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Abstract

I combine patent, decennial census and other data to measure the extent to

which skilled immigration increased innovation in the United States from 1950–

2000. I instrument the change in the share of skilled immigrants in a state with the

initial share of immigrant high school dropouts from Europe, China and India, and

consider changes of between ten and 50 years. I find that a one percentage point rise

in the share of immigrant college graduates in the population increases patenting by

8–15%; the equivalent range for immigrants with post–college education is 15–33%.

A one percentage point rise in the share of immigrant scientists and engineers in

the workforce increases patenting by at least 41%. The effects are similar in the

short and long run, and appear to be much larger than the effect of skilled natives,

especially in the short run. This may be related to my finding that natives are

crowded out by immigrants in the short run, but not in the long run. My analysis

shows the importance of convergence among states for the evolution of patents.



Although there is a large literature studying the impact of immigration on the host

country, this literature is more focused on potential costs than potential benefits. One

reason for this is that the biggest potential benefits are harder to quantify than potential

costs. Amongst these potential benefits are higher productivity, if there are increasing

returns to scale in production; the achievement of critical mass in specialized areas of

research, development and production; spill–over effects of skilled workers through ex-

ternalities and production complementarities, including of the O–ring variety; increased

entrepreneurship and increased innovation in science, the arts and other fields. Some

tantalizing facts hint at the possible importance of these effects for the United States.1

Twenty–six percent of U.S.–based Nobel Prize recipients from 1990–2000 were immigrants

(Peri 2007), twenty–nine percent of U.S.–based U.S. patent holders had non–Anglophone

names in 2000–2004 (Kerr 2007), and twenty–five percent of founders of public venture–

backed U.S. companies in 1990–2005 were immigrants (Anderson and Platzer n.d.), com-

pared to a foreign–born population of 12% in 2000. Immigrants are over–represented

amongst members of the National Academy of Sciences and the National Academy of En-

gineering, amongst authors of highly–cited science and engineering journal articles, and

amongst founders of bio–tech companies undergoing IPOs (Stephan and Levin 2001).

The goal of my paper is to assess the impact of skilled immigration on innovation

as measured by U.S. patents. My methodology accounts for contributions through the

various possible channels: innovation by the immigrants themselves, their spill–over ef-

fects and contribution to critical research and development mass, and their provision of

complementary skills such as management and entrepreneurship. My analysis captures

invention at companies, universities and government laboratories, and the contributions

of immigrants arriving both before and after their tertiary education.

To achieve this goal, I use a panel of U.S. states from 1950–2000 based on data from the

U.S. Patent and Trademark Office, the decennial censuses and other sources. I instrument

the change in the share of skilled immigrants in a state with the state’s initial share of

immigrant high school dropouts from Europe, China and India, and consider changes

1See Kremer (1993) on O–ring complementarities.
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of between ten and 50 years. I also verify whether skilled immigrants crowd out skilled

natives from the states (and occupations) to which they move. In so doing, I contribute

to two understudied areas: the impact of immigration on innovation, and the regional

determinants of innovation.

I go beyond the most closely related paper linking immigration and innovation, Peri

(2007), by extending the panel, using instrumental variables, defining skilled immigra-

tion consistently across time and more broadly and by testing for crowd–out of natives.

These considerations also distinguish my paper from the time–series analysis of Chellaraj,

Maskus and Matt (2004). Both of these papers find skilled immigration increases U.S.

patenting. The Kerr (2007) analysis of the ethnicity of inventor names relates to immigra-

tion particularly convincingly in the case of the large rise in Indian and Chinese names.

In general, his analysis cannot separate the contributions of first and later generations

of immigrants, however, misses the contribution of Anglophone immigrants, and is not

designed to take indirect effects of immigrants into account. My analysis is more gen-

eral than that of Stuen, Mobarak and Maskus (2007), who find that immigrant students

increase U.S. university patenting and science and engineering publishing.

In a study examining the reverse phenomenon, Agrawal, Kapur and McHale (2002)

find that emigration from India reduces access to knowledge in India. Another related

paper is that by Niebuhr (2006), who concludes that German regions with more diverse

worker nationalities (as measured by the Herfindahl) patent more. The result is not robust

to region fixed effects, however, no doubt in part because she has only two years of data

close in time (1997 and 1999).

I am not aware of other academic papers examining the determinants of state–level

patenting over a period of several decades (other than Peri 2007).2 The main focus of the

literature on geography and innovation is on geographic patterns of patent citing (see Jaffe,

Trajtenberg and Henderson 1993 and successor papers). The most closely related paper

is Zucker and Darby (2006), who find for 1981–2004 that a Bureau of Economic Analysis

(BEA) region’s high–tech start–up rate is boosted by the presence of star scientists, a high

2See also descriptive statistics in Hicks et al. (2001).
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wage (which they view as proxying for education) and a high stock of relevant journal

publications. They find these variables have no clear effect on non–university patenting,

however, and they do not include region fixed effects. Zucker et al. (2006) examine

the determinants of a BEA region’s publications in nanotechnology, including the stock

of such publications and federal funding. Bottazzi and Peri (2003) average over 1977–

1995 to obtain cross–section evidence of geographic spill–over effects of R&D spending

on patenting in European regions. Finally, Marx, Strumsky and Fleming (2007) and

Stuart and Sorenson (2003) examine the effect of a state’s enforcing non–compete laws

on inventor inter–firm mobility and biotech IPOs respectively.

My work is also relevant for the macroeconomic growth literature, where the link

between innovation and employment in innovation is the key to growth. AK growth

models predict that the level of employment in R&D affects productivity growth (Aghion

and Howitt 1992, Grossman and Helpman 1991a,b, Romer 1990), while Jones (1995)

and others argue that the empirically convincing link is between the growth in such

employment and productivity growth.

I find that a one percentage point rise in the share of immigrant college graduates in the

population increases patenting by about 8-15%; the equivalent range for immigrants with

post–college education is 15-33%. A one percentage point rise in the share of immigrant

scientists and engineers in the workforce increases patenting by at least 41%. The effects

are similar in the short and long run. For natives, by contrast, I am unable to find any

short–run benefit of skill, and the long run beneficial effects are much smaller than those of

immigrants. This could be because within each skill category natives have less education

than immigrants, because immigrants are positively selected within skill category for

innovative talent, or because there is bias in the effect of natives which I have not corrected

with instrumental variables.

