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1. Introduction

1. Instrumental variables estimate average treatment effects,
with the average depending on the instruments.

2. Population averages are only estimable under unrealistically
strong assumptions (“identification at infinity”, or under
the constant effect).

3. Compliers (for whom we can identify effects) are not nec-
essarily the subpopulations that are ex ante the most inter-
esting subpopulations, but need extrapolation for others.

4. The set up here allows the researcher to sharply separate
the extrapolation to the (sub-)population of interest from
exploration of the information in the data.



2. Basics

Linear IV with Constant Coefficients. Standard set up:
Yi =00+ B1-W; + e

There is concern that the regressor W; is endogenous, corre-
lated with ¢;. Suppose that we have an instrument Z; that is
both uncorrelated with ¢; and correlated with W;.

In the single instrument / single endogenous regressor, we end
up with the ratio of covariances

N (i -Y) (4 - 2)

o _Nz (W, - W) (Z— Z)

Using a central limit theorem for all the moments and the
delta method we can infer the large sample distribution without
additional assumptions.



Potential Outcome Set Up

Let Y;(0) and Y;(1) be two potential outcomes for unit 7, one
for each value of the endogenous regressor or treatment. Let
W; be the realized value of the endogenous regressor, equal to

zero or one. We observe W; and

I I 16 if W, =1
Yi =Yi(Wi) = { v:(0)  if W;=o0.
Define two potential outcomes W;(0) and W;(1), representing
the value of the endogenous regressor given the two values
for the instrument Z;. The actual or realized value of the

endogenous variable is

Wil fZi=1
Wi=WilZi) = { Wi(0)  if Z;=o0.

So we observe the triple Z;,, W, = W;(Z;) and Y; = Y;(W;(Z;)).
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3. Local Average Treatment Effects
The key instrumental variables assumption is
Assumption 1 (Independence)

Z; L (Y;(0),Y;(1), W;(0), W;(1)).

It requires that the instrument is as good as randomly assigned,
and that it does not directly affect the outcome. The assump-
tion is formulated in a nonparametric way, without definitions
of residuals that are tied to functional forms.



Assumptions (ctd)

Alternatively, we separate the assumption by postulating the
existence of four potential outcomes, Y;(z,w), corresponding
to the outcome that would be observed if the instrument was
Z; = z and the treatment was W, = w.

Assumption 2 (Random Assignment)

z; L (¥3(0,0),Y;(0,1),Y;(1,0),Y;(1, 1), W;(0), W;(1)).
and
Assumption 3 (Exclusion Restriction)

Y;(z,w) = Y;(¢,w), for all z,2', w.

T he first of these two assumptions is implied by random assign-
ment of Z;, but the second is substantive, and randomization
has no bearing on it.



Compliance Types

It is useful for our approach to think about the compliance
behavior of the different units

W;(0)
0 1
O | never-taker defier
W;(1)
1 complier always-taker



We cannot directly establish the type of a unit based on what
we observe for them since we only see the pair (Z;,W;), not
the pair (W;(0),W;(1)). Nevertheless, we can rule out some
possibilities.

Z;

O | complier/never-taker never-taker/defier

1 | always-taker/defier complier/always-taker



Monotonicity
Assumption 4 (Monotonicity/No-Defiers)
Wi(1) > W;(0).
This assumption makes sense in a lot of applications. It is

implied directly by many (constant coefficient) latent index
models of the type:

Wi(z) = H{rg+ 71 -2+ ¢; > 0},

but it is much weaker than that.



Implications for Compliance types:

Z;
0 1
O | complier/never-taker never-taker
4%
1 always-taker complier/always-taker

For individuals with (Z; = 0,W; = 1) and for (Z; = 1,W; = 0)
we can now infer the compliance type.

10



Distribution of Compliance Types

Under random assignment and monotonicity we can estimate
the distribution of compliance types:

g = Pr(W;(0) = W;(1) = 1) = E[W;|Z; = 0]
e = Pr(W;(0) = 0,W;(1) = 1) = E[W;|Z; = 1] — E[W;|Z; = O]

mn = Pr(W;(0) = W;(1) = 0) = 1 - E[W;|Z; = 1]
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Now consider average outcomes by instrument and treatment:

Tc ™

- E[Y;(0)|complier] +

Tc ‘|‘ Tn Tc Tn

- E[Y;(0)|never — taker],
E[Y;|W; = 0, Z; = 1] = E[Y;(0)|never — taker],
E[Y;|W; = 1, Z; = 0] = E[Y;(1)|always — taker],
ElY;[W; =1,2Z; =1] =
T

e E[Y;(1)|complier] + % - E[Y;(1)]always — taker].

