results.
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with

Lit =

⎛⎝ JX
j=1

NX
n=1

L
η−1
η

ijnt

⎞⎠
η

η−1

. (5)

Here Yit is output of firm i in period t. Lit is composite labor input at firm i in period

t and Lijnt is input of household j’s nth type of labor at firm i in period t. There are

JN types of labor because there are J households each supplying N differentiated types

of labor. The parameter η > 1 is the elasticity of substitution between different types of

labor. The parameter α ∈ (0, 1] is the elasticity of output with respect to composite labor.

Total factor productivity, (eateait), has an aggregate component, eat , and a firm-specific

component, eait .3

Nominal profits of firm i in period t equal

(1 + τp)PitYit −
JX

j=1

NX
n=1

WjntLijnt, (6)

where τp is a production subsidy.

Every period each firm chooses a price, Pit, and a factor mix,
³
L̂i11t, . . . , L̂iJ(N−1)t

´
with

L̂ijnt = (Lijnt/Lit). Each firm commits to supply any quantity of the good at the chosen

price. The composite labor input, Lit, then follows from the production function (4) and

the demand function derived below.

Firms take as given all aggregate variables, all prices set by other firms and all wage

rates set by households.

2.3 Government

There is a monetary authority and a fiscal authority. Let Πt = (Pt/Pt−1) denote inflation

of a price index, Pt, that will be defined later, and let Yt =
µXI

i=1
Yit

¶
denote aggregate

output. The central bank sets the nominal interest rate according to the rule

Rt

R
=

µ
Rt−1
R

¶ρR
"µ
Πt
Π

¶φπ
µ
Yt
Y

¶φy
#1−ρR

eε
R
t , (7)

3The assumption that all types of labor appear in the labor aggregator (5) is only for ease of exposition.

One can also use a labor aggregator in which a firm-specific subset of types of labor appears.
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where εRt is a monetary policy shock. Here R, Π and Y are the values of the nominal

interest rate, inflation and aggregate output in the non-stochastic steady state. The policy

parameters satisfy ρR ∈ [0, 1), φπ > 1 and φy ≥ 0.

The government budget constraint in period t reads

Tt + (Bt −Bt−1) = (Rt−1 − 1)Bt−1 + τw

⎛⎝ JX
j=1

NX
n=1

WjntLjnt

⎞⎠+ τp

Ã
IX

i=1

PitYit

!
. (8)

The government has to finance interest on nominal government bonds, the wage subsidy

and the production subsidy. The government can collect lump-sum taxes or issue new

government bonds.

We assume that the government sets the production subsidy, τp, and the wage subsidy,

τw, so as to correct the distortions that arise from firms’ market power in the goods market

and households’ market power in the labor market. In particular, we assume that

1 + τp =
ϑ

ϑ− 1 , (9)

and

1 + τw =
ζ

ζ − 1 , (10)

where ϑ denotes the price elasticity of demand and ζ denotes the wage elasticity of labor

demand.4

2.4 Shocks

There are four types of shocks in the economy: aggregate technology shocks, monetary

policy shocks, firm-specific productivity shocks and labor-specific preference shocks. We

assume that, for all i and jn, the processes {at},
©
εRt
ª
, {ait} and

©
χjnt

ª
are independent.

Furthermore, we assume that firm-specific productivity processes, {ait}, are independent

across firms and labor-specific preference shocks,
©
χjnt

ª
, are independent across types of

labor. In addition, we assume that I and N are sufficiently large so that

1

I

IX
i=1

ait = 0, (11)

4When households have perfect information ϑ = θ, but in general ϑ may differ from θ. Similarly, when

firms have perfect information ζ = η, but in general ζ may differ from η.
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and
1

N

NX
n=1

χjnt = 0. (12)

Finally, we assume that all exogenous processes are stationary Gaussian processes with

mean zero. In the following, we denote the period t innovation to at, ait and χjnt by ε
A
t , ε

I
it

and εχjnt, respectively.

3 Non-stochastic steady state

Before studying the economy outlined in Section 2 that is hit by shocks, we characterize the

non-stochastic steady state. The non-stochastic steady state is defined as the solution of the

non-stochastic version of the economy that has the property that all quantities, all relative

prices, the nominal interest rate and inflation are constant over time. In the following,

variables without the subscript t denote values in the non-stochastic steady state.

In this section, let Pt denote the following price index

Pt =

Ã
IX

i=1

P 1−θit

! 1
1−θ

, (13)

and let Wt denote the following wage index

Wt =

⎛⎝ JX
j=1

NX
n=1

W 1−η
jnt

⎞⎠ 1
1−η

. (14)

Throughout the paper, let P̂it denote the relative price of good i, let Ŵjnt denote the relative

wage rate for type jn labor, let W̃jnt denote the real wage rate for type jn labor, and let

W̃t denote the real wage index. Formally,

P̂it =
Pit
Pt

, (15)

Ŵjnt =
Wjnt

Wt
, (16)

W̃jnt =
Wjnt

Pt
, (17)

W̃t =
Wt

Pt
. (18)
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It is straightforward to show that in the non-stochastic steady state the households’

first-order conditions read
R

Π
=
1

β
, (19)

Cij

Cj
= P̂−θi , (20)

and

W̃jn =
1

1 + τw

η

η − 1ϕ
³
Ŵ−η

jn L
´ψ

Cγ
j , (21)

with

L =
IX

i=1

Li. (22)

Furthermore, the firms’ first-order conditions read

Lijn

Li
= Ŵ−η

jn , (23)

and

P̂i =
1

1 + τp

θ

θ − 1W̃
1

α

³
P̂−θi C

´ 1
α
−1

, (24)

with

C =
JX

j=1

Cj . (25)

Since all households face the same decision problem in the non-stochastic version of the

model, all households choose the same level of composite consumption. It follows from the

definition of aggregate composite consumption (25) that

C = JCj . (26)

The households’ wage setting equation (21) then implies that the wage rate is the same for

all different types of labor. Therefore, each firm hires the different types of labor in equal

amounts. It follows from the definition of the wage index (14) and the labor aggregator (5)

that

Ŵ 1−η
jn =

µ
Lijn

Li

¶η−1
η

=
1

JN
. (27)

Similarly, the firms’ price setting equation (24) implies that all firms set the same price.

Therefore, each household consumes the different goods in equal amounts. It follows from
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the definition of the price index (13), the consumption aggregator (2), the definition of

aggregate output and the definition of aggregate labor input (22) that

P̂ 1−θi =

µ
Cij

Cj

¶ θ−1
θ

=
Yi
Y
=

Li

L
=
1

I
. (28)

Finally, note that neither the nominal interest rate, R, nor the inflation rate, Π, is

uniquely determined in the non-stochastic steady state. Only the real interest rate, (R/Π),

is uniquely determined in the non-stochastic steady state. Fortunately, in the following the

values of R and Π will not matter. Only the value of (R/Π) will matter.

4 Derivation of the firms’ objective

First, we guess that the demand function for good i has the form

Cit = ς

µ
Pit
Pt

¶−ϑ
Ct, (29)

where ς > 0 and ϑ > 1 are undetermined coefficients satisfying ςP̂−ϑi C = P̂−θi C,

Ct =
JX

j=1

Cjt, (30)

and Pt is some price index satisfying

1 =
IX

i=1

d

µ
Pit
Pt

¶
, (31)

where d is a twice continuously differentiable function. We will always make assumptions

to ensure that the guess (29)-(31) is correct. When households have perfect information,

ς = 1, ϑ = θ and the price index Pt is given by equation (13). When households have

limited attention, we will need to add assumptions concerning the exogenous processes to

ensure that the demand function still has the form (29)-(31).

