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1. Introduction

Various versions of multinomial logit models developed by Mc-
Fadden in 70’'s.

In IO applications with substantial number of choices IIA prop-
erty found to be particularly unattractive because of unrealistic
implications for substitution patterns.

Random effects approach is more appealing generalization than
either nested logit or unrestricted multinomial probit

Generalization by BLP to allow for endogenous choice charac-
teristics, unobserved choice characteristics, using only aggre-
gate choice data.



2. Multinomial and Conditional Logit Models
Models for discrete choice with more than two choices.

The choice Y, takes on non-negative, unordered integer values
between zero and J.

Examples are travel modes (bus/train/car), employment sta-
tus (employed/unemployed/out-of-the-laborforce), car choices
(suv, sedan, pickup truck, convertible, minivan).

We wish to model the distribution of Y in terms of covariates
individual-specific, choice-invariant covariates Z; (e.g., age)
choice (and possibly individual) specific covariates Xij.



2.A Multinomial Logit

Individual-specific covariates only.

exp(z'y;)

Pr(Y; =jl|Z; = 2) = ,
‘ ‘ 14 27, exp(2/y)

for choices y = 1,...,J and for the first choice:

1
1457 exp(2y)’

Pr(Y; =0|Z; = z) =

The ~; here are choice-specific parameters. This multinomial
logit model leads to a very well-behaved likelihood function,
and it is easy to estimate using standard optimization tech-
niques.



2.B Conditional Logit

Suppose all covariates vary by choice (and possibly also by
individual). The conditional logit model specifies:

exp(X;;53)
S gexp(X48)’

Pr(l/z :j|Xi07°°°7XiJ) —

for y =0,...,J. Now the parameter vector g is common to all
choices, and the covariates are choice-specific.

Also easy to estimate.



The multinomial logit model can be viewed as a special case
of the conditional logit model. Suppose we have a vector of
individual characteristics Z; of dimension K, and J vectors of
coefficients Vi each of dimension K. Then define

[ Z; ) [0 (0)
0 : :

X1 = E g e X7 = E , and X;p = o |,
: 0 :

\ 0 ) \ Zi ) \ 0 )
and define the common parameter vector g as 8’ = (v4,...,7%).
Then

1
Pr(Y; =0[Z;) =

147 exp(Ziy)

_exp(X1B)
> gexp(XB3)

= Pr(Y; = j| X0, -, X57)
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2.D Link with Utility Maximization
Utility, for individual 2, associated with choice 3, is
Uij = X{;8 + ;. (1)
¢ choose option 5 if choice 5 provides the highest level of utility
Y,=7 ifU; 22U forall l=0,...,J,

Now suppose that the g;; are iIndependent accross choices and
individuals and have type I extreme value distributions.

F(e) = exp(—exp(—¢€)), f(e) = exp(—e¢) - exp(—exp(—e¢)).

(This distribution has a unique mode at zero, a mean equal to
0.58, and a a second moment of 1.99 and a variance of 1.65.)

Then the choice Y follows the conditional logit model.



3. Independence of Irrelevant Alternatives

The main problem with the conditional logit is the property of
Independence of Irrelevant Alternative (IIA).

T he conditional probability of choosing 5 given either 53 or I:

Pr(Y; = 5)
Pr(Y; = )+ Pr(¥; = 1)

Pr(Y; = jlY; € {5, 1}) =

B exp(X;;8)
—exp(X[;8) + exp(X}8)’

T his probability does not depend on the characteristics X, of
alternatives m.

Also unattractive implications for marginal probabilities for new
choices.



Although multinomial and conditional logit models may fit well,
they are not necessarily attractive as behavior/structural mod-
els. because they generates unrealistic substitution patterns.

Suppose that individuals have the choice out of three restau-
rants, Chez Panisse (C), Lalime's (L), and the Bongo Burger
(B). Suppose we have two characteristics, price and quality

price Po =95, P, =80, Pg =05,
quality Qo =10, Q@ =9, Qg =2
market share S = 0.10, S§; = 0.25, Sp = 0.65.

These numbers are roughly consistent with a conditional logit

model where the utility associated with individual z and restau-
rant 5 is

UZ’j:—O.2°Pj+2°Qj+€ij7



Now suppose that we raise the price at Lalime’s to 1000 (or
raise it to infinity, corresponding to taking it out of business).

The conditional logit model predicts that the market shares for
Lalime’'s gets divided by Chez Panisse and the Bongo Burger,
proportional to their original market share, and thus SC = 0.13
and Sp = 0.87: most of the individuals who would have gone
to Lalime’s will now dine (if that is the right term) at the
Bongo Burger.