Tc ‘|‘ Ta Tc Ta

From this we can infer the average outcome for compliers,

E[Y;(0)|complier], and E[Y;(1)|complier],
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Local Average Treatment Effect Hence the instrumental
variables estimand, the ratio of these two reduced form esti-
mands, is equal to the local average treatment effect

gV — E[Y;|Z; = 1] — E[Y;|Z; = O]
E[Wi|Z; = 1] — E[W;|Z; = O]

= E[Y;(1) — Y;(0)|complier].
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4. Extrapolating to the Full Population
We can estimate
E[Y;(0)|never — taker], and E[Y;(1)|always — taker]

We can learn from these averages whether there is any evi-
dence of heterogeneity in outcomes by compliance status, by
comparing the pair of average outcomes of Y;(0);

E[Y;(0)|never — taker], and E[Y;(0)|complier],
and the pair of average outcomes of Y;(1):
E[Y;(1)|always — taker], and E[Y;(1)|complier].

If compliers, never-takers and always-takers are found to be
substantially different in levels, then it appears much less plau-
Ssible that the average effect for compliers is indicative of aver-
age effects for other compliance types.
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5. Covariates

Traditionally the TSLS set up is used with the covariates en-
tering in the outcome equation linearly and additively, as

Y; = B0+ B1-W;+ 68X, + ¢,

with the covariates added to the set of instruments. Given
the potential outcome set up with general heterogeneity in the
effects of the treatment, one may also wish to allow for more
heterogeneity in the correlations between treatment effects and
covariates.

Here we describe a general way of doing so. Unlike TSLS type
approaches, this involves modelling both the dependence of the
outcome and the treatment on the covariates.
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Heckman Selection Model

A traditional parametric model with a dummy endogenous vari-
ables might have the form (translated to the potential outcome
set up used here):

Wi(z) = 1{mg + 71 - z + 75 X; + n; > 0},
Yi(w) = Bo+ 51w+ BrX; + &,

with (n;, ;) jointly normally distributed (e.g., Heckman, 1978).
Such a model impose restrictions on the relation between com-
pliance types, covariates and outcomes:

never — taker if n; < —mg — w1 — 7HX;
i is a complier if —mg—m —75X; < < —mg —m — WH
always — taker if — g —75X; <,

which imposes strong restrictions, e.g., if E[Y;(0)|n, X;] < E[Y;(0)|c, X;],
then E[Y;(1)]e, X;] < E[Y;(1)]a, X;]
16



Flexible Alternative Model
Specify

y ) x,rWle,t) = f(ylz; Owt),

for (w,t) = (0,n),(0,¢),(1,¢),(1,a). A natural model for the
distribution of type is a trinomial logit model:

1
1 4+ exp(n! X;) + eXD(W(’le’)’

Pr(T; = complier| X;) =

exp(nl, X;)

Pr(7; )
(T; 1 4 exp(n! X;) + exp(n! X;)

never — taker|X;) =

Pr(T; = always — taker|X;) =

1 — Pr(T; = complier|X;) — Pr(T; = never — taker|X;).
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The log likelihood function is then, factored in terms of the
contribution by observed (W;, Z;) values:

L(ﬂ-na Ta, 90717 9067 9167 91&) —

’ i|Wi:1;[72Z,:1 1+ exp(izr))((;%frgxp(ﬂa)(i) - F(Y;] X5 6on)
i iIWFl;[,Zz:O <1 ixgig%jj))(i) Sl X Bon) + 1+ ex;(m’zXz) O
’ iIWz:l;[,Zi:l <1 ixgigé%) SilXi 01a) + 1+ ex;(W&Xz) A
’ 7:|Wz~=111,zz~=o 1+ exp(j’;((;&f ie)xp(w(’lXi) RACARSHATY
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Application: Angrist (1990) effect of military service

The simple ols regression leads to:

e e~

log(earnings); = 5.4364 — 0.0205 - veteran;
(0079) (0.0167)

In Table we present population sizes of the four treatmen/instrument
samples. For example, with a low lottery number 5,948 indi-
viduals do not, and 1,372 individuals do serve in the military.

Z;
0 1

0]5,948 1,915

111,372 865
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Using these data we get the following proportions of the var-
ious compliance types, given in Table , under the non-defiers
assumption. For example, the proportion of nevertakers is es-
timated as the conditional probability of W; = 0 given Z; = 1:

191
Pr(nevertaker) = 915 :
1915 4+ 865
W;(0)
0 1
O | never-taker (0.6888) defier (0)
W;(1)
1| complier (0.1237) always-taker (0.3112)
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Estimated Average Outcomes by Treatment and Instrument

Z;

0| E[Y] = 5.4472 E[Y] = 5.4028
W

1 | E[Y] = 5.4076, E[Y]= 5.4289

Not much variation by treatment status given instrument, but
these comparisons are not causal under IV assumptions.