While in the short run there is some evidence that immigrants crowd out natives,

either deterring natives from moving to states with skilled immigrants or deterring them

from working as a scientist or engineer, in the long run there is no evidence of such crowd–

out, but rather a suggestion that skilled immigrants may attract skilled natives. This is
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consistent with Borjas (2006), who finds that immigrants do not crowd out natives as a

whole from graduate school. The absence of crowd–out means that my estimates of the

benefits of immigrants are not offset by reductions in native contributions to innovation.

My quantification of immigrants’ boost to innovation, in combination with Ottavanio

and Peri’s (2006) finding that most native education groups benefit from immigration in

terms of wage, provides a more nuanced view of immigration than had hitherto prevailed.

Furthermore, my results also reveal the importance of convergence in innovation across

states, surely an important mechanism behind the convergence of per capita personal

income analyzed in papers beginning with Barro and Sala-i-Martin (1991).

1 Methodology

I use a panel of U.S. states with decennial data from 1950–2000. I have chosen the ge-

ographic dimension to supplement the time dimension as I have neither data on nor a

conceptual instrument for immigrant share by firm, the usual unit of observation in patent

studies. The geographic dimension is commonly used in studies of the impact of immi-

gration on wages, where its Achilles heel is the possibility that factor price equalization

makes wage responses impossible to find across states. This criticism is not relevant for

a study of innovation, although I shall describe other sources of endogeneity below. I

extend the period of observation back to 1950 so as to be able to distinguish long run and

short run effects.3 I do not extend it to prior decades as the years of the Great Depression

and the Second World War are probably unusual.

I estimate equations in differences of lengths ranging from ten to 50 years, allowing

me to judge short and long run effects purged of time–invariant state characteristics. An

advantage of having a shortest difference of ten years is that results will not be as sensitive

to the specification of the lags of the covariates as they would be with yearly data, and I

simply define all variables contemporaneously. I estimate

3Strictly speaking, I should refer to low–frequency and high–frequency effects.
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∆log
Pit

POPit

= α + γ1∆I
S
it + γ2∆N

S
it + ∆Xitγ3 + γ4Zi,1950 + µt + ∆εit, (1)

where i indexes states, P is the log of patents, POP is state population, IS is the share

of the population or workforce (18–65) composed of skilled immigrants, NS is the cor-

responding variable for natives, and Zi,1950 are characteristics of the state in 1950, while

X are contemporaneous state characteristics and µt are year dummies. The coefficient of

interest is γ1, though its size relative to γ2 is also of interest.

I define a skilled person variously as one with a college degree or more, one with post–

college education, or one working in a science, engineering or computer science occupation.

I include characteristics of the state in 1950, as the other covariates do not appear to

capture the convergence in patents per capita occurring over the time period.4 The X

covariates include the log of defense procurement spending and the log of the average age

of state residents (18–65). I deliberately do not include total R&D spending (including

companies’ spending), as I believe this to instead be a potential outcome variable.

There were several major changes to the patent system between 1980 and 1998 (see

Hall 2005). One change led to a large increase in patenting in electrical engineering relative

to other fields. To capture potentially differential effects of this by state, I include among

the X’s the share of employment in electrical engineering–related fields in 1980, interacted

with year dummies.5 I use state populations to weight the regressions, since in some small

states one company drives the time series of patenting, and I cluster standard errors by

state.6

Although the patent and growth literatures model change in knowledge (patents) as

being a function of the stock of knowledge, I elect not to include the change in the patent

stock among the regressors. Its inclusion seems more appropriate for estimation pooling

states without state fixed effects. I have also chosen not to use a partial adjustment

4See Barro and Sala-i-Martin (1991) on convergence in state personal income per capita over time.
5Methodologically it might be preferable to use electrical engineering employment in 1950, but it is

tiny in most states until 1980.
6Specifically, I weight by 1/(1/popt + 1/popt−k), where k is the length of the difference.
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model, which seems better suited to shorter run analysis.7

Equation (1) suffers from an endogeneity problem. Skilled workers are likely to migrate

to states which are growing or innovating, causing γ̂1 and γ̂2 to be biased up in least squares

estimation. On the other hand, γ̂1 in particular could be biased towards zero owing to

measurement error.8 I use several sets of instruments to address these problems for foreign

skilled workers. To instrument ∆IS = IS
t − IS

t−k, I use IHSD
t−k , the share of the population

that is a high school dropout at time t−k, and its square. The presence of immigrant high

school dropouts in a state will mean the existence of cultural amenities attractive also to

skilled immigrants. On the other hand, high school dropouts should play a minimal role in

innovation, justifying their exclusion from equation (1). A variant on this instrument set

is three variables for the share of high school dropouts at t− k who were born in Europe,

China and India, the most common source regions for skilled immigrants. I also use the

wage return to college or more at t−k. This should not directly affect innovation growth,

but high levels should attract skilled workers, particularly mobile new immigrants.9

Finally, I use a different proxy for cultural amenities likely to attract skilled workers,

particularly from Europe and particularly those mathematically inclined (and therefore

likely musically inclined): information on the presence of symphony orchestras in the

state. I include dummies for the presence of any of ten types of symphony orchestra in

2006, as well as the number of each type (the categories, principally budgetary, are listed

in the Appendix Table). It would be preferable to have decadal data, but these are not

available. For ∆NS (native skilled workers), I have experimented unsuccessfully with

lagged college enrollments as an instrument.

A different set of concerns is related to the potential crowd–out of natives. Natives

may choose not to enter careers in science and engineering, or to work less, owing to

7I have estimated these models. The coefficient on the change in the stock of patents is close to

one, rendering all other coefficients insignificant, while the coefficient on the partial adjustment term is

insignificant.
8There is definitely considerable measurement error for small states in the 1950 census, which was a

smaller sample than later years and which asked certain key questions of only one quarter of the sample.
9I use the coefficient on having college or more from a log weekly wage regression also including sex

and a quartic in age.
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competition from immigrants whose comparative advantage is in less language–intensive

and less institution–specific occupations. Any drop in native innovators must be taken

into account when calculating the net benefit of immigrants. A more complex concern

is that native innovators forgo migration to states with many immigrant innovators. If

by doing so native innovators forgo an increase in productivity, this must be taken into

account when calculating the net benefit of immigrants. For this to be logical, natives

must be forgoing migration because of personal distaste for foreigners, since if they are

forgoing a productivity increase they must also be forgoing a wage increase. Natives

without such a distaste will be attracted to states with skilled immigrants if the skilled

immigrants convey positive productivity spill–overs.