That seems implausible. The people who were planning to
go to Lalime’'s would appear to be more likely to go to Chez
Panisse if Lalime’s is closed than to go to the Bongo Burger,
implying So ~ 0.35 and Sp ~ 0.65.
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Recall the latent utility set up with the utility
Uij = Xi;0 + €. (2)

In the conditional logit model we assume independent extreme
value €;j- The independence is essentially what creates the
IIA property. (This is not completely correct, because other
distributions for the unobserved, say with normal errors, we
would not get IIA exactly, but something pretty close to it.)

The solution is to allow in some fashion for correlation between
the unobserved components in the latent utility representation.
In particular, with a choice set that contains multiple versions
of similar choices (like Chez Panisse and LaLime’'s), we should
allow the latent utilities for these choices to be similar.
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4. Models without IIA

Here we discuss 3 ways of avoiding the IIA property. All can
be interpreted as relaxing the independence between the ¢;;.

The first is the nested logit model where the researcher groups
together sets of choices. This allows for non-zero correlation
between unobserved components of choices within a nest and
Mmaintains zero correlation across nests.

Second, the unrestricted multinomial probit model with no re-
strictions on the covariance between unobserved components,
beyond normalizations.

Third, the mixed or random coefficients logit where the marginal
utilities associated with choice characteristics vary between
individuals, generating positive correlation between the un-
observed components of choices that are similar in observed
choice characteristics.
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Nested Logit Models
Partition the set of choices {0,1,...,J} into S sets Bj,...,Bg

Now let the conditional probability of choice 53 given that your
choice is in the set Bg, be equal to

exp(ps 1 X{:0)
>_1eB, €XP(ps 1X/55)

Pr(Y; = j|X;,Y; € Bs) =

for y € Bs, and zero otherwise. In addition suppose the marginal
probability of a choice in the set Bgs is

<ZZEBS eXD(p_lX{lﬁ))pS
Zt 1 <ZleBt exp(p; 1X/lﬁ))

Pr(YZ - BS|X’L) =
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If we fix ps =1 for all s, then

exp(X;;8 + Zia)
SP_1 Yie, exp(XLB + Zia)’

PrY; = jlX;) =

and we are back in the conditional logit model.

The implied joint distribution function of the €5 1S

S ps
F(ei0,...,€.7) = €xp (— Z ( Z exp <—,081€Z'j)> ) :

s=1 ]EBS

Within the sets the correlation coefficient for the €;j IS approxi-
mately equal to 1—p. Between the sets the ¢;; are independent.

The nested logit model could capture the restaurant example
by having two nests, the first By = {Chez Panisse, LaLime’s},
and the second one B, = {Bongoburger}.
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Estimation of Nested Logit Models
Maximization of the likelihood function is difficult.

An easier alternative is to use the nesting structure. Within a
nest we have a conditional logit model with coefficients 3/ps.
Estimates these as 5/,03

Then the probability of a particular set Bs can be used to
estimate ps through

<Zl€BS exp(X’lﬁ/ps))pS . exp(psWs)

Pr(Y; € Bs|X;) = ;= =g —,
S <Zl€Bt eXD(X,flﬁ/Pt)) >0 exp(pWy)

where the “inclusive values’ are

Ws = ( > exp(X;] lﬁ/,%))

leBs
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These models can be extended to many layers of nests. See
for an impressive example of a complex model with four layers
of multiple nests Goldberg (1995). Figure 2 shows the nests
in the Goldberg application.

The key concern with the nested logit models is that results
may be sensitive to the specification of the nest structure.

The researcher chooses which choices are potentially close
substitutes, with the data being used to estimate the amount
of correlation.

Researcher would have to choose nest for new good to estimate
market share.
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Multinomial Probit with Unrestricted Covariance Matrix

A second possibility is to directly free up the covariance matrix
of the error terms. This is more natural to do in the multino-
mial probit case.

We specify:
Ui Xzﬁoﬁ + €0 €0
U; = U.il = Xilﬁ:_I_ cil € = efl | X; ~ N(0O, £2),
U; X! B+ ey €J

for some relatively unrestricted (J 4+ 1) x (J 4+ 1) covariance
matrix 2 (beyond normalizations).
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Direct maximization of the log likelihood function is infeasible
for more than 3-4 choices.

Geweke, Keane, and Runkle (1994) and Hajivasilliou and Mc-
Fadden (1990) proposed a way of calculating the probabilities
in the multinomial probit models that allowed researchers to
deal with substantially larger choice sets.

A simple attempt to estimate the probabilities would be to draw
the ¢ from a multivariate normal distribution and calculate
the probability of choice 57 as the number of times choice j
corresponded to the highest utility.