Second, given a demand function, we can derive the profit function. The profit function

is obtained by substituting the production function (4), the labor aggregator (5) and the

demand function (29) into the expression for nominal profits (6). To do this it will be

helpful to rewrite the expression for nominal profits (6) as

(1 + τp)PitYit − Lit

⎛⎝ JX
j=1

NX
n=1

WjntL̂ijnt

⎞⎠ , (32)
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where L̂ijnt = (Lijnt/Lit). Here we have simply expressed the wage bill as the product of

the composite labor input and the wage bill per unit of composite labor input. Rearranging

the production function (4) yields

Lit =

µ
Yit

eateait

¶ 1
α

. (33)

Rearranging the labor aggregator (5) yields

1 =
JX

j=1

NX
n=1

L̂
η−1
η

ijnt ,

or equivalently

L̂iJNt =

⎛⎝1− X
jn6=JN

L̂
η−1
η

ijnt

⎞⎠
η

η−1

. (34)

Substituting equations (33)-(34) and the demand function (29) into the expression for nom-

inal profits (32) yields the profit function

(1 + τp)Pitς

µ
Pit
Pt

¶−ϑ
Ct

−

⎡⎢⎣ς
³
Pit
Pt

´−ϑ
Ct

eateait

⎤⎥⎦
1
α
⎡⎢⎣ X
jn6=JN

WjntL̂ijnt +WJNt

⎛⎝1− X
jn6=JN

L̂
η−1
η

ijnt

⎞⎠
η

η−1
⎤⎥⎦ . (35)

Nominal profits of firm i in period t depend on variables that the firm chooses, Pit and

L̂i11t, . . . , L̂iJ(N−1)t, as well as variables that the firm takes as given, Pt, Ct, eat , eait and

W11t, . . . ,WJNt.

Third, we assume that the firm chooses the allocation of attention in period t = −1 so

as to maximize the expected sum of discounted profits. We assume that profits in period t

are discounted with the following stochastic discount factor:

Q−1,t = βtλ (C1t, . . . , CJt)
1

Pt
, (36)

where λ is a twice continuously differentiable function that has the property

λ (C1, . . . , CJ) = C−γj , (37)

and the price index Pt is the price index that appears in the demand function (29). For

example, if the function λ is a weighted average of the marginal utility of the different
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households (i.e., λ (C1t, . . . , CJt) = λ1C
−γ
1t + . . . + λJC

−γ
Jt with λj ≥ 0 and

XJ

j=1
λj = 1),

then equation (37) is satisfied because all households have the same marginal utility in the

non-stochastic steady state. The objective of firm i in period t = −1 then reads

Ei,−1

∞X
t=0

βtλ (C1t, . . . , CJt)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + τp) ςP̂
1−ϑ
it Ct

−
µ
ςP̂−ϑit Ct
eateait

¶ 1
α

·⎡⎢⎣ X
jn6=JN

W̃jntL̂ijnt + W̃JNt

⎛⎝1− X
jn6=JN

L̂
η−1
η

ijnt

⎞⎠
η

η−1
⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (38)

where P̂it = (Pit/Pt) is the relative price of good i, W̃jnt = (Wjnt/Pt) is the real wage rate

for type jn labor, and Ei,−1 is the expectation operator conditioned on information of firm

i in period t = −1.

Fourth, one can express objective (38) in terms of log-deviations from the non-stochastic

steady state. In the following, let small variables denote log-deviations from the non-

stochastic steady state, e.g., ct = ln (Ct/C). Using the fact that Ct = Cect yields the

following expression for the objective of firm i in period t = −1

Ei,−1

∞X
t=0

βtλ (C1e
c1t , . . . , CJe

cJt)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + τp) ςP̂
1−ϑ
i Ce(1−ϑ)p̂it+ct

−
µ
ςP̂−ϑi Ce−ϑp̂it+ct

eateait

¶ 1
α

·

W̃
JN

⎡⎢⎣ X
jn6=JN

ew̃jnt+l̂ijnt + ew̃JNt

⎛⎝JN −
X

jn6=JN
e
η−1
η

l̂ijnt

⎞⎠
η

η−1
⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(39)

where W̃ is the value of the wage index (14) in the non-stochastic steady state. Here we

have used equations (23) and (27).

Proposition 1 Let f denote the functional inside the expectation operator in expression

(39). Let f̃ denote the second-order Taylor approximation of f at the non-stochastic steady

state. Let xt and zt denote the following vectors

xt =
³
p̂it l̂i11t · · · l̂iJ(N−1)t

´0
, (40)

zt =
³
c1t · · · cJt ct at ait w̃11t · · · w̃JNt

´0
. (41)
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Suppose that

∀t : Ei,−1

¯̄̄̄
¯̄̄̄
¯

⎛⎜⎜⎜⎝
xt

zt

1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

xt

zt

1

⎞⎟⎟⎟⎠
0 ¯̄̄̄
¯̄̄̄
¯ <∞, (42)

and

lim
t→∞

βtEi,−1

¯̄̄̄
¯̄̄̄
¯

⎛⎜⎜⎜⎝
xt

zt

1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

xt

zt

1

⎞⎟⎟⎟⎠
0 ¯̄̄̄
¯̄̄̄
¯ = 0. (43)

Then

Ei,−1
h
f̃ (x0, z0, x1, z1, . . .)

i
−Ei,−1

h
f̃ (x∗0, z0, x

∗
1, z1, . . .)

i
=

∞X
t=0

βtEi,−1

∙
1

2
(xt − x∗t )

0Hx (xt − x∗t )

¸
, (44)

where

Hx = −C−γj W̃Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϑ
α

¡
1 + 1−α

α ϑ
¢

0 · · · · · · 0

0 2
ηJN

1
ηJN · · · 1

ηJN
... 1

ηJN

. . . . . .
...

...
...

. . . . . . 1
ηJN

0 1
ηJN . . . 1

ηJN
2

ηJN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (45)

and x∗t is given by

p̂∗it =
1−α
α

1 + 1−α
α ϑ

ct −
1
α

1 + 1−α
α ϑ

(at + ait) +
1

1 + 1−α
α ϑ

⎛⎝ 1

JN

JX
j=1

NX
n=1

w̃jnt

⎞⎠ , (46)

and

l̂∗ijnt = −η

⎛⎝w̃jnt −
1

JN

JX
j=1

NX
n=1

w̃jnt

⎞⎠ . (47)

Proof. See Appendix A.

5 Derivation of the households’ objective

First, we guess that the demand function for type jn labor has the form

Ljnt = ξ

µ
Wjnt

Wt

¶−ζ
Lt, (48)
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where ξ > 0 and ζ > 1 are undetermined coefficients satisfying ξŴ−ζ
jn L = Ŵ−η

jn L,

Lt =
IX

i=1

Lit, (49)

and Wt is some wage index satisfying

1 =
JX

j=1

NX
n=1

h

µ
Wjnt

Wt

¶
, (50)

where h is a twice continuously differentiable function. We will always make assumptions

to ensure that the guess (48)-(50) is correct. When firms have perfect information, ξ = 1,

ζ = η and the wage index Wt is given by equation (14). When firms have limited attention,

we will need to add assumptions concerning the exogenous processes to ensure that the

labor demand function still has the form (48)-(50).

Second, just like we derived the profit function for firms, we will now derive an objec-

tive for households that incorporates all the constraints. One can write the flow budget

constraint (3) as

Cjt

Ã
IX

i=1

PitĈijt

!
+Bjt = Rt−1Bjt−1 + (1 + τw)

NX
n=1

WjntLjnt +
Dt

J
− Tt

J
,

where Ĉijt = (Cijt/Cjt). Here we have simply expressed consumption expenditure as the

product of composite consumption and expenditure per unit of composite consumption.

