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1 Introduction

Standard intuition says that the term structure of zero-coupon bond yields contains all

information relevant to predicting both future returns to bonds and future bond yields. The

simplest explanation is that investors’ beliefs about future prices determine what they are

willing to pay for bonds today. Yet even if investors are poorly informed, an accounting

identity equates a zero-coupon bond’s yield with the average log return to the bond during

its remaining life. Taking the expectation of the identity reveals that changes over time in

the shape of the term structure are equivalent to changes in expected future log returns.

Since log returns to zero-coupon bonds can be expressed in terms of yields, expectations of

future log returns contain the same information as expectations of future yields.

Researchers commonly invoke this intuition when building and estimating term structure

models. One important application is the choice of the dimension of the model. If yield dy-

namics are captured by the cross-section of yields, then the same factors that explain the

cross-section explain dynamics. Hence factor analyses of the unconditional covariance matrix

of yields (or differenced yields) are often used to pin down the number of factors. Another

application is model estimation. Estimation often assumes there is a one-to-one mapping

from the factors to an equal number of bond yields. This assumption makes explicit the

notion that the cross-section of bond yields follows a Markov process. We know the assump-

tion is not literally true, because yields on individual bonds appear to have idiosyncratic

components associated with market imperfections. But this noise is too small to alter the

core of the standard intuition: the important determinants of expected future yields are the

important determinants of current yields.

However, two empirical observations by Cochrane and Piazzesi (2005) cast some doubt

on this view. First, they find that the forward rate from year four to year five contains

substantial information about future excess bond returns, even though the contribution of

this forward rate to the overall volatility of cross-section of bond yields is very small. Second,

they find that lagged bond yields contain information about future excess bond returns not

found in current bond yields. Cochrane and Piazzesi suggest that the noise in bond yields

may play a role in these results. I offer a different interpretation of this wedge between

determinants of the cross-section and determinants of expectations (although noise plays a

role in my interpretation as well).

I show that it is easy to build a multifactor model in which one of the factors plays an

important role in determining investors’ expectations of future yields, yet has zero effect

on current yields. The factor must have opposite effects on expected future interest rates

and bond risk premia. Consider, for example, economic news that raises risk premia and
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simultaneously leads investors to believe the Fed will soon cut short-term interest rates. The

increase in risk premia induces an immediate increase in long-term bond yields, while the

expected drop in short rates induces an immediate decrease in these yields. In a Gaussian

term structure model, a single parameter restriction equates these effects, leaving the current

term structure—but not expected future term structures—unaffected by the news. More

generally, factors that drive risk premia and expected short rates in opposite directions can

have arbitrarily small effects on the cross-section of yields, yet large effects on yield dynamics.

In principle, this result complicates substantially our efforts to model the term structure.

We cannot choose the model’s number of factors based on the number of factors that explain

the cross-section of yields. It also prevents us from using estimation techniques that rely

on the ability to infer time-t factors from time-t yields. Even if there is no factor that has

an exactly zero effect on the time-t term structure, its effect on yields may be too small

to readily distinguish from idiosyncratic noise. But these concerns will be more theoretical

than practical if we have no reason to believe that such hidden factors exist.

I look for hidden factors by fitting a five-factor Gaussian term structure model to monthly

Treasury yields over the period 1964 through 2007. The Kalman filter allows us to infer

the presence of hidden factors from term structure dynamics. Estimation uncovers a term

structure factor that has a trivial effect on the cross-section of Treasury yields but contains

substantial information about both expected future short rates and—necessarily—expected

excess bond returns. Based on the model’s point estimates, a one standard deviation change

in the factor has an almost imperceptible effect on the term structure (on the order of a few

basis points), lowers the expected one-year-ahead short rate by about 35 basis points, and

raises the expected excess return to a five-year bond over the next year by about 1.3 percent.

This “expectation” factor accounts for about 30 percent of the total variance in expected

excess bond returns.

Not surprisingly, there is substantial uncertainty in these point estimates. If we relied

only on the results of the estimation, a skeptic easily could argue that the model is overfitting

observed data, and the expectation factor is spurious. However, evidence from the Survey of

Professional Forecasters confirms that survey-based expectations of future short rates move

contemporaneously with filtered estimates of the factor. Moreover, the factor is related to

short-run fluctuations in economic activity. An increase in the factor corresponds to lower

expected future short rates, higher risk premia, and lower growth in industrial production.

I also investigate properties of regressions that use the term structure to forecast future

excess annual bond returns. Under the maintained hypothesis that the estimated five-factor

model is correct, such regressions are incapable of capturing all of the true variation in

expected excess returns because they cannot capture fully the expectations factor. The
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Cochrane and Piazzesi (2005) regression that uses five forward rates as forecasting variables

slightly outperforms a regression that uses measures of level, slope, and curvature. In pop-

ulation, the difference in R2 is about one percentage point. It also slightly outperforms in

long (44-year) finite samples. However, in these finite samples it is also easy to conclude,

mistakenly, that the two regressions capture substantially different amounts of information.

Although the mean difference in these finite-sample R2s is only one percentage point, there

is a twelve percentage point range from one end of the 95th percentile bound to the other.

The term structure model is presented in the next section. Section 3 summarizes prop-

erties of the estimated model. Section 4 compares the expectation factor to survey evidence

on expectations and links the factor to the macroeconomy. Finite-sample properties on

forecasting regressions are in Section 5. Concluding comments are in Section 6.

2 The modeling framework

The objective of this section is to explain why the important determinants of the cross-

section of bond yields need not correspond to the important determinants of yield dynamics.

To make this point in the starkest terms, I build a model in which n factors are necessary

to model term structure dynamics, but only n − 1 factors appear in the term structure.

I follow much of the modern term structure literature by abstracting from standard

economic concepts such as utility functions and consumption dynamics. Instead, both the

short rate and the nominal pricing kernel are functions of a latent state vector. The factors

and their dynamics can be viewed as reduced-form representations of inflation, business

cycles, and market clearing.

2.1 The standard Gaussian model

I use a standard discrete time Gaussian term structure framework. The use of discrete

time is innocuous. The role played by the Gaussian assumption is discussed in Section 2.5.

The one-period interest rate is rt. This rate is continuously compounded and expressed per

period. (For example, if a period is a month, rt = 0.01 corresponds to twelve percent/year.)

Interest rate dynamics are driven by a length-n state vector xt. The relation between the

short rate and the state vector is

rt = δ0 + δ′1xt. (1)

The state vector has first-order Markov dynamics

xt+1 = μ + Kxt + Σεt+1, Et

(
εt+1ε

′
t+1

) ∼ N (0, I) . (2)
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The period-t price of a zero-coupon bond that pays a dollar at t + m is denoted P
(m)
t .

The corresponding continuously-compounded yield is y
(m)
t . Bond prices satisfy the law of

one price

P
(m)
t = Et

(
Mt+1P

(m−1)
t+1

)
(3)

where Mt+1 is the pricing kernel. The pricing kernel has the log linear form

log Mt+1 = −rt − Λ′
tεt+1 − 1

2
Λ′

tΛt. (4)

The vector Λt is the compensation investors require to face shocks to state vector. The price

of risk satisfies

ΣΛt = λ0 + Λ1xt, (5)

which is the essentially affine form introduced in Duffee (2002). Bonds are priced using the

equivalent-martingale dynamics

xt+1 = μq + Kqxt + Σεq
t+1, (6)

where the equivalent-martingale parameters are

μq = μ − λ0, Kq = K − λ1. (7)

The discrete-time analogues of the restrictions in Duffie and Kan (1996) imply that zero-

coupon bond yields can be written as

y
(m)
t = Am + B′

mxt, (8)

where the scalar Am and the n-vector Bm are functions of the parameters in (1) and (6).

The focus of this paper is on yield factor loadings, which can be written as

B′
m =

1

m
δ′1
(
I + Kq + (Kq)2 + · · · + (Kq)m−1

)
=

1

m
δ′1 (I − Kq)−1 (I − (Kq)m) . (9)

2.2 The information in the term structure

In the absence of specific parameter restrictions, the period-t state vector can be inferred

from a cross-section of period-t bond yields. Stack the yields on n zero-coupon bonds in the
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vector ya
t . We can write this vector as

ya
t = Aa + Baxt (10)

where Aa is a length-n vector containing Am for each of the n bonds and Ba is a square

matrix with rows B′
m for each bond. In general, Ba is invertible. Put differently, element

i of the state vector affects the n bond yields in a way that cannot be duplicated by a

combination of the other elements. With invertibility, the term structure contains the same

information as xt. We can write

xt = (Ba)−1 (ya
t − Aa). (11)

Since xt is Markov and the term structure of yields contains the same information as xt, the

term structure is also first-order Markov.

We now investigate special cases of this Gaussian framework where Ba has rank less

than n, so that the state vector cannot be extracted from the term structure. An example

illustrates the mathematics and the economic intuition.

