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Abstract

We present a mechanism to analytically generate a double Pareto distri-
bution of wealth in a continuous time OLG model with optimizing agents
who have bequest motives, are subject to stochastic returns on capital and
have uncertain lifespans. We disentangle, roughly, the contribution of in-
heritance, age and stochastic rates of capital return to wealth inequality, in
particular to the Gini coe¢ cient. We investigate the role of the �scal and
redistributive policies for wealth inequality and social welfare.
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1. Introduction

Age, luck and inheritance all play a signi�cant role in the accumulation of wealth.
Households accumulate wealth as they age.1 Rates of return vary across house-
holds and over time depending on the luck of the draw. And some agents start
their economic life with large inheritances.2 We develop a dynamic model of
wealth distribution with utility-optimizing agents to understand the well-known
features of empirical wealth distributions: skewness to the right and heavy tails.
We provide analytic solutions and then calibrate to match the U.S. distribution.
We then decompose the Gini coe¢ cient to isolate the e¤ects of age, luck and in-
heritance. Finally we study the e¤ects of capital and estate taxes on steady state
inequality and welfare.
Our analysis is based on Benhabib and Bisin (2006) who also investigate the

impact of intergenerational transmission and redistributive policies on the wealth
inequality. In a model with one riskless asset Benhabib and Bisin (2006) �nd that
wealth inequality induced by inheritance accounts for just a little less than a third
of the size of the Gini coe¢ cient in the U.S. in 1992. We introduce a risky asset
into the model to better identify the contributions of the stochastic rate of return,
of age, and of inheritance to the inequality of wealth.
Wealth distribution displays right skewness and a heavy upper tail in di¤erent

countries and times. Atkinson and Harrison (1978) document the heavy upper
tail of the wealth distribution in Britain during 1923-1972. Wol¤ (1995) presents
the percentage share of net wealth held by the richest 1% of wealth holders in
U.S. during 1922-1989, which ranges from 19:9% to 36:7%. Using the data of
Survey of Consumer Finances in the U.S. in 2001, Wol¤ (2004) computes the
Gini coe¢ cient of wealth, 0:826. The top 1% of population holds 33:4% of the
wealth in the U.S. Using the richest sample of the U.S., the Forbes 400, during
1988-2003 Klass et. al. (2006) �nd that the top end of the wealth distribution
obeys a Pareto law with an average exponent of 1:49. Dragulescu and Yakovenko
(2001) present the 1996 data of the personal total net wealth in the U.K. and �nd

1At least until 65, or retirement; see Rodriguez, Diaz-Gimenez, Quadrini and Rios-Rull
(2002), chart 10.

2Intergenerational transfers also play an important role in the aggregate capital accumulation.
Kotliko¤ and Summers (1981) �nd that intergenerational transfers account for sustaining the
vast majority, up to 70%, of the aggregate U.S. capital formation. See also Gale and Scholtz
(1994) for more moderate �ndings on this topic. For an account of the the role of inhertance on
the Forbes 400 see Elwood et al. (1997) and Burris (2000).
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that the high-end tail follows a power law with exponent of 1:9. Hegyi, Neda and
Santos (2007) show that the Pareto index in a rank/frequency plot is 0:92 for the
top wealth family of Hungarian in 1550.3 Sinha (2006) investigates the data of
higher-end tail of the wealth distribution in India between the years 2002-2004
and �nds that the resulting rank distribution seems to imply a power-law tail for
the wealth distribution, with a Pareto exponent between 0:81 and 0:92.
A standard mechanism to generate right-skewed stationary distributions is to

construct a stochastic process with negative drift and a lower re�ecting barrier.4

Champernowne (1953) was the �rst to employ a multiplicative stochastic process
of income dynamics with independent proportionate changes that have negative
expected value and a re�ective lower barrier to derive a power law distribution
for income.5 Wold and Whittle (1957) introduced a birth and death process with
exogenous exponential wealth accumulation and bequests to generate a stable
stationary wealth distribution. More recently Gabaix (1999) used this mechanism
to study the distribution of city sizes, and Levy (2003) used it to study conditions
that ensure convergence to the Pareto wealth distribution. In Benhabib and Bisin
(2006) the wealth accumulation process is based on optimizing behavior of agents
and has positive deterministic growth. But as in Wold and Whittle (1957), the
geometrically distributed death and inheritance processes, together with estate
taxes, result in a stationary distribution. In our model we will dispense with the
need for a lower re�ecting barrier to the stochastic process: bad luck will in fact
drive wealth down.
Our model is a continuous time overlapping generations model with a contin-

uum of agents as in Yaari (1965) and Blanchard (1985), with optimizing agents.
There are three kinds of �nancial assets: a risk-free asset, a risky asset and life
insurance or annuities. Life insurance or annuity companies operate competitively

3In a rank/frequency plot, the Pareto index is the reciprocal of the Pareto exponent. For a
derivation of this relationship, see Levy and Solomon (1997).

4Kesten (1973) studies the limit distribution of the solution Yn of the di¤erence equation
Yn = MnYn�1 + Qn, n � 1, where Mn is an i.i.d. random d � d matrices, and Qn is an i.i.d.
random d-vector and Yn is also a d-vector. Takayasu, Sato, and Takayasu (1997) clarify necessary
and su¢ cient conditions for a quantity described by X(t+1) = b(t)x(t)+ f(t) to follow a power
law distribution with divergent moment. Sornette and Cont (1997) show that the multiplicative
process with the re�ective barrier and the Kesten variable are deeply related: the additive term
in Kesten processes plays the role of e¤ective repulsion from the origin. Sornette (1998) presents
a review of applications, highlights the common physical mechanism and summerize the main
known results of the stochastic processes with multiplicative noise.

5See also Simon (1955) for a related mechanism to generate the Power Law distribution.
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and make zero pro�ts. For each agent the return to the risky asset is stochastic
and follows a Geometric Brownian Motion. There are two heterogenous groups
of agents: one group has a bequest motive and the other group does not. Under
optimal consumption and investment behavior, the wealth of agents also follows a
Geometric Brownian Motion. The geometrically distributed death rate, the Geo-
metric Brownian Motion of wealth, and the inheritance of bequests results in a
stationary distribution of wealth that follows a Pareto law in both tails (double
Pareto distribution). While newborn agents are introduced into the economy at
some arbitrary minimum level of wealth through transfers determined by a re-
distributive welfare policy, unlike the previous models in the literature described
above, this level does not constitute a re�ecting barrier: low realizations of the
return on the risky asset can draw down wealth below this birth minimum, and
so we end up with a double Pareto distribution.6

We try to disentangle the contributions of stochastic rate of return, of the age
pro�le, and of inheritance to wealth inequality. From our rough calibration and
simulation exercises, we �nd that luck captured by the stochastic rate of return
contributes about 31% to wealth inequality in terms of the Gini coe¢ cient while
life-cycle accumulation or age contributes about 37%. We show that surprisingly,
bequests and inheritance can decrease wealth inequality because they have an
impact on the growth rate of average wealth, dampening the dissipative e¤ect of
luck and age on the relative growth of individual wealth. We also show that gov-
ernment redistributive policies have important consequences for wealth inequality
through their e¤ects on the growth rates of wealth, on the size of government sub-
sidies, and on bequests. Finally we show that �scal policies can have an impact
on social welfare de�ned as the sum of the discounted utility streams of those who
are alive.

6Reed (2001) proposes a double Pareto distribution to explain the power law behaviour in the
upper tail of income and of city size distributions. The income distribution within each cohort
is lognormal and the age is an exponential random variable. Provided all income earners have
the same starting income (no inheritance), the current distribution of incomes for the economy
mixing all cohorts is a double Pareto distribution. The simpler techniques used by Reed that
avoid PDEs however cannot be applied directly to our model with inheritance. The plots of
Reed (2001) reveal power law behaviour in both the upper tail and lower tail of 1998 U.S. male
earnings distributions and 1998 U.S. settlement sizes distribution.
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1.0.1. Related literature

A large literature of incomplete markets such as Aiyagari (1994) and Huggett
(1993) study the stationary distribution of wealth in models with heterogenous
agents. Agents face uncertain labor income and a constant interest rate, and
hold precautionary savings against uninsurable labor earnings. As pointed out by
Schechtman and Escudero (1977) the constant or bounded relative risk aversion
utility functions employed in these models mean that the stationary distribution
of wealth has bounded support.7 To generate skewness and fat tails, we use a
model with idiosyncratic stochastic rates of return to capital as well as bequests
and inheritance, but we abstract away from modelling labor earnings or their dis-
tribution. We obtain a stationary distribution of wealth with unbounded support,
which displays fat-tails and upper skewness.
A number of authors have recently introduced new features to the basic in-

complete market models to simulate the U.S. wealth distribution. Huggett (1996)
calibrates life-cycle economies to match features of the U.S. earnings distribu-
tion and then examines the wealth distribution implications of his model. His
model produces less than half the fraction of wealth held by the top 1% of U.S.
households. Krusell and Smith (1998) study incomplete market economies with
aggregate uncertainty. They introduce preference heterogeneity into the economy
in the form of random discount factors to match the dispersion and the key fea-
tures of the U.S. wealth distribution. Quadrini (2000) generates a concentration
of wealth similar to the one observed in the U.S. economy by introducing en-
trepreneurship into his model. Castaneda, Diaz-Gimenez and Rios-Rull (2003)
incorporate life cycle features, a social security system, progressive income and
estate taxes and intergenerational transmission of stochastic earnings ability into
their model, and �nd through simulations that the labor e¢ ciency shock helps to
account for the U.S. distribution of earnings and wealth almost exactly. De Nardi
(2004) constructs an OLG model in which parents and children are linked by ac-
cidental and voluntary bequests and by earnings ability. Cagetti and De Nardi
(2005) summarize some key facts about the U.S. wealth distribution and of equi-

7The mechanism that generates a non-degenarate stationary distribution for such additive
shock (stochastic labor income) models requires the gross interest rate to be no greater than
the reciprocal of the time discount rate. This is also the feature used to generate a stationary
distribution in the calibrated models, for example of Aiyagari (1994), Huggett (1993), Castaneda,
Diaz-Gimenez and Rios-Rull (2003). In our model the product of the interest rate and the time
discount rate exceeds unity so we have growth.
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librium models with incomplete markets. More recently, Wang (2006) investigates
the equilibrium wealth distribution in an economy endogenous time preferences
that can di¤er across in�nitely-lived agents. With endogenous time preference,
the stronger incentives to consume for the rich agents narrow the wealth dispersion
and generate a stationary distribution. This mechanism di¤ers from of our model
where the spread of the wealth process is checked by death, annuity markets, and
estate taxes.
While the agents have uncertain lifetimes in our model, in the presence of the

perfect life insurance markets there are no accidental bequests. This feature is in
contrast to some of the literature on precautionary saving, such as Abel (1985)
and Fuster (2000), who investigate how the lack of annuity markets a¤ects saving
behavior and the intergenerational transfer of wealth under uncertain lifetimes.
The rest of this paper is organized as follows. In section 2, we present the

basic structure of our continuous time OLG economy. We investigate the cross-
sectional wealth distribution of the economy in section 3. Section 4 contains
the analysis of the e¤ect of redistributive policy on wealth inequality and social
welfare. We present an alternative economy with across the board lump-sum
subsidies in section 5 and conclude with a discussion in section 6. We leave the
proofs to the Appendix.

2. An OLG economy

There is a continuum of agents in the economy who invest their wealth in a riskless
asset and a risky asset. There is continuum of risky assets in the economy. Every
agent invests their wealth in their own risky asset. The stochastic processes for
the risky assets held by the agents are independent, but they follow the same
Geometric Brownian Motion process

dS(t) = �S(t)dt+ �S(t)dB(t)

where B(t) is the standard Brownian motion, � is the instantaneous conditional
expected percentage change in value per unit time and � is the instantaneous
conditional standard deviation per unit time. The Geometric Brownian Motion
process implies that the value of the risky asset is log-normally distributed and
the rate of return of the risky asset does not depend on the level of the risky asset
value.
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The value of the riskless asset follows

dQ(t) = Q(t)rdt

where r is the rate of return of the riskless asset and r < �. The rate of return of
the riskless asset is identical for all agents in the economy.
The agent allocates individual wealth among current consumption, investment

in a risky asset, a riskless asset and the purchase of life insurance. Negative
life insurance purchases, allowed in our model, corresponds to the purchase of
annuities. Z(s; t) denotes the bequest that the agent born at time s leaves at
time t if the agent dies. The bequest consists of two parts: the agent�s wealth
invested in riskless asset and risky asset, and the life insurance/annuities that the
agent purchases. The price of the life insurance is �. The agent pays P (s; t)dt
to buy the life insurance. Should the agent die in the next short period dt, the
life insurance company pays P (s;t)

�
. Let W (s; t) be wealth at time t of an agent

born at time s. The relation between Z(s; t), the bequest, W (s; t), wealth, and
the payment from the insurance company, P (s;t)

�
; is given by

Z(s; t) =W (s; t) +
P (s; t)

�

If P (s; t) < 0, the life insurance company is an annuity company, paying P (s; t)dt
to those alive and receiving P (s;t)

�
from the estate of the agents who die.