Rearranging the last equation yields

Cjt =

Rt−1Bjt−1 −Bjt + (1 + τw)
NX
n=1

WjntLjnt +
Dt
J −

Tt
J

IX
i=1

PitĈijt

.

Dividing the numerator and the denominator on the right-hand side by Pt, where Pt is some

price index, yields

Cjt =

Rt−1
Πt

B̃jt−1 − B̃jt + (1 + τw)
NX
n=1

W̃jntLjnt +
D̃t
J −

T̃t
J

IX
i=1

P̂itĈijt

, (51)
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where P̂it = (Pit/Pt) is the relative price of good i, W̃jnt = (Wjnt/Pt) is the real wage rate

for type jn labor, B̃jt = (Bjt/Pt) are real bond holdings by household j, D̃t = (Dt/Pt)

are real aggregate profits, T̃t = (Tt/Pt) are real lump-sum taxes, and Πt = (Pt/Pt−1) is

inflation. Rearranging the consumption aggregator (2) yields

1 =
IX

i=1

Ĉ
θ−1
θ

ijt ,

or equivalently

ĈIjt =

Ã
1−

I−1X
i=1

Ĉ
θ−1
θ

ijt

! θ
θ−1

. (52)

Substituting equations (51)-(52) and the labor demand function (48) into the period utility

function (1) yields the following expression for period utility of household j in period t

1

1− γ

⎛⎜⎜⎜⎜⎜⎜⎝
Rt−1
Πt

B̃jt−1 − B̃jt + (1 + τw)
NX
n=1

W̃jntξ
³
W̃jnt

W̃t

´−ζ
Lt +

D̃t
J −

T̃t
J

I−1X
i=1

P̂itĈijt + P̂It

Ã
1−

I−1X
i=1

Ĉ
θ−1
θ

ijt

! θ
θ−1

⎞⎟⎟⎟⎟⎟⎟⎠

1−γ

− 1

1− γ

−ϕ
NX
n=1

eχjnt
1

1 + ψ

⎡⎣ξÃW̃jnt

W̃t

!−ζ
Lt

⎤⎦1+ψ , (53)

where W̃t = (Wt/Pt) is the wage index divided by the price index. Here we have used the

fact that (Wjnt/Wt) =
³
W̃jnt/W̃t

´
. The only constraint that we have not incorporated yet

in the expression for period utility is the constraint that bond holdings must be positive,

B̃jt > 0. We will incorporate this constraint below by expressing all variables in terms of

log-deviations from the non-stochastic steady state.

Third, expressing all variables in terms of log-deviations from the non-stochastic steady
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state yields the following expression for period utility of household j in period t

1

1− γ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Rert−1
Πeπt B̃je

b̃jt−1 − B̃je
b̃jt + (1 + τw)

NX
n=1

W̃jne
w̃jntξ

µ
W̃jne

w̃jnt

W̃ew̃t

¶−ζ
Lelt + D̃ed̃t

J − T̃ et̃t
J

1
I

⎡⎣I−1X
i=1

ep̂it+ĉijt + ep̂It

Ã
I −

I−1X
i=1

e
θ−1
θ

ĉijt

! θ
θ−1
⎤⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1−γ

− 1

1− γ
− ϕ

NX
n=1

eχjnt
1

1 + ψ

⎡⎣ξÃW̃jne
w̃jnt

W̃ew̃t

!−ζ
Lelt

⎤⎦1+ψ . (54)

Here we have used equations (20) and (28).

In the following, let (w̃jnt), (p̂it) and
¡
χjnt

¢
denote the 1×N vector of real wage rates, the

1× I vector of relative goods prices and the 1×N vector of preference shocks, respectively.

Furthermore, let ωB, ωW , ωD and ωT denote the following ratios in the non-stochastic

steady state³
ωB ωW ωD ωT

´
=

Ã
B̃j

Cj

(1+τw)

XN

n=1
W̃jnLjn

Cj

D̃
J
Cj

T̃
J
Cj

!
.

Proposition 2 Let g denote the functional that is obtained by multiplying the expression

for period utility (54) by βt and summing over all t from zero to infinity. Let g̃ denote the

second-order Taylor approximation of g at the non-stochastic steady state. Let xt and zt

denote the following vectors

xt =
³
b̃jt (w̃jnt) ĉ1jt · · · ĉI−1jt

´0
, (55)

zt =
³
rt−1 πt w̃t lt d̃t t̃t (p̂it)

¡
χjnt

¢ ´0
. (56)

Suppose that for τ = 0, 1

∀t : Ej,−1

¯̄̄̄
¯̄̄̄
¯

⎛⎜⎜⎜⎝
xt

zt

1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

xt+τ

zt+τ

1

⎞⎟⎟⎟⎠
0 ¯̄̄̄
¯̄̄̄
¯ <∞, (57)

and

lim
t→∞

βtEj,−1

¯̄̄̄
¯̄̄̄
¯

⎛⎜⎜⎜⎝
xt

zt

1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

xt+τ

zt+τ

1

⎞⎟⎟⎟⎠
0 ¯̄̄̄
¯̄̄̄
¯ = 0. (58)
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Then

Ej,−1 [g̃ (x0, z0, x1, z1, . . .)]−Ej,−1 [g̃ (x
∗
0, z0, x

∗
1, z1, . . .)]

=
∞X
t=0

βtEj,−1

∙
1

2
(xt − x∗t )

0H0 (xt − x∗t ) + (xt − x∗t )
0H1

¡
xt+1 − x∗t+1

¢¸
, (59)

where

H0 = −γC1−γj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2B +
ω2B
β

ωBωW (ζ−1)
N · · · ωBωW (ζ−1)

N 0 · · · 0

ωBωW (ζ−1)
N

ωW (ζ−1)
N

³
ωW (ζ−1)

N + 1+ψζ
γ

´
· · ·

³
ωW (ζ−1)

N

´2
0 · · · 0

...
...

. . .
...

...
. . .

...
ωBωW (ζ−1)

N

³
ωW (ζ−1)

N

´2
· · · ωW (ζ−1)

N

³
ωW (ζ−1)

N + 1+ψζ
γ

´
0 · · · 0

0 0 · · · 0 2
γθI · · · 1

γθI
...

... · · ·
...

...
. . .

...

0 0 · · · 0 1
γθI · · · 2

γθI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(60)

H1 = γC1−γj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2B
ωBωW (ζ−1)

N · · · ωBωW (ζ−1)
N 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (61)

and x∗t is given by

b̃∗jt =
1

β

³
rt−1 − πt + b̃∗jt−1

´
+

ωW
ωB

1

N

NX
n=1

£
w̃∗jnt − ζ

¡
w̃∗jnt − w̃t

¢
+ lt

¤
+
ωD
ωB

d̃t −
ωT
ωB

t̃t −
1

ωB
c∗jt, (62)

c∗jt = Et

∙
−1
γ
(rt − πt+1) + c∗jt+1

¸
, (63)

w̃∗jnt =
γ

1 + ψζ
c∗jt +

ψ

1 + ψζ
(ζw̃t + lt) +

1

1 + ψζ
χjnt, (64)

and

ĉ∗ijt = −θp̂it, (65)

as well as the requirement that x∗t satisfies (57)-(58).
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Proof. See Appendix B.