2.3 A two-factor example

Consider the two-factor Gaussian model. Because the latent factors in this model can be

arbitrarily rotated, the state vector can be transformed into the short rate and some other

factor, denoted ft. For this rotation, the dynamics of the state vector are (explicitly indi-

cating the elements of the feedback matrix)

(
rt+1

ft+1

)
= μ +

(
k11 k12

k21 k22

)(
rt

ft

)
+ Σεt+1. (12)

When k12 is not restricted to zero, time-t expectations of future short rates depend on both

rt and ft. Thus we can think of ft as all information about future short rates that is not

captured by the current short rate.

If investors were risk-neutral, the level of ft would necessarily affect the term structure

through expectations of future changes in the short rate. But if risk premia also vary with

ft, the net effect of ft on yields is ambiguous. The restriction adopted in this example is

that changes in risk premia exactly cancel expectations of future short rates, leaving yields

unaffected by ft. Formally, the requirement is kq
12 = 0, or k12 = λ1(12). Then the equivalent-
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martingale dynamics of the state are

(
rt+1

ft+1

)
= μq +

(
kq

11 0

kq
21 kq

22

)(
rt

ft

)
+ Σεq

t+1. (13)

A glance at (13) reveals that under the equivalent-martingale measure, the short rate follows

a (scalar) first-order Markov process. The loading of the m-period bond yield on the state

vector is, from (9),

Bm =

(
1
m

(1 − kq
11)

−1
(1 − (kq

11)
m

)

0

)
. (14)

Thus the matrix Ba in (10) cannot be inverted because it has a column of zeros. The factor

ft cannot be inferred from the period-t term structure.

Although the factor does not affect yields, investors observe it. They take it into account

when setting bond prices and forming expectations of future yields (or equivalently, future

returns to holding bonds). For concreteness, consider the case k12 > 0. Then for fixed rt,

an increase in ft raises investors’ expectations of future short rates. For example, consider

macroeconomic news, such as unexpectedly high GDP growth, that raises the likelihood of

future tightening by the Federal Reserve. If investors’ willingness to bear interest risk did

not change with ft, this news would raise current long-maturity bond yields. But with the

restriction k12 = λ1(12), investors accept lower expected excess bond returns. The change in

willingness to bear risk offsets exactly the news about expected future short rates, leaving

yields unaffected.

The functional relation between expected excess returns and ft can be seen in the formula

for the expected excess log return, from t to t + 1, on a bond with maturity m at period t.

(Here, “excess” is in excess of the short rate.) The period-t expectation is

Et

(
xr

(m)
t,t+1

)
≡ my

(m)
t − (m − 1)Et

(
y

(m−1)
t+1

)
− rt

= mAm − (m − 1)Am−1

+(1 − kq
11)

−1
[
(1 − (kq

11)
m) −

(
1 − (kq

11)
(m−1)

)
k11 − 1

]
rt

−(1 − kq
11)

−1
(
1 − (kq

11)
(m−1)

)
k12ft. (15)

The final term in (15) captures the dependence of expected excess returns on ft.

Even if an econometrician knows the parameters of the model, she cannot infer ft from

the cross-section of yields at t. Nor can ft be backed out of the price of some other fixed-

income instrument, such as bond options. The econometrician can, however, use a panel of

data to form filtered estimates of ft. The filtering approach is discussed again in Section 3.3.
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The intuition behind filtering is easier to grasp if we call it learning by the econometrician.

The period-t forecast error (the difference between realized yields and the econometrician’s

t−1 forecast) is produced by both true period-t shocks and the error in the econometrician’s

t− 1 prediction of ft−1. The cross-sectional pattern of the period-t forecast errors helps the

econometrician revise her prediction of ft−1 and form her prediction of ft.

In this example, the short rate follows a two-factor Markov process under the physical

measure and a one-factor Markov process under the equivalent martingale measure. A single

parameter restriction is required to generate this structure. Armed with the intuition of

this example, it is straightforward to proceed to the more general case in which the short

rate follows an n-factor Markov process under the physical measure and an (n − 1)-factor

Markov process under the equivalent martingale measure. As in the two-factor case, a single

parameter restriction is required.

2.4 The n-factor version

Latent state vectors in affine term structure models are inherently arbitrary. Dai and Single-

ton (2000) describe in detail how they can be translated and rotated without observable con-

sequences. One particular rotation simplifies considerably the analysis here. Beginning with

the standard n-factor Gaussian model of Section 2.1, diagonalize the equivalent-martingale

feedback matrix Kq into

Kq = PV P−1 (16)

where the columns of P are eigenvectors and V is a diagonal matrix of eigenvalues. Define

a rotated state vector

x∗
t = Pxt. (17)

The equivalent-martingale dynamics of the rotated state vector are

x∗
t+1 = Pμq + V x∗

t + PΣεq
t+1. (18)

With this rotation, each individual factor follows its own univariate first-order Markov pro-

cess because V is diagonal. Innovations among the factors can be correlated. The loading

of the short rate on the rotated state vector is

(δ∗1)
′ = δ′1P

−1 (19)

Here, as in the two-factor case, a single parameter restriction produces a model where

physical dynamics of the short rate follow an n-factor process and equivalent-martingale
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dynamics follow an (n − 1)-factor process. The restriction is that for some i,

δ∗1,i = 0. (20)

This restriction implies that element i of the state vector drops out of the equivalent-

martingale dynamics of the short rate. It is immediate from (20) that the period-t values of

the other n−1 factors are sufficient to determine the period-t short rate. Similarly, the short

rate at t + τ depends only on the period-(t + τ) values of n − 1 factors. Since each factor

follows a univariate Markov process under the equivalent-martingale measure, the period-t

equivalent-martingale expectation of the short rate at t + τ depends only on the period-t

values of those same n − 1 factors. Therefore period-t yields depend only n − 1 factors.

As in the two-factor case, physical dynamics of the short rate depend on all n factors.

The physical dynamics of the rotated state vector are

x∗
t+1 = Pμ + PKP−1x∗

t + PΣεt+1. (21)

As long as risk premia vary with the state vector (λ1 �= 0), the matrix P that diagonalizes Kq

will not diagonalize K. Then in general, each factor in the state vector contains information

about the evolution of the short rate.

2.5 The role of the Gaussian setting

Section 2.4 shows that with an appropriate restriction on a term structure model, only n−1

factors of an n-dimensional state vector affect bond yields. Models that exhibit unspanned

stochastic volatility (USV), as described in Collin-Dufresne and Goldstein (2002), can be

described similarly. Here I clarify the relation between the approach here and the USV

approach.

Here, short rate dynamics are described by an n-factor Markov process under the physical

measure and an (n−1)-factor Markov process under the equivalent martingale measure. All

n−1 factors that appear in the equivalent-martingale process affect bond yields. Thus we can

say that under the equivalent-martingale measure, the term structure follows an (n−1) factor

Markov process. By contrast, the USV framework is concerned only with the equivalent

martingale measure. The physical measure is not specified. Under the equivalent martingale

measure, the short rate follows an n-factor Markov process. Bond yields nonetheless do not

depend on all n factors. (Prices of some other fixed-income instruments will depend on all n

factors.) Thus under the equivalent-martingale measure, the term structure does not follow

a Markov process.
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The economic interpretations of the two sets of relevant parameter restrictions differ

substantially. Here, variations in expected future short rates are offset by variations in risk

premia. With USV, variations in equivalent-martingale expectations of future short rates are

offset by variations in the Jensen’s inequality component of bond yields. Stochastic volatility

is thus critical to USV models (hence the name of the model class), but does not appear

here.

Although USV models appear to have little in common with the model here, they can

provide an alternative mechanism driving a wedge between the factors driving dynamics of

yields and the cross-section of yields. Set risk premia to zero so that physical and equivalent-

martingale measures coincide. Then n factors are necessary to capture yield dynamics, while

n − 1 factors affect bond yields. I do not pursue this approach because the parameter

restrictions necessary in a USV model are very tight.

In fact, one reason I use the Gaussian framework is to avoid complications associated

with stochastic volatility. Reconsider the two-factor example of Section 2.3. If the condi-

tional covariance matrix of factor innovations is allowed to be linear in ft (a discrete-time

approximation to a square-root diffusion model), then the level of ft affects bond yields even

when kq
12 = 0. Variations in risk premia can offset variations in expected future short rates,

but do not offset variations in the Jensen’s inequality component of yields. This problem

does not arise in the two-factor example if conditional variances are allowed to depend on

the short rate instead of ft.

2.6 From theory to practice

This model illustrates that factors driving the dynamics of yields need not also drive the

cross section. But the model offers no motivation for the necessary parameter restriction.

In fact, it is probably unreasonable to assume that there is some factor for which variations

in expected future short rates are exactly offset by variations in required expected returns.

Thus there seems to be no theoretical justification to either a priori impose the constraint

or to test statistically whether the constraint is consistent with observed yields.

The more important lesson to take from the model is that there can be a large wedge

between the importance of a factor in the cross section and its importance in dynamics. It

is easy to tells stories in which types of news have opposite effects on expected future short

rates and investors’ required expected excess returns. For example, the Taylor (1993) rule

and its variants (see, e.g., Clarida, Gaĺı, and Gertler (2000)) suggest that good news about

future output is also news that future short rates are likely to rise. If willingness to bear

interest rate risk covaries positively with the business cycle, the immediate effect of such
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news on bond yields will not accurately reflect the importance of the news in forecasting

future short rates.