There is an uncertainty about the duration of the agent�s life: it follows an
exponential distribution with rate parameter of p. Each agent will die at a time
t 2 [0;+1) by a probability density function �(t) = pe�pt. In a small time �t,
the agent has probability of p�t to die, conditioning on the event that the agent
is sill alive. When the agent dies, the agent�s child is born. Each agent has one
child.
Life insurance or annuity companies earn zero pro�ts and e¤ectively act as

clearing houses. In a short period of length �t payments and disbursements are
equal: pP (s;t)

�
�t = P (s; t)�t; so that � = p.8

We assume that the bequest motive takes the form of "the joy of giving": The
bequest enters parents�utility function but parents do not care about children�s
utility directly.(See however the Pure Altruism section 8.14 at the end of the
Appendix for how, following Abel and Warshawsky (1988), we can parametrize

8In fact collections and disbursements occur every instant in continuous time as �t! 0:
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the bequest function so that it reduces to the standard in�nitely-lived dynastic
utility Ramsey model) Utility from bequests is given by ��((1��)Z(s; t)) where �
is the estate tax rate, � represents the strength of the bequest motive, and �(�) is
the bequest utility function. We choose CRRA functions for both the consumption
and the bequest utilities.
We assume that there are two groups of agents in the economy. A fraction

q
p
< 1 of the people have a bequest motive,with bequest motive parameter � > 0;

and a fraction 1� q
p
of people do not have a bequest motive with bequest motive

parameter � = 0.
Let J(W (s; t)) be the optimal value function of agents. The agent�s utility

maximization problem is

J(W (s; t)) = max
C;!;P

Et

Z +1

t

e�(�+p)(v�t)[
C1�(s; v)

1�  +p�
((1� �)Z(s; v))1�

1�  ]dv (1)

subject to

dW (s; t) = [(r��)W (s; t)+(��r)!(s; t)W (s; t)�C(s; t)�P (s; t)]dt+�!(s; t)W (s; t)dB(s; t)
(2)

where � is the time discount rate. C(s; t) is the consumption at time t of an agent
born at time s and !(s; t) is the share of wealth the agent invests in risky asset. �
is the capital tax on wealth9. The transversality condition for the agent�s problem
is10

lim
t!+1

Ee�(�+p)(t�s)J(W (s; t)) = 0

The set-up of the agent�s problem is that of Richard (1975). We add a capital tax
and an estate tax to Richard�s (1975) model. The agent�s optimal policy is same
as that of Richard (1975), except that we have to take into account the in�uence
of taxes.

9Of course � can be rede�ned so it is a tax on capital income. We also use the term of capital
income tax for � in this paper.
10For the transversality condition of the continuous-time stochastic dynamic programming

problem, see Merton (1992).
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Proposition 1. The agent�s optimal policies are characterized by

C(s; t) = A�
1
W (s; t); !(s; t) =

�� r
�2

;

Z(s; t) = (
p�

A�
)
1
 (1� �)

1�
 W (s; t)

with A =

 
�+p�(1�)(r��+�+ (��r)2

2�2
)

(1+(p�)
1
 �

�1
 (1��)

1�
 )

!�
and

dW (s; t) = gW (s; t)dt+ �W (s; t)dB(s; t):

with g = r��+����p


+ 1+
2

(��r)2
�2

and � = ��r
�
.

Note that P (s; t)may be positive or negative depending on the sign of Z(s; t)�
W (s; t), and determines whether the agent buys annuities or life insurance.11 The
mean growth rate of the agent�s wealth is g = r��+����p


+ 1+

2
(��r)2
�2

. The mean
growth rate is independent of the bequest parameter �. This is due to the speci�c
form of the utility function and the completeness of the life insurance market. The
growth rate, g, depends on the income tax rate � , but not the estate tax rate �.
The share of risky asset, !(s; t) = ��r

�2
, is only in�uenced by the risk premium

of the risky asset, the degree of risk aversion, and the volatility of the return of the
risky asset. This is the same result as that of Merton (1971). The share of wealth
invested in the risky asset, !(s; t), does not depend on "joy of giving" parameter,
�, or the government tax policies. The volatility of the growth rate of the agent�s
wealth, � = ��r

�
, does not depend on the bequest motive parameter, �. Note

that � is negatively related to the standard deviation of the price of the risky
asset, �, even though � is positively related to �!(s; t). This is because !(s; t) is
negatively related to �2. The aversion to the risk causes the agent to overreact to
risk such that the volatility of wealth is negatively related to the volatility of the
risky asset. Government policy has no impact on �.
The agent�s wealth evolves as a Geometric Brownian Motion

dW (s; t) = gW (s; t)dt+ �W (s; t)dB(s; t) (3)

This equation means that even though there are heterogeneous bequest motives

11If � = p; then the sign of Z(s; t)�W (s; t) is determined by ( �A )
1
 (1� �)

1�
 � 1:
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in our economy, the agents follow the same wealth accumulation process during
their life time. Equation (3) also implies that wealth growth displays Gibrat�s
Law. The growth rate of the wealth is independent of the level of wealth. In
many of the mechanisms generating a power law distribution, Gibrat�s Law plays
a fundamental role, and this is also true in our model.

2.1. The aggregate economy

The age cohorts are large enough such that the law of large numbers holds when-
ever we try to use it. This assumption implies: 1) Even though each agent faces
uncertainty about the duration of life, the size of the cohort born at s is pe�p(t�s)

at time t. The size of the population at any time t is
R t
�1 pe

p(s�t)ds = 1. 2)
Although di¤erent agents within a cohort have di¤erent wealth levels, the aggre-
gate wealth level of a cohort depends on the age of the cohort, but not on the
wealth distribution within the cohort. At time t, conditional on the event that
the agents born at time s are still alive, the mean wealth of the cohort is denoted
by EsW (s; t). Let EsW (s; s) be the mean starting wealth of the agents born at
time s. Then

EsW (s; t) = EsW (s; s)e
g(t�s) (4)

In a small time interval �t, a fraction p�t of people die. Given the hetero-
geneity of the bequest motive, a fraction q�t of people leave bequests. A fraction
(p � q)�t of people leave no bequests when they die, since � = 0 in their utility
function.
Following Benhabib and Bisin (2006), we derive the aggregate wealth growth

rate. Let W (t) be the aggregate wealth of the economy. Integrating the mean
wealth of all age cohorts with respect to the stationary population distribution,
we obtain the aggregate wealth

W (t) =

Z t

�1
EsW (s; t)pe

p(s�t)ds (5)

Plugging formula (4) into formula (5), we have

W (t) =

Z t

�1
EsW (s; s)pe

(g�p)(t�s)ds (6)

Di¤erentiating equation with respect to t, we have the aggregate wealth growth
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equation
dW (t)

dt
= pEtW (t; t) + (g � p)W (t) (7)

We need to compute pEtW (t; t) in formula (7). Since EtW (t; t) is the mean start-
ing wealth of the agents born at time t, pEtW (t; t) represents the aggregate start-
ing wealth of the newborns at time t. The aggregate starting wealth pEtW (t; t)
consists of two parts: the private bequest and the public subsidy.
The newborn whose parents have a bequest motive receives an inheritance. By

the bequest function in Proposition 1, we �nd that the aggregate inheritance which
the newborns receive from their parents after estate tax is q( p�

A�
)
1
 (1� �)

1�
 (1�

�)W (t).
The public subsidy is determined by the government�s budget. The govern-

ment collects capital and estate taxes, �nances government expenditure which is
proportional to the aggregate wealth, and provides subsidies to qualifying new-
borns so that the government budget is balanced at any time.
Government collects estate taxes when agents leave bequests to their children.

From the expression of bequest function in Proposition 1 we obtain government�s
revenue from the estate tax, q( p�

A�
)
1
 (1 � �)

1�
 �W (t). Government�s capital tax

is �W (t). Let � denote the ratio of government expenditure to aggregate wealth.
Deducting the government expenditure from the total revenue of the government,
we obtain the subsidies to the newborns, q( p�

A�
)
1
 (1��)

1�
 �W (t)+�W (t)��W (t).

Note that the total subsidies to newborns do not depend on how they subsidies
are distributed. We assume that the government tax revenue is greater than
government expenditure.
The aggregate subsidy is

�
q( p�
A�
)
1
 (1� �)

1�
 � + � � �

�
W (t) and the aggre-

gate inheritance is q( p�
A�
)
1
 (1� �)

1�
 (1� �)W (t). Suming these two, we have the

aggregate starting wealth of newborns:

pEtW (t; t) = (q(
p�

A�
)
1
 (1� �)

1�
 + � � �)W (t) (8)

Substituting equation (8) into equation (7), we obtain:

dW (t)

dt
= (q(

p�

A�
)
1
 (1� �)

1�
 + g � p+ � � �)W (t) (9)

Then formula (9) plus the initial aggregate wealth,W (0), determines the evolution
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of the aggregate wealth of the economy. Let ~g denote the growth rate of the
aggregate wealth. From equation (9), we know that ~g = q( p�

A�
)
1
 (1 � �)

1�
 + g �

p+ � � �. Thus the relative growth rate of individual wealth to aggregate wealth
is

g � ~g = p� q( p�
A�
)
1
 (1� �)

1�
 � (� � �) (10)

3. Wealth distribution and inequality

We now investigate the cross-sectional wealth distribution. Since the aggregate
wealth level is growing, one way to study the cross-sectional wealth distribution
is to investigate the distribution of the ratio of individual wealth to aggregate
wealth.12 Following Gabaix (1999), we de�ne X(s; t) as the the ratio of the indi-
vidual wealth to the aggregate wealth.

X(s; t) =
W (s; t)

W (0)e~gt
(11)

By equations (3) and (11), X(s; t) also generates Geometric Brownian Motion.

dX(s; t) = (g � ~g)X(s; t)dt+ �X(s; t)dB(s; t) (12)

Then X(s; t) is lognormally distributed, and

X(s; t) = X(s; s) exp[(g � ~g � 1
2
�2)(t� s) + �(B(s; t)�B(s; s))]

where we assume that g � ~g � 1
2
�2 � 0.13

To investigate the cross-sectional distribution of X(s; t), we need to know not
only the evolution function of X(s; t) during an agent�s the lifetime, but also the
change of X(s; t) between two consecutive generations. The evolution of wealth
during an agent�s the lifetime re�ects the impact of age and of the stochastic rates
of return on capital. The change of X(s; t) between two consecutive generations
re�ects the role of inheritance and government subsidies.

