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Abstract

This paper studies the maturity composition and the term structure of interest rate spreads

of government debt in emerging markets. In the data, when interest rate spreads rise, debt

maturity shortens and the spread on short-term bonds is higher than on long-term bonds.

To account for this pattern, we build a dynamic model of international borrowing with

endogenous default and multiple maturities of debt. Short-term debt can deliver higher

immediate consumption than long-term debt; large long-term loans are not available because

the borrower cannot commit to save in the near future towards repayment in the far future.

However, issuing long-term debt can insure against the need to roll-over short-term debt

at high interest rate spreads. The trade-off between these two benefits is quantitatively

important for understanding the maturity composition in emerging markets. When calibrated

to data from Brazil, the model matches the dynamics in the maturity of debt issuances and

its comovement with the level of spreads across maturities.
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1 Introduction

Emerging markets face recurrent and costly financial crises that are characterized by limited

access to credit and high interest rates on foreign debt. As crises approach, not only is debt

limited but also the maturity of debt shortens, as documented by Broner, Lorenzoni, and

Schmukler (2007).1 During these periods, however, the interest rate spread on short-term

bonds rises more than the spread on long-term bonds. Why do countries shorten their debt

maturity during crises even though spreads appear higher for shorter maturity debt? To

answer this question, this paper develops a dynamic model of the maturity composition in

which debt prices reflect endogenous default risk and debt maturity responds to the prices

of short- and long-term debt contracts. Our model can rationalize shorter debt maturity

during crises as the result of a liquidity advantage in short-term debt contracts; although

these contracts carry higher spreads than longer term debt, they can deliver larger resources

to the country in times of high default risk.

We first analyze the dynamics of the maturity composition of international bonds and the

term structure of interest rate spreads for four emerging market countries: Argentina, Brazil,

Mexico, and Russia. We use data on prices and issuances of foreign-currency denominated

bonds to estimate spread curves — interest rate spreads over U.S. Treasury bonds across

maturity — as well as duration, a measure of the average time to maturity of payments on

coupon paying bonds. We find that governments issue short-term debt more heavily when

spreads are high and spread curves are downward sloping, and they issue long-term debt

more heavily when spreads are low and spread curves are upward sloping. Across these four

countries, within periods in which 2-year spreads are below their 25th percentile, the average

duration of new debt is 7.1 years, and the average difference between the 10-year spread and

the 2-year spread is 2.3 percentage points. But when the 2-year spreads are above their 75th

percentile, the average duration shortens to 5.7 years, while the average difference between

the 10-year spread and the 2-year spread is −0.5 percentage points. From this evidence we

conclude that the maturity of debt shortens in times of high spreads and downward-sloping

spread curves.

We then develop a dynamic model with defaultable bonds to study the choice of debt

maturity and its covariation with the term structure of spreads. In our model, a risk averse

borrower faces persistent income shocks and can issue long and short duration bonds. The

borrower can default on debt at any point in time, but faces costs of doing so. Default

1Calvo and Mendoza (1996) document in detail how in Mexico during 1994, most of the public debt
was converted to 91-day Tesobonos. Bevilaqua and Garcia (2000) document a similar rise in short-term
government debt in Brazil during the 1999 crisis.
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occurs in equilibrium in low-income, high-debt times because the cost of coupon payments

outweighs the costs of default when consumption is low. Interest rate spreads on long and

short bonds compensate foreign lenders for the expected loss from future defaults. Thus, the

supply of credit is more stringent in times of low income and high outstanding debt, because

the probability of default is high. In fact, countercyclical default risk substantially limits

the degree of risk sharing, and the model can generate capital outflows in recessions, when

interest rate spreads are at their highest.

The model generates the observed dynamics of spread curves because the endogenous

probability of default is persistent, yet mean reverting, as a result of the dynamics of debt

and income. When debt is low and income is high, default is unlikely in the near future, so

spreads are low. However, long-terms spreads are higher than short-term spreads because

default may become likely in the far future if the borrower receives a sequence of bad shocks

and accumulates debt. On the other hand, when income is low and debt is high, default is

likely in the near future, so spreads are high. Long-term spreads, however, increase by less

than short-term spreads because the borrower’s likelihood of repaying may rise if it receives

a sequence of good shocks and reduces its debt. Although cumulative default probabilities

on long-term debt are always larger than on short-term debt, the long spread can be lower

than the short spread because it reflects a lower average future default probability.

The model can rationalize the covariation observed in the data between the maturity

structure of debt issuances and the term structure of spreads as reflecting a trade-off between

insurance benefits of long-term debt and liquidity benefits of short-term debt, both due to

the presence of default. Long-term debt provides insurance against the uncertainty of short-

term interest rate spreads. Since short-term spreads rise during periods of low income, when

default risk is high, issuing long-term debt allows the borrower to avoid rolling over short-

term debt at high spreads in states when consumption is low. Moreover, long-term debt

insures against future periods of limited credit availability; in particular, the borrower can

avoid capital outflows in recessions by issuing long-term debt.

Even though long debt dominates short debt in terms of insurance, it is not as effective in

delivering high immediate consumption; hence the liquidity benefit of short-term debt. Short-

term debt allows the borrower to pledge more of his future income toward debt repayment

because in each subsequent period the threat of default punishment gives him incentives for

repayment before any further short debt is issued. Long-term debt contracts do not allow

such large transfers because the borrower is unable to commit to saving in the near future

toward repayment in the further future. Effectively, the threat of default punishment is lower

with long-term debt given that it will be relevant only in the future, when the long-term debt
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is due. This greater efficacy of short-term debt in alleviating commitment problems for debt

repayment is reflected in more lenient price schedules and smaller drops in short-term prices

with increases in the level of debt issues. In this sense, short debt is a more liquid asset, and

consumption can always be marginally increased by more with short-term debt than with

long-term debt.

The time-varying maturity structure responds to a time-varying valuation of the insurance

benefit of long-term debt and the liquidity benefit of short-term debt. Periods of low default

probabilities and upward spread curves correspond to states when the borrower is wealthy

and values insurance. Thus, the portfolio is shifted toward long debt. Periods of high default

probabilities and inverted spread curves correspond to states when the borrower is poor and

credit is limited. These are times when liquidity is most valuable, and thus the portfolio

is shifted toward shorter-term debt. We can therefore rationalize higher short-term debt

positions in times of crises as an optimal response to the illiquidity of long-term debt, and

the tighter availability of its supply.

When calibrated to Brazilian data, the model quantitatively matches the dynamics of the

maturity composition of new debt issuances and its covariation with spreads observed in the

data. In connecting our model to the data, a methodological contribution of the paper is to

develop a tractable framework with bonds that have empirically relevant duration. Bonds in

our model are perpetuity contracts with non-state-contingent coupon payments that decay

at different rates. Bonds with payments that decay quickly have more of their value paid

early, and so have short duration. This gives a recursive structure to debt accumulation that

allows the model to be characterized in terms of a small number of state variables although

decisions at any date are contingent on a long sequence of future expected payments. Our

findings indicate that the insurance benefits of long-term debt and the liquidity benefits of

short-term debt are quantitatively important in understanding the dynamics of the maturity

structure observed in Brazil. Importantly, the maturity structure in the model responds to

the underlying dynamics of default probabilities reflected in spread curves, which match the

data well.

Related Literature

This paper is related to the literature on the optimal maturity structure of government debt.

Angeletos (2002), Buera and Nicolini (2004) and Shin (2007) show that, when debt is not

state contingent, a rich maturity structure of government bonds can be used to replicate

the allocations obtained with state-contingent debt in economies with distortionary taxes as

in Lucas and Stokey (1983). In these closed economy models, short- and long-term interest
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rate dynamics reflect the variation in the representative agent’s marginal rate of substitution,

which changes with the state of the economy. Thus, having a rich enough maturity structure

is equivalent to having assets with state-contingent payoffs.2 Our paper shares with these

papers the message that managing the maturity composition of debt can provide benefits to

the government because of uncertainty over future interest rates. The message is particularly

relevant for the case of emerging market economies. As Neumeyer and Perri (2005) have

shown, fluctuations in country specific interest rate spreads play a major role in accounting

for the large business cycle fluctuations in emerging markets. The lesson that our paper

provides in this context is that the volatility of the maturity composition of debt in these

countries is an optimal response to these interest rate fluctuations. However, in contrast

to these papers, the fluctuations in interest rates in our model reflect time variation in the

endogenous country’s own probability of default.3

The maturity of debt in emerging countries is also of interest because of the general

view that countries could alleviate their vulnerability to very costly crises by choosing the

appropriate maturity structure. For example, Cole and Kehoe (1996) argue that the 1994

Mexican debt crisis could have been avoided if the maturity of government debt had been

longer. Longer maturity debt would allow countries to better manage external shocks and

sudden stops. Broner, Lorenzoni, and Schmukler (2007) formalize this idea in a model where

the government can avoid a crisis in the short term by issuing long-term debt. In their model,

with risk averse lenders who face liquidity shocks, long-term debt is more expensive, so the

maturity composition is the result of a trade-off between safer long-term debt and cheaper

short-term debt. In line with their paper, we also find that short-term debt provides larger

liquidity benefits. In contrast to Broner, Lorenzoni, and Schmukler, in our model the time-

varying availability of short- and long-term debt is an equilibrium response to compensate for

the economy’s default risk, rather than to compensate for foreign lenders’ shocks. Moreover,

our paper is the first to develop a dynamic framework with defaultable debt and multiple

maturities with which these questions can be analyzed and assessed quantitatively.