If all n factors affecting dynamics also affect the cross section, the mapping from factors

to n yields in (10) implies that all factors can be inferred from the cross section using (11).

However, the exact mapping does not hold in practice. Equation (10) implies that the

unconditional covariance matrix of d bond yields is singular for d > n. Yet in the data,

sample covariance matrices of zero-coupon bond Treasury yields are nonsingular for even

large d (say, greater than ten). One interpretation of this result is that n is large, perhaps

even infinite, as in Collin-Dufresne and Goldstein (2003). But from a variety of perspectives,

it is more appealing to view bond yields as contaminated by small, transitory, idiosyncratic

noise.

This noise is generated from three sources. First, there are market imperfections that

distort bond prices, such as bid/ask spreads. Second, there are market imperfections that

distort payoffs to bonds (and thus distort what investors will pay for bonds), such as special

RP rates. Third, there are distortions created by the mechanical interpolation of zero-coupon

bond prices from coupon bond prices.

I model the noise as classic measurement error. A vector of d period-t yields on bonds

with maturities m1, . . . , md is expressed as

yt = A + Bxt + ηt, ηt ∼ σ2
ηN(0, I) (22)

where ηt is a vector of measurement errors. For simplicity, in (22) the measurement error

for each yield has the same variance. Element i of the vector A contains Ami
and row i of

the matrix B contains B′
mi

.

Equation (22) cannot be pushed to its logical limits. Since the measurement error is

uncorrelated across maturities and time, (22) suggests that using either more points on

the term structure or higher frequency data eliminates the effects of noise. Instead, the

specification should be viewed as an approximation to a world in which noise dies out quickly

(within a month) and is roughly uncorrelated across the widely-spaced maturities used in

empirical analysis.

The presence of noise weakens the knife-edge distinction between a model in which all

factors affect the cross section and a model in which one or more factors affects only dynamics.

One factor may be an important determinant of expected future yields, yet have a small effect

on the current term structure—so small that it is difficult or impossible to distinguish the

factor’s influence on the cross section from the noise ηt in (22).

The most obvious conclusion to draw from this discussion is that we cannot rule out a
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priori the existence of factors that have a minimal effect on the cross-section of yields yet

have important effects on yield dynamics. The next sections asks whether empirical analysis

can confirm or deny the presence of such factors.

3 Empirical analysis

The core of this empirical analysis is the interpretation of an estimated five-factor Gaussian

term structure model. The model is used in two ways. First, I ask whether there are factors

that have little effect on the cross-section of yields yet are important for modeling dynamics.

Second, assuming that the estimated model is correct, I study properties of regressions that

forecast excess bond returns using the cross-section of bond yields. Before getting into details

of model estimation, I discuss why a five-factor model is used.

3.1 How many factors?

The goal of the empirical work in this section is to explore the possibility that some factor(s)

are important for term structure modeling but have little effect on the cross-section of yields.

Therefore the number of factors must exceed the usual choice of three—a choice motivated

by cross-sectional properties. Unfortunately, the model of Section 2 does not tell us how

many factors should be used.

Two considerations motivate the choice of five factors. First, Cochrane and Piazzesi

(2005) use information from five points on the yield curve to form forecasts of excess bond

returns. If five points are needed, the underlying model should have at least five factors.

Second, the number of free parameters is unmanageable for six or more factors. A five-factor

Gaussian canonical term structure model has 52 free parameters. As we will see, extracting

information about each of these parameters is close to (or beyond) the limits imposed by

available data and estimation techniques. Convincing a skeptic that they have something

to learn from a model with 52 parameters is also difficult. A six-factor canonical model has

more than 70 free parameters. It is beyond the ability of the author to convince anyone to

take seriously the parameter estimates of a 70+ parameter model.

3.2 Data

Treasury bond yields are from the Center for Research in Security Prices (CRSP). The yield

on a three-month Treasury bill is from the Riskfree Rate file (bid/ask average). Artificially-

constructed yields on zero-coupon bonds with maturities of one, two, three, four, and five

years are from the Fama-Bliss file. Yields are observed at the end of each month from
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January 1964 through December 2007. The first observation is chosen to align with the

sample studied by Cochrane and Piazzesi (2005).

Panel A of Table 1 reports means and standard deviations of the yields. Panel B reports

the magnitudes of the first five principal components of the six yields, monthly changes in

the yields, and annual returns to bonds with initial maturities of one through five years. The

characteristics of the principal components are well-known. The first three principal com-

ponents of levels explain more than 99.9 percent of their total variation. The corresponding

percentages for monthly changes and annual returns are 98.6 and 99.9 respectively. Not

shown in Table 1 are the shapes of the principal components. It is well-known that the first

three are the level, slope, and curvature of the term structure. We look at these shapes in

detail below.

Similar results popularized by Litterman and Scheinkman (1991) are typically used to

motivate the number of factors included in formal term structure models. For example,

the choice of three factors in Duffee (2002) is explicitly justified by this result. One of

the questions studied here is whether the relative importance of factors in the cross-section

matches their relative importance in dynamics.

3.3 Model estimation

A factor that is hard or impossible to extract from the cross section should be inferred using

filtering techniques instead of assuming that all period-t factors are are linear combinations

of period-t yields. The Kalman filter produces correct conditional means and covariance

matrices when the underlying model fits into the Gaussian term structure framework. Thus

I estimate a five-factor Gaussian model with maximum likelihood (ML) by applying the

Kalman filter.

The model of Section 2 is written in terms of dynamics under physical and equivalent-

martingale measures. That form allows us to understand the economics underlying factor

models of the term structure. However, for the purpose of estimation, it is convenient to use

a slightly different parameterization. Following the language of the Kalman filter, write the

model in the form of a transition equation and a measurement equation. The state vector

used in the estimated model is denoted x†
t . The transition equation is

x†
t+1 = D†x†

t + Σ†εt+1. (23)

In (23), D† is a diagonal matrix and Σ† is lower triangular with ones along the diagonal.

The forms of D† and Σ† are normalizations, as is the state vector’s unconditional mean of

zero. There are five latent factors in the state vector x†
t . Therefore there are a total of 15
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free parameters in (23). The measurement equation is

yt = A + B†x†
t + ηt, ηt ∼ N(0, σ2

η). (24)

In (24), A is a 6×1 vector and B† is a 6×5 matrix. There is also a single standard deviation

of measurement error, resulting in a total of 52 parameters.

Lurking behind the parameters of the measurement equation are the equivalent-martingale

dynamics of xt. Because there are five factors to explain six bond yields, A and B† exactly

identify the unconstrained parameters of the no-arbitrage model δ0, δ1, μq, and Kq. As dis-

cussed in Duffee (2008), numerical optimization of the likelihood function is faster and more

reliable when the estimated parameters are A and B† than when they are the parameters of

the no-arbitrage model. Here I follow exactly the optimization procedure used in that paper.

3.4 A principal components factor rotation

The state-vector rotation implied by (23) and (24) is convenient for estimation. A rotation

based on principal components is more useful for interpreting the results. Denote ‘uncon-

taminated’ yields—yields without measurement error—by ỹt. Drop the three-year bond,

denoting the vector of the remaining five yields by ỹ\3,t. The loadings of these yields on the

factors are denoted B†
\3, a 5×5 matrix. Estimates of the parameters of (23) and (24) imply a

population covariance matrix of y\3,t. (As the model in Section 2.4 illustrates, there are pa-

rameterizations for which this covariance matrix is singular, but the parameter estimates do

not happen to satisfy the restriction necessary for singularity.) Diagonalize this covariance

matrix into

Var
(
ỹ\3,t

)
= C0ΩC−1

0 . (25)

Define the 5 × 5 matrix Γ as

Γ = C−1
0 B†

\3. (26)

The state vector that is easy to interpret is

xt = Γx†
t . (27)

The factors in this vector are all five principal components of the yields on bonds with

maturities of three months, one, two, four, and five years. Their unconditional covariance

matrix is the diagonal matrix of eigenvalues

Var(xt) = Ω. (28)
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The dynamics of the rotated state vector are

xt+1 = Kxt + Σεt+1, (29)

where the parameters are defined by

K = ΓD†Γ−1, Σ = chol
(
ΓΣ†Σ†′Γ′

)
. (30)

The relation between bond yields and the rotated factors is

yt = A + Bxt + ηt, (31)

where the new factor loadings are

B = B†Γ−1. (32)

These factor loadings (for all but the three-year bond yield) are the eigenvectors of the

diagonalization (25).

Table 2 reports the point estimates of the model for this principal components rotation.

There are 77 parameters in the table, although the model has only 52 free parameters.