12This is equivalent to discounting the individual wealth level by the aggregate wealth growth
rate, ~g, plus the normalization, W (0) = 1, as in Benhabib and Bisin (2006).
13This is a technical assumption. Otherwise X(�; t) converges to 0 almost surely. Note that

this assumption implies that g � ~g � 1
2�

2 > 0.
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Government subsidies are distributed by the following rule. Government only
subsidizes the newborns. If a newborn�s inheritance is lower than a threshold level
that is proportional to the aggregate wealth, the government gives the newborn
a subsidy that brings their starting wealth to the threshold level.14 If the new-
born�s inheritance is higher than the threshold level, the newborn does not receive
a wealth subsidy from the government. The newborn whose parents do not have
a bequest motive receives a wealth subsidy which is equal to the threshold level,
and starts life at the threshold level of wealth.15 Since we assume that the gov-
ernment tax revenue is greater than government expenditure, governement can
always guarantee a positive threshold level. The redistributive policy then implies
that the newborn without inheritance has positive starting wealth. This speci�c
wealth level is endogenous and will be determined below.
Let x�W (t) be the threshold level of wealth below which newborns qualify for

the government wealth subsidy. Suppose that a parent with wealthW (e; s) leaves
bequest Z(e; s) to his child.16 If (1 � �)Z(e; s) � x�W (s), the child�s starting
wealth is determined by W (s; s) = (1 � �)Z(e; s). Since, by the optimal policy,
Z(e; s) = ( p�

A�
)
1
 (1� �)

1�
 W (e; s), we have

W (s; s) = (1� �)Z(e; s) = (p�(1� �)
A�

)
1
W (e; s) (13)

Dividing both sides of equation (13) by W (0)e~gs, and applying the de�nition of

14We may think of part of these subsidies as the discounted value of lifetime transfers.. or
consider initial wealth at birth to be the discounted value of lifetime earnings. See also section
6 below.
15Benhabib and Bisin (2006) also use a welfare policy where the subsidy is designed to top

up all bequests to newborns, including zero bequests, that fall short of a minimum wealth level
that grows at the rate of growth of the economy. Both in the Benhabib-Bisin model and in our
model, if the parents cared not about the gross bequest, but the bequest net of estate taxes, the
optimal bequests would be di¤erent due to the induced non-convexity of the agent�s optimization
problem. Using standard smooth pasting arguments Benhabib and Bisin (2006) show in their
appendix that if parents cared about net bequests, that the optimal net bequest would be
zero until a threshold level that exceeds the minimum wealth for the newborn, and then revert
exactly to the level prescribed by the model. As the wealth subsidy threshold to newborns goes
to zero, the optimal bequest and consumption functions of the two models converge. In section
6 below we also consider a policy where all newborns, irrespective of inheritance, receive the
same subsidy, which may also be interpreted, after adjusting the �scal policies, as the discounted
value of lifetime labor earnings.
16By our notation, e in W (e; s) and Z(e; s) means that the parent is born at time e and e � s.
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X(s; t), equation (11), we have X(s; s) = (p�(1��)
A�

)
1
X(e; s). Let

� = (
p�(1� �)
A�

)
1
 (14)

The transfer wealth ratio between two consecutive generations when the inherited
wealth of the newborn is above the threshold for a government subsidy then is
X(s; s) = �X(e; s).
If on the other hand the parents have a bequest motive but their wealth level

W (e; s) < x�

�
W (s), or if the parents do not have a bequest motive, then the

government subsidizes their children.The children start their lives at the wealth
level of x�W (s).
We now characterize the cross-sectional distribution ofX(�; t) at time t, f(x; t).

In section 8.2 of the Appendix we derive the forward Kolmogorov equation of
f(x; t)

@f(x; t)

@t
=
1

2

@2

@x2
(�2x2f(x; t))� @

@x
((g�~g)xf(x; t))�pf(x; t)+qf(x

�
; t)
1

�
; x > x�

(15)

@f(x; t)

@t
=
1

2

@2

@x2
(�2x2f(x; t))� @

@x
((g � ~g)xf(x; t))� pf(x; t); x < x� (16)

The partial di¤erential equations do not hold at x = x�.17 By the de�nition of
X(s; t), equation (11), we know thatZ +1

0

xf(x; t)dx = 1;8t � 0 (17)

It is di¢ cult to solve the partial di¤erential equations with the initial distribution.
Instead, we investigate the behavior of the equations in the long run, the stationary
distribution of the wealth.18

Proposition 2. The stochastic process, X(�; t), is ergodic.

17For this point, we greatly bene�ted from the discussion with Matthias Kredler and Henry
P. McKean.
18Benhabib and Bisin (2006) do study the transition dynamics and convergence of the PDE

above, but their setting is simpler because it does not involve stochastic returns.
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Proposition 2 guarantees the existence and uniqueness of the stationary dis-
tribution of stochastic process, X(�; t): starting from any initial distribution, the
stochastic process converges to the unique stationary distribution.
In the stationary distribution, we have @f(x;t)

@t
= 0. We deduce, from the partial

di¤erential equations, the stationary distribution f(x) which satis�es the following
ordinary di¤erential equations:

1

2
�2x2f 00(x)+ (2�2� (g� ~g))xf 0(x)+ (�2� (g� ~g)� p)f(x)+ qf(x

�
)
1

�
= 0; x > x�

(18)
and

1

2
�2x2f 00(x) + (2�2 � (g � ~g))xf 0(x) + (�2 � (g � ~g)� p)f(x) = 0; x < x� (19)

Proposition 2 guarantees the existence and uniqueness of the solution of equa-
tions (18) and (19) with the boundary condtionsZ +1

0

f(x)dx = 1 (20)

and Z +1

0

xf(x)dx = 1 (21)

Condition (20) follows from the normalization of population size. Condition
(21), which is the mean preservation condition, is from equation (17).
The endogenous value x� is determined by government�s subsidy policy:

(p� q)x� + q
Z x�

�

0

(x� � �x)f(x)dx = q( p�
A�
)
1
 (1� �)

1�
 � + � � �: (22)

In the left hand side of equation (22), the term (p � q)x� is the government
subsidy to newborns whose parents do not have a bequest motive, and the term

q
R x�

�

0 (x� � �x)f(x)dx is the government subsidy to the newborns who receive
inheritance lower than x�. The term on the right hand side of equation (22),
q( p�
A�
)
1
 (1��)

1�
 �+���, is the subsidy to all the newborns from the government�s

budget.
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3.1. Pareto distribution

In this subsection, we �rst discuss the special case of no inheritance and then
proceed to the general case of inheritance. In both cases the stationary distribution
turns out to be a double Pareto distribution.

3.1.1. No inheritance

If agents do not have bequest motive, they leave no bequest to their children. The
starting wealth of the newborn is the government subsidy. This closes one of the
channels for the intergenerational transmission of inequality in wealth distribution,
and corresponds to the special case of q = 0 in the general model. From equations
(18) and (19), we know that the density function of the stationary distribution,
f(x), solves

1

2
�2x2f 00(x) + (2�2 � (g � ~g))xf 0(x) + (�2 � (g � ~g)� p)f(x) = 0; x 6= x�

All of the newborns are injected into the economy through the discounted wealth
level x� = ���

p
> 0.

Proposition 3. The stationary distribution in the no inheritance case has the
following kernel

f(x) =

�
C1x

��1 when x � x�
C2x��2 when x � x�

where �1 and �2 are the two roots of

�2

2
�2 � (3

2
�2 � (g � ~g))� + �2 � p� (g � ~g) = 0:

Then �1 =
3
2
�2�(g�~g)�

p
( 1
2
�2�(g�~g))2+2�2p
�2

and �2 =
3
2
�2�(g�~g)+

p
( 1
2
�2�(g�~g))2+2�2p
�2

.

When people die, there is a shift of the wealth level.19 By assumption, the
individual wealth growth rate is higher than the aggregate growth rate, g � ~g =
p�(���) > 0. The following proposition shows that f(x) is integrable on (0;+1)

19For the dying people whose wealth levels are higher than x� = ���
p , the wealth levels of

heirs shift down. For the dying people whose wealth levels are lower than x� = ���
p , the wealth

levels of heirs shift up.
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and therefore is a distribution function. Furthermore the proposition shows that
xf(x) is also integrable on (0;+1).

Proposition 4. �1 < 1 and �2 > 2.

The normalization condition, equation (20), gives us
R x�
0
C1x

��1dx+
R +1
x� C2x

��2dx =

1, and the mean preservation condition, equation (21), gives us
R x�
0
C1x

1��1dx+R +1
x� C2x

1��2dx = 1. Combining these two conditions, we can determine C1 and
C2.20 Reed (2001) uses moment generating functions to derive the stationary
distribution of a Geometric Brownian Motion process. The no inheritance case
treated here is an alternative way to derive the same distribution that Reed (2001)
derives.

3.1.2. The general case

Now we set p > q > 0 so that some agents have a bequest motive:

Proposition 5. The stationary distribution has the following kernel

f(x) =

�
C1x

��1 when x � x�
C2x��2 when x � x�

where �1 is the smaller root of the characteristic equation

�2

2
�2 � (3

2
�2 � (g � ~g))� + �2 � p� (g � ~g) = 0 (23)

and �2 is the larger solution of the characteristic equation

�2

2
�2 � (3

2
�2 � (g � ~g))� + �2 � p� (g � ~g) + q���1 = 0: (24)

The characteristic equations represent the forces that in�uence wealth inequal-
ity in the economy. Note that g � ~g = p � q( p�

A�
)
1
 (1 � �)

1�
 � (� � �) re�ects

the relative growth rate of individual wealth to the aggregate wealth. Through

20For an even simpler model that still generates the double Pareto distribution without in-
heritance and without government taxes and transfers, and where all agents are born with the
same positive initial wealth, see Appendix 8.10.
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this term the parameter of preference for bequests, �, and the capital tax rate, � ,
in�uence the Pareto coe¢ cients �1 and �2. The volatility of the price of the risky
asset is re�ected by the term � = ��r

�
. The capital tax rate, � , is one of the two

�scal policy tools of the government. The other policy tool is the estate tax rate,
�, which is re�ected in the intergenerational transmission term, � = (p�(1��)

A�
)
1
 .

The strength of bequest motive � also in�uences �. Note that while the volatility
of risky asset, �, in�uences the individual wealth growth rate, it does not in�u-
ence the relative growth rate of wealth. Therefore � does not in�uence the Pareto
coe¢ cient through the relative growth rate, g� ~g. On the other hand, the capital
tax rate, � , has an impact on the relative growth rate, but has no impact on the
volatility of wealth growth, �.
The following proposition characterizes the two solutions of the characteristic

equations (23) and (24).

Proposition 6. �1 < 1 and �2 > 2.

The proposition implies the integrability of f(x) and xf(x) on (0;+1). The
integrability of f(x)assures that it is a distribution function. But this does not
imply that the variance necessarily exists.
From the normalization condition,

R x�
0
C1x

��1dx+
R +1
x� C2x

��2dx = 1, and the

mean preservation condition,
R x�
0
C1x

1��1dx+
R +1
x� C2x

1��2dx = 1, we can deter-
mine the terms C1 andC2 of the stationary distribution density function, C1 = (1�
1��2
2��2

x�)(x�)�1�2 (2��1)(2��2)(1��1)
�2��1

and C2 = (1� 1��1
2��1

x�)(x�)�2�2 (2��1)(2��2)(1��2)
�2��1

.
With the explicit form of f(x), we can �nd the endogenous x� by equation

(22).

x� =
q( p�
A�
)
1
 (1� �)

1�
 � + � � � + �q � ��2�1(2��1)

�2��1
q

p� ��2�1(1��1)
�2��1

q

Both in cases of no inheritance and inheritance, the relative wealth ratios follow
double Pareto distributions. In the Appendix 8.8 we derive the Lorenz curve and
the Gini coe¢ cient of the double Pareto distribution.

4. The calibrated economy

We calibrate parameters to simulate our highly stylized and abstract model econ-
omy. We explore the numerical relationship between the Gini coe¢ cient and the
fundamental parameters. We choose the annual time discount rate, � = 0:03, the
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preference parameter for bequests, � = 15, the coe¢ cient of relative risk aversion,
 = 3, the annual risk-free interest rate, r = 1:8%, the annual average return
on the risky asset, � = 8:8%, which implies that the risk premium of the risky
asset is � � r = 7%, and the volatility of return of the risky asset, � = 0:26.21

As in Benhabib and Bisin (2006), we pick p = 0:016, which implies that agents
have an expected working life of 1

p
= 62:5 years. As noted earlier, under the

fair insurance market we set the life insurance price � = p = 0:016. Kopczuk
and Lupton (2006) �nd that roughly 3=4 of the elderly single population has a
bequest motive. Setting q

p
= 0:75 implies that q = 0:012. Following Friedman

and Carlitz (2005) we calibrate the e¤ective estate tax rate at � = 0:19: Since
only net government expenditures a¤ect results and play a role in the analysis,
we set government expenditures � = 0. This leaves the calibration of the capital
tax on wealth at � . Since we have � = 0 we have to consider � as net of capital
and income taxes that are collected for purposes other than redistribution. We
have to set � such that, together with estate taxes, it will generate the revenue
to subsidize transfer payments. These transfers, in discounted value, correspond
to the expected government wealth transfer to the young. At about 9 � 10%
of GDP in the US, transfers amount to about a trillion dollars or about $9; 000
per household.22 Discounted over working life at an interest rate of 6:5%, this
corresponds to an initial wealth of about $130; 000. Thus we set � = 0:004 so
that together with estate taxes, the capital taxes can �nance the redistributive
transfers.23 Section 5.1 and the tables in section 8.13 of the Appendix provide
sensitivity results for alternative calibrations of capital and estate taxes and other
parameters.