6 Aggregation

In the following, we will work with log-linearized equations for the aggregate variables. Log-

linearizing the equations for aggregate output, aggregate composite consumption (30) and

aggregate composite labor input (49) yields

yt =
1

I

IX
i=1

yit, (66)

ct =
1

J

JX
j=1

cjt, (67)

and

lt =
1

I

IX
i=1

lit. (68)

Log-linearizing the equation for the price index (31) yields

0 =
IX

i=1

p̂it,

or equivalently

pt =
1

I

IX
i=1

pit. (69)

Log-linearizing the equation for the wage index (50) yields

0 =
JX
j=1

NX
n=1

ŵjnt,

or equivalently

wt =
1

JN

JX
j=1

NX
n=1

wjnt. (70)

Finally, the production function (4) and the monetary policy rule (7) are already log-linear

yit = at + ait + αlit, (71)

and

rt = ρRrt−1 + (1− ρR)
¡
φππt + φyyt

¢
+ εRt . (72)
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7 Case 1: Firms and households have perfect information

Proposition 3 Suppose that firms and households know the realization of all variables up

to and including period t. Then each firm chooses a price and a factor mix satisfying (46)-

(47), and each household chooses a consumption vector and a vector of nominal wage rates

satisfying (62)-(65). A solution to the system of equations yit = cit = (1/J)
XJ

j=1
cijt,

(11)-(12), (46)-(47), (62)-(65) and (66)-(71) with a non-explosive bond sequence for each

household satisfies:

ct =
1 + ψ

1− α+ αγ + ψ
at, (73)

lt =
1− γ

1− α+ αγ + ψ
at, (74)

w̃t =
γ + ψ

1− α+ αγ + ψ
at, (75)

rt −Et [πt+1] = γ
1 + ψ

1− α+ αγ + ψ
Et [at+1 − at] , (76)

as well as

p̂it = −
1
α

1 + 1−α
α θ

ait, (77)

ĉijt = θ
1
α

1 + 1−α
α θ

ait, (78)

w̃jnt − w̃t =
1

1 + ψη
χjnt, (79)

l̂ijnt = −η 1

1 + ψη
χjnt. (80)

Proof. See Appendix C.

Under perfect information aggregate output, aggregate consumption, the aggregate labor

input, the real wage index and the real interest rate only depend on aggregate technology.

Monetary policy has no real effects.

The nominal interest rate and inflation then follow from the monetary policy rule (72)

and the real interest rate (76). Since (1− ρR)φπ > 0 and (1− ρR)φπ + ρR > 1, the

equilibrium paths of the nominal interest rate and inflation are locally determinate.5

5See Woodford (2003), chapter 2, Proposition 2.8.
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8 Case 2: Firms have limited attention, households have per-

fect information

In this section we solve the model under rational inattention on the side of firms, that is,

we assume that decisionmakers in firms have limited attention and choose the allocation

of their attention. For the moment, we continue to assume that households have perfect

information to isolate the role of rational inattention by decisionmakers in firms.

8.1 Firms’ attention problem

We now formalize the idea that decisionmakers cannot attend perfectly to all available infor-

mation. Following Sims (2003), we model decisionmakers’ limited attention as a constraint

on information flow, and we let decisionmakers choose how to satisfy this constraint. In

other words, decisionmakers decide what to focus on. For example, decisionmakers decide

how to allocate their attention across their different decision problems. Furthermore, deci-

sionmakers decide how to attend to the different factors that may affect an optimal decision.

Formally, the attention problem of the decisionmaker in firm i reads

max
B(L),C(L)

Ei,−1

" ∞X
t=0

βt
1

2
(xt − x∗t )

0Hx (xt − x∗t )

#
, (81)

subject to an equation linking an argument of the objective and a decision variable

p̂it − p̂∗it = pit − p∗it, (82)

the equations characterizing the profit-maximizing decisions

p∗it = A1 (L) ε
A
t| {z }

pA∗it

+A2 (L) ε
R
t| {z }

pR∗it

+A3 (L) ε
I
it| {z }

pI∗it

(83)

l̂∗ijnt = A4 (L) ε
χ
jnt, (84)

the equations specifying the actual decisions

pit = B1 (L) ε
A
t + C1 (L) ν

A
it| {z }

pAit

+B2 (L) ε
R
t + C2 (L) ν

R
it| {z }

pRit

+B3 (L) ε
I
it + C3 (L) ν

I
it| {z }

pIit

(85)

l̂ijnt = B4 (L) ε
χ
jnt + C4 (L) ν

χ
ijnt, (86)
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and the information flow constraint

I
³n

pA∗it , p
R∗
it , p

I∗
it , l̂

∗
i11t, . . . , l̂

∗
iJ(N−1)t

o
;
n
pAit, p

R
it , p

I
it, l̂i11t, . . . , l̂iJ(N−1)t

o´
≤ κ. (87)

Here νAit, ν
R
it , ν

I
it and νχijnt follow idiosyncratic Gaussian white noise processes with unit

variance that are mutually independent and independent of all other shocks in the economy.

Expression (81) is minus the expected loss in profits due to suboptimal decisions. Equa-

tion (82) states that the mistake in the relative price of good i equals the mistake in the

dollar price of good i. This equation is important because the objective depends on the

mistake in the relative price of good i, while the decisionmaker sets the dollar price of

good i. The equation follows from the fact that
³
P̂it/P̂

∗
it

´
= (Pit/P

∗
it). Equations (83)-

(84) characterize the profit-maximizing decisions. Here A1 (L), A2 (L), A3 (L) and A4 (L)

are infinite-order lag polynomials. These two equations follow from equations (46)-(47),

pit = p̂it + pt and the stochastic processes for pt, ct, at, ait and w̃jnt. Equations (85)-(86)

specify the actual decisions. Choosing the lag polynomials B1 (L) and C1 (L) to B4 (L)

and C4 (L) amounts to choosing the stochastic processes for the actual decisions. These

lag polynomials imply a mapping between shocks and price setting and factor mix deci-

sions. For example, if B1 (L) = A1 (L) and C1 (L) = 0, the price set by the decisionmaker

responds perfectly to aggregate technology shocks. The information flow constraint (87)

introduces limited attention on the side of the decisionmaker. Limited attention is modeled

as a constraint on information flow. The operator I measures information flow between

stochastic processes.6 The left-hand side of (87) measures how much information the actual

behavior contains about the profit-maximizing behavior. The parameter κ is the bound on

information flow. The parameter κ indexes the decisionmaker’s total attention devoted to

price setting and factor mix decisions. We will choose the parameter κ such that the private

marginal value of information flow is small.

Note that we assume that the noise shocks νAit, ν
R
it , ν

I
it and νχijnt follow Gaussian

processes. It turns out that Gaussianity is optimal because the objective is quadratic

and the profit-maximizing decisions follow Gaussian processes.7 Furthermore, note that we

assume that νAit, ν
R
it , ν

I
it and νχijnt are mutually independent. In the future, we also plan to

6For a definition of the operator I, see equations (1)-(4) in Maćkowiak and Wiederholt (2008).
7See Sims (2006) or Máckowiak and Wiederholt (2008).
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study the case where these noise shocks can be correlated. Finally, note that we assume that

these noise shocks are idiosyncratic. This assumption accords well with the idea that the

friction is the decisionmaker’s limited attention rather than the availability of information.

8.2 Computing the equilibrium

We use an iterative procedure to solve for the equilibrium of the model. First, we make a

guess concerning the process for the profit-maximizing price and the process for the profit-

maximizing factor mix. See equations (83)-(84). Second, we solve the firms’ attention

problem (81)-(87). Third, we aggregate the individual prices to obtain the aggregate price

level:

pt =
1

I

IX
i=1

pit. (88)

Fourth, we compute the aggregate dynamics implied by those price level dynamics. The

following equations have to be satisfied in equilibrium:

rt = ρRrt−1 + (1− ρR)
£
φπ (pt − pt−1) + φyyt

¤
+ εRt , (89)

ct = Et

∙
−1
γ
(rt − pt+1 + pt) + ct+1

¸
, (90)

yt = ct, (91)

yt = at + αlt, (92)

at = ρAat−1 + εAt , (93)

w̃t = γct + ψlt. (94)

The first equation is the monetary policy rule. The second equation follows from optimal

consumption behavior by households. The third equation follows from the requirement that

output has to equal demand. The fourth equation follows from the production function.