There are 15 restrictions built into these parameters that derive from the requirement that

the factors are principal components of the yields. Standard errors are in parentheses. They

are constructed from Monte Carlo simulations. Assuming that the estimated model is true,

528 months of yields are randomly generated for a given simulation. The model is estimated

with maximum likelihood using these data and the parameter estimates are stored. This

procedures is repeated 1000 times to construct the standard errors in Table 2. The covariance

matrix of the 77 parameter estimates has rank 52.

3.5 Estimates of the factors’ role in the cross section

The estimates in Table 2 are reported for only for completeness. There is not much to be

learned from the individual parameters. Instead, I summarize the important properties of

the estimated model. This subsection focuses on the cross-sectional properties. A quick

summary is that only the first three factors play a noticeable role in the cross section. The

remaining factors are hard to disentangle from noise in yields.

Table 3 describes the cross-sectional relation between the factors and bond yields. Since

the factors are, by construction, principal components of yields, it is not surprising that the

first few factors explain almost all of the variation in yields. We see in the first column that

population standard deviations of these orthogonal factors range from 6.02 for the first factor
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to 0.04 for the fifth. Standard errors of these population standard deviations, computed from

Monte Carlo simulations, are in parentheses.

The precise mapping from factors to yields is displayed in Figure 1, which plots the

matrix of estimated factor loadings B scaled by the factor standard deviations. The first

panel plots loadings on the first three factors. They are the usual level, slope, and curvature

factors. For example, a one standard deviation increase in the first factor raises all yields by

about 2.5 percentage points. The second panel plots loadings on the fourth and fifth factors.

There is no obvious cross-sectional interpretation for these two factors, which appear to be

economically tiny. Note the difference in scale between the two panels. A one standard

deviation in the fifth factor does not change any yield by more than four basis points.

Because of measurement error, it is difficult to extract the final two factors from the

cross-section of the term structure, even if we know the model’s parameters. Table 2 reports

the estimated standard deviation of measurement error is about five and a half basis points

(annualized yields). Although economically small, it is enough to obscure the effects of these

factors on yields. One way to see this is to imagine a regression, using an infinite time series,

of a factor on contemporaneous yields. (An econometrician cannot estimate this regression

because she does not directly observe the factors.) The point estimates of the model allow

analytic calculation of the R2 for the regression.

The second column of statistics in Table 3 reports the R2s for each factor regressed on

bond yields with maturities of three months and one through five years. The effects of the

first three factors on yields are sufficiently large to dominate measurement error. The R2s

for these factors range from 1.0 to 0.95. However, the R2s for the fourth and fifth factors

are only 0.62 and 0.43 respectively. Put differently, the correlations between the true and

OLS-fitted estimates of the factors are 0.79 and 0.66.

Kalman filtering produces more accurate estimates of the factors. Population properties

of the Kalman filter are proxied by simulating one million months of bond yields (the ma-

turities are six months and one through five years), where the “true” model is the model

estimated with ML. The Kalman filter is then applied to these data, using the true parame-

ters in the filter. The final column of Table 3 reports correlations between true and Kalman

filtered estimates of the factors. These correlations are 0.84 and 0.80 for the fourth and fifth

factors. Naturally, filtered estimates of the factors are more closely related to observed yields

than are true factors (since observed yields are used in the filtering), as documented in the

third column of statistics in Table 3.

Since only the first three factors make noticeable contributions to the cross-section of

yields, why should we care about our ability to infer the other factors from the data? The

reason is that according to the model’s point estimates, the fifth factor plays an important
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role in yield dynamics and expected excess bond returns.

3.6 Estimates of the factors’ role in yield dynamics

Consider investors’ j-month-ahead forecast of the yields used in estimation of the model.

The vector of forecasts is (recall that investors know the true state vector)

Et (yt+j) = A + BEt (xt+j)

= A + BKjxt. (33)

The unconditional covariance matrix of these forecasts is

Var (Et(yt+j)) = BKjΩB′(Kj)′. (34)

Because the unconditional covariance matrix of the factors Ω is diagonal, the variance in

(34) can be unambiguously expressed as the sum of components attributable to each of the

five factors.

Table 4 reports information about this decomposition. To simplify interpretation, the

table reports standard deviations rather than variances. To illustrate the results, consider the

first row. The table reports that twelve-month-ahead forecasts of the three-month annualized

bill yield have a standard deviation of 2.28 percentage points. More than 95 percent of

the variance is due to the first, “level” factor. The standard deviation of twelve-month-

ahead forecasts attributable to this factor is 2.23 percentage points. Standard deviations

attributable to all other factors are much smaller.

The surprising result in this first row is that much of the remaining variance in twelve-

month-ahead forecasts is captured by the fifth factor. The standard deviation of the forecast

attributable to this factor is 36 basis points, which is larger than the amount attributable to

any other non-level factor. This pattern holds for all maturities included in the table. The

vast majority of the variation in twelve-month-ahead forecasts is driven by the level factor,

while the fifth factor picks up most of the remainder.

Visual evidence of the contributions of the factors to short-rate forecasts is in Figure 2.

The figure displays impulse responses of the three-month bill yield to one standard deviation

changes in each factor. For example, in the first panel the month-zero yield is 2.73 percentage

points above its mean. Two years later, the yield remains 1.72 percentage points above its

mean. The second (slope) factor corresponds to an immediate drop in the short rate of about

60 basis points, half of which has disappeared after a year. The third and fourth factors

contribute little to current or future short rates. The effect of the fifth factor is qualitatively

16



different from all of the other factors. It has no effect on the short rate at month zero. One

year later, the short rate has dropped 35 basis points, where it remains for the next year.

Accordingly, I label this fifth factor the “expectation” factor.

I use Monte Carlo simulations to calculate the bias and uncertainty in Table 4’s point

estimates. An individual simulation begins by assuming the model estimated here is correct.

Then a panel of 528 months of yields is simulated. Using these simulated data, the model is

estimated with the Kalman filter. The simulations reveal that the total standard deviations

of twelve-month-ahead forecasts are downward biased. For example, the ‘true’ model implies

a standard deviation of three-month yield forecasts of 2.28 percentage points (from the top

row of the table). The mean standard deviation from the Monte Carlo simulations is only

1.98 percentage points, as displayed in parentheses. The 2.5 and 97.5 percentile values are

0.86 and 3.40 percentage points respectively, as displayed in brackets.

There is substantial statistical uncertainty about the role of the expectations factor in

yield dynamics. Under the null that the estimated model is true, point estimates of the

contribution of the factor to twelve-month-ahead forecasts are downward biased. Their

confidence intervals are also very wide. For example, when the expectations factor truly

accounts for 36 basis points of standard deviation in twelve-month-ahead forecasts of the

short rate, ML estimation using 528 months of data produces a mean point estimate of 31

basis points. A 95 percent confidence interval ranges from 3 to 63 basis points. Thus if we

restrict ourselves to using only bond yields, it is probably impossible to make even qualitative

statements about the role of the expectations factor. Below I also draw on evidence from

the Survey of Professional Forecasters and the growth of industrial production.

Because the expectation factor plays the central role in the remainder of the paper, it is

useful to take a quick look at its time-series behavior. Figure 3 plots filtered estimates of

this factor over the sample period 1964 through 2007. The factor is normalized by its model-

implied population standard deviation. Its persistence is fairly low. The model’s parameter

estimates imply that a shock to the factor (holding all other factors constant) has a half life

of five months. Any relation between the factor and economic fluctuations is not obvious

from this figure, which also displays NBER turning points. Section 4.3 uncovers a relatively

high-frequency relation between the factor and economic activity.

3.7 Estimates of the factors’ role in excess return dynamics

Although the level factor is the dominant driver of yields, it plays a much less important role

in expected excess returns. In this section I focus on the behavior of the log return from t

to t + j on a bond with period-t maturity m, in excess of the log return on a j-period bond.
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The observed excess return, expressed in terms of factors and measurement error, is

xr
(m)
t,t+j = mAm − (m − j)Am−j − jAj

+
(
mB′

m − (m − j)B′
m−jK

j − jB′
j

)
xt

−(m − j)B′
m−j

(
j∑

i=1

Kj−iεt+i

)

+mη
(m)
t − jη

(m)
t − (m − j)η

(m−j)
t+j . (35)

The four lines on the right side of (35) are, respectively, the unconditional mean, the variation

in the conditional mean owing to the period-t state vector, the return innovation owing to

shocks to the state vector, and the measurement error component.

The estimates of A and B allow to study directly the population properties of this excess

return for a one-year horizon (j = 12) and for bonds with maturities of two, three, four,

and five years. Panel A of Table 5 reports unconditional means and standard deviations

of these returns. Standard deviations are calculated for both true returns (i.e., excluding

measurement error) and observed returns. The panel also reports the fraction of the total

variance attributable to factor-driven variations in the conditional mean.

Unconditional mean excess annual returns are less than one percent for all of these bonds.

Population standard deviations of the returns range from 1.8 percent for the two-year bond

to 5.6 percent for the five-year bond. We see in the panel that measurement error contributes

very little to the volatility of observed returns; differences in standard deviations between

true and observed returns are at most a basis point.