21Our calibration means that the volatility of the return of the risky asset is 3 times of the
mean of the return of the risky asset. This ratio is slightly higher than that of S&P 500 Index
during the perod of 1952-1999, which is 1:7794 in Campbell and Viceira (2002) to capture the
variance in returns of less diversi�ed portfolios including private business initiatives and private
assets.
22If we add state subsidies to public education, transfers would be even higher.
23From the U.S. 2004 Survey of Consumer Finances average household wealth is about

$448,000, so that total household wealth is about 50 trillion. At the calibrated estate tax
of 19% our model would produce a fraction q ���� of household wealth in estate taxes, amount-
ing to 86 billion, about 2.5-3 times the actual collection, but still a small fraction of government
revenues. As shown in the last table of the appendix, lowering � to match the actual collections
has little e¤ect on the results of our calibration. Note that in our model, relative to capital taxes
collected through � to �nance transfers for new households, estate taxes are quite small. In the
US economy they are insigni�cant.
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The following table reports the numerical results of the calibrated economy:

A ! � g ~g g � ~g �
Results 13988:6 0:345168 0:0954114 0:0107745 0:000187993 0:0105865 0:0897436

From the simulation results, the portfolio share that the agent invests in the
risky asset is ! = 0:345168. The bequest function is24 Z(s; t) = ( p�

A�
)
1
 (1 �

�)
1�
 W (s; t) = 0:117792W (s; t) so that purchased life insurance is given by P (s; t) =

p(Z(s; t) � W (s; t)) = �0:0141153W (s; t). Negative life insurance corresponds
precisely to annuities. Given, � ; and ! the average return on wealth, including
annuity receipts, is 5:18% and the individual consumption function is C(s; t) =
A�

1
W (s; t) = 0:0415026W (s; t).
The growth rate of the wealth of agents is g = 0:0107745;while the growth rate

of the aggregate economy, ~g; is almost zero. The reason for the low growth rates
is simple and can be explained to a rough approximation as follows. We calibrate
the riskless rate of return at 1:8% and the mean of the risky rate at 8:8%;to match
the 7% premium for risky asset. In the optimal portfolio 34% of wealth is held in
the risky asset, so that together with annuity receipts agents receive a return on
wealth of 5:18%: The Euler equation relates the consumption growth rate to the
di¤erence between the mean return on wealth and the discount rate, multiplied
by the intertemporal elasticity of substitution ��1 = 1

3
: Thus the small di¤erence

between the mean return on wealth and the discount rate necessarily results in
low growth rates. In section 4.5 we provide a sensitivity analysis by raising both
the riskless and the mean risky returns while maintaining the 7% risk premium,
and we obtain higher growth rates of wealth.
We can now plot the stationary distribution of wealth for this calibration, with

mean wealth normalized to 1:

In the simulated economy, x� = 0:313596;corresponding to $129; 000 or 31%
of mean household wealth of $448; 000; normalized to unity in our model. This is
very close to the discounted value of lifetime transfers of roughly $130; 000 that we
used in order to calibrate � above. When x < x�, the density of the distribution
is governed by C1 and �1 (the increasing part of the density in Figure 4.1). When

24The bequest function, abstracting from inter-vivos transfers, is only for the agents who do
leave bequests. Therefore for the pre-tax bequest �ow we must multiply the right side by q; so
bequest �ows are 0:0014W:
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Figure 4.1: Model Data

x > x�, the density is governed by C2 and �2 (the decreasing part of the density
in Figure 4.1). Let F � denote the percentage of the population whose wealth level
is lower than x�. The following table lists the parameters of the distribution:

x� F � �1 C1 �2 C2
Distribution 0:313596 0:30558 �1:96772 28:3256 2:30647 0:199409

Plugging the numbers of C1, �1, C2, �2, and x
� into the density function

f(x) =

�
C1x

��1 when x � x�
C2x��2 when x � x�
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we �nd that
f_(x

�)� f+(x�) = �0:0011666 (25)

where f_(x�) and f+(x�) are the left and right limit of the density function f(x)
at x�. We expect that f(x) will be continuous at x = x�. We rigorously prove
this result by �nding two boundary condtions of the stationary distribuion f(x)
at x = x�:

f_(x
�)� f+(x�) = 0 (26)

and

1

2
�2(x�)2[f 0_(x

�)� f 0+(x�)] = p
Z x�

�

0

f(x)dx+ (p� q)
Z +1

x�
�

f(x)dx (27)

where f 0_(x
�) and f 0+(x

�) are the left and right limit of f 0(x) at x�. Equation (26)
means that the density function f(x) is continuous at x = x�. Note that the right
hand side of equation (27) is exactly the injection of the newborns at x = x�. Thus
equation (27) relates the injection and the di¤erence between the left derivative
and the right derivative of f(x) at x = x�. For the two boundary conditions,
equations (26) and (27), we can not verify them explicitly in the general case, since
the equation (24) has no explicit solution. However, we can explicitly verify that
equations (26) and (27) are satis�ed in the no inheritance case. For the general
case, we employ numerical methods to check whether the boundary conditions are
satis�ed. Equation (25) and equation (28) below in the simulated results show
that both boundary conditions are satis�ed in our calibrated economy.

1

2
�2(x�)2[f 0_(x

�)�f 0+(x�)]�p
Z x�

�

0

f(x)dx�(p�q)
Z +1

x�
�

f(x)dx = �4:74491�10�7

(28)
The empirical wealth distribution from the U.S. 2004 Survey of Consumer

Finances displays (see Figure 4.2) the two power-law-like tails, albeit with some
jagged wiggles. Even though in our model we cannot generate the zero and nega-
tive wealth levels held by 8:9% of the population in the data, our model replicates
the "double Pareto" distribution. The mode of the empirical distribution is around
the zero wealth level, since unlike our model, it excludes the discounted value of
government transfers to households.

The prominent features of wealth distribution are the fat-tail and upper skew-
ness. Using quintiles and the Gini coe¢ cient we compare the wealth distribution
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Figure 4.2: U.S. Data

of our model economy with the U.S. wealth distribution data.25

Economy Gini F irst Second Third Fourth F ifth
United States 0:78 �0:39 1:74 5:72 13:43 79:49
Model 0:64 4:07 6:21 8:16 12:24 69:32

We further disaggregate the top groups, and compare the percentiles of the
wealth distribution for the United States and the benchmark model economies.

25The data of the U.S. economy in the following two tables are from Castaneda, Diaz-Gimenez
and Rios-Rull (2003).
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Economy 90th� 95th 95th� 99th 99th� 100th
United States 12:62 23:95 29:55
Model 8:84 15:75 34:33

Our model overpredicts the wealth share of the upper 1% wealth group. Our
prediction is 34:33%, while in the data the number is 29:55%. Our model un-
derpredicts the wealth share of the 90% � 95% group and 95% � 99% group.
The predicted shares are, respectively, 8:84% and 15:75% while in the data the
corresponding numbers are 12:62% and 23:95%. For the group of top 20%, the
predicted number is 69:32% which is lower than the number of data, 79:49%. The
model overpredicts the wealth shares held by the �rst, second and third quintile
group. Our model predicts a Gini coe¢ cient lower than that of data: Our pre-
diction is 0:64, while in the data Gini is 0:78. Much of the wealth inequality in
our model is due to the heavy upper tail. Our model predicts the heavy tail,
but underpredicts the Gini of the wealth distribution as a whole. This in part
is because we do not capture the inequalities in wealth induced by disparities in
labor earnings.

4.1. Wealth distribution conditional on age

Within the same age group, even though the agents have the same age, they have
the di¤erent starting wealth levels and the realizations of the stochastic rate of
return. These two factors generate wealth inequality within an age cohort. The
wealth distribution within the age 0 group stems from the initial wealth inequality
of newborns. It re�ects the heterogeneity of their inheritance. This distribution
has a mass point, x�, which has a positive probability. All the newborns, including
those who do not receive inheritance (since their parents do not have bequest mo-
tive) and those whose inheritance is lower than the threshold level x� (even though
their parents have bequest motive), have a starting wealth x�. For older cohorts,
the distribution of wealth also re�ects the element of luck coming from stochastic
returns. For a �xed starting wealth level, and for luck driven by Brownian mo-
tion, the distribution of wealth conditional on age t is lognormal. In Appendix 8.8
we derive the distribution of wealth within age groups. We can plot the wealth
distribution conditional on age in our simulated model. The wealth distribution
within age groups also display upper skewness and fat tails.

To investigate the relationship between wealth inequality within the cohort
and the age, we plot the Gini coe¢ cient of the wealth distribution within the age
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Figure 4.3: Wealth Distribution by Age Cohorts

group for ages 1 to age 80.26 We �nd that the wealth inequality decreases as age
goes up.27

26We do not plot the Gini coe¢ cient of wealth distribution within age 0 (newborn) cohort,
even though it is an interesting distribution.
27Huggett (1996) also studies the wealth inequality within age groups and notes a U shape:

the Gini coe¢ enct declines to about agee 50 and then picks up again. See also Hendricks (2007)
for empirical �ndings that the Gini coe¢ cient declines with age of cohorts.
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Figure 4.4: Gini by Age Cohorts

4.2. Inequality and bequests

Wealth inequality decreases as the parameter of bequest motive, �, increases.
On the one hand, when people have stronger bequest motives and leave higher
bequests, the wealth process becomes more persistent across generations. More
wealth inequality is inherited. On the other hand, if people purchase more life
insurance or buy fewer annuities, the aggregate growth rate of wealth increases and
the relative growth rate of individual wealth decreases. The lower relative growth
rate of wealth causes the wealth distribution to become more equal. The simulated
results below show that the relative growth e¤ect dominates the inheritance e¤ect.
Therefore a higher bequest motive, �, implies a lower Gini coe¢ cient. We cut a
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slice of � = 0:26 in Figure 4.5 to highlight this relationship:

� �1 �2 Gini
14 �1:97299 2:30493 0:637806
15 �1:96772 2:30647 0:636731
16 �1:9627 2:30795 0:635706
17 �1:95789 2:30936 0:634729

4.3. Inequality and the volatility of the risky asset

Wealth inequality decreases as the volatility of the risky asset increases. This
counter-intuitive result is mainly due to the endogenous choice of the risky asset.
When the volatility of risky asset increases, people hold a smaller share of risky
asset, and in e¤ect the volatility of the overall portfolio declines. The net e¤ect of
the portfolio reallocation and lower volatility of the wealth portfolio in turn lowers
inequality. This �rst channel is the direct volatility e¤ect on inequality. From the
expression for A in Proposition 1, A increases as the volatility of the risky asset, �,
increases. By the formula (10) we also know that the higher is A, the higher is the
relative growth rate. The second channel through which the volatility of the risky
asset in�uences inequality is through the relative growth rate of the individual
wealth: higher volatility implies a higher relative growth rate and therefore more
inequality. The third channel works through the in�uence of the volatility of the
risky asset on the bequests. By the formula (14), the higher is A, the lower is
�. This means that the wealth process across generations becomes less persistent
as the volatility of the risky asset, �, increases. This channel reduces wealth
inequality when the volatility of the risky asset increases. In our simulation, the
direct portfolio e¤ect of volatility and the bequest e¤ect dominate the growth
e¤ect, so inequality declines with volatility. Setting � = 15, we can show the
relationship between inequality and the volatility of the risky asset:

� �1 �2 Gini
0:2 �0:820429 2:25666 0:690649
0:21 �0:992948 2:26628 0:67958
0:22 �1:17291 2:27534 0:669451
0:23 �1:36038 2:28385 0:66018
0:24 �1:55528 2:29185 0:651688
0:25 �1:75772 2:29942 0:643865
0:26 �1:96772 2:30647 0:636731
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Figure 4.5: Gini by return volatility and bequest motive

We plot the relationship between the Gini coe¢ cient, the preference for be-
quests, �, and the volatility of the risky asset, �, in Figure 4.5. For the simulated
numbers, see the �rst table in section 8.13 of the Appendix.
Inequality and risk aversion
Risk aversion a¤ects wealth inequality through all the three channels: growth,

volatility and inheritance. We set � = 15 and � = 0:26 to simulate the economy
for  = 2,  = 2:5 and  = 3. The Gini coe¢ cient decreases with the increase of
the coe¢ cient of relative risk aversion.