I test for both types of crowd–out using the simple approach of Card (2005) by running

the regression

∆S = a+ b∆IS + f∆Age+ ∆ν, (2)

where S is the share of the population or workforce (aged 18–65) composed of skilled

natives and immigrants, and Age is the average age of the state’s population between 18

and 65. If increases in the skilled immigrant share translate into one for one increases in

the total skilled share, there is no crowd–out and b̂ = 1. Complete crowd–out would be

represented by b̂ = 0, while b̂ > 1 is also possible and would indicate that skilled natives

were attracted to states with many skilled immigrants, perhaps because of positive spill–

overs. Measurement error could also caused b̂ to be less than one.

2 Data and Descriptive Statistics

The patent data used in most of the analysis come from the U.S. Patent and Trademark

Office. I merge a series based on their electronic data from 1963 onwards with a series

from paper records for 1883–1976. The two series are not completely comparable, and

the merging details are given in the Data Appendix. Patents are classified according to

application (filing) date. Figure 1 shows the evolution of patents in the four states with

the most patents in 1950: New York, California, Illinois and Ohio. The four states have
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similar numbers of patents in 1950, but by 2000 California has pulled away from the

others. Figure 2 shows the group of four states with the most patents in 2000, a group

to which New York and California also belong. By 2000 Texas and Massachusetts had

overtaken Illinois and Ohio, and Texas had drawn level with New York. Figure 3 shows

the states with the fastest patent growth over the period. These are states with small

populations, initially small numbers of patents (note the different y–axis scale) and high

population growth: Arizona, Idaho, Nevada and Utah. Idaho’s growth is driven by one

semi–conductor company, Micron Technology Inc., founded in 1978, which was granted

1304 patents in 2000 and was the seventh–ranked company in this regard.

In Figure 4 I use patent data from 1929 to 2000 to display the long–run convergence

across states in patenting, as measured by changes in the (unweighted) standard deviation

of log patents. The convergence in patents, shown by the downward slope of the top line, is

not merely a function of convergence in population, as is demonstrated by the convergence

in patents per capita (bottom line). However, there is divergence in patents per capita

from 1990–2000, and there have historically been other periods of divergence. California

is a force for divergence, as may be seen by the growing gap between the inequality of

state patent counts (top line) and the inequality of counts without California (middle

line).

I have also used the NBER Patent Citation Data File (Hall, Jaffe and Trajtenberg

2001), as updated by Hall, which contains the fields of patents awarded 1963–2002 and

citations to them from 1975. These data permit patents to be weighted by citations to

yield a quality–adjusted patent measure. The data are imperfect for my decadal analysis,

however: most patents filed in 2000 have not yet been awarded, so I must use 1997 patents

to match to the 2000 census; and I can begin the analysis at best with 1970, a year for

which most citations are not recorded.

To compute the shares of the population in various education and occupation classes,

to divide these into immigrant and foreign, to calculate the average age of the state’s

population and to obtain weekly wages, I use the IPUMS microdata of the decennial

censuses. I base most calculations on the population or workforce aged 18–65. Post–
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college is the highest education level that can be measured consistently throughout 1950–

2000. Information for Alaska and Hawaii is not available in 1950.

I also use the state population and state personal income per capita (state gross

product is not available for the whole period) from the Bureau of Economic Analysis.

I use Department of Defense data on the value of Prime Military Contracts (defense

procurement contracts) from 1951 to the present, and attribute the 1951 values to 1950.

Finally, I use data from the League of American Orchestras for symphony orchestras by

state by budget category for 2006.

Full details on the data construction are given in the Data Appendix, while the variable

means, weighted by population, are reported in Table 1. Between 1950 and 2000, the

share of the population 18–65 composed of immigrants with college education or more

increased tenfold to 3.5%, while the equivalent share for post–college increased eightfold

to 1.6%. The population share comprising natives with at least college and with post–

college increased from 6.2% to 20.0% and from 2.3% to 7.7% respectively. The share of

workers composed of immigrant scientists and engineers multiplied by six to 0.5%, while

the native share rose from 1.2% to 3.8%. The Appendix Table contains the means of the

variables used as instruments.

3 Results

Before estimating the determinants of patenting, I establish whether crowd–out of natives

from states or occupations with many skilled immigrants should be a concern.

3.1 Crowd–out

To test for crowd–out, I estimate equation (2). The results with college or more as an

indicator of skill are reported in Panel A of Table 2. Column 1 shows that with weighted

least squares and first (i.e. ten year) differences, it appears that a one percentage point

increase in the share of the population that is immigrant college graduates only increases

the overall share of college graduates by 0.51 percentage points. However, as I increase
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the length of the differences I am using, evidence of crowd–out disappears: the coefficient

is 0.75 for third (i.e. 30 year) differences in column 2, and 0.95 for fifth differences in

column 3. In columns 4–6 I report the corresponding instrumental variables results, using

the shares of European, Chinese and Indian dropouts as instruments (the bracketed F–

statistic for their joint significance in the first stage suggests they are powerful). The

coefficients are smaller – and in the case of first differences significantly different from one

- but also increase as the difference length increases, to 0.79 in column 6.

In panel B I repeat the regressions using the share of post–college educated in the

population as the measure of skill. The weighted least squares coefficients in columns 1–3

are significantly greater than one, suggesting that skilled natives are attracted to states

(or education levels) with many immigrants (“crowd–in”). With instrumental variables,

the point estimate suggests crowd–out for first differences (though the coefficient of 0.63

in column 1 is not statistically significantly different from one), but crowd–in at longer

differences.

In panel C I repeat the regressions using the share of workers who are scientists and

engineers. The weighted least squares coefficient falls then rises with the length of the

difference, with the point estimate indicating (statistically insignificant) crowd–out for

third differences. The instruments used in columns 4–6 are not as powerful in the first

stage as for the other skill measures, except for fifth differences, where the crowd–out

coefficient is 0.83.

In summary, it appears that in the short–run there is some crowd–out of college–

educated natives by college–educated immigrants, but that particularly in the longer

run and for the other skill groups the opposite occurs: skilled natives are attracted to

skilled immigrants. I cannot correct for crowd–out when analyzing the determinants of

innovation, but the results mean that the short–run benefits of college immigrants may

be overestimated, while other benefits may be underestimated.
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3.2 Determinants of patents

The evolution of a state’s patents over the period 1950–2000 is strongly related to con-

ditions in 1950, as would be expected given the convergence depicted in Figure 4. This

is vividly illustrated by Figure 5, which measures the difference in log patents per capita

over the period on the y–axis. The x–axis is the population density of the state in 1950

(population divided by land area in square kilometers). The 1950 population density ex-

plains 33% of the weighted variance in 1950–2000 patent growth, and the regression line

is downward sloping: states which were densely populated in 1950, which is presumably

propitious for innovation, had lower patent growth than lightly populated states.10

I use these observations to inform my choice of specifications in Table 3, where I ex-

amine the effect on patenting of the share of skilled people, without yet distinguishing

between immigrants and natives. As in the figure, I focus on the fifth difference. Panel A

contains the coefficients from regressions with skill represented by the share of the popu-

lation that has a college degree, panel B for the share with post–college, and panel C for

the share of workers who are scientists or engineers. The coefficients in column 1, where

there are no other covariates, are negative for college and post–college, and they remain

negative in column 2 when further covariates are added (the changes in log DoD spending

and average age). The column 1 coefficient for scientists and engineers is positive but not

quite significant at 11.4, and falls to an insignificant 7.5 in column 2.