The larger liquidity benefits of short-term debt relative to long-term debt arise in our

model because short-term contracts are more effective in solving the commitment problem of

the borrower in terms of future debt and default policies. In this regard, our paper is related

to Jeanne’s (2004) model where short-term debt gives more incentives for the government

2Lustig, Sleet, and Yeltekin (2006) develop a general equilibrium model with uninsurable nominal frictions
to study the optimal maturity of government debt. They find that higher interest rates on long-term debt
relative to short-term debt reflect an insurance premium paid by the government, for the benefits long-term
debt provides in hedging against future shocks.

3The idea that credit risk makes longer term debt attractive is also present in Diamond (1991) in a three
period model of corporate debt where firms have private information about their future credit rating.
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to implement better policies. When short-term debt needs to be rolled over, creditors can

discipline the government by rolling over the debt only after desired policies are implemented.4

Moreover, when defaulted debt is renegotiated, Bi (2007) shows that long-term debt is more

expensive also to compensate for debt dilution. Absent explicit seniority clauses, issuing

short-term debt can dilute the recovery of long-term debt in case of default.

The theoretical model in this paper builds on the work of Aguiar and Gopinath (2006) and

Arellano (2008), who model equilibrium default with incomplete markets, as in the seminal

paper on sovereign debt by Eaton and Gersovitz (1981). This paper extends this framework

to incorporate long debt of multiple maturities. In recent work, Chatterjee and Eyigungor

(2008) and Hatchondo and Martinez (2008) show that long-term defaultable debt allows a

better fit of emerging market data in terms of the volatility and mean of the country spread

as well as debt levels. All these models generate a time-varying probability of default that is

linked to the dynamics of debt and income. The dynamics of the spread curve in our model

reflect the time-varying default probability, in the same way that Merton (1974) derived for

credit spread curves on defaultable corporate bonds. In Merton’s model, when the exogenous

default probability is low, the credit spread curve is upward sloping, and when the default

probability is high, credit spread curves are downward sloping or hump shaped. The spread

curve dynamics in this paper follow Merton’s results. However, our framework differs from

Merton’s in that the probability of default and the level and maturity composition of debt

issuances are endogenous variables.

The outline of the paper is as follows. Section 2 documents the dynamics of the spread

curve and maturity composition for four emerging markets: Argentina, Brazil, Mexico, and

Russia. Section 3 presents the theoretical model. Section 4 presents some examples to

illustrate the mechanism for the optimal debt portfolio. Section 5 presents all the quantitative

results, and Section 6 concludes.

2 Emerging Markets Bond Data

We examine data on sovereign bonds issued in international financial markets by four emerging-

market countries: Argentina, Brazil, Mexico, and Russia. We look at the behavior of the

interest rate spreads over default-free bonds, across different maturities, and at the way the

maturity of new debt issued covaries with spreads. We find that when spreads are low, govern-

ments issue long-term bonds more heavily and long-term spreads are higher than short-term

4Commitment problems have been shown to reduce the level of sustainable debt in the literature of
optimal policy without commitment, as in Krusell, Martin, and Rios-Rull (2006).
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spreads. When spreads rise, the maturity of bond issuances shortens and short-term spreads

are higher than long-term spreads. Our findings also confirm the earlier results of Broner,

Lorenzoni, and Schmukler (2007), who showed in a sample of eight emerging economies that

debt maturity shortens when spreads are very high.5

2.1 Spread Curves

We define the n-year spread for an emerging market country as the difference between the

yield on a defaultable, zero-coupon bond maturing in n years issued by the country and on

a zero-coupon bond of the same maturity with negligible default risk (for example, a U.S.

Treasury note). The spread is the implicit interest rate premium required by investors to

be willing to purchase a defaultable bond of a given maturity.6 The spread curve depicts

spreads as a function of maturity.

We denote the annually compounded yield at date t on a zero-coupon bond issued by

country i, maturing in n years, as rnt,i. The yield is related to the price pnt,i of an n-year

zero-coupon bond, with face value 1, through

pnt,i = (1 + rnt,i)
−n. (1)

We define country i’s n-year spread as the difference in zero-coupon yields between a

bond issued by country i relative to a default-free bond. The n-year spread for country i at

date t is given by: snt,i = rnt,i − rnt,rf , where r
n
t,rf is the yield of a n-year default-free bond.

7

Since governments do not issue zero-coupon bonds in a wide range of maturities, we

estimate a country’s spread curve by using secondary market data on the prices at which

coupon-bearing bonds trade. The estimation procedure, described in the Appendix, follows

Svensson (1994) and Broner, Lorenzoni, and Schmukler (2007).

We compute spreads starting in March 1996 at the earliest and ending in May 2004 at the

latest, depending on the availability of data for each country. Figure 1 displays the estimated

spreads for 2-year and 10-year bonds for Argentina, Brazil, Mexico, and Russia.

5Broner, Lorenzoni and Schmukler (2007) focus on the relationship between the term structure of risk
premia (compensation for risk aversion) and the average maturity of debt. In this section we construct
measures of the term structure of yield spreads and the average duration of debt because these statistics
provide the basis for the quantitative assessment of our model.

6Yield spreads on bonds issued by emerging markets could also arise due to risk premia or liquidity
differences. However, given the incidence of sovereign defaults in emerging markets, in our model we abstract
from these other factors and examine the extent to which default risk can rationalize these spread dynamics.

7Our data include bonds denominated in U.S. dollars and European currencies, so we take U.S. and
Euro-area government bond yields as default-free.
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Figure 1: Time series of 2-year and 10-year spreads.

Spreads are very volatile, and the difference between long-term and short-term spreads

varies substantially over time. When spreads are low, long-term spreads are generally higher

than short-term spreads. However, when the level of spreads rises, the gap between long and

short-term spreads tends to narrow and sometimes reverses; the spread curve is flatter or

inverted. The time series in Figure 1 show sharp increases in interest rate spreads associated

with Russia’s default in 1998, Argentina’s default in 2001, and Brazil’s financial crisis in

2002.8 The expectation that the countries would default in these episodes is reflected in the

high spreads charged on defaultable bonds.

To emphasize the pattern observed in the time series that short-term spreads tend to rise

more than long-term spreads, in Figure 2 we display spread curves averaged across different

8For Argentina and Russia, we do not report spreads after default on external debt, unless a restructuring
agreement was largely completed at a later date. We use dates taken from Sturzenegger and Zettelmeyer
(2005). For Argentina, we report spreads until the last week of December 2001, when the country defaulted.
The restructuring agreement for external debt was not offered until 2005. For Russia, we report spreads until
the second week of August 1998 and beginning again after August 2000 when 75% of external debt had been
restructured.
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time periods for each country: the overall average, the average within periods with the 2-year

spread below its 10th percentile, and the average within periods with the 2-year spread above

its 90th percentile. When spreads are low, the spread curve is upward sloping: long-term

spreads are higher than short-term spreads. When spreads are high, short-term spreads rise

more than long-term spreads. For Argentina, Brazil, and Russia, the spread curve becomes

downward sloping in these times. For Mexico, which had relatively smaller increases in

spreads during this time period, the spread curve flattens as short spreads rise more than

long spreads.9

2.2 The Maturity Composition of Debt and Spreads

We now examine the maturity of new debt issued by the four emerging market economies

during the sample period, and relate the changes in the maturity of debt to changes in

spreads.10

In each week in the sample, we measure the maturity of debt as a quantity-weighted

average maturity of bonds issued that week. We measure the maturity of a bond using two

alternative statistics. The first is simply the number of years from the issue date until the

maturity date. The second is the bond’s duration, defined in Macaulay (1938) as a weighted

average of the number of years until each of the bond’s future payments. A bond issued at

date t by country i, paying annual coupon c at dates n1, n2, . . . nJ years into the future, and

face value of 1 has duration dt,i (c) defined by

dt,i (c) =
1

pt,i (c)

Ã
JX
j=1

njc(1 + r
nj
t,i )

−nj + nJ(1 + rnJt,i )
−nJ

!
, (2)

where pt,i (c) is the coupon bond’s price, and rnt,i is the zero-coupon yield curve. The time

until each future payment is weighted by the discounted value of that payment relative to the

price of the bond. A zero-coupon bond has duration equal to the number of years until its

maturity date, but a coupon-paying bond maturing on the same date has shorter duration.

We consider duration as a measure of maturity because it is more comparable across bonds

9The findings are similar to empirical findings on spread curves in corporate debt markets. Sarig and
Warga (1989), for example, find that highly rated corporate bonds have low levels of spreads, and spread
curves that are flat or upward-sloping, while low-grade corporate bonds have high levels of spreads, and
average spread curves that are hump-shaped or downward-sloping.