 �1 �2 Gini
2 �0:366113 2:24326 0:714494
2:5 �1:09162 2:28013 0:667223
3 �1:96772 2:30647 0:636731
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4.4. Inheritance, stochastic return and the age e¤ect

We now explore the roles of inheritance, age, and stochastic rates of the capital
return on wealth inequality. We investigate special cases to isolate the e¤ect of
each of these factors. To identify the e¤ect of these three factors we construct two
schemes. In scheme I, we �rst eliminate the investment opportunity of agents in
the risky asset. Our model reduces to that of Benhabib and Bisin (2006). After
we close the channel of stochastic returns, we �nd that the Gini coe¢ cient of the
economy decreases. Comparing the Gini coe¢ cient of this special economy with
the general case, we isolate the e¤ect of the luck on wealth inequality. We then
eliminate the bequest motive by setting � = 0, and study an economy without
luck or inheritance. In scheme II, we �rst limit the age e¤ect by setting the wealth
growth rate of the agent relative to the growth rate of the economy to be as low as
possible. Comparing the Gini coe¢ cient of this special economy with that of the
general case, we estimate the age e¤ect. We then close the inheritance channel
while keeping the relative growth rate as low as possible to identify the e¤ect of
inheritance on wealth inequality.

4.4.1. Scheme I

Stochastic rates of capital return We disentangle the contribution of sto-
chastic rates of capital return to wealth inequality by shutting down the investment
opportunity in the risky asset. In the economy without risky asset, the agent�s
discounted wealth can not be lower than the threshold level, x�. The stationary
distribution of wealth is a Pareto distribution:

f(x) = C2x
��2 x � x�

where C2 = (�2 � 1)(x�)�2�1 and �2 satis�es the characteristic function

(g � ~g)� � p� (g � ~g) + q���1 = 0:

From the balance in the government budget, we have

(p� q)x� + q
Z x�

�

x�
(x� � �x)C2x��2dx = q(

p�

A�
)
1
 (1� �)

1�
 � + � � �
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We can determine x�as

x� =
q( p�
A�
)
1
 (1� �)

1�
 � + � � �

p+ 1
�2�2

q��2�1 � �2�1
�2�2

q�

In the stationary distribution, the Gini coe¢ cient is28

G =
1

2�2 � 3

For the standard calibration of our model, the Gini coe¢ cient without risky asset
is 0:439633. Comparing this Gini coe¢ cient with that of the economy with risky
asset, 0:636731, we �nd that the Gini coe¢ cient decreases by about 31% when we
close the investment opportunity for the risky asset. We can view this number as
the contribution of luck to wealth inequality.

Intergenerational transmission and age e¤ect After we close the channel
for stochastic returns our model reduces to that of Benhabib and Bisin (2006).
In order to close the intergenerational transmission channel, we set � = 0. Note
that in the standard calibration of section 4, � = 15. The wealth process is more
persistent across generations with inheritance than without. When people have
bequest motives and leave higher bequests, more of the wealth inequality is inher-
ited. On the other hand if people leave bequests, they receive smaller annuities
and consume less. The growth rate of the aggregate economy increases because
the initial wealth of agents at birth is higher due to higher bequests. As shown in
Proposition 1 however, for our CRRA preferences the individual agent�s growth
rate is not in�uenced by the bequest motive parameter �. When the aggregate
economy grows faster, the lucky agents who earn high returns relative to the econ-
omy will not break away as easily and leave others behind by as much. The lower
relative wealth growth rate, g � ~g; therefore causes the wealth distribution to be-
come more equal. The simulated results below show that in fact the growth e¤ect
dominates the inheritance e¤ect. Therefore we can have a higher Gini coe¢ cient
after we close the intergenerational transmission channel. Surprisingly, a stronger
bequest motive and higher inheritance rates may decrease wealth inequality.

28See, for example, Chipman (1974). Note that in standard terminology the Pareto exponent
corresponds to �2 � 1 in our model.
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� g ~g g � ~g �2 x� Gini
0 0:018 0:006 0:012 2:33333 0:25 0:6
15 0:018 0:00867146 0:00932854 2:63731 0:389242 0:439633

The empirical literature initiated by Kotliko¤and Summers (1981) emphasizes
the role of bequests on the wealth accumulation. They show that life cycle savings
without intergenerational transfers and bequests cannot account for the level of
the U.S. capital stock. Updating the work of Kotliko¤ and Summers, Gale and
Sholtz (1994) show that inheritances (even excluding accidental bequests) plus
various inter-vivos transfers account for at least 50% of the accumulation and
transmission of the U.S. capital stock.
If we completely shut down the age e¤ect on the other hand, for example by

raising the tax rate � to set the relative growth rate g � ~g = 0; the long-run
stationary distribution becomes degenerate and its support consists of only x�.
Without luck or stochastic returns, inheritance alone will not generate or amplify
inequality in the stationary distribution.

4.4.2. Scheme II

Age e¤ect In this experiment we allow the stochastic return to remain and we
pick � = 0:0107 so that the relative growth rate is g � ~g � 1

2
�2. Note that with

stochastic returns 1
2
�2 is the lowest bound for g � ~g that yields a non-degenerate

stationary distribution. In this economy, the Gini coe¢ cient is 0:402667 whereas
in our benchmark economy the Gini coe¢ cient is 0:636731. After we close the age
e¤ect, the Gini coe¢ cient decreases by about 37%. We can view this number as
the lower bound for the contribution of the age e¤ect to wealth inequality.

Inheritance We now pick � = 0 in order to close the inheritance or intergen-
erational transmission channel. We set � = 0:011973 so that the economy-wide
relative growth rate is g � ~g = 1

2
�2. In this economy the Gini coe¢ cient becomes

0:401526. Relative to the case with inheritance and no age e¤ect, the Gini is
marginally lower.
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4.5. Sensitivity analysis for rates of return

Here we explore increasing rates of return so as to obtain higher growth rates
for the economy. To keep the risk premium at 7%, we adjust upwards both the
return of the riskless asset and the return on the risky asset. We show the e¤ects
of raising the rates of return on the consumption function, the bequest function,
the individual wealth growth rate and aggregate wealth growth rate. The higher
are the rates of return, the higher is aggregate growth rate of the economy, ~g.

A ! � g ~g g � ~g �
r = 1:8%; � = 8:8% 13988:6 0:345168 0:095411 0:010774 0:000187 0:010586 0:089743
r = 2%; � = 9% 12774:4 0:345168 0:098343 0:011441 0:000898 0:010543 0:089743
r = 3%; � = 10% 8419:67 0:345168 0:113004 0:014774 0:004448 0:010325 0:089743
r = 4%; � = 11% 5839:38 0:345168 0:127664 0:018107 0:007999 0:010108 0:089743
r = 5%; � = 12% 4214:38 0:345168 0:142325 0:021441 0:011549 0:009891 0:089743
r = 6%; � = 13% 3140:5 0:345168 0:156985 0:024774 0:015100 0:009674 0:089743
r = 7%; � = 14% 2402:58 0:345168 0:171646 0:028107 0:018650 0:009457 0:089743
r = 8%; � = 15% 1878:8 0:345168 0:186306 0:031441 0:022201 0:009239 0:089743

The di¤erent wealth accumulation processes in the di¤erent economies result
in the di¤erent stationary distributions of wealth. The e¤ects of increasing the
returns on capital are shown in the following table.

x� F � �1 C1 �2 C2 Gini
r = 1:8%; � = 8:8% 0:313596 0:30558 �1:96772 28:3256 2:30647 0:199409 0:636731
r = 2%; � = 9% 0:315502 0:30647 �1:96029 27:5945 2:30866 0:200566 0:635217
r = 3%; � = 10% 0:325052 0:31095 �1:92333 24:2825 2:31964 0:206376 0:627737
r = 4%; � = 11% 0:334644 0:315486 �1:88666 21:4657 2:33078 0:212233 0:620396
r = 5%; � = 12% 0:344287 0:320079 �1:85029 19:0571 2:34207 0:218147 0:613184
r = 6%; � = 13% 0:353988 0:324729 �1:81422 16:9874 2:35353 0:224124 0:606098
r = 7%; � = 14% 0:363749 0:329437 �1:77846 15:2009 2:36516 0:230169 0:599133
r = 8%; � = 15% 0:373576 0:334203 �1:74301 13:6523 2:37698 0:236289 0:592287
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5. Redistributive Policies

We now investigate the impact of redistributive government policy on wealth in-
equality and aggregate welfare in our calibrated model. Government �scal policies
a¤ect wealth inequality through their e¤ect on the relative growth rate, bequests
and the redistributive subsidy. Note that government policy has no impact on
the portfolio choice of the risky asset, and does not in�uence the volatility of
individual wealth.

5.1. Tax and wealth inequality

Capital and estate taxes in�uence wealth inequality through the relative growth
rate of wealth, g� ~g, through their e¤ect on the intergenerational transmission of
wealth and through their redistributive e¤ects. Neither of the government policy
tools has an impact on the volatility of wealth. In Figure 5.1 we plot the Gini
coe¢ cient as a function of the capital tax rate, � , and the estate tax rate, �.29

For the simulated numbers, see the last table in section 8.13 of the Appendix.
We calculate the Gini coe¢ cients for combinations of the capital tax, � and

the estate tax, �, in a parameter region such that g > 0, ~g > 0 and g�~g� 1
2
�2 � 0.

The minimum value of the Gini coe¢ cient is 0:4020, obtained for � = 0:95 and
� = 0:0047 where both � and � are on the boundary of the parameter region and
cannot be further increased.
The higher is the capital tax, � , the lower is the relative growth rate, g� ~g. A

lower g � ~g implies that the wealth distribution is more equal. The higher is the
capital tax, � , the lower is the intergenerational transmission parameter, �. Lower
� implies that the wealth process between two consecutive generations becomes
less persistent and the wealth distribution becomes more equal. Furthermore when
� increases, x� increases. In our calibrated economy therefore, a higher � implies
a lower Gini coe¢ cient.
The higher the estate tax, �, the lower is the relative growth rate, g � ~g.

At the same time the higher the estate tax, �, the lower is the intergenerational
transmission parameter, �. The e¤ect of � on g � ~g and � can be obtained by
analyzing equations (10) and (14). Furthermore, the higher is the estate tax, �, the
higher is the bequest that the agent leaves to his children to partly o¤set the higher
estate taxes. Thus a higher estate tax rate implies a lower consumption propensity
and a larger bequest. The aggregate growth rate of the economy increases because

29In Figure (5.1), the range of � is 0:004� 0:0099 and the range of � is 0� 0:6.
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Figure 5.1: Gini by taxes
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of the higher bequest levels. This in turn decreases the di¤erence between the
individual wealth growth rate and the aggregate growth rate since the estate tax
� has no impact on the individual wealth growth rate. The wealth distribution
is more equal as g � ~g decreases. The wealth process between two consecutive
generations becomes less persistent when � decreases. Furthermore x� increases
as � increases. The overall e¤ect of a higher � therefore is a lower the Gini
coe¢ cient.
These results on the e¤ects of taxes are consistent with our intuition: redis-

tributive policies tend to reduce wealth inequality.

5.2. Taxes and welfare

Government policies in�uence both the individual utilities and the wealth dis-
tribution in the economy. We take aggregate welfare to be the integral of the
individual utilities with respect to the cross-sectional wealth distribution. Thus
we simply add the utilities of those currently alive. We compute aggregate welfare
of the economy and �nd the optimal government �scal policies.
There are two kinds of people in the economy. People with a bequest motive

account for q
p
in the population. And people without a bequest motive account

for 1 � q
p
in the population. In section 8.11 of the Appendix we the derive the

value function of people with bequest motives:

U(w) =
1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)

(1 + (p�)
1
�

�1
 (1� �)

1�
 )

!�
w1�

and the value function of people with no bequest motive:

U0(w) =
1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)



!�
w1�

The aggregate welfare of the economy is the weighted sum of the individual utilities
with weights according to the cross-sectional wealth distribution of the two groups
of agents.