It is possible that education has no general beneficial effect on patenting, and that

the benefit of scientists and engineers is reflected by the insignificant coefficient of 7.5

in column 2. The negatively signed effects of education are robust to various lengths

of differences and to the use of instrumental variables (these results are not reported).

However, the elasticity implied by the science and engineering coefficient is 0.21 (using

the mean share of scientists and engineers from Table 1, 2.8%), which seems implausibly

small. If all patents were filed by scientists and engineers, one might expect the elasticity

10Washington D.C.’s decline is influenced by a sharp decline in NASA patenting in the 1970s in addition

to its severe population decline. The location of a patent is determined by the home address of the first

inventor, which for D.C. means that suburbanization reduces patenting.
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to be approximately unity (implying a coefficient of 36).

Adding as controls the log of state land area and 1950 log population, which together

give 1950 log population density, and the 1950 log state income per capita, in column 3,

renders all three skill coefficients positive and significant. If this is the appropriate speci-

fication, it means that there exists a factor driving convergence whose omission obscures

the benefits of a skilled population (even in instrumental variables estimation).

The coefficient of 31.4 in column 3 panel C indicates that a one percentage point

increase in the share of the workforce that is scientists and engineers is associated with a

31.4 log point (27%) increase in patenting, or an elasticity of 0.88, which seems reasonable.

The coefficient of 7.2 in panel A indicates that a one percentage point increase in the share

of the population with a college degree is associated with an increase in patents of 7.2%.

The fact that many college educated do not work will tend to make this coefficient smaller

than the scientist and engineer coefficient, as will the fact that the share of patenters

is likely to be lower amongst college graduates generally than amongst scientists and

engineers. On the other hand, the indirect effects of college graduates could be important.

A one percentage point increase in post–college is associated with an increase in patenting

of 12.5%. I check the sensitivity of these results to the addition of seven dummies for BEA

regions in column 4: while the coefficient is little affected for scientists and engineers, the

coefficients are reduced but still statistically significant for the other two skill groups. I

elect to control for 1950 conditions in all subsequent analysis.

In Table 4 I distinguish between natives and immigrants with a college degree, and

show the results of changing the length of the difference using weighted least squares.

The coefficients on the share of immigrant college graduates are positive and significant:

a one percentage point increase in the share of the population composed of immigrant

college graduates is associated with an 11% increase in patenting for first, second and

third differences, and 13.7–15.4% increases for fourth and fifth differences.

By contrast, there is no significant effect of native college graduates at short differences.

The point estimate increases as the difference length increases, however, and for fifth

differences (column 5) the coefficient is a significant 5.9. As the share of native college
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graduates changes only gradually (i.e. at low frequency), the absence of significance

at short differences probably reflects the emphasis of short differences on high–frequency

events (Baker, Benjamin and Stanger 1999). Crowd–out is expected to operate principally

by reducing the quantity of skilled natives, rather than the coefficient on their share,

but if the composition of skilled natives shifts away from science and engineering, their

coefficient could also be attenuated, possibly explaining why the native effect is larger

for long differences, where crowd–out is less important. The impact of natives could be

smaller than that of immigrants at long differences either because more college immigrants

have post–college education, or because immigrants are positively selected for innovative

talent.

Older populations appear to be more innovative. This may reflect the importance of

management or other skills complementary to innovation.11 As suggested by time series

work in Griliches (1990), Department of Defense spending lowers patenting, presumably

in part because military innovation is primarily protected by secrecy rather than patents.

Finally, the importance of the 1950 conditions (and land area) increases with the difference

length.

These regressions are repeated in Table 5 with post–college education (panel A) and

science and engineering occupation (panel B) as measures of skill. The coefficients for

immigrant post–college are 21–22 for 10, 20 and 30 year differences (columns 1–3), and

25–29 for longer differences (columns 4 and 5). These estimates are higher and less

precisely estimated than for college graduates in Table 4. As post–college immigrants

represent about half the college and above immigrants (see Table 1), if the coefficient

for post–college were double the coefficient for college and above it would suggest that

only the post–college are contributing to innovation. This is approximately the case. The

coefficients for native post–college educated are never statistically significant though the

point estimates are higher for the longer differences.

In panel C the coefficients are significant at all difference lengths for both immigrants

11Innovation rises monotonically with age in unreported regressions with three variables representing

age shares.
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and natives. The coefficients are similar across columns 1–4 for immigrants (64–69, mean-

ing a response of 49–52% to a one percentage point increase in the share of immigrant

scientists and engineers), and slightly higher at fifth differences. The coefficients increase

with difference length for natives (from 12.1 to 26.3), nevertheless indicating that natives

have less impact on invention than immigrants even in the long run.

The next step is to see whether the conclusions for immigrants hold up in instrumental

variables regressions. The crowd–out results of Table 2 suggested that to avoid overstating

benefits of immigrants, results from longer differences should be preferred. Although the

immigrant least squares results of Tables 4 and 5 did not differ much by difference length,

it would be preferable to focus on longer differences for the instrumental variables analysis

in case the true causal effect does differ. With the exception of the orchestra instruments,

however, my instruments are good predictors of the change in skilled immigrant shares

only for first and second differences (for which results are similar). I therefore present

the results of instrumental variables for first differences in Table 6, and hope that since

the short and long–run correlations are similar, the short and long–run causal effects are

similar (which is the case when the orchestra instruments are used). I report only the

coefficient on the change in skilled immigrant share.

In the first row of Table 6 I use as instruments the shares of the population composed

of European, Chinese and Indian high school dropouts. The coefficients for the three skill

groups are all higher than their least squares equivalents (though not statistically signif-

icantly so). This is surprising as the coefficients were expected to be biased up. There

are two possible explanations. One is that measurement error is an important factor, a

possibility mooted by Card and DiNardo (2000) in a similar context. The other is that

skilled immigrants whose behavior is affected by the instrument (skilled immigrants whose

location decision is affected by the presence of other immigrants) are more inventive than

other immigrants. The F–statistic reported in square brackets indicates that the instru-

ments are powerful in the first stage for college and post–college, but not for engineers

and scientists.