10In addition to external bond debt, emerging countries also have debt obligations with multilateral
institutions and foreign banks. However, marketable debt constitutes a large fraction of the external debt.
The average marketable debt from 1996 to 2004 is 56% of total external debt in Argentina, 59% in Brazil,
and 58% in Mexico (Cowan et al. 2006).
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Figure 2: Average spread curves: overall, and within periods in the highest and lowest deciles
of the 2-year spread.

with different coupon rates.

We calculate the average maturity and average duration of new bonds issued in each

week by each country. Table 1 displays each country’s averages of these weekly maturity

and duration series within periods of high (above median) and low (below median) 2-year

spreads.

First, the table shows that duration tends to be much shorter than maturity. Because the

yield on an emerging market bond is typically high, the principal payment at the maturity

date is severely discounted, and much of the bond’s value comes from coupon payments made

sooner in the future. This weight on coupon payments shortens the duration measure relative
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Table 1: Average Maturity and Duration of New Debt
Maturity (years) Duration (years)

2-year spread: < median ≥ median < median ≥ median

Argentina 9.15 9.05 5.70 5.10

Brazil 14.02 6.60 6.59 4.47

Mexico 13.50 10.30 7.72 6.52

Russia 8.89 10.98 6.11 5.42

to the time-to-maturity measure.

Second, the average duration of debt is shorter when spreads are high than when they are

low. Mexico, for example, issues debt that averages about 1.2 years longer in duration when

the 2-year spread is below its median than when it is above its median. For all countries

except Russia, this pattern also holds for the average time-to-maturity of bonds issued during

periods of high spreads compared to low spreads: Mexico issues bonds that mature 3.2 years

sooner when spreads are high. Our unconditional point estimates for a shorter debt duration

when spreads are high mirrors the findings in Broner, Lorenzoni, and Schmukler (2007). They

show that a high spread level is a statistically significant determinant for a shorter maturity

of debt issuances even after controlling for selection effects due the fact that the timing of

debt issuances is very irregular.

In Table 2, we emphasize the relationship between the spread curve slopes and average

duration. The slope of the spread curve, defined here as the difference between the 10-year

(long-term) and 2-year (short-term) spread, falls when the 2-year spread is high — the numbers

in column 4 of Table 2 are smaller than those in column 3. During these times, however,

the countries shift toward short-term debt, even though the spreads on long-term debt rise

less than for short-term debt. In Brazil, for example, while the spread curve changes from

depicting a 10-year spread that is 4 percentage points above the 2-year spread to one that

is 1.33 percentage points below the 2-year spread, the average duration of newly issued debt

reduces by more than 2 years.

The message of this section is that the spread curve and the maturity of bond issuances

in emerging markets are time-varying. In particular, the slope of the spread curve covaries

positively with the maturity of new debt, and negatively with the levels of spreads: when

short-term spreads are low, the slope of the spread curve is higher, and the maturity of new

debt is longer, than when short-term spreads are high. In what follows, we build a dynamic
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Table 2: Slope of Spread Curve and Average Duration of Issuances
Duration (years) Spread curve slope (%)

s10 − s2

short spread: < 25th pct ≥ 75th pct < 25th pct ≥ 75th pct

Argentina 6.40 5.64 2.47 -1.16

Brazil 6.80 4.63 4.01 -1.33

Mexico 8.45 6.39 2.30 1.24

Russia 6.57 6.19 0.57 -0.67

model that rationalizes this pattern, in which spreads reflect the government’s likelihood of

defaulting, and the average maturity of new debt endogenously varies over time.

3 The Model

Consider a dynamic model of defaultable debt that includes bonds of short and long duration.

A small open economy receives a stochastic stream of output, y, of a tradable good. The

output shock follows a Markov process with compact support and transition function f(y0, y).

The economy trades two bonds of different duration with international lenders. Financial

contracts are unenforceable: the economy can default on its debt at any time. If the economy

defaults, it temporarily loses access to international financial markets and also incurs direct

output costs.

The representative agent in the small open economy (henceforth, the “borrower”) receives

utility from consumption ct and has preferences given by

E
∞X
t=0

βtu(ct), (3)

where 0 < β < 1 is the time discount factor and u(·) is increasing and concave.
The borrower issues debt in the form of two types of perpetuity contracts with coupon

payments that decay geometrically. We let {δS, δL} ∈ [0, 1] denote the “decay factors” of the
payments for the two bonds. A perpetuity with decay factor δm is a contract that specifies

a price qmt and a loan face value m
t such that the borrower receives q

m
t

m
t units of goods in

period t and promises to pay, conditional on not defaulting, δn−1m
m
t units of goods in every
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future period t + n. The decay of each perpetuity is related to its duration: a bond of

this type with rapidly declining payments has a larger proportion of its value paid early on,

and therefore a shorter duration, than a bond with more slowly declining payments. We let

δS < δL, so that δS is the decay of the perpetuity with short duration and δL is the decay

of the perpetuity with long duration. We will refer to the perpetuities with decay factors δS
and δL throughout as short and long bonds, respectively.

At every time t the economy has outstanding all past perpetuity issuances. Define bmt ,

the stock of perpetuities of duration m at time t, as the total payments due in period t on

all past issuances of type m, conditional on not defaulting:

bmt =
tX

j=1

δj−1m
m
t−j =

m
t−1 + δm

m
t−2 + δ2m

m
t−3 + ...+ δtm

m
0 + bm0 ,

where bm0 is given. Thus, the accumulation for the stocks of short and long perpetuities can

be written recursively by the following laws of motion:

bSt+1 = δSb
S
t +

S
t (4)

bLt+1 = δLb
L
t +

L
t

With these definitions, we can compactly write the borrower’s budget constraint condi-

tional on not defaulting. Purchases of consumption are constrained by the endowment less

payments on outstanding debt, bSt + bLt , plus the issues of new perpetuities of short duration
S
t at price q

S
t and long duration

L
t at a price q

L
t :

ct = yt − bSt − bLt + qSt
S
t + qLt

L
t (5)

The borrower chooses new issuances of perpetuities from a menu of contracts where prices

qSt and qLt for are quoted for each pair (b
S
t+1, b

L
t+1).

If the economy defaults, we assume that all outstanding debts and assets (bSt + bLt ) are

erased from the budget constraint, and the economy cannot borrow or save, so that con-

sumption equals output. In addition, the country incurs output costs:

ct = ydeft ,

where ydeft = h(yt) ≤ yt.
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3.1 Recursive Problem

We now represent the borrower’s infinite horizon decision problem as a recursive dynamic

programming problem. The model has two endogenous states, which are the stocks of each

type of debt, bSt and bLt , and one exogenous state, the output of the economy, yt. The state

of the economy at date t is then given by (bS, bL, y) ≡ (bSt , bLt , yt).
At any given state, the value of the option to default is given by

vo(bS, bL, y) = max
c,d

©
vc(bS, bL, y), v

d(y)
ª
, (6)

where vc(bS, bL, y) is the value associated with not defaulting and staying in the contract and

vd(y) is the value associated with default.

Since we assume that default costs are incurred whenever the borrower fails to repay its

obligations in full, the model will only generate complete default on all outstanding debt, both

short and long term. When the borrower defaults, output falls to ydef , and the economy is

temporarily in financial autarky; θ is the probability that it will regain access to international

credit markets each period. The value of default is then given by the following:

vd(y) = u(ydef ) + β

Z
y0

£
θvo(0, 0, y0) + (1− θ)vd(y0)

¤
f(y0, y)dy0. (7)

We are taking a simple route to model both costs of default that seem empirically relevant:

exclusion from financial markets and direct costs in output. Moreover, we assume that the

default value does not depend on the maturity composition of debt prior to default. This

captures the idea that the maturity composition of defaulted debt is not relevant for the

restructuring procedures that allow the economy to reenter the credit market.11

When the borrower chooses to remain in the contract, the value is the following:

vc = max
{b0S ,b0L, S , L,c}

µ
u(c) + β

Z
y0
vo(b0S, b

0
L, y

0)f(y0, y)dy0
¶

(8)

subject to the budget constraint:

c− qS (b0S, b
0
L, bS, bL, y)

0
L − qL (b0S, b

0
L, bS, bL, y)

0
L = y − bS − bL (9)

11This is consistent with empirical evidence regarding actual restructuring processes, where the maturity
composition of the new debt obligations is part of the restructuring agreement (Sturzenegger and Zettelmeyer
2005).
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and to the laws of motion for the stock of perpetuities of short and long duration:

b0S = δSbS + S

b0L = δLbL + L.

The borrower decides on optimal debt levels b0S and b
0
L to maximize utility. The borrower

takes as given that each contract {b0S, b0L} ∈ B comes with specific prices {qS, qL} that
are contingent on today’s states (bS, bL, y). The decision of whether to remain in the credit

contract or default is a period-by-period decision, so that the expected value from next period

forward in (8) incorporates the option to default in the future.