(� ; �) =
q

p

Z +1

0

U(w)f(w)dw +
p� q
p

Z +1

0

U0(w)f(w)dw
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In section 8.11 of the Appendix we derive the aggregate welfare function:


(� ; �) = [
q

p

1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)

(1 + (p�)
1
�

�1
 (1� �)

1�
 )

!�

+
p� q
p

1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)



!�
]�

[
C1

2�  � �1
(x�)2���1 � C2

2�  � �2
(x�)2���2 ]

Note that �1 and �2 are functions of capital tax rate, � , and estate tax rate, �.
Note also that �2 has a non-linear relationship with � , and �. In section 8.11 of
the Appendix, we show that the aggregate welfare function is well-de�ned when
�1 < �1. In Figure (5.2) we plot welfare as a function of the capital tax rate, � ,
and the estate tax rate, �.30

For the set of combinations of the capital tax, � and the estate tax, �, such
that g > 0, ~g > 0, g�~g� 1

2
�2 � 0 and �1 < �1, we calculate the aggregate welfare

for our calibrated economy. The maximum of the welfare function is obtained for
� = 0:18 and � = 0:0063. The estate tax is very close to our calibration in the
benchmark economy, but maximizing social welfare requires a high capital tax
because our social welfare function, weighting only generations currently alive,
puts a high emphasis on equality. Setting � = 0:0063 decreases the relative
growth rate so that the Gini coe¢ cient for the tax rates maximizing social welfare
is now 0:5260: Of course a di¤erent welfare speci�cation that puts more weight
on future generations by including the utilities of those not yet born would put a
higher weight on growth, and shift the optimal taxes from � that does not a¤ect
individual growth rates to � that does.

6. A lump-sum subsidy policy

Previously we discussed a welfare policy for which only those newborns whose
inheritance is lower than x� receive a subsidy. Here we discuss the alternative
policy where all the newborns receive a subsidy.31 Note that this subsidy, after

30In Figure (5.2), the range of � is 0:004� 0:0099 and the range of � is 0� 0:5.
31See Huggett (1996) for a calibrated model where accidental bequests are distributed equally

to everyone, not just newborns. DeNardi (2004) also has some speci�cations of calibrated models
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adjusting the redistributive taxes for a balanced government budget, can also
be interpreted as the discounted value of lifetime labor earnings received by all
newborns. As we point out in section 2, the total subsidies to the newborns do not
depend on how the subsidies are distributed to the newborns. Equation (8) gives
us the total subsidies to the newborns. Under the lump-sum subsidy policy, each
newborn with or without inheritance receive the same subsidy, which we denote
by b(t).

b(t) =
q( p�
A�
)
1
 (1� �)

1�
 � + � � �

p
W (t) (29)

Change of the subsidy policy from that in section 3 to the lump-sum sub-
sidy policy only in�uences the change of wealth between two consecutive genera-
tions, while the individual wealth accumulation equation and the aggregate wealth
growth rate are the same as those in section 2.
Now let

x� =
q( p�
A�
)
1
 (1� �)

1�
 � + � � �

p

Note also that by equation (29) newborns without any inheritance are injected
into the economy with the wealth level of x�W (t). Furthermore x� here is di¤erent
from that in equation (22).
We still investigate the stochastic process of the ratio of individual wealth to

aggregate wealth. Even though the change of wealth between two consecutive
generations here is di¤erent from that in section 3, the stochastic process during
the agent�s life time is the same as that in section 3. For large x, we can write the
equation to characterize the evolution of the cross-sectional wealth distribution
which is similar to equation (15) in section 3. An argument similar to Proposition
2 guarantees the existence and uniqueness of the stationary distribution. The
stochastic process converges to the unique stationary distribution from any initial
distribution. The stationary distribution f(x) now satis�es

1

2
�2x2f 00(x)+(2�2�(g�~g))xf 0(x)+(�2�(g�~g)�p)f(x)+qf(x� x

�

�
)
1

�
= 0 when x >

x�

1� �
(30)

Note that equation (30) di¤ers from equation (18) only by x� in the last term:
qf(x�x

�

�
)1
�
as opposed to qf(x

�
)1
�
. For large x, the in�uence of the shift term, x�,

where accidental bequests are equally distributed to the population.
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can be ignored in qf(x�x
�

�
)1
�
. The solution of equation (30), f(x), is approximated

by the solution of equations (18) and (19). Therefore the stationary wealth dis-
tribution under the lump-sum subsidy policy has an approximately Pareto upper
tail, and is approximated by the stationary distribution in Proposition 5 for large
x.

7. Conclusions

There are three basic forces in our model that cause wealth inequality: stochastic
rates of return, age, and inheritance. The e¤ects of age and stochastic returns
are captured by the mean relative growth rate and the volatility of the Geo-
metric Brownian Motion. The role of inheritance is represented by the bequest
motive which generates further jumps and reshu ing in the stochastic process
for wealth accumulation. Geometric Brownian Motion coupled with the exponen-
tial death rate, despite the complications introduced by inheritance, generates a
double Pareto distribution as the stationary distribution of wealth.
The dispersion of the age distribution causes wealth inequality because those

who remain alive have an individual growth rate of wealth higher than the ag-
gregate growth rate of the economy. The stochastic return of the wealth itself
is a source of wealth inequality. And inheritance plays a role by perpetuating
wealth inequality across generations while at the same time limiting dispersion by
increasing the relative aggregate growth rate. The heterogeneity of the bequest
motive, the estate taxes, as well as the annuities assure the existence of stationary
distribution of wealth: together they restrict the spread of the Geometric Brown-
ian Motion. Inheritance and luck are also responsible for generating a skewed
distribution of wealth conditional upon age, that is for every age cohort.
Our rough calibration and simulation exercises disentangle some of the main

sources of wealth inequality: stochastic returns, age and inheritance. Luck, or
the stochastic rate of capital return contributes about 31% to wealth inequality in
terms of the Gini coe¢ cient and the age e¤ect contributes about 37%. We show
that surprisingly, inheritance can decrease wealth inequality because it increases
the growth rate of aggregate wealth relative to individual wealth.
Finally, we show that government redistributive policies have important con-

sequences for wealth inequality and welfare through their e¤ects on the relative
growth rates of wealth, on bequests, and on the size of government subsidies.
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8. Appendix

8.1. Proof of Proposition 1.

Proof: Let J(W (s; t)) be the optimal value of the agent with wealth W (s; t). Fol-
lowing Merton (1992) and Kamien and Schwartz (1991), we set up the Hamilton-
Jacobi-Bellman equation of the maximization problem

(� + p)J(W (s; t))

= max
C;!;P

fC(s; t)
1�

1�  + p�
((1� �)Z(s; t))1�

1� 
+JW (W (s; t))[(r � �)W (s; t) + (�� r)!(s; t)W (s; t)� C(s; t)� P (s; t)]

+
1

2
JWW (W (s; t))�

2!2(s; t)W 2(s; t)g

Using the relationship

Z(s; t) =W (s; t) +
P (s; t)

�

we �nd the �rst order conditions:

C(s; t)� = JW
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p�(1� �)1�Z(s; t)� 1
�
= JW

(�� r)JWW (s; t) = �JWW�
2!(s; t)W 2(s; t)

We guess the value function

J(W (s; t)) =
A

1� W (s; t)
1�

where A is the undetermined constant. Then we �nd the expressions of C(s; t),
Z(s; t), P (s; t), and !(s; t) from the �rst order conditions

C(s; t) = A�
1
W (s; t)

Z(s; t) = (
p�

A�
)
1
 (1� �)

1�
 W (s; t)

P (s; t) = (�1�
1
 (
p�

A
)
1
 (1� �)

1�
 � �)W (s; t)

!(s; t) =
�� r
�2

Plugging these equations into the Hamilton-Jacobi-Bellman equation, we can de-
termine the constant A:

A =

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)

(1 + (p�)
1
�

�1
 (1� �)

1�
 )

!�
From the budget constraint we obtain the wealth accumulation equation

dW (s; t) = [
r � � + �� � � p


+
1 + 

2

(�� r)2
�2

]W (s; t)dt+
�� r
�

W (s; t)dB(s; t):

8.2. Derivation of the forward Kolmogorov equation

Following Ross (1996), we heuristically derive the forward Kolmogorov equations
(14) and (15).
Let f(x; t; y) be the probability density of X(t), given X(0) = y. By the

Markovian property of the process

PrfX(t) = xjX(0) = y;X(t��t) = ag = PrfX(�t) = xjX(0) = ag = PrfDB = log x�log ag
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where DB is a normal distribution with mean of (g � ~g � 1
2
�2)�t, and variance

of �2�t. Let fDB(�) be the density function of the normal distribution with mean
of (g � ~g � 1

2
�2)�t, and variance of �2�t.

When x > x�, we have

f(x; t; y) = (1� p�t)
Z +1

0

f(a; t��t; y)fDB(log x� log a)
1

x
da+ q�t � f(x

�
; t��t; y)1

�

= (1� p�t)
Z +1

0

[f(x; t; y) + (a� x) @
@x
f(x; t; y)��t @

@t
f(x; t; y)

+
(a� x)2
2

@2

@x2
f(x; t; y)]fDB(log x� log a)

a

x
d log a

+q�t � f(x
�
; t��t; y)1

�
+ o(�t)

= (1� p�t)(1� (g � ~g)�t+ �2�t)f(x; t; y) + (1� p�t)(2�2 � (g � ~g))�tx @
@x
f(x; t; y)

�(1� p�t)�t @
@t
f(x; t; y) + (1� p�t)�

2

2
x2�t

@2

@x2
f(x; t; y) + q�t � f(x

�
; t��t; y)1

�

+o(�t)

where we use the Taylor expansion in the second and third equality. Divide by
�t on both sides and let �t! 0

@

@t
f(x; t; y) = (�2 � p� (g � ~g))f(x; t; y) + (2�2 � (g � ~g))x @

@x
f(x; t; y)

+
1

2
�2x2

@2

@x2
f(x; t; y) + qf(

x

�
; t; y)

1

�
; x > x�

Then

@f(x; t)

@t
=
1

2

@2

@x2
(�2x2f(x; t))� @

@x
((g�~g)xf(x; t))�pf(x; t)+qf(x

�
; t)
1

�
; x > x�:

Similarly, we have

@f(x; t)

@t
=
1

2

@2

@x2
(�2x2f(x; t))� @

@x
((g � ~g)xf(x; t))� pf(x; t); x < x�
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8.3. Proof of Proposition 2

Proof: Following Benhabib and Bisin (2006), we use the Embedded Markov Chain
method to establish the ergodicity of the wealth distribution of newborns, which
then implies the ergodicity of the wealth distribution of the whole economy.
As in Karlin and Taylor (1981), we construct the embedded Markov Chain

from the continuous time process, X(�; t). Let t1, t2, t3, � � � , denote the birthday
of the generation 1, generation 2, generation 3,� � � . By our notation, their starting
wealth is X(t1; t1), X(t2; t2), X(t3; t3), � � � .
Let

�0 = X(�; 0); �n = X(tn; tn); n = 1; 2; 3; � � �
Thus �n is the newborns�s starting wealth. Note that the state space for �n is
S = [x�;+1) by the subsidy policy of the government. The stochastic process
�n is a Markov Chain. Note that the duration of the life follows an exponential
distribution with parameter p. When the agent is alive, his wealth follows a
Geometrical Brownian Motion as in equation (12). Given the government subsidy
policy for the newborns, the transition probability of �n is

P (�n = x� j �n = x) =
p� q
p

+

Z x�

0

Z +1

0

qe�pt
1

y

1p
2�t�2

exp[�
(log(y

�
)� log(x)� (g � ~g � 1

2
�2)t)2

2t�2
]dtdy

and

P (�n = y j �n = x)

=

Z +1

0

qe�pt
1

y

1p
2�t�2

exp[�
(log(y

�
)� log(x)� (g � ~g � 1

2
�2)t)2

2t�2
]dt for y > x�

By Theorem 16.0.2 of Meyn and Tweedie (1993), f�ng1n=0 will be uniformly
ergodic whenever the state space S = [x�;+1) is vm-small for some m.