Panel A also reports that predictable variations in returns account for about 21 percent

of total return variance. Panel B decomposes this predictable variance into components

attributable to each factor. The structure of Panel B mirrors that of Table 4. Consider, for

example, the month-t expectation of the annual excess log return to a five-year bond. The

estimated unconditional standard deviation of this expectation is 2.53 percent. Most of this

variation is due to “slope” factor. The standard deviation attributable to this factor is 1.97

percent.

Given the well-known relation between the slope of the term structure and expected

excess bond returns, it is not surprising that for each bond, the slope factor accounts for

over half of the predictable variance. A glance at Figures 1 and 2 explains why. The slope

factor simultaneously raises long-term bond yields and lowers expected future short rates.

The more interesting result in Panel B is that the expectation factor explains up to 30 percent

of the predictable variance. Again, a glance at the two figures explains why. The expectation

factor lowers expected future short rates while leaving long-term yields unchanged.
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Figure 4 displays the sensitivity of expected excess annual log returns to the level, slope,

and expectation factors. For example, a one-standard-deviation increase in the slope factor

raises the expected excess return to a two-year bond by about 60 basis points. The corre-

sponding change in expected return to a five-year bond is about 200 basis points. These

values are plotted with the dashed line in the figure. The solid line plots changes in expected

excess returns for a one-standard deviation increase in the level factor and the dashed line

plots changes for the expectation factor.

Table 5 documents substantial statistical uncertainty about the contribution of the ex-

pectations factor to expected excess returns. This mirrors the results for yield dynamics

in Table 4. For example, when the expectations factor truly accounts for 1.35 percentage

points of standard deviation in annual excess returns to a five-year bond, ML estimation

using 528 months of data produces a mean point estimate of 1.16 percentage points. A 95

percent confidence interval ranges from 20 basis points to 2.12 percentage points.

These results, along with the results in the previous subsections, lead to two main conclu-

sions. First, the point estimates imply an economically important role for the expectations

factor. It drives both expectations of future yields and excess returns, although its role in the

cross section is negligible. Put differently, factors that are most important for determining

the shape of the term structure are not the most important in determining expected excess

bond returns. This conclusion is consistent with the theory of Section 2.4. Second, the

uncertainty in these point estimates is very large. Based only on this evidence, we cannot

be confident that the results are not spurious.

From a statistical perspective, the main problem is that the expectations factor is difficult

to infer from a panel of yields. We need to look at other sources of information to learn more

about this factor.

4 The expectations factor: additional evidence

Is the estimated expectations factor truly capturing investors’ expectations, or is it simply

the consequence of overfitting a particular sample? A natural way to answer this question

is to compare the factor to independent observations of investors’ forecasts. At the end of

the first month of every quarter since 1981Q3, participants in the Survey of Professional

Forecasters are asked for their forecasts of the average level of the three-month Treasury

bill during each of the next four quarters. This section examines the relation between mean

forecasts (where the mean is taken across the participants) and contemporaneous values of

the expectation term structure factor. Here, “contemporaneous” means the filtered estimate

for the end of the first month in the quarter.
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If the expectation factor is spurious, forecasters’ contemporaneous expectations should

be unrelated to it. For example, assume the quarter-t level of the filtered expectation factor

predicts that the short rate will decline over the next few quarters. If this prediction is

simply an ex-post interpretation of the data by the maximum likelihood estimation, then

the survey responses in quarter t will not anticipate a decline in rates. Thus we can test the

null hypothesis that the expectation factor is entirely spurious by examining its covariation

with survey forecasts of changes in rates.

Before presenting the regression results, it is instructive to study in detail two particular

observations.

4.1 A tale of two Octobers

Panel A of Figure 5 displays term structures for the month-ends of October 2001 and October

2004. (The plotted points are yields for maturities of three months and one through five

years.) The shapes of the term structures are similar. The three-month bill yields are both

around two percent. The largest difference between the term structures is at the long end,

where the October 2001 observation is 37 basis points above the October 2004 observation.

The dates were chosen both because the term structures are similar and the filtered estimates

of the fifth factor are not.1 The October 2001 estimate of this factor is about 0.7 standard

deviations, while the October 2004 estimate is about −1.1 standard deviations.

This large difference in estimates of the fifth factor corresponds to a large difference in

expected excess bond returns. Panel B of the figure displays model-implied expectations, as

of October 2001 and October 2004, of one-year log returns to bonds in excess of the yield on

a one-year bond. In 2001, the expectations are positive for all of the plotted maturities (two

through five years), from 0.4 percent for the two-year bond to 1.6 percent for the five-year

bond. In 2004, the expectations are negative, ranging from −0.4 percent to −1.2 percent.

The difference in expected excess returns is largely accounted for by the difference in the

expected time path of the three-month bill rate. Panel C reports that for 2001, the bill rate

is expected to decline slightly for a few months, then rise modestly. By contrast, in 2004 the

bill rate is expected to rise substantially over the next year. The average difference between

the two sets of forecasts over the upcoming year (November through December of the next

year) is about 60 basis points.

Are these model-implied expectations reasonably consistent with investors’ expectations

at the time? According to the Survey of Professional Forecasters, they are. For the surveys

returned in early November 2001, the mean forecasts of the three-month bill rate for the next

1In particular, the months were not chosen based on the contemporaneous survey forecasts.
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four quarters (2002Q1 through 2002Q4) are 1.9, 2.0, 2.4 percent, and 2.8 percent respectively.

Three years later, mean forecasts are about 50 basis points higher. The forecasts for 2005Q1

through 2005Q4 are 2.3, 2.6, 2.9, and 3.2 percent. Investors (or at least those investors with

beliefs similar to those embodied by the mean forecasts of the survey particpants) anticipated

lower expected excess returns in October 2004 than in October 2001.

Differences in expected excess returns across these two months may be related to antici-

pated macroeconomic activity. Forecasters responding to the 2001Q4 survey were much more

pessimistic about near-term economic growth than were those responding to the 2004Q4 sur-

vey. The 2001Q1 mean forecast of real GDP growth in 2002 was 0.8 percent. By contrast,

the 2004Q4 forecast of real GDP growth in 2005 was 3.5 percent. The link between the

expectations factor and expected future economic growth is pursued in Section 4.3.

A single comparison of two months is illuminating, but not statistically compelling. The

next subsection contains some regression evidence.

4.2 Regression results

Denote the quarter-t mean survey forecast of the three-month bill in quarter t + j less the

quarter-t bill yield as SPF EXPECT(t, j). To align the bill yield with the survey timing,

the quarter-t yield is defined as the three-month yield as of the end of the first month in

the quarter. The continuously compounded yield from CRSP is converted to a discount

basis to match the survey. Denote quarter-t filtered estimates of the expectation factor as

MODEL EXPECTt. These are estimates for the end of the first month in the quarter. To

simplify interpretation of the estimated regression coefficients, this factor is normalized by

its population standard deviation. The sample period is 1981Q3 through 2007Q4.

I first estimate the regression

MODEL EXPECTt = b0 + b1SPF EXPECT(t, j) + ej,t (36)

for forecast horizons of one through four quarters (j = 1, . . . ,). Under the null hypothe-

sis that the filtered estimate of the expectation factor is spurious, the coefficient b1 should

be zero. Because quarterly survey forecasts are serially correlated, standard errors use the

Newey-West adjustment for four lags of moving average residuals. Although the regression is

probably more intuitive if the regressor and regressand are switched, there is a generated re-

gressor problem when using the filtered estimate of the expectation factor as the explanatory

variable.

The coefficient should be negative if the model’s factor is not spurious. As shown in

Figure 2, the model implies that a one standard deviation increase in the expectation factor
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corresponds to an expected drop in the three-month bill rate of 35 basis points over the

subsequent year. Reversing the order of this comparison for the purposes of (36), an expected

increase in the bill rate of one percentage point corresponds to −2.9 standard deviations of

the factor.

Coefficient estimates for each forecast horizon are displayed in Panel A of Table 6. The

null hypothesis is overwhelmingly rejected. The point estimates are reliably negative, with

asymptotic t statistics ranging from −2.9 to −5.6. The point estimates are less than the

model predicts, ranging from −0.5 to −1.2. In other words, the estimated factors respond

less to true variations in expected changes in short rates than the model implies.

These regressions are estimated over the entire sample for which forecasts are available

from the Survey of Professional Forecasters. From a statistical perspective, one unfortunate

feature of this sample is that the estimated term structure factors are not uncorrelated. Over

the entire 1964 through 2007 sample, the sample correlation between filtered values of the

level and expectation factors is very close to zero. But from 1981Q3 through 2007Q4, the

sample correlation is about 0.22. As Figure 2 shows, both the level and expectation factors

have the same qualitative effect on expected future short rates. When the factors are high,

short rates are expected to decline. Hence it is possible that the negative point estimates

for (36) are proxying for the relation between the level of rates and expected future changes

in rates. (Note, though, that this proxy story does not explain the tale of two Octobers.)