The default policy can be characterized by default sets and repayment sets. Let the

repayment set, R(bS, bL), be the set of output levels for which repayment is optimal when

short- and long-term debt are (bS, bL):

R(bS, bL) =
©
y ∈ Y : vc(bS, bL, y) ≥ vd(y)

ª
, (10)

and let the complement, the default set D(bS, bL), be the set of output levels for which default

is optimal for debt positions (bS, bL):

D(bS, bL) =
©
y ∈ Y : vc(bS, bL, y) < vd(y)

ª
. (11)

When the borrower does not default, optimal new debt takes the form of two decision

rules mapping today’s state into tomorrow’s debt levels:

b0S = b̃S(bS, bL, y) (12)

b0L = b̃L(bS, bL, y)

Given this characterization of debt and default decisions, we can now define the equilib-

rium bond prices at which lenders are willing to offer contracts.

3.2 Bond Prices, Spreads, and Duration

Lenders are risk neutral and have an opportunity cost of funds equal to the risk-free rate r.

Lenders are therefore willing to purchase a defaultable bond at a price equal to the expected

discounted value of payments received from the bond. Each new issue of debt S
t > 0 or

L
t > 0 by the borrower is a promise to pay a coupon payment every period in the future,

conditional on not defaulting up to that period. The price of a new debt issue, then, is the
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sum of the value of these coupon payments, each discounted by the risk-free rate and the

probability of repayment up to the date of the payment. If the borrower’s state is
¡
yt, b

S
t , b

L
t

¢
,

the prices qSt and qLt for loans
S
t and

L
t given future sequences of debts

©
bSt+n, b

L
t+n

ª∞
n=1

are

given by

qmt =
∞X
n=1

δn−1m

(1 + r)n

Z
R(bSt+1,b

L
t+1)

· · ·
Z

R(bSt+n,b
L
t+n)

f (yt+n, yt+n−1) · · · f (yt+1, yt) dyt+n · · · dyt+1 (13)

form = {S,L}. In each element of the sum on the right-hand side, the term δn−1m corresponds

to the coupon rate due in period t + n; (1 + r)−n is the lender’s n-period discount factor;

and the term under the integral calculates the probability that the borrower receives output

shocks that are in the repayment set each period up to t+ n — that is, the borrower repays

up to period t + n. If default never occurs, that is
R
R(bSt+1,b

L
t+1)

f (yt+1, yt) dyt+1 = 1 for all t,

then the price at date t is equal to the risk-free price,

qmt =
1

1 + r − δm
.

Note that the price qmt of new debt issuances depends on current output, yt, as it influences

expectations of future output realizations which determine future default decisions. The price

also depends on the entire future sequence of debts,
©
bSt+n, b

L
t+n

ª∞
n=0
, since the outstanding

debt in any period determines the decision to default, given the output shock. However, we

can transform the infinite sum in (13) into a recursive expression for qmt by assuming that

the lender forecasts the future debt levels using the borrower’s own decision rules for debt,

defined in (12), which are functions only of the debt choice next period. The sum in (13) can

then be written with recursive notation asZ
R(b0S ,b

0
L)

f(y0, y)

1 + r
dy0 + δm

Z
R(b0S ,b

0
L)

"Z
R(b̃S(b

0
S ,b

0
L,y),b̃L(b

0
S ,b

0
L,y))

f(y00, y0)

(1 + r)2
dy00

#
f(y0, y)dy0 + ...

Each future debt level is replaced in sequence by the optimal decision rules b̃S(b0S, b
0
L, y) and

b̃L(b
0
S, b

0
L, y). Prices for debt then satisfy the functional equations:

q̂S (b0S, b
0
L, y) =

1

1 + r

Z
R(b0S ,b

0
L)

h
1 + δS q̂

S
³
b̃S (b

0
S, b

0
L, y

0) , b̃L (b
0
S, b

0
L, y

0) , y0
´i

f (y0, y) dy0 (14)

q̂L (b0S, b
0
L, y) =

1

1 + r

Z
R(b0S ,b

0
L)

h
1 + δLq̂

L
³
b̃S (b

0
S, b

0
L, y

0) , b̃L (b
0
S, b

0
L, y

0) , y0
´i

f (y0, y) dy0 (15)
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If at any state (y, bS, bL) the borrower chooses to save, S < 0 or L < 0 , the contract

constitutes a promise from the lender to the borrower to pay thereafter the coupon payment.

We assume that savings rates for the borrower are risk-free, so that the effective prices the

borrower faces in the budget constraint in (9) are

qS (b0S, b
0
L, bS, bL, y) =

(
q̂S (b0S, b

0
L, y) if b0S ≥ δSbS

1
1+r−δS if b0S < δSbS

(16)

qS (b0S, b
0
L, bS, bL, y) =

(
q̂L (b0S, b

0
L, y) if b0L ≥ δLbL

1
1+r−δL if b0L < δLbL

(17)

We are modeling savings contracts as risk-free because they seem the most empirically rel-

evant for emerging markets where savings are generally done at the international interest

rates (generally with T-bills), yet borrowing contracts compensate investors for default. Ad-

ditionally for computational convenience we are assuming that after default any savings that

the government has in international financial markets are dissipated.12 ,13

We define the yield-to-maturity on each bond as in the data, as the implicit constant

interest rate at which the discounted value of the bond’s coupons equal its price. That is,

given a price qm, the yield rm is defined from

qm =
∞X
n=1

δn−1m

(1 + rm)n
.

So,

rS =
1

qS
+ δS − 1 and rL =

1

qL
+ δL − 1.

We define spreads as the difference between the yield on a defaultable bond and the

default-free rate:

sS = rS − r and sL = rL − r.

As output and debt change, the period-by-period probability of default varies over time,

12Ideally, one could have a model with four endogenous state variables, two for short- and long-term debt
issuances and two for short- and long term savings. However this specification is computationally unfeasible.
Thus, under the assumption that after default any savings that the government has in international financial
markets are dissipated, we can maintain risk-free savings and defaultable short- and long-term debt with only
two endogenous states.

13We could alternatively assume that savings contracts also carry the defaultable price, i.e. interest rates
on savings are higher than the risk-free rate. Results are similar with this alternative specification. However,
by having savings contracts being risk-free, we avoid having cases that seem empirically implausible where
the government borrows large long-term loans just to increase its default probability and be able to save at
excessively high interest rates.
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and therefore the prices of long-term and short-term debt differ, since they each put different

weights on repayment probabilities in the future, as seen in (13). Spreads on short-term

and long-term bonds therefore generally differ, and the relationship between the two spreads

changes over time, so that the spread curve is time-varying.

Finally, we define as in the data, the duration of debt issued at each date as the weighted

average of the time until each coupon payment, with the weights determined by the fraction

of the bond’s value on each payment date:

dm =
1

qm

∞X
n=1

n
δn−1m

(1 + rm)n
.

So,

dS =
1 + rS

(1 + rS − δS)
and dL =

1 + rL

(1 + rL − δL)
. (18)

For comparison, note that if the bonds were default-free, yields, and duration would be

rrfm = r

drfm =
1 + r

1 + r − δm
.

We now define equilibrium. A recursive equilibrium for this economy is (i) a set of policy

functions for consumption c̃(bS, bL, y), new issuances for short-term debt S̃(bS, bL, y) and

long-term debt L̃(bS, bL, y), perpetuity stocks for short-term debt b̃S(bS, bL, y) and long-term

debt b̃L(bS, bL, y), repayment setsR(bS, bL), and default setsD(bS, bL), and (ii) price functions

for short debt qS (b0S, b
0
L, bS, bL, y) and long debt q

L (b0S, b
0
L, bS, bL, y), such that:

1. Taking as given the bond price functions qS (b0S, b
0
L, bS, bL, y) and qL (b0S, b

0
L, bS, bL, y) ,

the policy functions b̃S(bS, bL, y), b̃L(bS, bL, y), S̃(bS, bL, y), L̃(bS, bL, y) and c̃(bS, bL, y),

repayment sets R(bS, bL), and default sets D(bS, bL) satisfy the borrower’s optimization

problem.

2. The bond price functions qS (b0S, b
0
L, bS, bL, y) and qL (b0S, b

0
L, bS, bL, y) reflect the bor-

rower’s default probabilities and lenders break even in expected value: equations (14),

(15), (16), and (17) hold.
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4 Default and Optimal Maturity

In this section we illustrate the mechanisms that determine the optimal maturity composition

of debt in two simplified example economies. We view the borrower’s choice as a portfolio

allocation problem, in which the benefits and costs of short-term and long-term debt deter-

mine the relative amounts of each type issued. In the first example, we show that, in the

presence of lack of commitment in future debt and default policies, short-term debt is more

effective than long-term debt in transferring future resources to the present. If the borrower

would try to borrow a lot of long-term debt, its price would fall to zero faster than if instead

the large loan would be short-term; hence, short-term debt is beneficial for liquidity. In the

second example, we show that long-term debt allows the borrower to avoid the risk of rolling

over short-term debt at prices that differ across future states due to differences in default

risk; hence, long-term debt provides insurance.

We construct the simplest possible examples to illustrate the mechanisms clearly. The

economy lasts for three periods. In period 0, income equals zero, and in periods 1 and 2

income is stochastic (with details to be specified in each example). The borrower can default

at any time, in which case consumption from then on is equal to ydef .

In each example, we compare the allocation with only one maturity of debt — one- or

two-period bonds — against the allocation with both maturities of debt.14 In each economy,

with both maturities available, in period 0 the borrower can issue one- and two-period bonds

b10 and b20 given price schedules q
1
0(b

1
0, b

2
0) and q10(b

1
0, b

2
0), and consumption is

c0 = q10(b
1
0, b

2
0)b

1
0 + q10(b

1
0, b

2
0)b

2
0.