De�nition 1. Small sets
A set C 2 B(S) is called a small set if there exists an m > 0, and a non-trivial

measure vm on B(S), such that for all s 2 C, B 2 B(S), Pm(s; B) � vm(B).32

32B(S) is the Borel �-algebra on S.
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To see that the state space S is a small set for m = 1, we just need to de�ne
a non-trivial measure v1 on B(S) by, for 8B 2 B(S)

v1(B) =

� p�q
p

if fx�g 2 B
0 otherwise

:

8.4. Proof of Proposition 3

Proof: Plugging f(x) = Cx�� into the ordinary di¤erential equation

1

2
�2x2f 00(x) + (2�2 � (g � ~g))xf 0(x) + (�2 � (g � ~g)� p)f(x) = 0

we have the characteristic equation

�2

2
�2 � (3

2
�2 � (g � ~g))� + �2 � p� (g � ~g) = 0

This quadratic equation has two roots

�1 =

3
2
�2 � (g � ~g)�

q
(1
2
�2 � (g � ~g))2 + 2�2p
�2

and

�2 =

3
2
�2 � (g � ~g) +

q
(1
2
�2 � (g � ~g))2 + 2�2p
�2

:

8.5. Proof of Proposition 4

Proof: From Proposition 3, we have

�1 < 1,
3
2
�2 � (g � ~g)�

q
(1
2
�2 � (g � ~g))2 + 2�2p
�2

< 1

, 1

2
�2 � (g � ~g) <

r
(
1

2
�2 � (g � ~g))2 + 2�2p
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The last inequality obviously holds. Then �1 < 1. Similarly,

�2 > 2,
3
2
�2 � (g � ~g) +

q
(1
2
�2 � (g � ~g))2 + 2�2p
�2

> 2

,
r
(
1

2
�2 � (g � ~g))2 + 2�2p > 1

2
�2 + (g � ~g)

, p > g � ~g

The last inequality holds since our assumption that government revenue is
greater than the government expenditure, implies that g � ~g = p � (� � �) < p.
Then �2 > 2.

8.6. Proof of Proposition 5

Proof: Plugging f(x) = Cx�� into the ordinary di¤erential equation

1

2
�2x2f 00(x) + (2�2 � (g � ~g))xf 0(x) + (�2 � (g � ~g)� p)f(x) = 0; x < x�

we have the characteristic equation

�2

2
�2 � (3

2
�2 � (g � ~g))� + �2 � p� (g � ~g) = 0:

Plugging f(x) = Cx�� into the ordinary di¤erential equation

1

2
�2x2f 00(x)+(2�2� (g� ~g))xf 0(x)+(�2� (g� ~g)�p)f(x)+ qf(x

�
)
1

�
= 0; x > x�

we have the characteristic equation

�2

2
�2 � (3

2
�2 � (g � ~g))� + �2 � p� (g � ~g) + q���1 = 0:
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8.7. Proof of Proposition 6

Proof33: We �rst prove that �1 < 1. From Proposition 5, we know

�1 =

3
2
�2 � (g � ~g)�

q
(1
2
�2 � (g � ~g))2 + 2�2p
�2

Thus

�1 < 1,
3
2
�2 � (g � ~g)�

q
(1
2
�2 � (g � ~g))2 + 2�2p
�2

< 1

, 1

2
�2 � (g � ~g) <

r
(
1

2
�2 � (g � ~g))2 + 2�2p

The last inequality obviously holds. Then �1 < 1.
We then prove that �2 > 2. Let �(�) =

�2

2
�2 � (3

2
�2 � (g � ~g))� + �2 � p �

(g � ~g) + q���1. Since �2

2
> 0, we know that

lim
�!�1

�(�) = +1 and lim
�!+1

�(�) = +1:

Note that �(1) = q � p < 0. And

�(2) = g � ~g � p+ q�

= p� q( p�
A�
)
1
 (1� �)

1�
 � (� � �)� p+ q(p�(1� �)

A�
)
1


= �(q( p�
A�
)
1
 (1� �)

1�
 � + � � �) < 0

The last inequality is from the assumption that government revenue is greater
than the government expenditure. By the continuity of �(�), we know that there
exists � < 1, such that �(�) = 0, and there exists � > 2 such that �(�) = 0.
Since the function �(�) is convex, it can have at most two roots. Then the unique
�2 > 2.

33For this proof, we beni�t from the discussion with Henry P. McKean.
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8.8. Gini coe¢ cient of a double Pareto distribution

Following Nygard and Sandstrom (1981) and Gastwirth (1971), we derive the
Lorenz curve, and Gini coe¢ cient of a double Pareto distribution.34

The cumulative distribution function (CDF) of a double Pareto distribution is

F (x) =

Z x

0

C1v
��1dv =

C1
1� �1

x1��1 When x � x�

and

F (x) =

Z x�

0

C1v
��1dv +

Z x

x�
C2v

��2dv = 1� C2
�2 � 1

x1��2 When x � x�

Let x(F ) be the inverse of the CDF.

x = (
1� �1
C1

F )
1

1��1 When x � x�

and

x = [
�2 � 1
C2

(1� F )]
1

1��2 When x � x�

The function of Lorenz curve is

L(F ) =

R x(F )
0

xf(x)dxR +1
0

xf(x)dx
=

R F
0
x(F 0)dF 0R 1

0
x(F 0)dF 0

=

Z F

0

x(F 0)dF 0

where x(F ) is the inverse of the CDF.
Let F � = F (x�) = C1

1��1
(x�)1��1 . When F � F �

L(F ) =

Z F

0

x(F 0)dF 0 = (
1� �1
C1

)
1

1��1
1� �1
2� �1

F
2��1
1��1

34This is also an extension of the derivation of Lorenz curve and Gini coe¢ cient for a Pareto
distribution from Wikipedia (http://en.wikipedia.org/wiki/Pareto_distribution) to a double
Pareto distribution.

51



When F � F �

L(F ) =

Z F

0

x(F 0)dF 0

=

Z F �

0

x(F 0)dF 0 +

Z F

F �
x(F 0)dF 0

=
C1

2� �1
(x�)2��1 +

Z F

F �
x(F 0)dF 0

=
C1

2� �1
(x�)2��1 + (

�2 � 1
C2

)
1

1��2
1� �2
2� �2

f[1� F �]
2��2
1��2 � (1� F )

2��2
1��2 g

The Gini coe¢ cient of a double Pareto distribution is

G = 1� 2
Z 1

0

L(F )dF

= 1� 2
Z F �

0

L(F )dF � 2
Z 1

F �
L(F )dF

= 1� 2(1� �1
C1

)
1

1��1
1� �1
2� �1

1� �1
3� 2�1

(F �)
3�2�1
1��1 � 2 C1

2� �1
(x�)2��1(1� F �)

�2(�2 � 1
C2

)
1

1��2
1� �2
3� 2�2

(1� F �)
3�2�2
1��2 :

8.9. Two boundary conditions of the stationary distribution at x = x�

Proof35: First, we see the in�nitesimal generator of the stochastic process, L,
acting on h in the domain of the operator L, D(L) � C20 [0;+1).36

(Lh)(x) := lim
t!0

Exh(Xt)� h(x)
t

(A.1)

for 8h 2 D(L). The domain of the operator L, D(L), is speci�ed as

D(L) = fh(x) =
Z +1

0

e��tEx�(Xt)dt : � 2 C[0;+1)g

35Without the help from Henry P. McKean, we could not write this rigorous proof of the
boundary conditons.
36C20 [0;+1) is the set of functions in C2[0;+1) with compact support.
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Here, � 2 R and � > 0. But the set D(L) is independent of the choosing of
positive �.37(See Yosida 1971, Chapter IX, Analytical Theory of Semi-groups)
Applying Ito formula to equation (A.1), we have

(Lh)(x) = [h0(x)(g�~g)x+1
2
h00(x)�2x2]+q[h(�x)�h(x)]+(p�q)[h(x�)�h(x)] if x � x�

�
(A.2)

and

(Lh)(x) = [h0(x)(g � ~g)x+ 1
2
h00(x)�2x2] + p[h(x�)� h(x)] if x <

x�

�
(A.3)

For the density function of the stationary distribution, f(x), by the de�nition of
the in�nitesimal generator L, we haveZ +1

0

(Lh)(x)f(x)dx = 0 (A.4)

for 8h 2 D(L).
The density function f(x) may not be di¤erentiable at x = x�. Thus we write

equation (A.3) asZ x�

0

(Lh)(x)f(x)dx+
Z x�

�

x�
(Lh)(x)f(x)dx+

Z +1

x�
�

(Lh)(x)f(x)dx = 0 (A.5)

Plugging equations (A.2) and (A.3) into equation (A.5), we haveZ x�

0

f[h0(x)(g � ~g)x+ 1
2
h00(x)�2x2] + p[h(x�)� h(x)] gf(x)dx

+

Z x�
�

x�
f[h0(x)(g � ~g)x+ 1

2
h00(x)�2x2] + p[h(x�)� h(x)] gf(x)dx

+

Z +1

x�
�

f[h0(x)(g � ~g)x+ 1
2
h00(x)�2x2] + q[h(�x)� h(x)] + (p� q)[h(x�)� h(x)] gf(x)dx

= 0 (A.6)

37It can be proved that ff =
R +1
0

e��tExg(Xt)dt : g 2 C[0;+1)g
= ff =

R +1
0

e��tExg(Xt)dt : g 2 C[0;+1)g for 8�; � > 0.
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Applying integration by parts to equation (A.6) and taking into account the
boundary at x = x�, we obtain

(g � ~g)x�f_(x�)h(x�)� (g � ~g)x�f+(x�)h(x�)

�(g � ~g)
Z x�

0

h(x)[f(x) + xf 0(x)]dx� (g � ~g)
Z +1

x�
h(x)[f(x) + xf 0(x)]dx

+
1

2
�2 (x�)2 f_(x

�)h0(x�)� 1
2
�2 (x�)2 f+(x

�)h0(x�)

�1
2
�2[2x�f_(x

�) + (x�)2f 0_(x
�)]h(x�) +

1

2
�2[2x�f+(x

�) + (x�)2f 0+(x
�)]h(x�)

+
1

2
�2
Z x�

0

h(x)[2f(x) + 4xf 0(x) + x2f 00(x)]dx

+
1

2
�2
Z +1

x�
h(x)[2f(x) + 4xf 0(x) + x2f 00(x)]dx

+ph(x�)

Z x�
�

0

f(x)dx+ (p� q)h(x�)
Z +1

x�
�

f(x)dx

+

Z +1

x�
qh(x)f(

x

�
)
1

�
dx

�
Z +1

0

ph(x)f(x)dx

= 0 (A.7)

where f_(x�) and f+(x�) are the left and right limit of the density function f(x)
at x�. f 0_(x

�) and f 0+(x
�) are the left and right limit of f 0(x) at x�.38

We can pick h 2 D(L) where h(x) = 0, when x � x�. Thus we know h0(x�) = 0,
since h 2 C20 [0;+1). By equation (A.7), such h(x) satis�esZ x�

0

h(x)f1
2
�2[2f(x)+4xf 0(x)+x2f 00(x)]� (g� ~g)[f(x)+xf 0(x)]� pf(x)gdx = 0

(A.8)

38This integration by parts technique is also used in the derivation of the Kolmogorov�s forward
equation in Chapter VIII of Oksendal (1995).
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Equation (A.8) holds for 8h 2 D(L) where h(x) = 0, when x � x�. Thus we have

1

2
�2[2f(x) + 4xf 0(x) + x2f 00(x)]� (g � ~g)[f(x) + xf 0(x)]� pf(x) = 0 if x < x�

(A.9)
Similarly, we can pick h 2 D(L) where h(x) = 0, when x � x�. Thus we know

h0(x�) = 0, since h 2 C20 [0;+1). By equation (A.7), such h(x) satis�esZ +1

x�
h(x)f1

2
�2[2f(x)+4xf 0(x)+x2f 00(x)]�(g�~g)[f(x)+xf 0(x)]�pf(x)+qf(x

�
)
1

�
gdx = 0

(A.10)
Equation (A.10) holds for 8h 2 D(L) where h(x) = 0, when x � x�. Thus we
have

1

2
�2[2f(x)+4xf 0(x)+x2f 00(x)]�(g�~g)[f(x)+xf 0(x)]�pf(x)+qf(x

�
)
1

�
= 0 if x > x�

(A.11)
Plugging equations (A.9) and (A.11) into equation (A.7), we have

f(g � ~g)x�[f_(x�)� f+(x�)]� �2x�[f_(x�)� f+(x�)]�
1

2
�2(x�)2[f 0_(x

�)� f 0+(x�)]

+p

Z x�
�

0

f(x)dx+ (p� q)
Z +1

x�
�

f(x)dxgh(x�)

+
1

2
�2 (x�)2 [f_(x

�)� f+(x�)]h0(x�)

= 0 (A.12)

Equation (A.12) holds for 8h 2 D(L). By the coe¢ cient before h0(x�), we have
one of the two boundary conditions at x = x�.

f_(x
�)� f+(x�) = 0 (A.13)

By the coe¢ cient before h(x�) and equation (A.13), we have the other boundary
condition at x = x�.