In the second row I use the share of all immigrant high school dropouts, and its
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square, as instruments. These instruments are powerful in the first stage for all three skill

groups. With this instrument set, the point estimates are very similar to the weighted

least squares results in Tables 4 and 5 (but the standard errors are larger, so only the

scientists and engineers coefficient is significant). In the third row I use the wage return

to college as an instrument, which is strongly significant in the first stage for college and

post–college educated, but not for scientists and engineers.12 The coefficients for college

and post–college are similar to those of the first row, while the coefficient for scientists

and engineers is anomalously high at 104.2. In the final row I use the set of 14 variables

describing symphony orchestras as instruments, which are strongly significant in the first

stage for all three skill groups. The estimated coefficients are similar to the first row for

college and post–college, and similar to weighted least squares for scientists and engineers.

The results of Table 6 suggest that the coefficients range from 11–18 for the college–

educated, from 26–52 (or 23–42%) for the post–college, and from 70–104 for scientists and

engineers, but with the coefficient of 70 (53%) more reliable.

In Table 7 I present the results of various specification checks for first differences, both

weighted least squares and instrumental variables, using the shares of European, Chinese

and Indian dropouts as instruments (this instrument is not very effective for scientists

and engineers, but I present the results regardless). In the first row I reproduce the

baseline results from Tables 4–6. In the second row, I add seven BEA region dummies.

This reduces the coefficients to 70–90% of the magnitude of the first row and increases the

standard errors, rendering all the IV estimates insignificant. In the third row, I add instead

the interactions of the 1980 share of employment in electrical engineering–related sectors

interacted with year dummies. This yields estimates that are also lower than those in the

first row, this time 74–86% of the baseline magnitudes, but all are statistically significant.

In the fourth row I investigate the influence of California in the baseline specification

by dropping that state. This reduces the estimates by half, in some cases. Finally, I

assess the robustness to dropping the 1990–2000 differences (while retaining California),

12Oddly, the wage return to being an engineer, relative to all other workers, is less significant in the

first stage than the wage return to college.
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using the baseline specification. This causes the weighted least squares coefficients to

become much smaller and far from significant, with values of 4.5, 3.5 and 16.6 for college,

post–college, and scientists and engineers respectively. However, for the college educated,

for whom the instruments remain strongly significant in the first stage, the larger IV

estimate of 8.3 is statistically significant. For the two other skill groups, the instruments

are not powerful and the IV estimate, while much larger than the weighted least squares,

is statistically insignificant. The sensitivity to the dropping of the year 2000 is present at

all lengths of differences (these results are not reported). The coefficient on the change in

the share of skilled natives, by contrast, is not greatly affected by the dropping of the year

2000 (these results are also not reported). It is not clear whether the influence of the year

2000 for immigrants reflects a genuine change in the effect (perhaps caused by an increase

in the quality of skilled immigrants), reduced measurement error owing to larger numbers

of skilled immigrants in the census, or the presence of a confounding factor correlated

with increases in skilled immigrants in the 1990s. The results are not sensitive to the

dropping of the 1980–1990 changes (these results are not reported).

Considering the results of both Tables 6 and 7 (and ignoring the least squares results

without 2000), it would seem that a one percentage point increase in the share of immi-

grant college graduates increases patenting by at least 8%, and perhaps by as much as

15%, but probably not by as much as the 18% baseline IV result. A one percentage point

increase in the share of immigrant post–college graduates increases patenting by at least

15% and perhaps by as much as 39 log points (or 33%), but probably not by as much as

the 52 log points of Table 6. A one percentage point increase in the share of immigrant

scientists and engineers increases patenting by at least 51 log points, or 41%. This latter

magnitude is somewhat higher than the 36 log point effect that would be caused by all

scientists and engineers if the elasticity were unity (a 1% increase in scientists and en-

gineers increased patents by 1%). It is hard to pick the upper bound for scientists and

engineers, but the Table 6 coefficient of 104.2 (71%) is likely above the true magnitude.

I found similar results when I used citation–weighted patent counts for the 1970–2000

period, and I found that the impact of skilled immigrants was largest in the fields of
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electrical engineering and computer science. These unreported results should be viewed

as preliminary while awaiting the updating of the NBER patent data file.13

4 Conclusions

In this paper I have demonstrated the important boost to innovation per capita provided

by skilled immigration to the United States in 1950–2000. A calculation of the effect

of immigration in the 1990–2000 period puts the magnitudes of the effects in context.

The 1990–2000 increase from 2.2% to 3.5% in the share of the population composed of

immigrant college graduates increased patenting by at least 8×1.3 = 10.4%, and perhaps

by as much as 18%. The increase in the share of post–college immigrants from 0.9% to

1.6% increased patenting by at least 10.5% and perhaps by as much as 24%. The increase

from 0.30% to 0.55% in the share of workers who are immigrant scientists and engineers

increased patenting by at least 13% but probably by less than 23%. While I find evidence

for the crowding–out of natives in the short run, in the long run there is evidence for the

reverse: that skilled natives are attracted to states or occupations with skilled immigrants.

The results hint that skilled immigrants innovate more than their native counterparts,

especially if they are scientists or engineers. If correct, the result could reflect higher edu-

cation of immigrants within skill categories, or positive selection of immigrants in terms of

ability to innovate. However, the effect of natives is not as well identified econometrically

as the effect of immigrants.

The paper also provides insight into issues related to the macro growth literature. I

have shown the importance of convergence in patenting across states in the 1950–2000

period, which is likely to be an important element in the convergence of state personal

income per capita. My results also quantify the link between innovation and its labor

inputs, a crucial element of growth models.

13In other unreported regressions focusing on 1970–2000, I have used the value of federal R&D spending,

which is only available by state from 1968 to the present. Its coefficient was insignificant.
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Data Appendix

A.1 Patents

I combine two patent series from the U.S. Patent and Trademark Office. The first series
was compiled for me by the USPTO based on their electronic records which begin in
1963. This series is utility patents by state and year of application. Year of application
is preferred to year of grant as it is a more accurate match to the time of invention.
The second series is from paper–based USPTO records of patents by state and grant
year 1883–1976 (application year is not available pre–1963). Grants lag applications by
a median of three years between 1950 and 1963 (according to my US–wide calculations
based on Lexis–Nexis), so I lead this series three years. Patents grants are also more
volatile than patent applications (Hall 2005), so I smooth the series with a three year
moving average. Finally, because for 1930–1960 plants and designs cannot be separated
from utility patents, I leave them in for the whole series, calculate by state the average
percent gap in the overlap years of the two series (18% on average), and reduce the old
series by this percent. I then merge the series, using the adjusted paper series values only
for pre–1963. The USPTO attributes a patent to a state according to the home address
of the first–listed inventor.