In period 1, conditional on not defaulting, new short bonds b11 are issued given price schedule

q11(b
1
1). Consumption is equal to income plus net debt:

c1 = y1 + q11(b
1
1)b

1
1 − b10.

In period 2, conditional on not defaulting, the borrower pays off long- and short-term debt,

and consumption equals income minus the repayment:

c2 = y2 −
¡
b11 + b20

¢
.

In the cases with only one type of debt available, the budget constraints are modified accord-

14It is straightforward to extend these examples for the case where long bonds pay a coupon in period 1
in addition to the payment in period 2, as long as y1 and y2 are sufficiently different.
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ingly.

The risk neutral lenders discount time at rate r and offer debt contracts that compensate

them for the risk of default and give them zero expected profits.

4.1 Example 1: Short-Term Debt Provides Liquidity

For this example we consider the following income process. Income in period 0 is equal to

0. Income in period 1 is equal to y. Income in period 2 can take 2 values, yH or yL with

yH > yL = 0, and the probability of yH is equal to g with 0 < g < 1. Also, consumption

in default, ydef , is equal to 0. To abstract from any insurance properties of debt, we assume

that preferences are linear in consumption and given by

U = E[c0 + βc1 + β2c2].

We assume that the borrower likes to front-load consumption, while lenders do not discount

the future: β < 1
1+r

= 1, and we impose that consumption must be non-negative: ct ≥ 0 for
t = 0, 1, and 2.

4.1.1 Only Two-Period Bonds

First, consider the borrower’s problem when only two-period bonds are available in period

0, and one-period bonds are available in period 1. Under the assumption that β < (gyH −
yL)/(yH − yL), the solution to the borrower’s problem is the following. In period 2, the

borrower defaults when income equals yL. In period 0, the borrower borrows against all his

period 2 income, at price g, and in period 1 the borrower consumes his period 1 income, so

consumption is

c0 = gyH

c1 = y

c2
¡
yH
¢
= 0, c2

¡
yL
¢
= ydef = 0.

Although the borrower does not have preferences for smoothing consumption over time,

and would prefer to consume everything up front, it is not possible to consume everything in

period 0, because none of the income in period 1 can be borrowed against using two-period

debt. This is because such a contract would require a two-period loan with face value larger

than yH , so that the borrower would have to save part of the period 1 income to repay the

loan in period 2. Since the borrower cannot commit to this policy in period 0, however, the
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optimal choice in period 1 would be not to save, and then to default in period 2 regardless of

the level of income. That is, a debt contract that offered q20b
2
0 = a+gyH , for any a > 0, is not

possible, because the probability of default on the loan would be equal to one, and hence the

price q20 would be zero. Effectively, the threat of punishment for default in period 2 when the

two-period loan is due does not induce the borrower to repay, because the borrower discounts

the future, so that reducing consumption in period 1 is worse than facing the punishment

for default in period 2. At the same time, the threat of punishment for default in period 1 is

irrelevant, because none of the debt is due in period 1, and the threat of punishment cannot

be used to induce savings.

4.1.2 One- and Two-Period Bonds

Now, if the borrower were able to issue one-period debt in period 0, consumption would be

c0 = y + gyH

c1 = 0

c2
¡
yH
¢
= 0, c2

¡
yL
¢
= ydef = 0.

Multiple possible portfolios allow this consumption pattern. The borrower could use

short-term debt to borrow against all period 1 income and long-term debt to borrow against

all period 2 income (b10 = y with q10 = 1, b
2
0 = yH with q20 = g, b11 = 0); or, the borrower could

use only short-term debt, issuing bonds in period 0 and period 1 (b10 = y + gyH with q10 = 1,

b11 = yH with q11 = g). Since all consumption occurs in the first period, utility in this case

is higher than in the case with long-term debt only. With one-period bonds, the threat of

punishment for default is being used in both periods to induce repayment.

In this example, long-term debt is illiquid in the sense that a loan that would provide the

same level of consumption in the first period does not exist, because the price of long-term

debt falls to zero. This example illustrates that in the presence of lack of commitment in

debt policies and default risk, short-term debt is more liquid due to more lenient bond prices,

and thus it is a superior instrument to provide up-front resources.15

15It is easy to extend this example to an infinite horizon environment with deterministic and time varying
output. A one-period bond economy can deliver higher initial consumption than a longer-term bond — two-
period or perpetuity — economy. The main idea is again that the threat of punishment can be used more
effectively with one-period bonds because longer-term contracts might require savings in the future which
are impossible to induce with default punishments.
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4.2 Example 2: Long-Term Debt Provides Insurance

For the second example, we focus on the motive for insurance by assuming that the borrower’s

preferences are given by

U = E[u(c0) + βu(c1) + β2u(c2)]

with u (·) strictly concave and β = 1. We also now consider a different income process.

Income in period 0 is equal to 0, income in period 1 is equal to y, and income in period 2

can take two values: yH or yL with yH > yL. The probability of yH is learned in period 1

and can be either g or p with 0 < g < 1 and 0 < p < 1.

4.2.1 Only One-Period Bonds

First, consider the borrower’s choice under the assumption that only one-period bonds are

available. Under the assumption that y+ p+g
2

yH

2+ p+g
2

> ydef > yL − 2yH−y
2+ p+g

2

, the solution to the

borrower’s problem is the following. The borrower defaults in period 2 if income is yL

and does not default in all other states. Hence, cL2 (p) = cL2 (g) = ydef . Contingent on the

realization of the probability p or g, consumption is equalized between period 1 and the

high-income state in period 2:

c1 (p) = cH2 (p)

c1 (g) = cH2 (g)

Finally, consumption in period 0 is set to equalize expected marginal utility in period 1 to

marginal utility in period 0:

u0 (c0) =
1

2
(u0 (c1 (p)) + u0 (c1 (g)))

Importantly, c1 (p) 6= c1 (g), so that consumption is not equalized across states within a

period. With only short-term debt available, the borrower borrows in period 0, then borrows

again in period 1. Debt issues are b10 = c0, b11 (p) =
yH+c0−y
1+p

, and b11 (g) =
yH+c0−y
1+g

. The price

of debt issued in period 1 depends on the state realized: q11 (p) = p and q11 (g) = g. Therefore,

as long as p 6= g, the price at which debt is rolled over in period 1 differs across states, and

consumption differs as well.
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4.2.2 One- and Two-Period Bonds

Now, if the borrower has access to both one-and two-period bonds, it is possible to equalize

consumption across all states in which the borrower does not default:

c0 = c1 (p) = c1 (g) = cH2 (p) = cH2 (g) =
p+g
2
yH + y

p+g
2
+ 2

The portfolio required involves using long-term and short-term debt in period 0, while bor-

rowing nothing in period 1:

b20 =
2yH − y¡
p+g
2
+ 2
¢

b10 =

¡
1 + p+g

2

¢
y −

¡
p+g
2

¢
yH¡

p+g
2
+ 2
¢

b11 = 0

In this example the borrower faces risk because of the variation in bond prices across

states in period 1 due to differences in default risk in period 2. Using long-term debt in

period 0 allows the borrower to avoid the risk involved with rolling over short-term debt in

period 1. The borrower benefits from this insurance with smoother consumption and higher

utility.

Note that in period 0 short debt has a higher price than long debt, q10 = 1 >
p+g
2
= q20, yet

the borrower issues long-term debt. The lower discount price on long debt is the insurance

premium the borrower is willing to pay for insurance against the variation in bond prices

in period 1. This insurance mechanism is the same as that emphasized in Kreps (1982),

Angeletos (2002) and Buera and Nicolini (2004) in their models of the optimal maturity

structure of debt with incomplete markets. The difference in our model is that the variation

in bond prices comes from the government’s inability to commit to repaying, rather than

from variation in the lender’s marginal rate of substitution.

4.3 Summary

In a standard incomplete markets model with fluctuating output and without default, a

borrower would find the portfolio of long and short debt indeterminate if the risk-free rate

were constant across time; the two assets would have payoffs that make them equivalent.

However, in our model, the risk of default makes the two assets distinct. The first example

illustrated that long-term debt is more illiquid than short-term debt due to the inability of
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the borrower to commit to future debt and default policies. However, the second example

illustrated that long-term is beneficial because it hedges against variations in short rates and

provides insurance for default risk.

Insurance and liquidity shape the optimal maturity structure of debt for a borrowing

government. The quantitative relevance of each of these forces depends on the specifics of

preferences and the income process. Thus, in the next section we quantify these two sources

by calibrating our general model to an actual emerging market economy.

5 Quantitative Analysis

5.1 Calibration

We solve the model numerically to evaluate its quantitative predictions regarding the dynamic

behavior of the optimal maturity composition of debt and the spread curve in emerging

markets. We calibrate an annual model to the Brazilian economy.