1

2
�2(x�)2[f 0_(x

�)� f 0+(x�)] = p
Z x�

�

0

f(x)dx+ (p� q)
Z +1

x�
�

f(x)dx (A.14)

Equation (A.13) means that the density function f(x) is continuous at x = x�.
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Note that the right hand side of equation (A.13) is exactly the injection of the
newborns at x = x�. Thus equation (A.14) is the relationship about the injection
and the di¤erence between the left derivative and the right derivative of f(x) at
x = x�.

8.10. Wealth distribution conditional on age

The distribution of the starting wealth consists of two parts, one of which is a
mass point. At x�, the distribution has a positive probability, q

p
(C1

R x�
0
x��1dx+

C2
R x�

�

x� x
��2dx) + p�q

p
. For wealth levels higher than x�, the density of the distri-

bution is
v(y) =

q

p
C2(

y

�
)��2

1

�
, y > x�

Conditional on age t, the density of wealth distribution will be the sum of two
components: 1). starting from y > x�, using the stationary density v (y), we can
compute the probability of reaching x, and 2). starting from the mass point x�

we can compute the probability of reaching x:

ft(x) =

Z +1

x�

1

x

1p
2�t�2

exp[�
(log(x)� log(y)� (g � ~g � 1

2
�2)t)2

2t�2
]v(y)dy

+
1

x

1p
2�t�2

exp[�
(log(x)� log(x�)� (g � ~g � 1

2
�2)t)2

2t�2
]�

[
q

p
(C1

Z x�

0

x��1dx+ C2

Z x�
�

x�
x��2dx) +

p� q
p
]

=

Z +1

x�

1

x

1p
2�t�2

exp[�
(log(x)� log(y)� (g � ~g � 1

2
�2)t)2

2t�2
]
q

p
C2(

y

�
)��2

1

�
dy

+
1

x

1p
2�t�2

exp[�
(log(x)� log(x�)� (g � ~g � 1

2
�2)t)2

2t�2
]�

[
q

p
(C1

Z x�

0

x��1dx+ C2

Z x�
�

x�
x��2dx) +

p� q
p
]:

8.11. Derivation of 


To derive the aggregate welfare of the economy, we �rst note that there are two
kinds of people in the economy. q

p
fraction of the people have a bequest motive and
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1 � q
p
fraction of people do not have a bequest motive. The aggregate welfare of

the economy is the weighted sum of the individual utilities with weights according
to the cross-sectional wealth distribution of the two groups of agents.


(� ; �) =
q

p

Z +1

0

U(w)f(w)dw +
p� q
p

Z +1

0

U0(w)f(w)dw

where U(w) is the optimal value of the people with bequest motives, and U0(w)
is the optimal value of the people without bequest motives. From Proposition 1,
we know that people with bequest motives have the following value function:

U(w) =
A

1� W (s; t)
1�

=
1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)

(1 + (p�)
1
�

�1
 (1� �)

1�
 )

!�
w1�

Similarly, for people with no bequest motive, the value function is:

U0(w) =
1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)



!�
w1�
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Thus the aggregate welfare of the economy is


(� ; �) =
q

p

Z +1

0

U(w)f(w)dw +
p� q
p

Z +1

0

U0(w)f(w)dw

=
q

p

1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)

(1 + (p�)
1
�

�1
 (1� �)

1�
 )

!� Z +1

0

w1�f(w)dw

+
p� q
p

1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)



!� Z +1

0

w1�f(w)dw

= [
q

p

1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)

(1 + (p�)
1
�

�1
 (1� �)

1�
 )

!�

+
p� q
p

1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)



!�
]�Z +1

0

w1�f(w)dw

We then compute
R +1
0

w1�f(w)dwZ +1

0

w1�f(w)dw

= C1

Z x�

0

x1�x��1dx+ C2

Z +1

x�
x1�x��2dx

=
C1

2�  � �1
(x�)2���1 � C2

2�  � �2
(x�)2���2

The last step is valid when �1 < �1 since  = 3 in our calibration. Plugging
the above result of the integral,

R +1
0

w1�f(w)dw, into the formula of 
(� ; �), we
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have


(� ; �) =
q

p

Z +1

0

U(z)f(z)dz +
p� q
p

Z +1

0

U0(z)f(z)dz

= [
q

p

1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)

(1 + (p�)
1
�

�1
 (1� �)

1�
 )

!�

+
p� q
p

1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)



!�
]

Z +1

0

w1�f(w)dw

= [
q

p

1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)

(1 + (p�)
1
�

�1
 (1� �)

1�
 )

!�

+
p� q
p

1

1� 

 
� + p� (1� )(r � � + �+ (��r)2

2�2
)



!�
]�

[
C1

2�  � �1
(x�)2���1 � C2

2�  � �2
(x�)2���2 ]:

8.12. A simple mechanism underlying a double Pareto distribution of
wealth without inheritance

Suppose that X(s; t) is a geometric Brownian motion. We have

dX(s; t) = gX(s; t)dt+ �X(s; t)dB(s; t)

and
X(s; t) = X(s; s) exp[(g � 1

2
�2)(t� s) + �(B(s; t)�B(s; s))]

Normalize X(s; s), log(X(s; s)) = 0 so initial wealth is �xed (no inheritance).
Note that X(s; t) is log-normal

log(X(s; t)) = (g � 1
2
�2)(t� s) + �(B(s; t)�B(s; s))

Now integrating over the population, we have the density function of the stationary
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distribution of X(s; t):

f(x) =

Z t

�1
pe�p(t�s)

1

x

1p
2�(t� s)�2

exp[�
(log(x)� (g � 1

2
�2)(t� s))2

2(t� s)�2 ]ds

=

Z +1

0

pe�pv
1

x

1p
2�v�2

exp[�
(log(x)� (g � 1

2
�2)v)2

2v�2
]dv

Let

w(x; v) =
1

x

1p
2�v�2

exp[�
(log(x)� (g � 1

2
�2)v)2

2v�2
]

Thus

f(x) =

Z +1

0

pe�pvw(x; v)dv

f 0(x) =

Z +1

0

pe�pv
@w(x; v)

@x
dv

f 00(x) =

Z +1

0

pe�pv
@2w(x; v)

@x2
dv

Note that

@w(x; v)

@v
=
1

2
�2x2

@2w(x; v)

@x2
+ (2�2 � g)x@w(x; v)

@x
+ (�2 � g)w(x; v)

Then

1

2
�2x2f 00(x) + (2�2 � g)xf 0(x) + (�2 � g)f(x) =

Z +1

0

pe�pv
@w(x; v)

@v
dv = pf(x)

This gives the characteristic equation

1

2
�2x2f 00(x) + (2�2 � g)xf 0(x) + (�2 � g � p)f(x) = 0

Then f(x) has the functional form

f(x) =

�
C1x

��1 when x � x�
C2x��2 when x � x�
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where �1 and �2 are the two roots of the characteristic equation

�2

2
�2 � (3

2
�2 � g)� + �2 � g � p = 0

Solving this equation, we have

�1 =

3
2
�2 � g �

q
(1
2
�2 � g)2 + 2�2p
�2

and

�2 =

3
2
�2 � g +

q
(1
2
�2 � g)2 + 2�2p
�2

:

8.13. Simulation results-Gini coe¢ cient

�n� 14 15 16 17
0:2 0:691555 0:690649 0:689788 0:688966
0:21 0:680519 0:67958 0:678686 0:677833
0:22 0:670422 0:669451 0:668527 0:667646
0:23 0:66118 0:66018 0:659228 658319
0:24 0:652716 0:651688 0:650711 0:649777
0:25 0:644917 0:643865 0:642864 0:641908
0:26 0:637806 0:636731 0:635706 0:63472

�n� 0:004 0:005 0:006 0:007 0:008 0:009 0:0099
0 0:650234 0:594185 0:546586 0:506215 0:472115 0:443518 0:421965
0:1 0:643547 0:588788 0:542218 0:502678 0:469257 0:441223 0:420096
0:2 0:635948 0:582625 0:537207 0:498605 0:465956 0:438565 0:417929
0:3 0:627151 0:575452 0:531349 0:493824 0:462069 0:435427 0:415367
0:4 0:616726 0:566905 0:524334 0:488076 0:457382 0:431636 0:412267
0:5 0:603986 0:556398 0:515668 0:480947 0:451551 0:426912 0:408404
0:6 0:587734 0:542913 0:504491 0:471718 0:443984 0:420775 0:408404
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8.14. Pure altruism

"Joy of giving" can be viewed as a reduced form of a pure altruistic bequest
motive. (See, for example, Abel and Warshawsky (1988).) The parameter of "joy
of giving" can be derived from the value of the altruism parameter. In the case
of pure altruism, parents care about their o¤springs�welfare through the altruism
parameter '. Parents receive utility from their children�s utility with a parameter
' � 1. The agent�s utility function is

V (W (s; t)) = max
C;!;P

Et

Z +1

t

e�(�+p)(v�t)[
C1�(s; v)

1�  + p'V ((1� �)Z(s; v))]dv

and the budget constraint is

dW (s; t) = [(r��)W (s; t)+(��r)!(s; t)W (s; t)�C(s; t)�P (s; t)]dt+�!(s; t)W (s; t)dB(s; t)

The optimal policies under pure altruism, as derived below, are

C(s; t) = H� 1
W (s; t); Z(s; t) = (

p'

�
)
1
 (1� �)

1�
 W (s; t); !(s; t) =

�� r
�2

:

where

H = f� + p


� �
�1
 (p')

1
 (1� �)

1�
 � 1� 


[r � � + �+ (�� r)

2

2�2
]g�

The individual wealth accumulation equation is

dW (s; t) = [
r � � + �� � � p


+
1 + 

2

(�� r)2
�2

]W (s; t)dt+
�� r
�

W (s; t)dB(s; t):

We can now establish the endogenous formulation of the "joy of giving" from the
parameter of pure altruism:

� = 'H

Setting ' = 1 yields the standard in�nitely-lived dynastic model. Note that the
share of wealth invested in the risky asset does not depend on the parameter of
pure altruism and the government policy. The share of wealth allocated to the
purchase of life insurance does depend on the estate tax rate.
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To derive the results above, we guess the value function

V (W (s; t)) =
H

1� W (s; t)
1�

where H is the undetermined constant.
Then the Hamilton-Jacobi-Bellman equation is

(� + p)
H

1� W (s; t)
1�

= max
C;!;P

fC(s; t)
1�

1�  + p'
H

1�  ((1� �)Z(s; t))
1�

+HW (s; t)�[(r � �)W (s; t) + (�� r)!(s; t)W (s; t)� C(s; t)� P (s; t)]

�1
2
H�2!2(s; t)W (s; t)1�g

Using the relationship

Z(s; t) =W (s; t) +
P (s; t)

�

we �nd the �rst order conditions:

C(s; t)� = HW (s; t)�

p'H(1� �)1�Z(s; t)� 1
�
= HW (s; t)�

!(s; t) =
�� r
�2

Plugging these equations into the Hamilton-Jacobi-Bellman equation, we can de-
termine the constant H:

H = f� + p


� �
�1
 (p')

1
 (1� �)

1�
 � 1� 


[r � � + �+ (�� r)

2

2�2
]g�

And the optimal policies are

C(s; t) = H� 1
W (s; t); Z(s; t) = (

p'

�
)
1
 (1� �)

1�
 W (s; t); !(s; t) =

�� r
�2

:

63