The fifth equation is the assumed process for aggregate technology. The sixth equation

follows from optimal wage setting by households. We employ a standard solution method

for linear rational expectations models to solve the system of equations containing the price

level dynamics and those six equations. We obtain the law of motion for (rt, ct, yt, lt, at, w̃t)
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implied by the price level dynamics. Fifth, we compute the law of motion for the profit-

maximizing price from equation (46) which we reproduce for convenience:

p∗it = pt +
1−α
α

1 + 1−α
α ϑ

ct −
1
α

1 + 1−α
α ϑ

(at + ait) +
1

1 + 1−α
α ϑ

w̃t.

Optimal consumption behavior by households implies that ϑ = θ. If the process for the

profit-maximizing price differs from our guess, we update our guess until we reach a fixed

point.

Finally, we compute the equilibrium factor mix and the equilibrium relative wage rates.

This is explained in Appendix D.

8.3 Benchmark parameter values and solution

In this section we report the numerical solution of the model for the following parameter

values. We set β = 0.99, γ = 1, ψ = 1, θ = 4, α = 2/3 and η = 4.

To set the parameters governing the process for aggregate technology, equation (93), we

consider quarterly U.S. data from 1960 Q1 to 2006 Q4. We first compute a time series for

aggregate technology, at, using equation (92) and measures of yt and lt. We use the log of

real output per person, detrended with a linear trend, as a measure of yt. We use the log of

hours worked per person, demeaned, as a measure of lt.8 We then fit equation (93) to the

time series for at obtaining ρA = 0.96 and a standard deviation of the innovation equal to

0.0085. In the benchmark economy we set ρA = 0.95 and we set the standard deviation of

εAt equal to 0.0085.

To set the parameters of the Taylor rule we consider quarterly U.S. data on the Federal

Funds rate, inflation and real GDP from 1960 Q1 to 2006 Q4.9 We fit the Taylor rule

(89) to the data obtaining ρR = 0.89, φπ = 1.53, φy = 0.33, and a standard deviation of

the innovation equal to 0.0021. In the benchmark economy we set ρR = 0.9, φπ = 1.5,

φy = 0.33, and the standard deviation of ε
R
t equal to 0.0021.

8We use data for the non-farm business sector. The source of the data is the website of the Federal

Reserve Bank of St.Louis.
9We compute a time series for four-quarter inflation rate from the price index for personal consumption

expenditures excluding food and energy. We compute a time series for percentage deviations of real GDP

from potential real GDP. The sources of the data are the websites of the Federal Reserve Bank of St.Louis

and the Congressional Budget Office.
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We assume that firm-specific productivity follows a first-order autoregressive process.

Recent papers calibrate the autocorrelation of firm-specific productivity to be about two-

thirds in monthly data, e.g., Klenow and Willis (2007) use 0.68, Midrigan (2006) uses

0.5, and Nakamura and Steinsson (2007) use 0.66. Since (2/3)3 equals about 0.3, we set

the autocorrelation of firm-specific productivity in our quarterly model equal to 0.3. We

then choose the standard deviation of the innovation to firm-specific productivity such that

the average absolute size of price changes in our model equals 9.7 percent under perfect

information. The value 9.7 percent is the average absolute size of price changes excluding

sales reported in Klenow and Kryvtsov (2007). This yields a standard deviation of the

innovation to firm-specific productivity equal to 0.22.

We assume that labor-specific preference shocks follow a white noise process. This sim-

plifying assumption implies that solving for relative wage rates and relative labor inputs is

straightforward. See Appendix D. To set the standard deviation of labor-specific preference

shocks we proceed as follows. Autor, Katz and Kearney (2005) report the variance of log

hourly wages of men in the U.S. between 1975 and 2003. The average variance of log hourly

wages of men in this period was 0.32. We choose the variance of χjnt such that the variance

of w̃jnt in our model equals 0.32 under perfect information. This yields a standard deviation

of labor-specific preference shocks equal to 2.83. See equation (79) and recall that ψ = 1

and η = 4. We set the number of different types of labor that a firm hires to JN = 100.

We compute the solution of the model by fixing the marginal value of information

flow. The total information flow, κ, is then determined within the model. The idea is the

following. When the marginal value of information flow is high, decisionmakers have a high

incentive to increase information flow in order to take better decision. In contrast, when the

marginal value of information flow is low, decisionmakers have little incentive to increase

information flow. We set the marginal value of information flow equal to 0.25 percent of a

firm’s steady state output.

We first report the optimal allocation of attention at the rational inattention fixed

point. The total information flow at the solution equals 133 bits. The decisionmaker in

a firm allocates: 2.46 bits of information flow (his/her attention) to tracking firm-specific

productivity, 1.31 bits of information flow to tracking each relative wage rate, 0.76 bits
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of information flow to tracking aggregate technology, and 0.41 bits of information flow to

tracking monetary policy. The expected per period loss in profits due to imperfect tracking

of firm-specific productivity equals 0.18 percent of the firm’s steady state output. The

expected per period loss in profits due to imperfect tracking of aggregate technology equals

0.12 percent of the firm’s steady state output. The expected per period loss in profits due to

imperfect tracking of monetary policy equals 0.07 percent of the firm’s steady state output.

Together these numbers imply that the expected per period loss in profits due to deviations

of the actual price from the profit-maximizing price equals 0.37 percent of the firm’s steady

state output. We think this is a reasonable number.

Figures 1 and 2 show impulse responses of the price level, inflation, output, and the

nominal interest rate at the rational inattention fixed point (green lines with circles). For

comparison the figures also include impulse responses of the same variables at the perfect

information equilibrium (blue lines with points). All impulse responses are to shocks of

one standard deviation. All impulse responses are drawn such that an impulse response

equal to one means “a one percent deviation from the non-stochastic steady state”. Time

is measured in quarters along horizontal axes.

Consider Figure 1. The price level shows a dampened and delayed response to a mone-

tary policy shock compared with the case of perfect information. The response of inflation

to a monetary policy shock is persistent. Output falls after a positive innovation in the

Taylor rule and the decline in output is persistent. The nominal interest rate increases on

impact and converges slowly to zero. The impulse responses to a monetary policy shock

under rational inattention differ markedly from the impulse responses to a monetary policy

shock under perfect information. Under perfect information the price level adjusts fully on

impact to a monetary policy shock, there are no real effects, and the nominal interest rate

fails to change.

Consider Figure 2. The price level and inflation show a dampened response to an

aggregate technology shock compared with the case of perfect information. The output gap

is negative for a few quarters after the shock. Output and the nominal interest rate show

hump-shaped impulse responses to an aggregate technology shock. Note that under rational

inattention the response of the price level to an aggregate technology shock is less dampened
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and less delayed than the response of the price level to a monetary policy shock. The reason

is the optimal allocation of attention. Since decisionmakers in firms allocate about twice as

much attention to aggregate technology than to monetary policy, prices respond faster to

aggregate technology shocks than to monetary policy shocks. Therefore, the output gap is

negative for only 5 quarters after an aggregate technology shock, while the output gap is

negative for more than 10 quarters after a monetary policy shock.10

Figure 3 shows the impulse response of an individual price to a firm-specific productivity

shock. Note that prices respond almost perfectly to firm-specific productivity shocks. The

reason is the optimal allocation of attention.