To control for the level of the term structure, I reverse (36) and add the estimated level

factor as an additional explanatory variable. The regression is

SPF EXPECT(t, j) = b0 + b1MODEL LEVELt + b2MODEL EXPECTt + ej,t. (37)

Both explanatory variables are generated regressors. Because the expectation factor is harder

to extract from the yield curve than is the level factor, there is likely to be more noise in the

model’s estimate of the former factor than the latter.

Coefficient estimates for each forecast horizon are displayed in Panel B of Table 6. Both

factors are negatively associated with survey expectations of future changes in the bill yield.

More importantly, the statistical significance of the relation between the expectation factor

and survey expectations does not disappear when the level factor is included. The asymptotic

t statistics for the coefficients on the expectation factor are about −3.1 for one-quarter-ahead

and two-quarter-ahead forecasts, −2.4 for three-quarter-ahead forecasts, and −2.0 for four-

quarter-ahead forecasts.

This evidence supports the model’s conclusion that the expectations factor is known by

investors. In order for this factor to not affect the term structure, its predictive power for
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future short rates must be offset by variations in risk premia. Such a story is more plausible

if the expectations factor can be linked to the business cycle.

4.3 The expectations factor and economic activity

I examine the lead/lag relation between filtered estimates of the expectation factor and

monthly changes in log industrial production. The estimated regression is

100(log(IPt) − log(IPt−1)) = b0,i + b1,iMODEL EXPECTt−i + et,i, i = −6, . . . , 6. (38)

The change in IP lags the expectation factor for i < 0 and leads it for i > 0. Log changes

in IP are serially correlated. A typical serial correlation of fitted residuals for (38) is about

0.3. I therefore report Newey-West standard errors adjusted for two lags of moving average

residuals. As in Section 4.2, the expectations factor is normalized by its population standard

deviation.

Estimation results are in Table 7. There is a strong, statistically significant inverse

relation between industrial production and the expectations factor. In other words, low

growth in industrial production corresponds to high risk premia accompanied by expected

future declines in short-term rates. Growth in industrial production begins to drop a few

months prior to the increase in the expectations factor, continuing for a couple of months

after the increase in the expectations factor. If the filtered expectations factor is a standard

deviation above its mean in month t, monthly growth in industrial production in months

t− 5 through t + 2 averages about 11 basis points per month below average. (To put the 11

basis points in perspective, the standard deviation of monthly IP growth is about 70 basis

points.)

These results are comforting because they are qualitatively consistent with a simple story.

Investors believe that the Fed will attempt to offset some types of short-lived macroeconomic

shocks with monetary policy actions. The Fed action is not anticipated to be immediate;

short rates may not change for a number of months. The same macroeconomic shocks change

investors’ willingness to bear risk. Thus the net effect of the macro shocks on current yields

is muted because the expected change in short rates and the change in risk premia work in

opposite directions.

5 Forecasting with the cross section

The empirical evidence in the previous section tells us there is a term structure factor that

can predict future yields and excess bond returns, yet is difficult to detect in the cross section.
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This conclusion leads to a natural question. If we follow standard practice by forecasting

excess returns using only information in the cross section of yields, how accurate will we be?

According to the estimated model (and as summarized in Table 5), about 21 percent of the

total variance in annual excess log returns to bonds corresponds to variation in conditional

mean returns. An econometrician cannot reproduce a time series of conditional expected

returns, even given an infinite time series, because she must filter the factors instead of

observe them. This section considers how accurately she estimates expected excess using

standard predictive regressions instead of filtering. The forecasting variables are taken from

cross-section of the term structure.

Following Cochrane and Piazzesi (2005) (hereafter CP), the regressions predict, as of

month t, the excess log return to a bond from month t to month t + 12. One regression

is inspired by standard three-factor term structure models. It uses month-t values of the

level, slope, and curvature of the term structure. They are respectively defined as the five-

year yield, five-year yield less three-month yield, and two-year yield less the average of the

three-month and five-year yields. The other regression uses the five forward rates that CP

found to contain substantial information about future excess returns. They are the month-t

forward rates from year m to year m + 1 for m = 0, . . . , 4.

Population and finite-sample properties of the regressions are calculated by assuming

that the term structure model estimated in Section 3 is correct. Population properties

are determined analytically, while finite-sample properties are produced with Monte Carlo

simulations. The length of each simulated sample is 528 months (44 years), which is the

length of the sample used to estimate the model in Section 3. The results here are based on

10,000 simulations.

We first take a close look at predictions of annual excess returns to the five-year bond. The

relevant information is in Table 8. Panel A contains results for the level, slope, and curvature

regression, while Panel B contains results for the forward-rate regression. The population

R2s of the two regressions are similar; 14 percent using level, slope, and curvature, and 16

percent using five forward rates. For comparison, Table 5 reports that 21 percent of the

excess return variance is truly predictable. Because factors cannot be precisely inferred from

the term structure, the regressions do not capture everything that investors know, even with

an infinite time series. The population coefficients on the five forward rates display the

tent shape uncovered by CP. However, these coefficients are closer to zero than are those

estimated by CP. Similarly, the population R2 here is less than the R2 of 36 percent estimated

by CP.

These differences in magnitudes are probably a consequence of model misspecification.

The sample period used to estimate the model in Section 3 is almost identical to that used
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by CP. Thus one way to interpret these differences is that the model does not reproduce

the strong annual-horizon predictability that is a feature of the data used to estimate the

model. However, there is relatively little information in this estimated predictability. The

finite-sample evidence in Table 8 shows that both parameter estimates and R2s have very

large sampling uncertainty. For example, the 95 percent confidence range for the forward-

rate regression’s R2 is from 8 percent to 39 percent. The confidence range for the other

regression’s R2 is similar. In a given sample, the two regressions produce substantially

different R2s. The evidence is in Panel C of Table 7. The mean and median difference is

only one percentage point, but a 95 percent confidence interval for the difference ranges from

−0.041 (i.e., the three-factor R2 is 4.1 percentage points greater than the forward-rate R2)

to 8.0%.

Moreover, although the tent shape is a population property of the model, it is not a result

that leaps out of a random sample of data generated by the model. In more than 40 percent

of the simulations, the forward-rate regression parameter estimates do not satisfy the tent

shape.2 By contrast, the coefficients on level and slope for the other regression are almost

always positive, as indicated by their 95 percent confidence bounds in the table.

In population, the forward-rate regression captures slightly more of the true predictability

of excess returns than does the three-factor regression. Is this also true for the sample size

studied here? More precisely, is the average difference between the fitted prediction and the

true expectation smaller for the forward-rate regression than for the three-factor regression?

To answer this question, I use a root mean squared error metric with the following notation.

Individual simulations are indexed by i = 1, . . . , 10, 000. Annual log excess returns are

predicted with OLS regressions for maturities of one through five years. Maturities are

measured in months by m. For simulation i, define the root mean squared error for an

m-maturity bond as

RMSE(i, m, p) =

√√√√ 1

528 − 12

528−12∑
t=1

(
Et(xrm

t,t+12) − E
[p]
t (xrm

t,t+12)
)2

. (39)

The first term on the right of (39) is the true conditional expected excess return to an m-

month bond from t to t + 12. The second term is the fitted in-sample expectation from a

predictive regression. In-sample forecasts for the three-factor regression are indicated with

p = 1 and the corresponding forecasts for the forward-rate regression are indicated with

p = 2. Note that this forecast error measures the distance between two forecasts, not the

2This result is not found in any table. The estimates are defined to satisfy the tent shape if the five
estimated coefficients satisfy 1st < 2nd < 3rd > 4th > 5th.
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difference between forecasts and realizations.

Table 9 contains the relevant results. The first column of statistics contains the popula-

tion standard deviations of conditional expected annual returns. These standard deviations

are useful benchmarks for the reported RMSEs because they can also be interpred as RMSEs.

Consider constant forecasts of annual excess returns equal to the unconditional mean excess

returns. The RMSE of this forecast (again, defining RMSE relative to the true conditional

forecast, not relative to realized returns) equals the standard deviation of the conditional

expected excess return.

According to the RMSE metric, both regressions outperform the constant-expectation

benchmark, and the forward-rate regression outperforms the three-factor regression. Con-

sider, for example, forecasts of annual excess returns to a five-year bond. The population

standard deviation of expected excess returns is 2.41 percent. The mean RMSEs for the

three-factor and forward-rate regressions are 1.93 percent and 1.83 percent respectively. The

three-factor RMSE exceeds the forward-rate RMSE in 84 percent of the individual simu-

lations. The straightforward conclusion to draw from these results is that the additional

information in two additional points on the term structure outweighs the problem of over-

fitting, at least for samples of the size studied here.

6 Conclusion

This paper shows that an econometrician cannot extract from bond yields all information

investors have about expected future yields. An“expectation” factor contains information

about expected future yields but is hidden, in the sense that it has a negligible effect on

the term structure. Estimation procedures that explicitly look for a hidden factor, such as

filtering, are helpful, but are no substitute for direct observation. One lesson to draw from

these results is that information from sources other than bond yields can be valuable in

uncovering hidden factors. The evidence here shows that the expectation factor is related

to both real activity and investors’ reported expectations from surveys.