The utility function of the borrower is u(c) =
c1−σ

1− σ
. The risk aversion coefficient is set

to 2, which is a common value used in real business cycle studies. The risk-free interest rate

is set to 4.0% annually, which equals the average annual yield of a two year U.S. bond from

1996 to 2004. The stochastic process for output is assumed to be a log-normal AR(1) process

log(yt) = ρ log(yt−1)+ ε with E[ε2] = η2y. Shocks are discretized into a seven-state Markov

chain using a quadrature-based procedure (Tauchen and Hussey 1991). We use annual series

of GDP growth for 1960—2004 taken from the World Development Indicators to calibrate the

volatility of output. Due to the short sample, rather than estimating the autocorrelation

coefficient we choose an autocorrelation coefficient for the output process of 0.9, which is in

line with standard estimates for developed countries. The decay parameters of the short and

long bonds, δS and δL, are set such that the default-free durations equal 2 and 10 years.

Following Arellano (2008) we assume that after default, output before reentering financial

markets remains low and below some threshold, according to the following:

h(y) =

(
y if y ≤ (1− λ)ȳ

(1− λ)ȳ if y > (1− λ)ȳ
,

where ȳ is the mean level of output.

The output cost after default λ, the time preference parameter β, and the probability of

reentering financial markets after default θ are calibrated jointly to match three moments in

Brazil: the average 2-year spread of 6%, the volatility of the 2-year spread of 5.3 and the
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average duration of debt issuances in Brazil of 5.5 years. Table 3 summarizes the parameter

values.

Table 3: Parameters
Value Target

Discount factor lender r= 4% U.S. annual interest rate 4%
Risk aversion σ = 2 Standard value
Perpetuity decay factors δS = 0.52 Default-free durations of 2 and 10 years

δL = 0.936
Stochastic structure ρ = 0.9, η = 0.022 Brazil output
Probability of reentry θ = 0.24 Mean 2-year spread of 6%
Output after default λ = 0.025 Volatility of 2-year spread of 5.3
Discount factor borrower β = 0.935 Average bond duration of 5.5 years

5.2 Results

We simulate the model, and in the following subsections we report statistics on the dynamic

behavior of spreads and the maturity composition of debt from the limiting distribution of

debt holdings. The model contains a dynamic portfolio problem where the borrower chooses

holdings of two defaultable bonds of shorter and longer duration. Below, we show how

movements in the probability of default generate time-varying differences in the prices, and

in the liquidity and insurance benefits of these two assets, which rationalize the movements

in spread curves and maturity composition observed in the data.

5.2.1 Prices and Spreads

In the model all decision rules are functions of three state variables (bS, bL, y). However, for

the purpose of illustration, we consider a single artificial state variable, the wealth of the

economy: w = y − bS − bL. This variable is informative because it is highly correlated

with the true state variables: the correlations between wealth and income, short debt and

long debt equal 0.99, -0.56, 0.65 respectively. In what follows we analyze decision rules as

functions of wealth, constructed as scatter plots from the model simulation.

We first analyze the default decision and spreads, and their relationship to wealth. Default

happens when the economy has a low level of wealth, as the left panel of Figure 3 indicates. In

the right panel of Figure 3, we see that, conditional on not defaulting, spreads are higher for

relatively lower levels of wealth. However in equilibrium, for very low wealth levels the spread
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Figure 3: Default decision (left panel) and spreads (right panel) as a function of wealth.

is not as high because the borrower actually prefers to default than borrow at excessively low

prices.

We now compare the model and data in terms of price and spread dynamics. The spread

and price series for the data are for 2- and 10-year bonds of Brazil from Section 2.16 For

this comparison, we organize the data into quantiles based on the level of the short spread.

Table 4 presents average spreads and prices for short and long debt across periods when short

spreads are below their 25th and 50th percentile and above their 50th and 75th percentile.

The model generates spread curve dynamics that match the Brazilian data well. The

first two columns of Table 4 present the model’s short and long spreads, and the fifth and

sixth columns present the data counterparts. In the model when default is unlikely, both

spreads are low, and the spread curve is upward-sloping: when the short spread is below its

25th percentile, for example, the average short spread is 1.04%, and the average long spread

is 3.83%. In contrast, when the probability of default is higher, both spreads rise, and the

spread curve becomes downward-sloping: when the short spread is above the 75th percentile,

16As explained in Section 2, spread curves for Brazil are estimated using equation (21) in the Appendix. In
the model for simplicity we are directly applying the yield to maturity formulas to compute spreads. However,
we could also estimate in the model spread curves using a reduced equation with only two parameters. Results
under this alternative estimate are similar, although the spread curves are slightly steeper.
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Table 4: Spread Curves
MODEL DATA

sS pct sS sL qS/qSrf qL/qLrf sS sL qS/qSrf qL/qLrf
< 25 1.04 3.83 0.98 0.73 2.12 6.12 0.96 0.58
< 50 1.37 3.85 0.97 0.74 2.75 6.07 0.95 0.58
≥ 50 11.68 8.68 0.81 0.56 9.25 9.99 0.85 0.42
≥ 75 13.30 9.57 0.79 0.52 13.55 12.23 0.79 0.34

Overall Mean 6.58 6.25 0.89 0.65 6.01 8.04 0.90 0.50
Standard Deviation 5.53 3.39 0.08 0.15 5.85 3.39 0.08 0.13

the average short spread is 13.3%, and the average long spread is 9.57%. The fact that short

spreads rise more than long spreads is also reflected in the difference in the volatilities of the

two spread series: the standard deviation of the long spread is lower than that of the short

spread. Compared to the data for Brazil, the model captures the difference observed in the

slope of the spread curve associated with periods of high and low short spreads, as well as

the difference in volatilities of the two spreads. The model also matches quantitatively the

volatility of the long spread. The model’s overall average short and long spreads, however,

are both pinned down by the average probability of default, so the average spread curve is

quite flat.

Underlying the time-varying spreads is the interaction of the dynamics of income and debt

with the price schedules for short and long debt. (Figure 6, in the Appendix, illustrates the

equilibrium price schedules for short debt q̂S(b0S, b
0
L, y) and long debt q̂

L(b0S, b
0
L, y).) However,

the mapping from discount prices to spreads is not linear (eq. 1). Thus, to understand the

total default probabilities of each bond, it is informative to analyze price ratios defined as

defaultable discount prices relative to default-free prices for a bond with durationm: qm/qmrf .

The price ratio of each bond is the total repayment probability over the lifetime of the bond.

Table 4 presents statistics for these price ratios in the model and the data. The table shows

that contrary to spreads, price ratios for short-term debt are always higher than for long-term

debt both in the model and in the data. Moreover, price ratios are disproportionately lower

for short-term debt when short spreads are high both in the model and in the data.17

The distinct dynamics of price ratios and spreads can be understood as follows. Price ra-

tios reflect cumulative repayment (and default) probabilities, whereas spreads reflect average

default probabilities. Cumulative default risk for long-term debt is always larger than for

short-term debt both in the data and the model. However, annualized (average) default risk

17For Argentina, Mexico, and Russia price ratios for short-term debt are also always higher than for
long-term debt, and the difference is accentuated in times of high spreads.
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can be lower on long-term debt during times when the annual default probability in the short

run is larger than the annual default probability in the long run. Thus, contrary to common

belief in sovereign debt markets, the spread is not a comprehensive measure of the relative

cost of borrowing in different maturities of debt. In particular, in times when the probability

of default is high, short-term debt may appear to be more expensive for the borrower than

long-term debt, in the sense that it has a higher spread, although long-term debt is worse in

the sense that it has a lower price, relative to the risk-free price. The connection between

the dynamic behavior of prices and spreads in our model is borne out in the data as well.

The preceding discussion also indicates that the important feature of our model for gener-

ating the observed dynamics of prices and the spread curve is that the probability of default

is mean-reverting: a period with high probability of default is followed by a period with lower

probability of default, and vice versa. The effects of mean-reverting default probabilities on

the spread curve are the same as those highlighted by Merton (1974) in the case of credit

spreads for corporate debt. In our model the probability of default is endogenously mean-

reverting as a result of the dynamics of the output process and debt accumulation. When

output is high, it is also expected to be high in the near future, so the probability of default in

the next period is low. The economy borrows a large amount at low interest rate spreads, so

that in states where the economy is hit by a bad shock, default becomes more likely further in

the future. In contrast, when the likelihood of imminent default is high, the economy avoids

default in the next period only in states with high output. Conditional on not defaulting,

then, output is expected to remain high, and the probability of default further in the future

falls. The persistence and mean reversion of default and repayment probabilities driven by

the dynamics of debt and income therefore rationalize the dynamic behavior of the spread

curve observed in the data.

5.2.2 Maturity Composition

We now present the quantitative predictions for the maturity composition of debt. It is

important to note that we analyze the optimal maturity composition of debt in a framework

that generates the empirically observed dynamics of debt prices. As discussed in Section

4, two forces in the model shape the dynamic behavior of the maturity composition. First,

long-term bonds insure against future price fluctuations; we find that the insurance motive is

more valuable in times of high wealth. Second, short-term bonds are more liquid and allow

larger transfers of resources to the present with a smaller change in price; we find that the

liquidity advantage for short debt is more valuable in times of low wealth. Given the negative

correlation between wealth and spreads, these two forces lead the borrower to use long-term
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debt more heavily in times when spreads are low and shift toward shorter term debt when

spreads are high.