8.4 Comparison to the Calvo model

For comparison, we solved the Calvo model for the same parameter values and assuming

that prices change every 2.5 quarters on average.11 Figures 4 and 5 show the impulse

responses in the benchmark economy with rational inattention (green lines with circles)

and the impulse responses in the perfect information, Calvo model (red lines with crosses).

The impulse responses to a monetary policy shock are very similar in the two models.

In contrast, the impulse responses to an aggregate technology shock are quite different in

the two models. Inflation responds to a monetary policy shock by the same amount on

impact in the benchmark economy and in the Calvo model, while inflation responds to an

aggregate technology shock twice more strongly on impact in the benchmark economy than

in the Calvo model. The reason is that decisionmakers in firms in the benchmark economy

allocate about twice as much attention to aggregate technology than to monetary policy.

Firms in the benchmark economy and firms in the Calvo model experience profit losses

due to deviations of the actual price from the profit-maximizing price. It turns out that

10See also Paciello (2007). Paciello solves the white noise case of a similar model analytically, where white

noise case means that: (i) all exogenous processes are white noise processes, (ii) there is no lagged interest

rate in the Taylor rule, and (iii) the price level instead of inflation appears in the Taylor rule. The analytical

solution in the white noise case helps to understand in more detail the differential response of prices to

aggregate technology shocks and to monetary policy shocks.
11Klenow and Kryvtsov (2007) find that the median price duration excluding sales is 7.2 months, or about

2.5 quarters.
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profit losses due to deviations of the actual price from the profit-maximizing price are

an order of magnitude smaller than in the Calvo model generating the same real effects.

Specifically, the expected loss in profits due to suboptimal price responses to aggregate

conditions is 12 times smaller than in the Calvo model; and the expected loss in profits

due to suboptimal price responses to firm-specific conditions is 25 times smaller than in

the Calvo model. One reason is that in the benchmark economy prices respond slowly

to monetary policy shocks, faster to aggregate technology shocks, and very fast to micro-

level shocks. In contrast, in the Calvo model prices respond slowly to all those shocks.

Another reason is that under rational inattention deviations of the actual price from the

profit-maximizing price are less likely to be extreme than in the Calvo model.

8.5 Varying parameter values

Figure 6 compares the benchmark economy to an economy with a higher degree of real

rigidity.12 We set ψ = 0 implying that the coefficient on aggregate output in the equation

for the profit-maximizing price falls from 1 to 0.5 (after substituting in the wage equation).

Real effects of monetary policy shocks become larger and more persistent. After a monetary

policy shock the output gap is now negative for about 20 quarters instead of 10 quarters.

At the same time, profit losses due to imperfect tracking of aggregate conditions decrease.

The expected loss in profits due to imperfect tracking of aggregate technology falls by 25

percent; and the expected loss in profits due to imperfect tracking of monetary policy falls

by 60 percent.

Figure 7 compares the benchmark economy to an economy with larger monetary policy

shocks. We increase the standard deviation of monetary policy shocks by roughly a factor

of two, from 0.0021 to 0.004. This matches the standard deviation of monetary policy

shocks estimated by Justiniano and Primiceri (2006) for the high inflation episode in the

1970s.13 At the rational inattention fixed point with larger monetary policy shocks firms

allocate 0.84 bits to monetary policy, an increase by 100 percent compared to the benchmark

12Ball and Romer (1990) refer to the elasticity of the profit-maximizing price with respect to aggregate

output as the degree of real rigidity. A low elasticity corresponds to a high degree of real rigidity.
13Justiniano and Primiceri (2006) estimate a DSGE model that allows for time variation in the size of

shocks.
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economy.14 Since firms allocate more attention to monetary policy, a monetary policy

shock of a given size has smaller real effects and larger inflationary effects.15 However,

the additional attention that decisionmakers pay to monetary policy is not sufficient to

compensate fully for the fact that the average size of monetary policy shocks has increased.

The firms’ tracking problem has become more complicated. Therefore, the expected loss

in profits due to imperfect tracking of monetary policy almost doubles and the variance of

output due to monetary policy shocks increases.

9 Case 3: Firms and households have limited attention

In this section we study the implications of adding rational inattention by households. To

get a first idea of how rational inattention by households affects the equilibrium, we make

three simplifying assumptions. First, we study the optimal allocation of attention by an

individual household assuming that all other households have perfect information and firms

have limited attention, i.e., we study the optimal allocation of attention by an individual

household at the fixed point derived in Section 8. Second, we assume that the household

sets a vector of real wage rates instead of a vector of nominal wage rates. Third, we assume

that the household has linear disutility of labor, i.e., ψ = 0. One can show analytically

that the last two assumptions imply that the optimal wage setting behavior under perfect

information and under limited attention is given by

w̃jt = γcjt.

Then the household is always on his labor supply curve because he only needs to know his

own consumption to be on the labor supply curve. This allows us to study in isolation the

implications of rational inattention by households for consumption behavior.

14We are holding constant the marginal value of information flow. The total information flow is then

determined within the model.
15 In Figure 7 one must divide an impulse response in the economy with larger monetary policy shocks by

roughly one-half to obtain an impulse response to a shock of the same size as in the benchmark economy.
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9.1 Households’ attention problem

The attention problem of household j reads

max
B(L),C(L)

∞X
t=0

βtEj,−1

∙
1

2
(xt − x∗t )

0H0 (xt − x∗t ) + (xt − x∗t )
0H1

¡
xt+1 − x∗t+1

¢¸
, (95)

subject to an equation linking an argument of the objective and 1 +N decision variables

b̃jt − b̃∗jt = −
1

ωB

tX
s=0

µ
1

β

¶t−s
"¡
cjs − c∗js

¢
+

ωW (ζ − 1)
N

NX
n=1

¡
w̃jns − w̃∗jns

¢#
, (96)

the equations characterizing the optimal behavior under perfect information

c∗jt = A1 (L) ε
A
t| {z }

cA∗jt

+A2 (L) ε
R
t| {z }

cR∗jt

(97)

w̃∗jnt = γc∗jt +A3 (L) ε
χ
jnt| {z }

w̃χ∗jnt

(98)

ĉ∗ijt = A4 (L) ε
I
it, (99)

the equations specifying the actual behavior

cjt = B1 (L) ε
A
t + C1 (L) ν

A
jt| {z }

cAjt

+B2 (L) ε
R
t + C2 (L) ν

R
jt| {z }

cRjt

(100)

w̃jnt = γcjt +B3 (L) ε
χ
jnt + C3 (L) ν

χ
jnt| {z }

w̃χjnt

(101)

ĉijt = B4 (L) ε
I
it + C4 (L) ν

I
ijt, (102)

and the information flow constraint

I
³n

cA∗jt , c
R∗
jt , w̃

χ∗
j1t, . . . , w̃

χ∗
jNt, ĉ

∗
1jt, . . . , ĉ

∗
I−1jt

o
;
n
cAjt, c

R
jt, w̃

χ
j1t, . . . , w̃

χ
jNt, ĉ1jt, . . . , ĉI−1jt

o´
≤ κ.

(103)

Here νAjt, ν
R
jt, ν

χ
jnt and νIijt follow idiosyncratic Gaussian white noise processes with unit

variance that are mutually independent and independent of all other shocks in the economy.

All the A (L), B (L) and C (L) are infinite-order lag polynomials.

Note that we assume that the household chooses a consumption vector and a vector of

real wage rates. Bond holdings then follow from equation (96).

Furthermore, we assume that in period t = −1 the economy is in the non-stochastic

steady state and the household knows that the economy is in the non-stochastic steady

state.
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9.2 Benchmark parameter values and solution

We assume the same parameter values as in the benchmark economy in Section 8.3 apart

from ψ = 0. We have to choose values for some additional parameters: ωB and ωW as

well as the household’s marginal value of information flow. We set ωB = ωW = 1. We set

the household’s marginal value of information flow equal to 0.02 percent of the household’s

steady state composite consumption.