21



W;(0)

0 E[Y;(0)] = 5.4028 defier (NA)
Wi (1)

1 | E[Y;(0)] = 5.6948, E[Y;(1)] = 5.4612 E[Y;(1)] = 5.4076

The local average treatment effect is -0.2336, a 23% drop in
earnings as a result of serving in the military.

Simply doing IV or TSLS would give you the same numerical
results:

e e~

log(earnings); = 5.4836 — 0.2336 - veteran;
(0.0289) (0.1266)
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It is interesting in this application to inspect the average out-
come for different compliance groups. Average log earnings for
never-takers are 5.40, lower by 29% than average earnings for
compliers who do not serve in the military.

This suggests that never-takers are substantially different than
compliers, and that the average effect of 23% for compliers
need not be informative never-takers.

Note that
E[Y;(0)[n, X;] < E[Y;(0)|c, X;],
but also E[Y;(1)|e, X;] > E[Y;(1)]a, X;]

Compliers earn more than nevertakers when not serving, and
more than always-takers when serving. Does not fit standard
gaussian selection model.
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6. Multivalued Instruments

For any two values of the instrument zp and z; satisfying the
local average treatment effect assumptions we can define the
corresponding local average treatment effect:

Tz1,20 = E[Y;(1) — Y;(0)|[W;(21) = 1, W;(20) = O].

Note that these local average treatment effects need not be
the same for different pairs of instrument values (zq, 21).

Comparisons of estimates based on different instruments un-
derly conventional tests of overidentifying restrictions in TSLS
settings. An alternative interpretation of rejections in such
testing procedures is therefore treatment effect heterogeneity.

24



Interpretation of IV Estimand

Suppose that monotonicity holds for all (z,z'), and suppose
that the instruments are ordered in such a way that p(zp_1) <
p(zr), where p(z) = E[W,;|Z;, = z]. Also suppose that the in-
strument is relevant, E[g(Z;) - W;] & 0. Then the instrumental
variables estimator based on using ¢g(Z) as an instrument for
W estimates a weighted average of local average treatment
effects:

__ Cov(¥ig(Z)

K
N = = AL T2 219
90) ™ Cov(W;, 9(Z:)) ,El k=1

3, — (p(zx) — p(2_1)) - f . m(g(z) — Elg(Z;)]
FTYE p(e) — p(ze-1)) - S, m(g(z) — Elg(Z:)]

T — PI’(ZZ = Zk)

These weights are nonnegative and sum up to one.
25



Marginal Treatment Effect

If the instrument is continuous, and p(z) is continuous in z, we
can define the limit of the local average treatment effects

Ty — lim TZ/
22,2z

/1.
4

Suppose we have a latent index model for the receipt of treat-
ment:

Wi(z) = 1{h(z) +n; > O},

with the scalar unobserved component n; independent of the
instrument Z;. Then we can define the marginal treatment
effect 7(n) (Heckman and Vytlacil, 2005) as

T(n) =E[Y;i(1) - Yi(0)|n; =n] .
26



This marginal treatment effect relates directly to the limit of
the local average treatment effects

7(n) =712, with n= —h(z2)).

Note that we can only define this for values of n for which there
iS a z such that = = —h(z2).

Normalizing the marginal distribution of n to be uniform on
[0, 1], this restricts n to be in the interval [inf,p(2),sup, p(z)],
where p(z) = Pr(W; = 1|7, = z).

Now we can characterize various average treatment effects in
terms of this limit. E.g.:

r= [ T(DdFy(n).
n
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7. Multivalued Endogenous Variables

_ Cov(¥i, %) _ EYilZ =1] - E[Y;|Z; = 0]
Cov(W;, Z;)  EWi|Z = 1] — E[W;{Z; = 0]

Exclusion restriction and monotonicity:
Yi(w) Wi(z) L Z;, W;(1) > W;(0),

Then
J
r= 3 A -EIYi() - Yi( - DIW(1) 2 5 > W;(0)],
j=1

. Pr(w;(1) > 5 > W;(0)
7l Pr(Wi(1) >0 > W;(0)

with the weights A; estimable.
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Illustration: Angrist-Krueger (1991) Returns to Educ.

—_—

educ; = 12.797 — 0.109-qob;
(0.006) (0.013)

—_—

log(earnings); = 5.903 — 0.011-qgob;
(0.001) (0.003)

The instrumental variables estimate is the ratio

_ ~0.1019
gY = = 0.1020.
—0.011

Weights ~;, = Pr(W;(1) > j > W;(0) can be estimated as
J

R 1 _ 1 .
= N > 1{Wi2]}_F > Wiz}
Li|z,=1 04|2,=0
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Figure 1: histogram estimate of density of years of education
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Figure 2: Normalized Weight Function for Instrumental Variables Estimand
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Figure 3: Unnormalized Weight Function for Instrumental Variables Estimand
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Figure 3: Education Distribution Function by Quarter
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