Figure 4 plots the equilibrium choices of the perpetuity stocks b0S and b0L for different

levels of wealth. The figure shows that in high wealth periods, the borrower chooses a large

position in long-term debt and a negative position (i.e., savings) in short-term debt. In low

wealth periods, the short-term position increases while the long-term position drops to zero.
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Figure 4: Short-term debt (left panel) and long-term debt (right panel) as a function of
wealth.

New issuances of short and long debt S and L are closely correlated with the perpetuity

stocks; thus, in high wealth states debt issuances are mostly long term and debt issuances

shift to shorter term in low wealth states. To compare issuances of long and short debt

between model and data, we now compute conditional averages of the duration of new debt

issuances, based on the level of the short spread. Average duration in the model is the sum

of the duration (equation 18) of each new bond issuance weighted by its share in total new

debt issued. Moreover, given that in the data we only have information on debt issuances

( S > 0 and L > 0), in the model we compute average duration of the debt component of

the portfolio. Table 5 reports the average duration of new debt issuances when spreads are

above their median relative to when spreads are below their median in the model and in the

Brazilian data. Debt duration in the model mirrors the dynamics of duration in the bond

data of Brazil. In the model, average duration when spreads are low is longer and equals 5.30

years, whereas it shortens to 3.44 when spreads are high. In Brazil, the average duration

of bonds issued when spreads are high equals 6.03 years and shortens to 4.47 years when
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spreads are low.

Table 5: Average Duration of New Debt Issuances
MODEL DATA

sS pct
< 50 5.30 6.03
≥ 50 3.44 4.47

Overall 4.38 5.5

In Figure 5, we illustrate the trade-off between liquidity and insurance that determines

the decision of the debt portfolio. In the left panel of the figure, we show the liquidity

benefits of short-term debt by plotting the increase in consumption that would be possible by

marginally increasing short-term debt, relative to the increase in consumption that is possible

by issuing more long-term debt. Specifically, define QB(b0S, b
0
L, bS, bL, y) ≡ qS(b0S, b

0
L, y) S +

qL(b0S, b
0
L, y) L as the quantity of consumption that is attained with a certain debt policy

b0S, b
0
L, given the state (bS, bL, y). In the figure’s left panel, we plot the ratio of small deviations

from the equilibrium debt policy for short-term debt relative to long-term debt,

∆S

∆L
≡ QB(b̃S(bS, bL, y) + εS, b̃L(bS, bL, y), bS, bL, y)−QB(b̃S(bS, bL, y), b̃L(bS, bL, y), bS, bL, y)

QB(b̃S(bS, bL, y), b̃L(bS, bL, y) + εL, bS, bL, y)−QB(b̃S(bS, bL, y), b̃L(bS, bL, y), bS, bL, y)

where εS and εL are small, and are chosen so that if debt prices were always the default-

free prices, the ratio plotted would be exactly equal to 1. As the figure shows, this ratio in

our model is always above 1 and on average it equals 1.33. Thus, short-term debt is more

liquid because consumption can always be marginally increased more with short-term debt

than with long-term debt. The reason is that price schedules for short-term debt are more

lenient by having higher prices —lower default premia— that decrease by less as debt increases.

Looking across wealth levels, this difference is especially large in lower wealth states. Thus,

short-term debt is particularly useful for increasing consumption when wealth is low.

In our model, short- and long-term debt prices are actuarially fair for the lender. Thus, if

the schedules of short-term debt are more lenient, this means that the borrower will repay in

more future states. However, this does not mean that the borrower is indifferent to acquiring

a certain level of resources with a small safer short-term loan, versus a large risky long-term

loan. In fact, we know that if the borrower chooses to default in some future states with

the long-term loan while choosing to repay in those same states with the short-term loan, he
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must be better off by repaying the short loan because he always have the option to default.

Moreover, default risk in our model limits the maximum level of resources that the borrower

can get.18 The key is that in our model these endogenous limits and price schedules are

tighter for long term debt relative to short term debt. The average ratio of borrowing in

each state to the short-term debt limit versus to the long-term debt limit equals 1.84. Thus,

the potential increase in consumption from exhausting short-term debt is 84% larger than

from exhausting long-term debt. Figure 5 also illustrates the tighter price schedules for long-

term debt as increases in short debt result in higher consumption because of more lenient

prices. As discussed in the examples in Section 4, short-term debt can deliver larger absolute

consumption levels and larger consumption with smaller loans, because of the inability of

the borrower to commit to saving sufficiently to repay long-term debt. Effectively, the threat

of default punishment is more effective to induce repayment of shorter-term debt because

repayment of short debt does not require future savings.

Although short-term debt is more liquid, long-term debt provides more insurance for price

fluctuations that can lead to capital outflows in recessions. The right panel of Figure 5 plots

the correlation of the trade balance tb0 = y0 − ec(b0S, b0L, y0) and output y0 the following period
conditional on not defaulting for each wealth level today. The correlations are computed

using the borrower’s optimal consumption decision rules the following period. When wealth

is large and the portfolio is mostly long term, the correlation between the equilibrium trade

balance and output tomorrow is positive, i.e. capital outflows in booms and capital inflows

in recessions. However, when wealth is small and the portfolio is mostly short term, the

correlation is negative, i.e. larger capital outflows in recessions than in booms. The reason

why the model delivers capital outflows in recessions is that the price schedules for debt

are more stringent in recessions than in booms due to countercyclical default risk. The

correlation between output and the short spread in the model is −0.54. However, by issuing
long-term debt the borrower can avoid being forced to save in recessions due to excessively

adverse price schedules.

Table 6 provides more details about the maturity composition and the forces underlying

its determination. The first two columns of Table 6 show the model’s portfolio, conditional

on different levels of wealth. When wealth is high the borrower issues on average 50% of

his debt in long-term bonds, and 50% in short-term bonds. When wealth is low the average

maturity composition shifts to 39% in long-term bonds, and 61% in short-term bonds. As

illustrated above, the optimal portfolio depends on the valuations of the insurance benefits

18Arellano (2008) shows that a one short-term asset version of our model generates an endogenous Laffer
Curve for borrowing which features a debt limit.
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Figure 5: Liquidity benefit of short debt (left panel) and insurance benefit of long debt (right
panel)

of long debt relative to the liquidity and cost advantage of short debt. The table reports two

alternative metrics to evaluate these benefits.

The insurance benefits of long-term debt can be measured by the comovement between

the borrower’s intertemporal marginal rate of substitution, βu0(c0)/u0(c), and the short-term

bond price next period, qS0. As the table shows, this covariance is negative: in states with

high marginal utility of consumption, the short bond price is expected to be low. Issuing

long debt today allows the borrower to avoid having to issue short-term debt tomorrow in

states when prices are low. The insurance benefit is stronger in high wealth periods, as this

covariation is −0.21 relative to −0.16.
To measure the cost advantage of short-term debt, we compute the slope of the price

ratios of the two debt classes: qL(1+r−δL)
qS(1+r−δS)

. As the table shows, long-term debt is always more

costly in terms of carrying lower total repayment probabilities, qL(1+r−δL)
qS(1+r−δS)

< 1. Increasing

consumption using short-term debt is cheaper in that it contains lower default risk. And

short-term debt is disproportionately cheaper in low wealth times, as the slope of price ratios

is lower, 0.70 relative to 0.75. Thus, a larger share of short-term debt in low wealth times

can be understood as a reaction to the more expensive long-term debt.

Moreover, as in emerging markets data, periods of longer-term debt issuance correspond

to periods with lower spreads, and upward-sloping spread curves. Specifically, when wealth

is above its median, the average short spread equals 2.62%, and the long spread is on average
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Table 6: Model Maturity Composition

Wealth S/( S + L) L/( S + L) sprS sprL−sprS qL(1+r−δL)
qS(1+r−δS)

cov
³
βu0(c0)
u0(c) , q

S0
´

< 50 pct 0.61 0.39 10.84 -2.43 0.70 -0.16
≥ 50 pct 0.50 0.50 2.62 1.78 0.75 -0.21

1.78% above the short spread. On the other hand, when wealth is low, the short spread is

on average 10.84% and the long spread is on average 2.43% below the short spread.

In summary, through the lens of our model, the maturity structure of defaultable debt

in emerging markets and its covariation with spread curves and levels can be rationalized by

two factors: hedging advantage of long-term debt for insuring against fluctuations in future

default risk, and a liquidity advantage of short-term debt for providing higher resources with

more lenient prices.

6 Conclusion

In this paper, we have developed a dynamic model to study the maturity composition of

sovereign bonds. In emerging markets data, changes in the maturity composition of debt

comove with changes in the term structure of spreads: when spreads on short-term debt

are low, long-term spreads are higher than short-term spreads, and the maturity of debt

issued is long. When short-term spreads rise, long-term spreads rise less, and the maturity

of debt shortens. Our model simultaneously reproduces the patterns observed in the term

structure of spreads and bond prices, and the maturity composition of debt. Changes in the

spread curve, which reflects the average default probability at different time horizons, result

from the output dynamics and the endogenous dynamics of debt. Issuing long-term debt

insures against future fluctuations in short-term spreads that come from changes in default

risk. Short-term debt provides more liquidity because it allows the borrower to avoid the

more severe commitment problem in repaying long-term debt. With these two forces, the

model generates the pattern of issuances observed in the data. Long-term debt is issued

mostly in times of high wealth and low spreads, when the insurance motive is the strongest.