The optimal allocation of attention by the household has the following features. The

household allocates 0.83 bits of information flow to tracking monetary policy and 0.74

bits of information flow to tracking aggregate technology. The expected per period loss

in utility due to imperfect tracking of monetary policy equals 0.02 percent of the house-

hold’s steady state composite consumption. The expected per period loss in utility due

to imperfect tracking of aggregate technology also equals 0.02 percent of the household’s

steady state composite consumption. Figure 8 shows the impulse response of composite

consumption by the individual household to a monetary policy shock (upper panel) and

to an aggregate technology shock (lower panel). In each panel, the blue line with points

is the impulse response under perfect information, while the green line with circles is the

impulse response under limited attention. We would like to point out four results. First,

there are sizeable differences between the impulse responses for consumption under perfect

information and the impulse responses for consumption under rational inattention despite

the fact that the utility loss from deviations from the perfect information behavior is very

small and the marginal value of information flow is very low. Second, the impulse response

of consumption to a monetary policy shock under rational inattention is hump-shaped,

while the impulse response under perfect information is monotonic. Third, consumption

under rational inattention differs from consumption under perfect information, but in the

long run the difference between consumption under rational inattention and consumption

under perfect information goes to zero. Similarly, we find that bond holdings under rational

inattention differ from bond holdings under perfect information, but in the long run the

difference between bond holdings under rational inattention and bond holdings under per-

fect information goes to zero. Fourth, the impulse responses of consumption under rational

inattention look similar to the impulse responses of consumption in a model with habit
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formation.

10 Conclusion

We have studied a dynamic stochastic general equilibrium model with rational inattention.

The impulse responses of prices under rational inattention by firms have several properties

of empirical impulse response functions, e.g., (i) prices respond slowly to monetary policy

shocks, (ii) prices respond faster to aggregate technology shocks, and (iii) prices respond

very fast to disaggregate shocks.16 Furthermore, profit losses due to deviations of the actual

price from the profit-maximizing price are an order of magnitude smaller than in the Calvo

model that generates the same real effects.

In addition, we have presented some results concerning the implications of adding ra-

tional inattention by households. The impulse responses of consumption under rational

inattention by households look similar to the impulse responses of consumption in a model

with habit formation.

16For empirical evidence on the response of prices to disaggregate shocks, see Boivin, Giannoni, and Mihov

(2007).
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A Proof of Proposition 1

First, let xt denote the vector of date t variables appearing in objective (39) that the firm

can affect

xt =
³
p̂it l̂i11t · · · l̂iJ(N−1)t

´0
.

Let zt denote the vector of date t variables appearing in objective (39) that the firm takes

as given

zt =
³
c1t · · · cJt ct at ait w̃11t · · · w̃JNt

´0
.

Let f denote the functional inside the expectation operator in objective (39). Let f̃ denote

the second-order Taylor approximation of f at the non-stochastic steady state. We have

Ei,−1
h
f̃ (x0, z0, x1, z1, x2, z2, . . .)

i

= Ei,−1

⎡⎢⎢⎣ f (0, 0, 0, 0, 0, 0, . . .)

+
∞X
t=0

βt
¡
h0xxt + h0zzt +

1
2x
0
tHxxt + x0tHxzzt +

1
2z
0
tHzzt

¢
⎤⎥⎥⎦ , (104)

where hx is
¡
1/βt

¢
times the (JN × 1) vector of first derivatives of f with respect to xt

evaluated at the non-stochastic steady state, hz is
¡
1/βt

¢
times the (J + 3 + JN × 1) vector

of first derivatives of f with respect to zt evaluated at the non-stochastic steady state, Hx is¡
1/βt

¢
times the (JN × JN)matrix of second derivatives of f with respect to xt evaluated at

the non-stochastic steady state, Hz is
¡
1/βt

¢
times the (J + 3 + JN × J + 3 + JN) matrix

of second derivatives of f with respect to zt evaluated at the non-stochastic steady state,

and Hxz is
¡
1/βt

¢
times the (JN × J + 3 + JN) matrix of cross derivatives. Second, in this

appendix let yt denote the following vector

yt =

⎛⎜⎜⎜⎝
xt

zt

1

⎞⎟⎟⎟⎠ .

Conditions (42)-(43) imply that for all m and n

∞X
t=0

βtEi,−1 |ymtynt| <∞. (105)
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It follows that

Ei,−1

" ∞X
t=0

βtymtynt

#
=

∞X
t=0

βtEi,−1 [ymtynt] . (106)

See Rao (1973), p. 111. Furthermore, conditions (42)-(43) also imply that for all m and n

the sequence

(
TX
t=0

βtEi,−1 [ymtynt]

)∞
T=0

is a Cauchy sequence in R. It follows that

Ei,−1
h
f̃ (x0, z0, x1, z1, x2, z2, . . .)

i
= f (0, 0, 0, 0, 0, 0, . . .)

+
∞X
t=0

βtEi,−1

∙
h0xxt + h0zzt +

1

2
x0tHxxt + x0tHxzzt +

1

2
z0tHzzt

¸
, (107)

and both terms on the right-hand side of the last equation converges to an element in R.

Third, let x∗t denote the vector xt that satisfies

hx +Hxx
∗
t +Hxzzt = 0. (108)

We will show below that Hx is an invertible matrix. Therefore, one can write the last

equation as

x∗t = −H−1
x hx −H−1

x Hxzzt.

It follows that x∗t satisfies conditions (42)-(43), implying that equation (107) holds for the

vector x∗t . Fourth,

Ei,−1
h
f̃ (x0, z0, x1, z1, x2, z2, . . .)

i
−Ei,−1

h
f̃ (x∗0, z0, x

∗
1, z1, x

∗
2, z2, . . .)

i
=

∞X
t=0

βtEi,−1

∙
h0x (xt − x∗t ) +

1

2
x0tHxxt −

1

2
x∗0t Hxx

∗
t + (xt − x∗t )

0Hxzzt

¸

=
∞X
t=0

βtEi,−1

∙
1

2
x0tHxxt −

1

2
x∗0t Hxx

∗
t − (xt − x∗t )

0Hxx
∗
t

¸

=
∞X
t=0

βtEi,−1

∙
1

2
(xt − x∗t )

0Hx (xt − x∗t )

¸
, (109)

where the first line follows from equation (107) and the second line follows from using

equation (108) to substitute for Hxzzt. Fifth, using the fact that (1 + τp) = [ϑ/ (ϑ− 1)]

and using the fact that the demand function (29) has the property ςP̂−ϑi C = P̂−θi C yields

hx = 0, (110)
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Hx = C−γj W̃Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ϑ
α

¡
1 + 1−α

α ϑ
¢

0 · · · · · · 0

0 − 2
ηJN − 1

ηJN · · · − 1
ηJN

... − 1
ηJN

. . . . . .
...

...
...

. . . . . . − 1
ηJN

0 − 1
ηJN . . . − 1

ηJN − 2
ηJN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (111)

and

Hxz = C−γj W̃Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 ϑ
α
1−α
α −ϑ

α
1
α −ϑ

α
1
α

ϑ
α

1
JN · · · · · · ϑ

α
1
JN

ϑ
α

1
JN

0 · · · 0 0 0 0 − 1
JN 0 · · · 0 1

JN
... · · ·

...
...

...
... 0

. . . . . .
...

...
... · · ·

...
...

...
...

...
. . . . . . 0

...