I also use the NBER Patent Citation Data File, as updated by Bronwyn Hall on
her website at elsa.berkeley.edu/˜bhhall/bhdata.html. I weight patents by citations, and
aggregate total patents as well as patents by field to the state–year level, according to
filing year.

A.2 Immigration, education, age, occupation, labor force status

I use extracts from the Integrated Public Use Microdata Series for the United States
Census, available at usa.ipums.org/usa/, and aggregate to the state level using the weights
provided. Variables computed as shares are computed as shares of the population or
workers aged 18–65, and average population age is the average age of people aged 18–65.
Immigrants are people born outside the United States. People with college education
or more are people with 16 years of education or more in the 1950–1980 censuses, and a
college or higher degree in the 1990 and 2000 censuses. People with post–college education
are people with 17 or more years of education in the 1950–1980 censuses, and a post–college
degree in 1990 and 2000. This is the highest level of education that can be distinguished
for the whole 1950–2000 period. Alaska and Hawaii are not in the 1950 IPUMS.

A.3 Other data

I use Bureau of Economic Analysis data for total state population (used to weight the
regressions) and for state personal income per capita (available from 1929 onwards, unlike
gross state product which is not available for my whole period). The data are available
at www.bea.gov/regional/spi/.
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Department of Defense procurement contracts by state are available on paper for the
early years in Prime Contract Awards by State, Fiscal Years 1951–1978, published by the
Department of Defense, OASD (Comptroller), Directorate for Information Operations
and Control. The later years are available online at www.fpds.gov. Some measurement
error in the attribution to states is involved, as recipient firms may subcontract the work
to firms in other states. Also, in the electronic records for 1978–1983, 1986 and 1989
(of which only 1980 is relevant for the paper), the California numbers seem to be too
small by a factor of 1000, so I have multiplied them by 1000. (I have also requested and
received scanned versions of the paper documents for these years: the values for the non–
problematic states and years are only approximately the same as those online, but the
problematic California years are indeed about 1000 times higher than the online version.)

I obtain the land area of each state from the US. Census Bureau at
www.census.gov/population/censusdata/90den stco.txt.

The membership directory for the League of American Orchestras is available at
www.americanorchestras.org/utilities/orchestra members.html (when I accessed it on Febru-
ary 1, 2007 the 2006 directory was posted; now the 2007 directory is posted). Although
the League of American Orchestras was founded in 1942, membership data (other than the
founding membership) only exist from the 1970s onwards (furthermore, in the early years
of the League, not all symphony orchestras were members). Operas and their orchestras
are not members. Member college orchestras are largely those of music schools.
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Table 1: Means of patents and variables affecting patenting 
 
 1950-2000 1950 2000 
Patents 2752 

(3755) 
1694 

(1625) 
5237 

(6647) 
Share of population 18-65 that is:    
     Immigrant, college education and above 0.016 0.004 0.035 
     Native, college education and above 0.136 0.062 0.200 
     Immigrant, post-college education 0.008 0.002 0.016 
     Native, post-college education 0.054 0.023 0.077 
Share of workers 18-65 that are:    
     Immigrant, scientists and engineers 0.003 0.001 0.005 
     Native, scientists and engineers 0.025 0.012 0.038 
Population (millions) 9.5 

(7.7) 
6.1 

(4.3) 
12.3 
(9.9) 

Age (18-65) 38.8 
(1.0) 

38.7 
(0.9) 

39.5 
(0.6) 

DoD prime military procurement contracts 
(millions of nominal $) 

3215 
(4372) 

1499 
(1681) 

5479 
(5789) 

State personal income per capita (nominal $) 13,176 
(11007) 

1504 
(317) 

29,843 
(4086) 

Land area  
(millions of square kilometers) 

0.193 
(0.170) 

0.172 
(0.150) 

0.208 
(0.183) 

Observations 304 49 51 
 
Notes: Means of state-level variables, weighted by state population. Census information is 
not available for Alaska and Hawaii in 1950. Patents are classified by year filed. 
 
Sources:  
Education, age, occupation, nativity: U.S. Census Bureau, IPUMS decennial census 
microdata usa.ipums.org/usa/ 
Patents: U.S. Patent and Trademark Office, electronic and paper data. 
State income, population: Bureau of Economic Analysis www.bea.gov/regional/spi/ 
Land Area: U.S. Census Bureau www.census.gov/population/censusdata/90den_stco.txt 
 



 Table 2: Crowd-out - effect of change in immigrant skilled share on total skilled share  
 
 (1) (2) (3) (4) (5) (6) 
 Weighted least squares Instrumental variables 
 1st diffs 3rd diffs 5th diffs 1st diffs 3rd diffs 5th diffs 
Panel A: Immigrant college+ as share of population    
Δ % Immigrant 0.51 

(0.32) 
[0.13] 

0.75 
(0.38) 
[0.52] 

0.95 
(0.35) 
[0.88] 

0.26 
(0.30) 
[0.02] 

0.56 
(0.38) 
[0.25] 

0.79 
(0.47) 
[0.65] 

R-squared 0.69 0.52 0.33 0.69 0.51 0.32 
F-statistic excluded 
instruments (p-value) 

-- -- -- 26 
(0.000) 

33 
(0.000) 

19 
(0.000) 

Panel B: Immigrant post-college as share of population    
Δ % Immigrant 1.42 

(0.25) 
[0.11] 

1.50 
(0.48) 
[0.30] 

1.88 
(0.33) 
[0.01] 

0.63 
0.59) 
[0.53] 

1.31 
(0.67) 
[0.65] 

1.94 
(0.54) 
[0.09] 

R-squared 0.80 0.38 0.58 0.78 0.37 0.58 
F-statistic excluded 
instruments (p-value) 

-- -- -- 45 
(0.000) 

21 
(0.000) 

16 
(0.000) 

Panel C: Immigrant scientists and engineers as share of workers   
Δ % Immigrant  0.95 

(0.41) 
[0.90] 

0.66 
(0.45) 
[0.45] 

1.50 
(0.46) 
[0.28] 

0.38 
(0.43) 
[0.15] 

0.00 
(0.26) 
[0.00] 

0.83 
(0.32) 
[0.58] 

R-squared 0.69 0.34 0.31 0.68 0.29 0.25 
F-statistic excluded 
instruments (p-value) 

-- -- -- 4 
(0.014) 

9 
(0.000) 

16 
(0.000) 

Observations 253 151 49 253 151 49 
 
 
Notes: The dependent variable is the change in the share of skilled people across periods 
ranging from ten to 40 years: in panel A skilled people are college graduates (as a share of the 
population), in panel B post-college educated (as a share of the population), in panel C 
scientists and engineers (as a share of workers). Regressions are weighted with weights 
1/(1/popt+1/popt-k), where k is equal to 1 in columns 1 and 4, 3 in columns 2 and 5, and 5 
in columns 3 and 6. The instruments are the share of high school dropouts in the population 
at time t-k from Europe, China and India. All regressions also include change in average age 
and year dummies. Standard errors clustered by state in parentheses. P-value of the test that 
the coefficient is equal to one in square brackets. 