Short-term bonds are used more heavily in times when wealth is low and spreads are high,

because expectations of the borrower’s future debt and default choices restrict the availability

of long-term debt more heavily than of short-term debt.

Our main innovation has been to introduce multiple, long-term assets into a dynamic
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model with endogenous default. We view the resulting framework as useful for addressing a

variety of other questions for which it is important to analyze a trade-off in maturity choice

with defaultable debt. Natural applications are the maturity structure of consumer and

corporate debt. The literature on consumer bankruptcy thus far has focused on modeling

very short-term unsecured credit (Chatterjee, Corbae, Nakajima, and Rios-Rull (2007) and

Livshits, MacGee, and Tertilt (2007)). However, it would be interesting to analyze both long-

term and short-term defaultable loans, such as mortgages and credit card debts. In addition,

the mechanisms in our model are likely to be relevant in corporate debt given the similarity

between our facts on emerging market spread curves and the cross section of corporate debt

spread curves. Default risk has been shown to have important implications on firm’s dynamics

(Cooley and Quadrini (2001) and Arellano, Bai, and Zhang (2007)). The model of this paper

can be used to further understand how the maturity choice can influence the entry, exit,

and growth of firms. Overall, our paper provides a tractable framework to study defaultable

debt of multiple maturities appropriate for these questions, and has highlighted the relevant

economic trade-offs important for understanding maturity choice in the presence of default.
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Appendix

Data Description

All the sovereign bond data are from Bloomberg. For the four countries we examine, we use

all bonds with prices quoted at some point between March 1996 and May 2004, with the

following exceptions. We exclude all bonds with floating-rate coupon payments, and at every

date, we exclude bonds that are less than three months to maturity, following Gurkaynak,

Sack, and Wright (2006). For each country, we estimate spreads starting from the first week

for which at least four bond prices are available every week through the end of the sample.

We use data from 110 bonds for Argentina, 71 for Brazil, 63 for Mexico, and 25 for Russia.

To estimate default-free yield curves, we use data on U.S. and European government bond

yields. The U.S. data are from the Federal Reserve Board, and the European data are

from the European Central Bank.19 For constructing the quarterly maturity and duration

statistics, we also include bonds issued during the sample period that did not have prices

quoted, and use the estimated spread curve to construct their prices according to equation

(19).

Spread Curve Estimation

We use a method proposed by Svensson (1994), and used recently by Gurkaynak, Sack, and

Wright (2006) for the United States, and Broner, Lorenzoni, and Schmukler (2007) for a

sample of emerging markets, to fit a spread curve to this data using a simple functional form

suggested by Nelson and Siegel (1987).

A coupon bond is priced as a collection of zero-coupon bonds, each with maturity given

by a coupon payment date, and face value given by the cash flow on that payment date.

The price at date t of a bond issued by country i, paying an annual coupon rate c at dates

n1, n2, . . . nJ years into the future, is

pit(c, {nj}) =
JX

j=1

c(1 + rit(nj))
−nj + (1 + rit(nJ))

−nJ (19)

with the face value of the bond paid on the last coupon date.

Spreads are defined as sit(n) = rit(n)−r∗t (n), where r∗t (n) is a default-free yield curve. We
19The U.S. data are the Treasury constant maturities yields, available at

http://www.federalreserve.gov/releases/h15/data.htm.
The European data are Euro area benchmark government bond yields, which is an average of European

national government bond yields available at http://sdw.ecb.europa.eu.
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introduce another measure of a bond’s price, the yield to maturity, that is useful in estimating

spreads. For a bond with coupon c and payments in n1, n2, . . . nJ years, the yield to maturity

is the rate y(c, {nj}) that solves

pit(c, {nj}) =
JX
j=1

c(1 + y)−nj + (1 + y)−nJ (20)

with pit(c, {nj}) given by (19). That is, the yield to maturity is the constant rate of interest
at which the bond’s price equals the discounted value of its payments.

We define spreads as a parametric function of maturity following Nelson and Siegel (1987)

sit(n;β
i
t) = βi1t + βi2t

µ
1− e−λn

λn

¶
+ βi3t

µ
1− e−λn

λn
− e−λn

¶
(21)

for each country i, where βit = (β
i
1t, β

i
2t, β

i
3t) and λ are parameters. For default-free bonds,

we define

r$t (n;βt) = β$1t + β$2t

µ
1− e−λn

λn

¶
+ β$3t

µ
1− e−λn

λn
− e−λn

¶
(22)

and

r€t (n;βt) = β€1t + β€2t

µ
1− e−λn

λn

¶
+ β€3t

µ
1− e−λn

λn
− e−λn

¶
(23)

for US ($) and Euro (€) bonds.

As described by Nelson and Siegel (1987) and Diebold and Li (2006), the three components

of this curve correspond to a “long-term,” or “level” factor (the constant), a “short-term,”

or “slope” factor (the term multiplying β2) and a “medium-term,” or “curvature” factor (the

term multiplying β3). Linear combinations of these factors can capture a broad range of

shapes for the spread curve.

We first estimate the parameters β$t and β€t by OLS, using U.S. and Euro bond yields.

Throughout, we follow Diebold and Li (2006) by setting the parameter λ = 0.714, so that

the term multiplying β3 in all countries’ spread curves is maximized when n = 21
2
years.

Then, given a set of parameters βit, we use equation (19) to price each of country i’s bonds

at date t using the risk-free yield given by (22) or (23) and the spread given by (21):

pit(c, {nj};βit) =
JX

j=1

c(1 + sit(nj;β
i
t) + r∗t (nj))

−nj + (1 + sit(nJ ;β
i
t) + r∗t (nJ))

−nJ ,

where r∗t refers to r$t if the bond is denominated in U.S. dollars, or r
∗
t = r€t if the bond is

denominated in a European currency. We use equation (20) to compute a yield-to-maturity
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for each bond, given the parameters βit, solving the following for y(c, {nj};βit):

pit(c, {nj};βit) =
JX
j=1

c(1 + y(c, {nj};βit))−nj + (1 + y(c, {nj};βit))−nJ .

We estimate the parameters βit nonlinearly by GLS to minimize the sum of squared

deviations of the predicted yields-to-maturity, y(c, {nj};βit) from their actual values. That

is, our estimated parameters solve

min
βit

X
(y(c, {nj};βit)− y(c, {nj}))2,

where the summation is taken over all bonds issued by country i with prices available at date

t. As discussed in Svensson (1994), minimizing yield to maturity errors rather than price

errors gives a better fit for short-term yields to maturity, because short-term bond prices are

less sensitive to their yields to maturity than long-term bond prices.

The following features present in the data require modification of the basic bond pricing

equation (19):

1. Between coupon periods, the quoted price of a bond does not include accrued interest,

so we subtract from the bond price the portion of the next coupon’s value that is

attributed to accrued interest.

2. For bonds with principal payments guaranteed by U.S. Treasury securities, we discount

the payment of principal by the risk-free yield only, without the country spread.

3. For bonds with coupon payments that increase or decrease over time with certainty

(“step-up” and “step-down” bonds, respectively), we modify the sequence of payments

in equation (19) accordingly.
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Further Statistics on Spread Curves

Tables 7 reports further spread curves and spread volatilities for all countries.

Table 7: Average Spreads and Volatility
Maturity Overall Std. Dev When 2-year spread is above/below nth percentile
(years) (%) < 10th < 25th < 50th ≥ 50th ≥ 75th ≥ 90th

Argentina 2 5.23 7.92 1.11 1.63 2.16 8.30 12.64 23.41
5 6.03 4.46 2.50 3.08 3.76 8.30 11.06 17.02
10 7.02 4.15 3.45 4.10 4.95 9.08 11.49 16.48
15 7.43 4.24 3.82 4.49 5.41 9.44 11.78 16.58

Brazil 2 6.01 5.85 1.47 2.12 2.75 9.25 13.55 21.19
5 7.69 4.80 5.36 5.03 5.11 10.27 13.55 19.11
10 8.04 3.39 5.89 6.12 6.08 9.99 12.23 15.43
15 8.10 2.97 5.92 6.47 6.40 9.80 11.61 13.85

Mexico 2 1.87 1.37 0.31 0.57 0.95 2.78 3.51 4.85
5 2.87 1.10 1.81 2.01 2.27 3.47 4.01 5.24
10 3.81 1.05 2.55 2.86 3.30 4.33 4.76 5.72
15 4.19 1.09 2.81 3.18 3.70 4.68 5.07 5.91

Russia 2 5.04 3.45 1.66 2.00 2.69 7.37 9.56 12.22
5 5.57 3.18 2.51 2.66 3.30 7.82 10.13 12.34
10 5.45 2.59 2.33 2.56 3.46 7.43 8.90 10.30
15 5.37 2.44 2.20 2.48 3.50 7.22 8.29 9.35
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Model’s Debt Price Schedules

Figure 6: Price schedules for short- and long-term debt when income is at its mean
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