0 · · · 0 0 0 0 0 · · · 0 − 1
JN

1
JN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(112)

Substituting (110)-(112) into equation (108) yields that x∗t is given by

p̂∗it =
1−α
α

1 + 1−α
α ϑ

ct −
1
α

1 + 1−α
α ϑ

(at + ait) +
1

1 + 1−α
α ϑ

⎛⎝ 1

JN

JX
j=1

NX
n=1

w̃jnt

⎞⎠ , (113)

and

l̂∗ijnt +
X

jn6=JN
l̂∗ijnt = −η (w̃jnt − w̃JNt) . (114)

Summing equation (114) over all jn 6= JN yields

X
jn6=JN

l̂∗ijnt = −η
1

JN

JX
j=1

NX
n=1

w̃jnt + ηw̃JNt.

Substituting the last equation into equation (114) yields

l̂∗ijnt = −η

⎛⎝w̃jnt −
1

JN

JX
j=1

NX
n=1

w̃jnt

⎞⎠ . (115)

B Proof of Proposition 2

Same steps as in Appendix A.
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C Solution under perfect information

First, yit = cit = (1/J)
XJ

j=1
cijt, equation cijt = ĉijt + cjt and equations (65), (66), (67)

and (69) imply that

yt = ct.

Second, equations (66), (68), (71) and (11) imply that

yt = at + αlt.

Third, equations (46), (69), (70) and (11) imply that

0 =
1− α

α
ct −

1

α
at + w̃t.

Fourth, equations (64), w̃jnt = wjnt − pt, w̃t = wt − pt, (70), (67) and (12) imply that

w̃t = γct + ψlt.

Solving the last four equations for the endogenous variables yt, ct, lt and w̃t yields (73)-(75).

Fifth, equations (63) and (67) imply

ct = Et

∙
−1
γ
(rt − πt+1) + ct+1

¸
.

Substituting the solution for ct into the last equation yields (76).

D Solving for equilibrium relative wage rates

Solving for equilibrium relative wage rates is not easy, because when households set wage

rates they take into account that limited attention by decisionmakers in firms lowers the

wage elasticity of labor demand. To make the derivation as clear as possible, we assume

that all labor-specific preference shocks, χjnt, follow a Gaussian white noise process with

variance σ2χ.

First, let l̂ijnt = lijnt − lit denote firm i’s relative input of type jn labor and let ŵjnt =

w̃jnt− w̃t denote the relative wage rate for type jn labor. The profit-maximizing factor mix

is given by

l̂∗ijnt = −ηŵjnt. (116)
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See Proposition 1. We guess that in equilibrium

ŵjnt = Aχjnt, (117)

where A is an undetermined coefficient. The assumption that χjnt follows a Gaussian white

noise process implies that both ŵjnt and l̂∗ijnt follow Gaussian white noise processes.

Second, devoting an information flow of κχ to tracking a variable that follows a Gaussian

white noise process so as to minimize the mean squared error yields the following behavior

under rational inattention

l̂RIijnt =

µ
1− 1

22κχ

¶
l̂∗ijnt +

r
1

22κχ
− 1

24κχ

r
V ar

³
l̂∗ijnt

´
νχijnt, (118)

where νχijnt follows an independent Gaussian white noise process with unit variance. See,

for example, Proposition 3 in Máckowiak and Wiederholt (2008). Using (116) to substitute

for l̂∗ijnt in (118) yields

l̂RIijnt = −η
µ
1− 1

22κχ

¶Ã
ŵjnt −

r
1

22κχ − 1

q
V ar (ŵjnt)ν

χ
ijnt

!
. (119)

It is now easy to verify that the signal

sijnt = ŵjnt −
r

1

22κχ − 1

q
V ar (ŵjnt)ν

χ
ijnt, (120)

has the property

l̂RIijnt = E
h
l̂∗ijnt|sijnt, sijnt−1, . . .

i
.

Therefore, one can interpret the behavior under rational inattention as being due to the

fact that decisionmakers in firms pay limited attention to the relative wage rate for type jn

labor. Furthermore, note that limited attention by decisionmakers in firms lowers the wage

elasticity of labor demand from η to η
³
1− 1

22κχ

´
.

Third, let ljnt = 1
I

XI

i=1
lijnt and lt = 1

I

XI

i=1
lit. Computing the average of (119) over

all i and using the fact that noise is idiosyncratic yields

ljnt − lt = −η
µ
1− 1

22κχ

¶
ŵjnt. (121)

Exponentiating both sides of (121), multiplying by Ljn and using the fact that in the non-

stochastic steady state Ljn =
³
Wjn

W

´−η
L yields

Ljnt =

µ
Wjn

W

¶− η

22κχ
µ
Wjnt

Wt

¶−η 1− 1

22κχ

Lt. (122)
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Note that this demand function for type jn labor has the form (48)-(50) so long as η
³
1− 1

22κχ

´
>

1.

Fourth, since households have perfect information, household j then sets a nominal wage

rate for type jn labor that satisfies

w̃jnt =
γ

1 + ψζ
cjt +

ψ

1 + ψζ
(ζw̃t + lt) +

1

1 + ψζ
χjnt, (123)

with ζ = η
³
1− 1

22κχ

´
. See Proposition 2. Computing the average of (123) over all jn and

using (12), (67) and (70) yields

w̃t = γct + ψlt. (124)

Substituting (124) into (123) and using cjt = ct yields

w̃jnt − w̃t =
1

1 + ψζ
χjnt, (125)

where ζ = η
³
1− 1

22κχ

´
. Comparing (125) to the guess (117) shows that the guess (117) is

correct with

A =
1

1 + ψη
³
1− 1

22κχ

´ . (126)

Finally, we still need to solve for the equilibrium attention that decisionmakers in firms

allocate to the relative wage rate for type jn labor: κχ. Equations (116), (117), (119) and

(126) imply that the mean squared error in the relative input of type jn labor equals

E

∙³
l̂∗ijnt − l̂RIijnt

´2¸
=

1

22κχ
η2h

1 + ψη
³
1− 1

22κχ

´i2σ2χ.
The derivative of the mean squared error with respect to κχ equals

∂E

∙³
l̂∗ijnt − l̂RIijnt

´2¸
∂κχ

= −2 ln (2) 1

22κχ

1 + ψη
³
1 + 1

22κχ

´
h
1 + ψη

³
1− 1

22κχ

´i3η2σ2χ.
It follows from objective (81) that the marginal value of paying attention to the relative

wage rate for type jn labor equals

λχ =
1

1− β

1

ηJN
2 ln (2)

1

22κχ

1 + ψη
³
1 + 1

22κχ

´
h
1 + ψη

³
1− 1

22κχ

´i3 η2σ2χ.
By equating λχ to our value for the marginal value of information flow we obtain κχ.
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E Solving the Calvo model

If we assume that firms and households have perfect information but firms face a Calvo

friction, we obtain the following version of the New Keynesian Phillips curve

πt =
(1− λ) (1− λβ)

λ

ψ
α + γ + 1−α

α

1 + 1−α
α θ

³
ct − cft

´
+ βEt [πt+1] , (127)

where (1− λ) is the fraction of goods prices that change every period and cft is the flexible

price solution given by equation (73). The aggregate dynamics are obtained by solving the

system containing equations (89)-(94) and equation (127). The solution of the Calvo model

reported in Figures 4-5 sets λ = 0.6.
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Figure 1: Impulse responses, benchmark economy
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Figure 2: Impulse responses, benchmark economy
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Figure 3: Impulse response of an individual price to a firm-specific productivity shock
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Figure 4: Impulse responses, benchmark economy and the Calvo model
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Figure 5: Impulse responses, benchmark economy and the Calvo model
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Figure 6: Impulse responses, benchmark economy and an economy with more real rigidity
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Figure 7: Impulse responses, benchmark economy and an economy with larger monetary policy shocks
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Figure 8: Impulse responses, household problem