Moreover, nothing in the theory implies that hidden factor for one type of asset must

also be hidden from the perspective of other types of assets. An important question—but

one that is outside the scope of this paper—is whether information from stock and foreign

exchange markets can be used to build more accurate term structure models.
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Clarida, Richard, Jordi Gaĺı, and Mark Gertler, 2000, Monetary policy rules and macroeco-

nomic stability: evidence and some theory, Quarterly Journal of Economics 115, 147-180.

Cochrane, John H., and Monika Piazzesi, 2005, Bond risk premia, American Economic

Review 95, 138-160.

Collin-Dufresne, Pierre, and Robert S. Goldstein, 2002, Do bonds span the fixed income

markets? Theory and evidence for unspanned stochastic volatility, Journal of Finance 57,

1685-1730.

Collin-Dufresne, Pierre, and Robert S. Goldstein, 2003, Generalizing the affine framework

to HJM and random field models, Working paper, Haas School of Business, University of

California at Berkeley.

Dai, Qiang, and Kenneth J. Singleton, 2000, Specification analysis of affine term structure

models, Journal of Finance 55, 1943-1978.

Duffee, Gregory R., 2002, Term premia and interest rate forecasts in affine models, Journal

of Finance 57, 405-443.

Duffee, Gregory R., 2008, Forecasting with the term structure: The role of no-arbitrage,

Working paper, Haas School of Business, University of California at Berkeley.

Duffie, Darrell, and Rui Kan, 1996, A yield-factor model of interest rates, Mathematical

Finance 6, 379-406.

Litterman, Robert, and Jose Scheinkman, 1991, Common factors affecting bond returns,

Journal of Fixed Income 1, 54-61.

Taylor, John B., 1993, Discretion versus policy rules in practice, Carnegie-Rochester Con-

ference Series on Public Policy 39, 195-214.

27



Table 1. Summary statistics for Treasury yields.

Month-end yields on six zero-coupon Treasury bonds are from CRSP. The sample is 528 ob-
servations from January 1964 through December 2007. Yields are continuously compounded
and expressed in percent per year. Panel B reports five eigenvalues of covariance matrices.
For “Yield levels,” the data are the six yields. For “Monthly changes,” the data are monthly
changes in the six yields. For “Annual returns,” the data are overlapping observations of
annual returns to the five bonds with initial maturities of one through five years.

Panel A. Univariate statistics

Maturity
3 mon 1 yr 2 yr 3 yr 4 yr 5 yr

Mean 5.87 6.26 6.47 6.64 6.77 6.85

Std dev 2.77 2.74 2.66 2.58 2.53 2.49

Panel B. Principal components

Index of component
1 2 3 4 5

Yield levels 40.405 0.930 0.068 0.008 0.005

Monthly changes 1.120 0.128 0.021 0.008 0.005

Annual returns 108.048 8.072 0.314 0.079 0.047
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Table 2. An estimated dynamic term structure model

A length-five state vector xt has dynamics

xt+1 = Kxt + Σεt+1, εt+1 ∼ N(0, I).

Yields on bonds with maturities of three months and one through five years are stacked in
the vector yt. The measurement equation is

yt = A + Bxt + ηt, ηt ∼ N(0, σ2
ηI).

The model is estimated with maximum likelihood and the Kalman filter using month-end
yields from 1964 through 2007. The factors are normalized to equal the five principal com-
ponents of yields on bonds with maturities of three months and one, two, four, and five
years. The table reports parameter estimates and standard errors. The standard errors are
computed from Monte Carlo simulations under the null hypothesis that the estimated model
is true.
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K 0.987 0.018 0.172 0.987 3.355
(0.009) (0.053) (0.188) (0.836) (1.442)
−0.003 0.936 −0.301 −0.213 −0.033
(0.002) (0.021) (0.066) (0.250) (0.511)

0.001 −0.003 0.820 −0.506 0.065
(0.001) (0.005) (0.032) (0.125) (0.258)

0.000 0.002 −0.026 0.692 0.024
(0.000) (0.002) (0.010) (0.053) (0.100)

0.000 −0.001 0.001 −0.018 0.869
(0.000) (0.001) (0.006) (0.037) (0.049)

Σ × 10 9.820 0 0 0 0
(0.297)
−0.581 3.000 0 0 0
(0.363) (0.112)

0.540 0.656 1.113 0 0
(0.096) (0.131) (0.054)
−0.005 0.077 −0.258 0.368 0
(0.035) (0.037) (0.043) (0.040)

0.029 −0.001 0.044 −0.090 0.228
(0.028) (0.028) (0.035) (0.040) (0.036)

A B(:,1) B(:,2) B(:,3) B(:,4) B(:,5)

3 mon 5.740 0.459 −0.655 −0.598 0.102 0.003
(1.219) (0.024) (0.029) (0.030) (0.018) (0.016)

1 year 6.164 0.464 −0.314 0.602 −0.567 0.055
(1.252) (0.015) (0.038) (0.023) (0.022) (0.071)

2 year 6.446 0.457 0.065 0.405 0.742 −0.268
(1.279) (0.004) (0.031) (0.024) (0.037) (0.101)

3 year 6.644 0.443 0.287 0.167 0.433 0.618
(1.269) (0.011) (0.023) (0.029) (0.089) (0.108)

4 year 6.808 0.432 0.437 −0.132 0.047 0.776
(1.267) (0.018) (0.018) (0.032) (0.102) (0.012)

5 year 6.926 0.422 0.533 −0.136 −0.340 −0.568
(1.262) (0.024) (0.022) (0.030) (0.075) (0.048)

100ση 5.559
(0.138)
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Table 3. Model-implied population properties of term structure factors

A five-factor Gaussian term structure model is estimated with the Kalman filter. True yields
are affine functions of the unobserved factors. Observed yields are contaminated with iid
measurement error. The data are month-end yields, from January 1964 through December
2007, on zero-coupon bonds with maturities of three months and one through five years.
The factors are rotated to represent, in order, the first five principal components of the bond
yields (expressed in percent per year). The first column of the table reports the population
standard deviations of the factors. Standard errors, computed from Monte Carlo simulations,
are in parentheses. The second column reports the population R2 of a regression of the true,
unobserved factors on contemporaneous values of all six observed bond yields. The third
column reports the population R2 of similar regressions using filtered estimates of the factors
in place of the true factors. The fourth column reports population correlations between true
factors and filtered estimates of the factors.

R2’s of factors on yields Correl of true,
Factor Std dev True factors Filtered factors filtered factor

1 6.017 1.000 1.000 1.000
(1.287)

2 0.925 0.997 1.000 0.998
(0.114)

3 0.251 0.954 0.993 0.980
(0.019)

4 0.067 0.623 0.877 0.843
(0.005)

5 0.043 0.433 0.683 0.797
(0.004)
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Table 4. Decomposition of volatility of 12-month-ahead yield forecasts

A five-factor Gaussian term structure model is estimated with the Kalman filter. The factors
represent, in order, the first five principal components of the bond yields and are uncondi-
tionally uncorrelated. Parameter estimates are used to construct estimates of unconditional
variances of 12-month-ahead expectations of bond yields, expressed in percent per year.
These variances are the sums of estimated variances attributable to each of the five factors.
The table reports the square roots of these estimated variances. Monte Carlo simulations
are used to compute biases and uncertainty in these estimates. Using the null hypothesis
that the estimated model is correct, the term structure model is estimated using simulated
yields. Means and ninety-five percentile bounds on the estimated standard deviations are
reported in parentheses and brackets respectively.

Std dev of
forecast Std dev attributable to factor

Maturity (%/year) 1 2 3 4 5

3 mon 2.28 2.23 0.28 0.07 0.06 0.36
(1.98) (1.91) (0.28) (0.13) (0.10) (0.31)

[0.86 3.40] [0.80 3.36] [0.01 0.65] [0.00 0.40] [0.00 0.32] [0.03 0.63]

1 yr 2.32 2.28 0.15 0.04 0.07 0.37
(2.00) (1.94) (0.19) (0.12) (0.10) (0.32)

[0.90 3.52] [0.81 3.48] [0.00 0.46] [0.00 0.38] [0.00 0.33] [0.03 0.64]

2 yr 2.34 2.31 0.02 0.07 0.04 0.38
(2.01) (1.96) (0.13) (0.11) (0.09) (0.33)

[0.89 3.48] [0.82 3.46] [0.01 0.34] [0.00 0.34] [0.00 0.30] [0.06 0.61]

3 yr 2.33 2.28 0.12 0.14 0.01 0.37
(1.98) (1.93) (0.12) (0.14) (0.08) (0.32)

[0.94 3.40] [0.86 3.37] [0.00 0.36] [0.00 0.36] [0.00 0.28] [0.06 0.58]

4 yr 2.32 2.27 0.20 0.19 0.01 0.37
(1.97) (1.91) (0.15) (0.18) (0.08) (0.32)

[0.91 3.35] [0.82 3.32] [0.00 0.43] [0.01 0.40] [0.00 0.26] [0.07 0.56]

5 yr 2.30 2.24 0.25 0.24 0.03 0.37
(1.95) (1.88) (0.19) (0.21) (0.08) (0.33)

[0.86 3.30] [0.79 3.26] [0.01 0.49] [0.01 0.43] [0.01 0.25] [0.08 0.57]
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Table 5. Model-implied properties of annual excess bond returns

A five-factor Gaussian term structure model is estimated with the Kalman filter. The factors
represent, in order, the first five principal components of the bond yields and are uncondi-
tionally uncorrelated. Parameter estimates are used to calculate population properties of
annual log returns to bonds in excess of the log return to a one-year bond. In Panel A, re-
turn variances are calculated for both true excess returns and observed excess returns. The
latter are contaminated by measurement error. The columns labeled “Predictable frac of
var” report the fraction of the variance attributable to time-variation in conditional means
of true returns. Panel B decomposes the volatility of true conditional expected excess returns
into components attributable to each factor. Its structure follows Table 3.