The Geweke-Hajivasilliou-Keane (GHK) simulator uses a more
complicated procedure that draws ¢;q,...,¢€;7 sequentially and
combines the draws with the calculation of univariate normal
integrals.
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From a Bayesian perspective drawing from the posterior dis-
tribution of 8 and 2 is straightforward. The key is setting up
the vector of unobserved random variables as

0 = (5aQan07°°°7UiJ)7
and defining the most convenient partition of this vector.

Suppose we know the latent utilities U; for all individuals. Then
the normality makes this a standard linear model problem.

Given the parameters drawing from the unobserved utilities
can be done sequentially: for each unobserved utility given
the others we would have to draw from a truncated normal
distribution, which is straightforward. See McCulloch, Polson,
and Rossi (2000) for details.
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Merits of Unrestriced Multinomial Probit

The attraction of this approach is that there are no restrictions
on which choices are close substitutes.

T he difficulty, however, with the unrestricted multinomial pro-
bit approach is that with a reasonable number of choices there
are a large number of parameters: all elements in the (J +
1) x (J 4+ 1) dimensional 2 minus some normalizations and
symmetry restrictions.

Estimating all these covariance parameters precisely, based on
only first choice data (as opposed to data where we know
for each individual additional orderings, e.g., first and second
choices), is difficult.

Prediction for new good would require specifying correlations
with all other goods.
20



Random Effects Models

A third possibility to get around the IIA property is to allow for
unobserved heterogeneity in the slope coefficients.

Why do we fundamentally think that if Lalime’'s price goes
up, the individuals who were planning to go Lalime’'s go to
Chez Panisse instead, rather than to the Bongo Burger? One
argument is that we think individuals who have a taste for
Lalime’s are likely to have a taste for close substitute in terms
of observable characteristics, Chez Panisse as well, rather than
for the Bongo Burger.
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We can model this by allowing the marginal utilities to vary at
the individual level:

Usj = Xi;8: + €,
We can also write this as
Uij = X{;8 + vij,
where
vii = €; + Xi; - (B — B),
which is no longer independent across choices.

23



One possibility to implement this is to assume the existence
of a finite number of types of individuals, similar to the finite
mixture models used by Heckman and Singer (1984) in duration
settings:

5’i S {b07b17°°°7bK}7

with

exp(Zv)

Pr(8; =bi|Z;) =pg, or Pr(G; =bilZ;) = -
i i i i 1+ZleleXD(th)

Here the taste parameters take on a finite number of values,
and we have a finite mixture.
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Alternatively we could specify
BilZ; ~ N(Z}~, %),

where we use a normal (continuous) mixture of taste parame-
ters.

Using simulation methods or Gibbs sampling with the unob-
served (; as additional unobserved random variables may be an
effective way of doing inference.

The models with random coefficients can generate more real-
istic predictions for new choices (predictions will be dependent
on presence of similar choices)

25



5. Berry-Levinsohn-Pakes

BLP extended the random effects logit models to allow for

1. unobserved product characteristics,

2. endogeneity of choice characteristics,

3. estimation with only aggregate choice data

4. with large numbers of choices.

Their approach has been widely used in Industrial Organization,
where it is used to model demand for differentiated products.
26



T he utility is indexed by individual, product and market:
Uijt = BiXjt + Cjt + €ijit.

The Cjt IS @ unobserved product characteristic. This compo-
nent is allowed to vary by market and product.

The ¢;;; unobserved components have extreme value distribu-
tions, independent across all individuals 2, products 3, and mar-
kets t.

The random coefficients 3; are related to individual observable
characteristics:

27



The data consist of
e estimated shares §tj for each choice 5 in each market ¢,

e Observations from the marginal distribution of individual
characteristics (the Z;'s) for each market, often from rep-
resentative data sets such as the CPS.

First write the latent utilities as
Uit = 05t + Vijt T €ijt,
where

6j0 = B' Xt + Cjry and v = (ZiT 4+ 1) Xy

28



Now consider for fixed ', > and 5jt the implied market share
for product j in market ¢, s;;.

T his can be calculated analytically in simple cases. For example
with I‘jt — 0 and > = 0, the market share is a very simple

function of the 04

exp(d;t)
Zi]:o exp ()

Sjt(ajta [ = 07 2 = O) —

More generally, this is a more complex relationship which we
may need to calculate by simulation of choices.

Call the vector function obtained by stacking these functions
for all products and markets s(6,I,X).

29



Next, fix only ' and 2. For each value of 5jt we can find the
implied market share. Now find the vector of 4;; such that all
iImplied market shares are equal to the observed market shares

St

BLP suggest using the following algorithm. Given a starting

value for 5%, use the updating formula:

k+1
5]t+ = 5575 -+ In Sjt — In Sjt(5k, I_, Z)
BLP show this is a contraction mapping, and so it defines a

function 6(s,I",3) expressing the § as a function of observed
market shares s, and parameters [ and 2.