Table 3: Effect of skilled share on patent growth per capita, fifth difference (2000-1950) 
 
 (1) (2) (3) (4) 
Panel A     
Δ % College+  
as share of population 

-2.6 
(2.4) 

-0.6 
(1.9) 

7.2 
(2.3) 

5.9 
(2.2) 

R-squared 0.03 0.35 0.58 0.71 
Panel B     
Δ % Post-college  
as share of population 

-7.2 
(4.0) 

-4.5 
(3.2) 

12.5 
(4.3) 

8.3 
(4.0) 

R-squared 0.06 0.37 0.55 0.68 
Panel C     
Δ % Scientists and engineers  
as share of workers 

11.4 
(5.7) 

7.5 
(7.2) 

31.4 
(6.8) 

29.7 
(6.1) 

R-squared 0.04 0.36 0.66 0.79 
Δ Age, Δ Log DoD spending -- Yes Yes Yes 
Log land area, 1950 log population,  
1950 log personal income per capita 

-- -- Yes Yes 

BEA region dummies (7)  
[p-value for joint significance] 

-- -- -- Yes 
[0.00] 

 
Notes: The dependent variable is the difference in log patents per capita between 2000 and 
1950. The three panels represent three different sets of regressions, each with 49 
observations. Weighted least squares with weights 1/(1/pop2000+1/pop1950). Standard errors 
clustered by state in parentheses. 



Table 4: Effect of share of immigrant college graduates on patent growth per capita 
 
 (1) (2) (3) (4) (5) 
 1st diffs 2nd diffs 3rd diffs 4th diffs 5th diffs 
Δ % Immigrant college+  
as share of population 

11.2 
(3.7) 

11.1 
(2.8) 

11.3 
(2.7) 

13.7 
(3.2) 

15.4 
(4.3) 

Δ % Native college+  
as share of population 

1.1 
(2.2) 

2.3 
(1.9) 

4.7 
(1.8) 

6.0 
(2.0) 

5.9 
(2.5) 

Δ Age (average) 0.105 
(0.029) 

0.126 
(0.036) 

0.149 
(0.047) 

0.097 
(0.068) 

0.092 
(0.109) 

Δ DoD procurement 
(log) 

-0.036 
(0.018) 

-0.070 
(0.025) 

-0.088 
(0.035) 

-0.084 
(0.048) 

-0.058 
(0.070) 

Land area (log) 0.065 
(0.011) 

0.119 
(0.021) 

0.205 
(0.030) 

0.287 
(0.041) 

0.376 
(0.077) 

Population 1950 (log) -0.049 
(0.014) 

-0.104 
(0.022) 

-0.164 
(0.033) 

-0.223 
(0.053) 

-0.286 
(0.079) 

State personal income per 
capita 1950 (log) 

-0.219 
(0.075) 

-0.555 
(0.125) 

-0.913 
(0.172) 

-1.397 
(0.252) 

-1.580 
(0.360) 

R-squared 0.64 0.71 0.63 0.64 0.62 
Observations 253 202 151 100 49 
 
Notes: The dependent variable is the difference in log patents per capita across periods 
ranging from ten to 50 years. Weighted least squares with weights 1/(1/popt+1/popt-k), 
where k is equal to 1 in column 1, 2 in column 2, 3 in column 3, etc. Regressions in columns 
1-4 include year dummies. Standard errors clustered by state in parentheses.  
 



Table 5: Effect of immigrant post-college and engineer shares on patent growth per capita 
 
 (1) (2) (3) (4) (5) 
 1st diffs 2nd diffs 3rd diffs 4th diffs 5th diffs 
Panel A: Immigrant post-college as share of population 
Δ % Immigrant 21.6 

(10.2) 
21.6 
(8.0) 

20.7 
(7.6) 

25.2 
(8.8) 

28.5 
(10.6) 

Δ % Native  -0.8 
(2.8) 

-4.5 
(3.2) 

0.5 
(0.1) 

5.7 
(4.8) 

7.7 
(6.2) 

R-squared 0.64 0.69 0.59 0.59 0.57 
Panel B: Immigrant scientists and engineers as share of workers 
Δ % Immigrant 68.5 

(15.2) 
64.3 

(11.5) 
66.8 

(10.1) 
67.6 

(10.3) 
82.3 

(16.8) 
Δ % Native 12.1 

(4.7) 
16.0 
(5.2) 

20.1 
(5.7) 

22.3 
(5.8) 

26.3 
(6.4) 

R-squared 0.68 0.74 0.67 0.68 0.72 
Observations 253 202 151 100 49 
 
Notes: The dependent variable is the difference in log patents per capita across periods 
ranging from ten to 50 years. Weighted least squares with weights 1/(1/popt+1/popt-k), 
where k is equal to 1 in column 1, 2 in column 2, 3 in column 3, etc. All regressions include 
the covariates of Table 4. Standard errors clustered by state in parentheses. 
 



Table 6: Determinants of patent growth per capita, first differences, instrumental variables 
 
Coefficient on Δ % Immigrant (1) (2) (3) 
when excluded instruments are: College+ Post-college Scientists/engineers 
% population which is European, 
Chinese, Indian-born high school 
dropouts  at t-1 

17.9 
(6.6) 
[16] 

43.0 
(19.3) 
[16] 

87.6 
(23.8) 

[5] 
% population which is foreign-born 
high school dropout at t-1 

10.8 
(5.9) 
[28] 

26.5 
(16.4) 
[26] 

70.4 
(25.3) 
[23] 

Return to college or more at t-1 17.1 
(8.3) 
[27] 

52.4 
(25.9) 
[25] 

104.2 
(47.8) 
[11] 

Information on numbers of orchestras 
in different budget categories in 2006 

16.6 
(3.7) 
[22] 

36.1 
(12.7) 
[29] 

69.1 
(11.1) 
[74] 

 
 Notes: Each coefficient reported is from a different regression. The dependent variable is 
the difference in log patents per capita across ten years. Weighted instrumental variables with 
weights 1/(1/popt+1/popt-1). 253 observations. All regressions also include the covariates of 
Table 4. Standard errors clustered by state in parentheses. F-statistic for test of joint 
significance of excluded instruments in the first stage in brackets. The orchestra instruments 
comprise a dummy for whether the state has any orchestra in each of the ten categories, as 
well as the number it has in each category (see Appendix Table for the categories and 
means). 
 