Panel A. Univariate statistics

True returns Observed returns
Std Predictable Std Predictable

Maturity Mean dev frac of var dev frac of var

2 yr 0.36 1.78 0.196 1.78 0.195

3 yr 0.68 3.24 0.204 3.24 0.203

4 yr 0.87 4.50 0.221 4.51 0.220

5 yr 0.88 5.58 0.206 5.59 0.205

Panel B. Decomposition of volatility of expected excess returns

Std dev of
conditional mean Std dev attributable to factor

Maturity (%/year) 1 2 3 4 5

2 yr 0.79 0.43 0.56 0.02 0.07 0.35
(0.82) (0.44) (0.55) (0.11) (0.11) (0.30)

[0.50 1.17] [0.12 0.72] [0.18 0.94] [0.00 0.33] [0.01 0.31] [0.02 0.61]

3 yr 1.46 0.57 1.04 0.11 0.05 0.84
(1.54) (0.64) (1.05) (0.22) (0.19) (0.73)

[0.98 2.17] [0.14 1.13] [0.34 1.69] [0.00 0.64] [0.01 0.58] [0.18 1.28]

4 yr 2.12 0.74 1.54 0.13 0.02 1.24
(2.22) (0.84) (1.55) (0.30) (0.26) (1.09)

[1.47 3.02] [0.19 1.46] [0.59 2.44] [0.00 0.90] [0.01 0.84] [0.31 1.85]

5 yr 2.53 0.82 1.97 0.23 0.03 1.35
(2.68) (0.96) (2.00) (0.38) (0.31) (1.16)

[1.75 3.69] [0.14 1.71] [0.79 3.10] [0.01 1.10] [0.01 0.97] [0.20 2.12]
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Table 6. Model-implied expectations compared to survey forecasts

Quarterly observations of expectations of future Treasury bill yields are from the Survey of
Professional Forecasters. The data used are quarter-t mean survey forecasts of the three-
month T-bill yield during quarters t+j, j = 1, . . . 4. The contemporaneous three-month yield
is subtracted from the forecasts to produce forecasted changes in the yield. Contemporaneous
filtered estimates of the “level” and “expectation” factors are taken from a five-factor term
structure model. The factors are normalized to have standard deviations of one. All regres-
sions are estimated from 1981Q3 through 2007Q4 (106 quarterly observations). Newey-West
standard errors are in parentheses, adjusted for four lags of moving average residuals.

Panel A. Regressions of the expectation factor on the survey-based expected change

Quarters ahead (j)
1 2 3 4

Coef −1.154 −0.848 −0.612 −0.466
(0.206) (0.207) (0.189) (0.161)

AR(1) of
residual 0.55 0.58 0.58 0.59

Panel B. Regressions of the survey-based expected change on the level and expectation
factors

Quarters ahead (j)
1 2 3 4

Coef on level −0.108 −0.147 −0.205 −0.263
(0.036) (0.047) (0.059) (0.075)

Coef on expectation −0.135 −0.155 −0.149 −0.158
(0.043) (0.050) (0.062) (0.080)

AR(1) of
residual 0.22 0.47 0.54 0.57
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Table 7. The relation between industrial production and the expectations factor

The log change industrial production from month t−1 to month t is regressed on the month
t−i filtered estimate of the expectations factor, for i = −6, . . . , 6. The log change is expressed
in percent and the factor is normalized to have a standard deviation of one. Newey-West
standard errors are calculated using two lags of moving average residuals. The sample period
is 1964 through 2007.

Lead of
Δ log(IP) Coef Std error t-statistic

−6 −0.025 0.048 −0.52

−5 −0.096 0.050 −1.92

−4 −0.098 0.051 −1.92

−3 −0.129 0.050 −2.56

−2 −0.140 0.049 −2.85

−1 −0.118 0.050 −2.36

0 −0.135 0.054 −2.48

1 −0.112 0.057 −1.97

2 −0.089 0.054 −1.66

3 −0.060 0.047 −1.26

4 −0.070 0.049 −1.43

5 −0.038 0.052 −0.74

6 −0.078 0.051 −1.52
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Table 8. Population and finite-sample properties of predictive regressions

Excess log returns to a five-year bond from month t to month t + 12 are predicted with
the month-t shape of the term structure using two OLS regressions. The first regression
uses the level, slope, and curvature of the term structure, as defined in the text. The
second regression uses five forward rates. The true data-generating process is this paper’s
estimated term structure model. Population values of the coefficients and R2s are calculated
analytically. Finite-sample properties use simulations of 528 months of bond yields. The
table summarizes results from 10,000 simulations. The notation F (m, n) denotes the forward
rate from year m to year n.

Panel A. Predicting excess returns with level, slope, and curvature

Coefficient on:
Level Slope Curvature R2

Population value 0.429 1.520 0.592 0.14

Mean across sims 0.847 1.631 0.171 0.21

Std dev across sims 0.476 0.783 2.805 0.08

95 percent interval [0.12 1.96] [0.06 3.14] [−5.45 5.66] [0.06 0.38]

Panel B. Predicting excess returns with five forward rates

Coefficient on:
F (0, 1) F (1, 2) F (2, 3) F (3, 4) F (4, 5) R2

Population value −1.861 0.465 2.658 0.289 −1.096 0.16

Mean across sims −1.786 0.450 2.627 0.446 −0.869 0.22

Std dev across sims 0.952 1.661 1.053 0.850 0.876 0.08

95 percent interval [−3.63 0.12] [−2.85 3.58] [0.63 4.75] [−1.20 2.15] [−2.62 0.85] [0.08 0.39]

Panel C. Probability distribution of the difference in finite-sample R2s

Percentile
2.5% 25% 50% 75% 97.5%

Forward-rate R2 less 3-factor R2 −0.041 −0.002 0.014 0.033 0.080
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Table 9. Finite-sample forecast accuracy of predictive regressions

Excess log returns to m-year bonds from month t to month t+12, m = 1, . . . , 5, are predicted
with the month-t shape of the term structure using two OLS regressions. Regression [1]
uses level, slope, and curvature. Regression [2] uses five forward rates. The true data-
generating process is this paper’s estimated term structure model. Finite-sample properties
use simulations of 528 months of bond yields. The table summarizes monthly differences
between fitted month-t forecasts and true month-t expectations of expected excess returns.
For each simulation, the square root of the mean squared difference, denoted RMSE, is
calculated for each regression. The table summarizes results from 10,000 simulations. All
values are in percent per year.

Std dev Mean RMSE
Bond of true across simulations Fraction of sims with
maturity expectation Reg [1] Reg [2] RMSE[1]>RMSE[2]

2 years 0.722 0.569 0.535 0.83

3 years 1.385 1.163 1.069 0.92

4 years 2.016 1.660 1.511 0.95

5 years 2.412 1.931 1.825 0.84
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Fig. 1. Estimated loadings of yields on the five factors of a term structure model. Each line
represents the response of the term structure to a one standard deviation variation in the
given factor.
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Fig. 2. Responses of the three-month bill rate to term structure factors. Each panel plots
the expected time path of the three-month bill yield, assuming that at month zero the
specified factor is one standard deviation above its mean. All other factors are set to their
unconditional means.
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Fig. 3. Filtered estimates of the “expectation” factor. The vertical lines are NBER business
cycle break points.
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Fig. 4. Sensitivity of expected excess bond returns to term structure factors. The month-t
expected annual log return to a m-year bond less the log return to a one-year bond depends
on the month-t values of the term structure factors. The figure plots, for m = 2 through
m = 5, the sensitivity of the expected excess return to one-standard-deviation changes in the
“level” factor (solid line), the “slope” factor (dashed line), and “expectation” factor (dotted
line).
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Fig. 5. A comparison of October 2001 and October 2004. Values for the two months are
plotted with ’+’ and ’o’ respectively. Panel A displays the month-end term structures. Panel
B displays model-implied expected excess log returns (over the one-year yield) for bonds with
maturities of two through five years. Panel C displays expected future three-month yields
over the next 24 months, where month zero is October of 2001 and 2004 respectively. Panel
D displays expected future five-year yields.
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