30



Given this function 6(s,,X) define the residuals
wjt = 0j1(s, I, ) — B'Xjy.

At the true values of the parameters and the true market shares
these residuals are equal to the unobserved product character-
istic Cjt

Now we can use GMM given instruments that are orthogonal
to these residuals, typically things like characteristics of other
products by the same firm, or average characteristics by com-
peting products.

This step is where the method is most challenging. Finding
values of the parameters that set the average moments closest
to zero can be difficult.
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Let us see what this does if we have, and know we have, a
conditional logit model with fixed coefficients. In that casel =
O, and 2 = 0. Then we can invert the market share equation
to get the market specific unobserved choice-characteristics

5jt = In Sjt — N so¢,

where we set §p; = 0. (this is typically the outside good, whose
average utility is normalized to zero). The residual is

/ /
Cjt = 5]75 — 5 X]t = In Sjt — IN SOt — 5 X]t
With a set of instruments W.,, we run the regression
gt
/
In St — INnsor = B th + €t

using W;; as instrument for X;;, using as the observational unit
the market share for product 5 in market ¢.
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6. Models with Multiple Unobserved Choice Characteris-
tics

The BLP approach can allow only for a single unobserved
choice characteristic. This is essential for their estimation
strategy with aggregate data.

With individual level data one may be able to establish the
presence of two unobserved product characteristics (invariant
across markets). Elrod and Keane (1995), Goettler and Shachar
(2001), and Athey and Imbens (2007) study such models.

These models can be viewed as freeing up the covariance ma-
trix of unobserved components relative to the random coef-
ficients model, but using a factor structure instead of a fully
unrestricted covariance matrix as in the multinomial probit.
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Athey and Imbens model the latent utility for individual 7 in
market ¢ for choice 5 as

Uijt = X8 + C;% + €t

with the individual-specific taste parameters for both the ob-
served and unobserved choice characteristics normally distributed:

( Gi ) 1Z; ~ N(AZ;, Q).
Vi

Even in the case with all choice characteristics exogenous, max-
imum likelihood estimation would be difficult (multiple modes).
Bayesian methods, and in particular markov-chain-monte-carlo
methods are more effective tools for conducting inference in
these settings.
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7. Hedonic Models

Recently researchers have reconsidered using pure characteris-
tics models for discrete choices, that is models with no idiosyn-
cratic error € instead relying solely on the presence of a small
number of unobserved product characteristics and unobserved
variation in taste parameters to generate stochastic choices.

Why can it still be useful to include such an ;7
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First, the pure characteristics model can be extremely sensi-
tive to measurement error, because it can predict zero market
shares for some products.

Consider a case where choices are generated by a pure char-
acteristics model that implies that a particular choice 3 has
zero market share. Now suppose that there is a single unit 2
for whom we observe, due to measurement error, the choice
Yi=7.

Irrespective of the number of correctly measured observations
available that were generated by the pure characteristics model,
the estimates of the latent utility function will not be close to
the true values due to a single mismeasured observation.
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Thus, one might wish to generalize the model to be more
robust. One possibility is to related the observed choice Y, to
the optimal choice Y*:

Pr(Y; =yl Xi,vi, Z1, .-, Z5,C1y- -, C)

| 1-=9 if Yy =Y~
]l 6/(J—1) iIfY £EY

This nests the pure characteristics model (by setting § = 0),
without the extreme sensitivity.

However, if the optimal choice Y,L.* IS not observed, all of the
remaining choices are equally likely.
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An alternative modification of the pure characteristics model
IS based on adding an idiosyncratic error term to the utility
function. This model will have the feature that, conditional
on the optimal choice not being observed, a close-to-optimal
choice is more likely than a far-from-optimal choice.

Suppose the true utility is U,g;- but individuals base their choice
on the maximum of mismeasured version of this utility:

- E S
Uij = Uy; + €,

with an extreme value € independent across choices and in-
dividuals. The ¢;; here can be interpreted as an error in the
calculation of the utility associated with a particular choice.
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Second, this model approximately nests the pure characteristics
model in the following sense. If the data are generated by the
pure characteristics model with the utility function g(x, v, 2, (),
then the model with the utility function A-g(z, v, z,{) +¢;; leads,
for sufficiently large A\, to choice probabilities that are arbitrarily
close to the true choice probabilities (e.g., Berry and Pakes,
2007).

Hence, even if the data were generated by a pure characteristics
model, one does not lose much by using a model with an
additive idiosyncratic error term, and one gains a substantial
amount of robustness to measurement or optimization error.
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