Table 7: Determinants of patents per capita, specification checks for first differences 
 
 (1) (2) (3) (4) (5) (6) 
 College+ Post-college Scientists/engineers 
Δ % Immigrant WLS IV WLS IV WLS IV 
Base specifications 
(from Tables 4,5,6) 

11.2 
(3.7) 

17.9 
(6.6) 
[16] 

21.6 
(10.2) 

43.0 
(19.3) 
[16] 

68.5 
(15.2) 

87.6 
(23.8) 

[5] 
With BEA region 
dummies 
 

7.9 
(3.9) 

15.4 
(8.6) 
[24] 

15.4 
(9.3) 

38.5 
(25.2) 
[19] 

60.6 
(22.4) 

72.8 
(41.2) 

[6] 
With % workers in 
electrical sectors 1980 * 
year dummies 

9.6 
(3.6) 

14.3 
(5.2) 
[14] 

16.8 
(8.4) 

32.0 
(13.6) 
[13] 

57.9 
(13.6) 

74.5 
(23.4) 

[4] 
Without California 
(248 obs) 

8.1 
(3.7) 

9.1 
(5.1) 
[19] 

11.6 
(7.6) 

15.1 
(12.2) 
[20] 

43.7 
(16.4) 

39.2 
(41.0) 
[14] 

Without year 2000 
(202 obs) 

4.5 
(2.9) 

8.3 
(4.0) 
[23] 

3.5 
(6.7) 

34.6 
(18.4) 

[7] 

16.6 
(13.9) 

50.6 
(39.0) 

[2] 
 
Notes: Each coefficient reported is from a different regression. The dependent variable is 
the difference in log patents across ten years. Weighted least squares (columns 1-3) or 
instrumental variables (columns 4-6) with weights 1/(1/popt+1/popt-1). The instruments are 
the share of high school dropouts in the population at time t-1 from Europe, China and 
India. All regressions also include the covariates of Table 4. Standard errors clustered by 
state in parentheses. 253 observations unless otherwise noted. 
 
 
 



Appendix Table: Means of instruments for change in skilled immigrant share 
 
 1950-2000 1950 2000 
Share of population 18-65 that is:    
     Immigrant, high school dropouts 0.041 0.067 0.046 
Share of population 18+ that is:    
     European-born, high school dropouts 0.023 0.067 0.004 
     Chinese-born, high school dropouts 0.0008 0.0006 0.0013 
     Indian-born, high school dropouts 0.0002 0.0000 0.0006 
Return to college or more  
(vs all lower education levels) 

0.45 
(0.11) 

0.38 
(0.20) 

0.51 
(0.06) 

Number of symphony orchestras in category 2006:    
     1. Budget > $14,750,000 0.95 

(0.79) 
-- -- 

     2. Budget $5,550,000-$14,750,000 0.90 
(1.21) 

-- -- 

     3. Budget $2,800,000-$5,550,000 1.05 
(1.01) 

-- -- 

     4. Budget $1,700,000-$2,800,000 1.33 
(1.83) 

-- -- 

     5. Budget $880,000-1,700,000 2.15 
(1.77) 

-- -- 

     6. Budget $455,000-$880,000 3.97 
(3.18) 

-- -- 

     7. Budget $130,000-$455,000 4.47 
(2.47) 

-- -- 

     8. Budget <$130,000 8.41 
(6.59) 

-- -- 

     9. Youth 9.04 
(7.64) 

-- -- 

     10. College (mostly music schools) 2.84 
(2.51) 

-- -- 

Observations 304 49 51 
 
Notes: Means of state-level variables, weighted by state population. Census information is 
not available for Alaska and Hawaii in 1950.  
 
Sources:  
Education, age, nativity: U.S. Census Bureau, IPUMS decennial census microdata 
usa.ipums.org/usa/ 
Return to college: author’s calculations using IPUMS for wage regressions. 
Orchestras: League of American Orchestras membership directory 2006 -  
www.americanorchestras.org/utilities/orchestra_members.html 
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Figure 1: States with Most Patents 1950
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Figure 2: States with Most Patents 2000

Figure 2: States with Most Patents 2000



Idaho

Idaho

Arizona

Arizona

Nevada

Nevada

Utah

Utah

0

0

500

500

1000

1000

1500

1500

2000

2000

Number of patents

Nu
m

be
r o

f p
at

en
ts

1950

1950

1960

1960

1970

1970

1980

1980

1990

1990

2000

2000

Year (Filing Date)

Year (Filing Date)

Source: USPTO and author's calculations

Source: USPTO and author's calculations

Figure 3: States with Fastest Patent Growth 1950-2000
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Figure 4: Convergence in Patenting Across States

Figure 4: Convergence in Patenting Across States



AL

AL

AK

AK

AZ

AZ

AR

AR

CA

CA

CO

CO

CT

CT

DE

DE

DC

DC

FL

FL

GA

GA

HI

HI

ID

ID

IL

IL

IN

IN

IA

IA

KS

KS

KY

KY

LA

LA

ME

ME

MD

MD

MA

MA

MI

MI

MN

MN

MS

MS

MO

MO

MT

MT

NE

NE

NV

NV

NH

NH

NJ

NJ

NM

NM

NY

NY

NC

NC

ND

ND

OH

OH

OK

OK

OR

OR

PA

PA

RI

RI

SC

SC

SD

SD

TN

TN

TX

TX

UT

UT

VT

VT

VA

VA

WA

WA

WV

WV

WI

WI

WY

WY

-1.5

-1.5

0

0

1.5

1.5

3

3

4.5

4.5

Log patents per capita 2000 - 1950

Lo
g 

pa
te

nt
s 

pe
r c

ap
ita

 2
00

0 
- 1

95
0

-2.5

-2.5

0

0

2.5

2.5

5

5

7.5

7.5

10

10

Log population density 1950

Log population density 1950

Source: USPTO and author's calculations

Source: USPTO and author's calculations

Figure 5: Population Density as Predictor of Patent Growth
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